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Abstract. This paper is motivated by the fact that, al-
though temperature readings made by Vaisala RS41 ra-
diosondes at GRUAN sites (https://www.gruan.org/, last ac-
cess: 30 November 2020) are given at 1 s resolution, for vari-
ous reasons, missing data are spread along the atmospheric
profile. Such a problem is quite common with radiosonde
data and other profile data. Hence, (linear) interpolation is
often used to fill the gaps in published data products. From
this perspective, the present paper considers interpolation un-
certainty, using a statistical approach to understand the con-
sequences of substituting missing data with interpolated data.

In particular, a general framework for the computation of
interpolation uncertainty based on a Gaussian process (GP)
set-up is developed. Using the GP characteristics, a simple
formula for computing the linear interpolation standard er-
ror is given. Moreover, the GP interpolation is proposed as it
provides an alternative interpolation method with its standard
error.

For the Vaisala RS41, the two approaches are shown to
provide similar interpolation performances using an exten-
sive cross-validation approach based on the block-bootstrap
technique. Statistical results about interpolation uncertainty
at various GRUAN sites and for various missing gap lengths
are provided. Since both approaches result in an underes-
timation of the interpolation uncertainty, a bootstrap-based
correction formula is proposed.

Using the root mean square error, it is found that, for short
gaps, with an average length of 5 s, the average uncertainty is
less than 0.10 K. For larger gaps, it increases up to 0.35 K for
an average gap length of 30s and up to 0.58 K for a gap of
60 s. It is concluded that this approach could be implemented
in a future version of the GRUAN data processing.

1 Introduction

The quality of climate variable profiles in the atmosphere is
relevant in various scientific fields. In particular, it is impor-
tant for numerical weather prediction, satellite observation
validation, and climate change understanding, including ex-
treme events such as droughts and tornadoes. In this frame-
work, more than 10 years ago, the GCOS (Global Climate
Observing System) Reference Upper-Air Network (GRUAN,
https://www.gruan.org/) was established to provide reference
measurements from the surface, through the troposphere, and
into the stratosphere (Seidel et al., 2009; Bodeker et al.,
2016). Immler et al. (2010) discussed the concepts of ref-
erence measurements, traceability, full metadata description,
a proper manufacturer-independent instrument characterisa-
tion, and the assessment of measurement uncertainties for
upper-air observations.

GRUAN data processing for the Vaisala RS92 radiosonde
was developed to meet the above criteria for reference mea-
surements (Dirksen et al., 2014). The related data product is
characterised not only by the above-mentioned metrological
requirements, but also by high vertical resolution. After the
introduction of the new Vaisala RS41 radiosonde, GRUAN is
currently developing the corresponding data processing for
the new instrument (Dirksen et al., 2020).

Although temperature readings made by the Vaisala RS41
radiosonde at GRUAN sites are given at 1s resolution, for
various reasons, missing data are sometimes present along
the atmospheric profile. If interpolation is applied to fill in
the missing values, the uncertainty introduced through inter-
polation should be considered in the uncertainty budget.

The literature has considered the interpolation of atmo-
spheric profiles from various points of view. In some cases,
interpolation is applied to measurement uncertainty. For ex-

Published by Copernicus Publications on behalf of the European Geosciences Union.


https://www.gruan.org/
https://www.gruan.org/

6446 A. Fasso et al.: Interpolation uncertainty of atmospheric temperature profiles

ample, considering the AERONET Version 3 aerosol re-
trievals, Sinyuk et al. (2020) obtained the uncertainty by in-
terpolation of a lookup table.

A second and more relevant use of interpolation relates to
the measurement itself. In this field, Ceccherini et al. (2018)
used interpolation for the data fusion of ozone satellite ver-
tical profiles. Interpolation uncertainty and, more generally,
co-location uncertainty have been computed using simulated
profiles. Similarly, for co-location uncertainty of the total
ozone, Verhoelst et al. (2015) used interpolation in the so-
called OSSSMOSE simulator.

In the framework of radiosonde co-location uncertainty,
considering relative humidity, Fasso et al. (2014) used a
statistical approach based on the heteroskedastic functional
regression model. Considering pressure, Ignaccolo et al.
(2015) extended the latter approach to three-dimensional
functional regression. In these two papers, interpolation un-
certainty is implicitly assessed by means of model error vari-
ance.

Comparisons of radiosonde and satellite data are some-
times based on low-vertical-resolution radiosonde profiles,
especially for historical data. In some cases, interpolation is
not required because of the higher vertical resolution of satel-
lite profiles (Sun et al., 2010). In other cases, interpolation is
required. For example, Finazzi et al. (2019) considered the
harmonisation of low-vertical-resolution temperature and hu-
midity radiosonde measurements and the corresponding at-
mospheric profiles derived from the Infrared Atmospheric
Sounding Interferometer (IASI) aboard the Metop-A and
Metop-B satellites. These authors used spline interpolation
of radiosonde profiles and indirectly assessed the related un-
certainty through a comparison with GRUAN reference mea-
surements.

As a common trait of the above literature, interpolation
of atmospheric profiles is quite common, but a systematic
analysis of interpolation uncertainty per se is not yet avail-
able. A general approach to interpolation is the geostatistics
approach (Cressie and Wikle, 2011), which is similar to the
Gaussian process (GP) approach (Rasmussen and Williams,
2006). Its value is due to the fact that it gives optimal inter-
polation under some conditions. With some variations, the
related optimal interpolation algorithm is based on the auto-
covariance function or, equivalently, on the structure function
(Sofieva et al., 2008). This approach is often used to interpo-
late in spaces of increasing complexity, such as the Euclidean
plane, the sphere (Alegria et al., 2017), the three-dimensional
Euclidean space, or the circular shell representing the atmo-
sphere (Porcu et al., 2016). Interestingly, it can be shown that
the spline interpolation is a special case of the GP interpola-
tion (Kimeldorf and Wahba, 1970). Another interesting point
is that the GP approach comes with a formula for interpola-
tion uncertainty estimation. It must be noted that the formula
is correctly used if the true data generation mechanism is a
GP. If the GP is simply an approximation, an additional term
must be added.
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In this paper, the uncertainty of the one-dimensional linear
interpolation is discussed using two approaches. In the first
stage, the closed-form formula of the linear interpolation un-
certainty is presented under the assumption that the observed
atmospheric profile is generated by a GP. In the second stage,
thanks to the availability of good profiles without missing
data, the GP assumption is relaxed, and a block-bootstrap
correction of the uncertainty formula is constructed. This ap-
proach is valid for any atmospheric profile data set. Consid-
ering the motivating application, which focuses on tempera-
ture readings of the Vaisala RS41 at GRUAN sites, this pa-
per’s objective is to contribute to the understanding of inter-
polation uncertainty expressed as a function of missing gap
length, missing frequency, altitude, and site. This objective
amounts to studying the feasibility of an algorithm and/or a
lookup table providing interpolation uncertainty in a future
version of GRUAN data processing.

To achieve this objective, each good profile is divided into
a learning set and a testing set. Firstly, data from the test-
ing set are considered missing and are estimated by interpo-
lation of the learning set data. Secondly, the comparison of
estimated and true data in the testing set is used for interpola-
tion uncertainty assessment. This assessment is done for var-
ious missing patterns that resemble observed bad launches,
which are characterised by many missing measurements. In
particular, increasing gap average lengths will be analysed.
The testing sets will be extracted using a block-bootstrap ap-
proach (Politis and Romano, 1994; Mudelsee, 2014). Hence,
although the numerical results are specific to the Vaisala
RS41 temperature data set, the approach is quite general and
may be applied to other sensors.

The rest of the paper is organised as follows. Section 2
motivates the paper by discussing the sources of gaps in data
reception and their impact in GRUAN data processing. Sec-
tion 3 introduces the GP set-up used to provide the formal
assessment of linear interpolation uncertainty and to intro-
duce the GP interpolation with its standard deviation. Sec-
tion 4 presents the data sets, which are related to Vaisala
RS41 observations at seven GRUAN sites and are used in the
empirical analysis. Section 5 describes the re-sampling tech-
nique able to simulate random patterns of missing values of
different durations. Section 6 describes the cross-validation
scheme essential for the uncertainty computations and the
model selection, which is discussed in Sect. 7. Section 8
presents the results, compares the behaviour of the two inter-
polation techniques, and proposes an empirically corrected
formula for interpolation uncertainty. Finally, Sect. 9 draws
some conclusions.

2 Data processing and interpolation
There are several possible reasons for temporary gaps in

data reception. These include the presence of obstacles that
may interfere with radio transmission to the ground site
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Figure 1. Frequency distribution of temperature gaps in the strato-
spheric height section between 20 and 25 km, based on 13 667 RS41
profiles, years 2014-2019. (a) Frequency distribution of the number
of data gaps (independent of gap length). (¢) Frequency distribution
of the length of the largest gap identified in a profile. Panels (b) and
(d) show the corresponding cumulative frequencies.

(trees, buildings, local geography), extraordinary meteoro-
logical conditions, or instrument-related reasons. Consider-
ing an ascent as a trajectory, rather than a vertical profile, the
probability of data gap occurrence increases with the hori-
zontal distance from the launch site (weaker radio signal),
which can significantly exceed the vertical distance, depend-
ing on wind conditions.

A preliminary statistical analysis of the occurrence of data
gaps in RS41 radiosonde soundings performed at 15 GRUAN
stations in the 2014-2019 period shows that gaps occur in
more than 20 % of the soundings, virtually independently of
the height ranges, with the majority (> 95 %) having fewer
than 15 gaps per 1000s. Up to 30km, gaps > 10s only play
arole in about 5 % of the ascents; however, the occurrence of
larger gaps generally increases with height (distance). Fig-
ure 1 gives an example of the stratospheric height section
between 20 and 25 km, where 13 667 profiles are included.

The GRUAN data processing is based on the raw data from
the physical radiosonde sensors, namely temperature, rela-
tive humidity, positioning data provided by the Global Nav-
igation Satellite System (GNSS), and pressure if an onboard
sensor is present. The raw data are corrected for known or
experimentally evidenced systematic effects, such as adjust-
ments from pre-flight ground checks, corrections of sensor
time lags, or solar radiative effects. Some intermediate vari-
ables are, in turn, calculated (e.g. effective air speed or ven-
tilation) as components of the correction algorithms. A num-
ber of secondary variables are finally derived, for example,
altitude, geopotential height, water vapour content, or wind
components. At different processing stages, smoothing fil-
ters are applied for estimation and separation of the signal’s
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noise components. Through all these steps, the regular grid
of the measured raw data is maintained; that is, all variables
and uncertainties in the product variables are given with the
original high resolution.

This procedure inevitably leads to specific technical diffi-
culties if data gaps occur randomly or intermittently. For ex-
ample, smoothing may introduce effects which are difficult
to handle when running over gaps, especially for gap sizes
comparable to or exceeding the actual kernel length. The
same difficulty applies to uncertainty estimates to be associ-
ated with the averaged (smoothed) values. Another example
is related to magnitudes which are calculated cumulatively
with height, such as pressure derived from positioning, tem-
perature, and humidity data, or the integrated water vapour
content. As a consequence, processing-related irregularities
or deviations may occur in the profile data and uncertainty
estimates, the systematics and extent of which are difficult
to predict. Depending on the purpose for which the GRUAN
data product is further used (e.g. process studies based on
high-resolution data or average-based long-term studies for
climate), such systematics may have a different impact.

3 Interpolation uncertainty

In this section, formulas of the uncertainty for both linear and
stochastic interpolation are considered under some stochastic
assumptions about the data generation mechanism.

In particular, considering a radiosonde flight, we assume
that t =1,..., T is the flying time in seconds from take-off
and y(z) is the observed temperature in Kelvin, provided by
the following measurement error equation:

y(@) =s(t) +€(). ey

In Eq. (1), s(¢) is the unobserved true temperature and € (¢)
is the zero mean measurement error. In each atmospheric
layer, the former is assumed to follow a GP, characterised
by a power exponential autocovariance function (Cressie and
Wikle, 2011; Rasmussen and Williams, 2006), and the latter
is assumed to follow a white noise GP. Hence, conditional
on some unobserved time-dependent atmospheric conditions
denoted by a(¢), the GP y(¢) has the following autocovari-
ance function:

y(t =t a@) =afexp(=lt ='|7/07) + 021t =1), (2)
where p =1, 2, the dependence on a(¢) is omitted on the
right-hand side for notational simplicity, and [ is the indica-
tor function; that is, I = 1 if t = ¢’ and zero else. It is worth
observing that the model in Eq. (2) is an important subset
of the Matérn class, which is extensively used in statistics,
machine learning and atmospheric sciences (Genton, 2001).
For p = 2, the unobserved true temperature has very smooth
paths, since the corresponding GP has infinitely differen-
tiable trajectories, while for p = 1, the differentiability con-
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dition does not hold, and the correlation decreases faster at
short distances.
From Eq. (2), the (conditional) variance of y(¢) is given by

Uy2 =02 +02, 3)
where o > 0 is the standard error of s(¢) and o, > 0 is the
measurement uncertainty, i.e. 062 = E(€?). For the instru-
ments installed on the Vaisala RS41, it is known that the
sensor-intrinsic noise of a temperature sensor is very minimal
(< 0.01 K), hence we expect to find a small o, for the data
of this paper. In addition, 6 > O represents the atmospheric
persistence range.

The GP is characterised by the parameter set W =
(0, 04,0¢), which is assumed to be slowly varying in time,
hence characterising locally the atmospheric conditions a(¢):

¥ =V,. “)

Note that, from the practical point of view, the random er-
ror € is a Gaussian white noise and o, represents the ran-
dom uncertainty, while (vertically) correlated errors could be
confused with s(¢). This point will be considered further in
Sect. 8.

3.1 Linear interpolation

Considering an observation gap in the interval (+—,¢"), the
linear interpolation at time ¢, with ¢ in the gap interval
t~ <t <tt, is straightforwardly defined by the following
formula:

m(t) =1 —a@)y” +a@)y", &)

where y* = y(t®) and a(¢) = % In general, the interpo-
lation uncertainty u(¢) is based on the expected value of the
squared interpolation error, namely

u(®? = E[m) - s)?*]. ©6)

Clearly, it is defined in terms of the true signal s(#) and is
related to the interpolation mean square error, MSE, (1)?* =
E[(m(t) — y(t))?], by the well-known relation

MSE, (t)* = u(t)* +o?. @)

Since the measurement uncertainty o, is unknown in our
case, estimating u(¢) directly from the data is an issue, and a
statistical modelling approach is needed.

Assuming that the true signal s is a GP, as discussed above,
the Appendix shows that the linear interpolation uncertainty
given in Eq. (6) may be computed by the following standard
error (SE) formula:

SE®? =202 {1 -a+a?} +2fatt 0yt —1)

—ay(z+—z)—(1—a)y(z—z—)]+a§, 8)

Atmos. Meas. Tech., 13, 6445-6458, 2020

0.7 R~
A

0.6 -

0.2~

Gap size
45s| |
15s
5s

0.1+

5 10 15 20 25 30 35 40 45
Gap interval [s]
Figure 2. Linear interpolation standard error (SE), Eq. (8), as a

function of the gap time for a white noise process with oy =0.5K
and o« = 0.01 K. Three gap sizes are considered: 45, 15, and 5's.

where, with abuse of notation, @ = «(¢). Note that SE(z‘)2 =
u(t)? if the GP assumption is satisfied, but two different sym-
bols are used because, in Sect. 8, this assumption will be re-
laxed.

Equation (8) defines a function of ¢ which depends on the
atmospheric persistence modelled by y and the gap size t+ —
t~. Since y is not continuous in zero, the same happens to
SE(¢) at the gap interval borders.

Figure 2 considers the case where s(¢) is a white noise —
that is, y(h) =0 for 2 #0 and y(0) = 03. At the gap bor-
ders, the interpolation is error-free, m(ti)yz yi, and the un-
certainty is u(t*) = o. For ¢ strictly inside the gap interval,
we have

%ayz + 062 <u(r)? < 20)% +a€2,
where the minimum is achieved in the centre of the gap in-
terval. In this particular case, the uncertainty range does not
depend on the gap size.

The above thresholds may be overcome in the presence of
correlation. In general, for a GP with 6 > 0, the uncertainty
depends both on the GP characteristics and the gap size. As
an illustration, using oy = 0.5K, o =0.01 K, and 6 =35,
Fig. 3 shows how the interpolation uncertainty depends on
the gap size and on the distance from the observations in the
presence of a short correlation range. More interestingly for
applications, Fig. 4 shows that the linear interpolation uncer-
tainty strongly depends on the correlation range.

3.2 Gaussian process interpolation

The assumption that the temperature profile y(¢) is a realisa-
tion of a GP may be extended to cover for a non-constant
mean so that, using some basis functions k(), Eq. (1) is

https://doi.org/10.5194/amt-13-6445-2020
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Figure 3. Linear interpolation SE, Eq. (8), as a function of the gap
time for a GP with oy = 0.5K, 0 = 0.01K, and 6 = 3s. Three gap
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Figure 4. Linear interpolation SE, Eq. (8), as a function of the gap
time for a GP with o3 =0.5K, 0 =0.01K, and 6 = 3s, 3 min,
9 min, and 30 min.

rewritten as
y(@) =h(@)B+s@t)+e€),

with parameter set ¥ = (8, 0, o¢, 0;). In this context, Eq. (3)
defines the variance of y(¢) conditional on A(t)' B, namely
Var(y(1)|h(t)'B). Let us denote the set of all non-missing ob-
servations during the radiosonde flight by Y, denote the ma-
trix of the corresponding basis functions by H, and assume
that W is known. Then, the GP interpolation of a missing ob-

servation at time ¢* is given by the well-known conditional
expectation formula

m(t*) = E(y(t")|Y)
=h(t*) B+ 2, y vy (Y —HP), 9)
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Table 1. GRUAN sites included in the Few_nan data set with the
respective number of profiles and the number of profiles selected for

the analysis, which have gaps shorter than 5s and a total of fewer
then 10 missing values.

Site

Code Country Profiles Selected

Profiles

Beltsville BEL USA 33 15
Lauder LAU NZ 32 32
Lindenberg  LIN DE 54 45
Ny-Alesund NYA DE/FR 35 35
Payerne PAY CH 100 30
Lamont SGP USA 18 16
Sodankyld SOD FI 4 4
276 177

where Xy y is the covariance matrix of the good observa-
tions Y|HB and X+ y is the covariance vector between
the missing observation y(t*)|k(t7)’8 and Y|Hp. In addi-
tion to point estimation, the GP approach also provides the
interpolation standard error:

SE(t*)? = E(m—y)* =0; =X, y Ty Zyemy. (10)
This formula can be used as an estimate of the interpolation
uncertainty, provided that the GP, with the autocovariance
given by Eq. (2), is a good description of the problem un-
der study and the true W is approximately known.

4 Data

Two data sets provided by the GRUAN Lead Centre (https://
www.gruan.org/network/lead-centre, last access: 30 Novem-
ber 2020) and related to the seven GRUAN sites of Table 1
are considered here. One data set is named Few_nan in this
paper and contains 276 temperature profiles characterised by
“little” missing data. The second data set, named Many_nan,
contains 273 profiles with many missing data.

As a preliminary analysis of the bad data set Many_nan,
Fig. 5 shows the distribution of the fraction of missing data
per launch. The average missing fraction is 0.13, and the av-
erage gap length is 3.6's. These values will be used to set the
parameters of the simulated gap patterns in Sect. 5.

For further interpolation analysis, those profiles in
Few_nan with very few missing data are selected. In partic-
ular, the L = 177 launches which have gaps shorter than 5 s
and a total of fewer then 10 missing values per profile have
been used in this paper. The profile duration distribution is
depicted in Fig. 6, with an average profile duration of about
6000 s. This distribution gives a total of more than 1 million

measurements, which will be amplified using the bootstrap
technique of Sect. 5.
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5 Block-bootstrap cross-validation scheme

The block bootstrap is a well-known technique (Politis and
Romano, 1994; Mudelsee, 2014) for generating synthetic
time series replicates and in this paper is used to construct
the cross-validation scheme. Let us consider a fully ob-
served temperature profile — without missing values — and,
hence, measurements y taken every second from take-off,
t=1,...T: Y =(Q),....,y(T)).

This section presents a rule for partitioning each original
profile Y as follows:

Y — [yL,y*], (11

where Y is the learning set — used for fitting — and Y* is the
validation set — used for testing the interpolation accuracy
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and bootstrap correction. In order to construct the testing set,
ng gap sequences of average duration ug (s) are extracted
from the temperature profile ¥ and moved to the testing set
Y*. Observe that, if the testing size (average) fraction is de-
noted by f,thenng =T x f/uG.

The gap scheme is obtained by randomly generating and
sorting the ng gap starting points 1 <t <... <t; <T and
by building, for each of them, a gap sequence

* *
tj,...,lj‘i_gj,

where the gap duration g; is a geometric random variable
with mean pg. In particular, the length g; is truncated at
t}* M t;.‘ — 1 to avoid overlapping among different gap se-
quences. Let the resulting testing set index be denoted by
t*. Ignoring the above truncation, t* has the random di-
mension n* :nG+Z';il gj and the expected dimension
E@m*) =T x f. Hence, the partitioning rule in Eq. (11) is
defined by the testing set Y* = (y(¢), ¢ € t*) and the learning
set YE = (y(1),1 <t <T,t ¢t%).

We are interested in collecting information about the in-
terpolation error in a dense vertical grid, even if the testing
fraction f is small. To accomplish this aim, in the applica-
tion developed below, the above random extraction process
is repeated B times, so that for each observed profile Y, B
replications are generated, namely

(Yt Yil, b=1,...B.

These replications provide a statistical basis to assess the in-
terpolation uncertainty at all altitudes, especially for those
sites with a limited number of available profiles.

6 Cross-validation

The main results of the next section are obtained using linear
interpolation of temperature versus time, based on the neigh-
bouring values, and GP interpolation given by the expecta-
tion of Y* conditional on YZ. As in the previous section, let
us denote temperature, in Kelvin, by y and flying time, in
seconds, by t =1, ..., T. The total flying time T depends on
the single profile and site, but suffixes are not used here for
notational simplicity. For each site s =1,..., S and launch
I =1,..., Ls, we have the interpolated values

Y(A*ls, D) =m;(t*|s, 1),

where j = 1 denotes the linear interpolation of Eq. (5), and
J =2 denotes the GP interpolation of Eq. (9).

Each bootstrap replicate [Ylf,YZ], b=1,...,B is used
first to estimate the GP model coefficients ¥ by the max-
imum likelihood method, as explained in the next section
and denoted by V. Then, the interpolated values y(*) =
mg(t*|\il) are computed for the simulated missing times ¢*
in the test data set, Y}, and the cross-validation interpolation
errors are computed as follows:

e=-e(t"|s,l,b) = y(*|s,l,b) — y(t*|s,]).

https://doi.org/10.5194/amt-13-6445-2020
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Note that each single measurement y and error e are taken at
a certain altitude, say alt = alt(s, [, ), which is known with
good precision. As a result, the interpolation MSE and the
corresponding root MSE (RMSE) are classified by site, alti-
tude, and gap length:

MSE(ALT, s, ug) = avg(ez|ALT, s, LG), (12)

where ALT identifies a layer of the atmosphere with a thick-
ness between 2 and 7 km, depending on height. The quantity
avg(-|s, ALT, 1) is the average of all testing set terms in the
layer ALT, launched from site s and generated using gap size
. We call ALT the output layering to differentiate from the
model-related layering of the next section.

7 Modelling details

The GP interpolator depends on the local structure m,(t) =
mo(t|W¥ (1)), where W4 is as in Eq. (4). In order to make the
local GP modelling feasible and computationally efficient, a
block-partitioning structure has been assumed. This assump-
tion amounts to dividing the atmosphere into layers which
may differ from the output layers of the previous section.
Each atmospheric layer identifies a block, and the variance—
covariance matrix for the entire profile is assumed block-
diagonal with a constant parameter set W, in each layer
block. This technique is a special case of the spatial parti-
tioning approach (Heaton et al., 2019), but continuity at the
layer borders is ignored here because borders have been de-
liberately located far from the gaps.

The GP model selection considered the two autocovari-
ance functions y in Eq. (2), various basis functions h(), and
various layerings of the atmosphere to define the appropriate
concept of the local model ¥, (¢) of Eq. (4). For each layer
a, local estimation has been performed using the maximum
likelihood method. The above alternatives have been opti-
mised using the RMSE applied to the block-bootstrap repli-
cates of Sect. 5.

Considering the choice of layering resolution, the results
were little sensitive to layer-size variations, and a 400 s layer
size is used since it provides both a reasonable computing
time and a satisfactory atmospheric adaptation. The exponen-
tial autocovariance function with p = 1 resulted in a smaller
cross-validation RMSE compared to the squared exponential
one (p =2).

The best results for the basis functions were obtained with
a piecewise linear function of time. In this regard, other pre-
dictor set-ups were also considered: a piecewise quadratic
function of time and vector predictor set-ups, including alti-
tude, coordinates, and wind. Using these more complex mod-
els did not result in any relevant improvement to RMSE; still
worse, it resulted in problems concerning the singularity of
the information matrix at various combinations of sites and
layers. Hence, invoking Occam’s razor and looking for a ro-
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bust and general model set-up, we settled on using the sim-
plest piecewise linear function of time.

8 Results

This section’s bootstrap campaign aims to assess the uncer-
tainty of the linear interpolation, Egs. (5) and (8), and of the
GP interpolation, Egs. (9) and (10). The cross-validation de-
sign is based on a 4 x 3 combination of gap sizes ug and
missing fractions f, centred on the characteristics of the
Many_nan data set. In detail, we use ug = 4, 10, 30, and 60 s
and f =0.05, 0.13, and 0.20. Moreover, for uncertainty es-
timates with a high vertical density, the block-bootstrap vali-
dation of Sect. 5 is replicated B = 50 times, giving a data set
with more than 51 million measurements for each combina-
tion of g and f.

Table 2 summarises the RMSEs of both the linear and
GP interpolations. Overall, the average interpolation uncer-
tainty is smaller than 0.1K for little gaps (ug =4s), in-
creases to about 0.16 K for medium gaps (ug = 10s), and
increases further to 0.35 and 0.58 K for large and very large
gaps (ug = 30 and 60 s), respectively.

When comparing the two interpolation approaches, Ta-
ble 2 shows that they have very close RMSEs. Indeed, not
only do the linear and GP interpolations have close perfor-
mances, but also, for any practical purposes, they are ex-
changeable since the mean absolute difference between the
two is smaller than 0.01 K. Hence, in the rest of this paper,
we will not replicate figures and results for both interpolation
methods.

Figure 7 depicts the linear interpolation uncertainty at each
GRUAN site using the RMSE based on Eq. (12). Here and
in the rest of this section, for simplicity, the largest aver-
age gap size ug = 60s is omitted. The clustered pattern of
the nine curves clearly shows that the missing fraction f
has a minor influence on uncertainty in the range 0.05-0.20,
which is the range of interest for meaningful practical ap-
plications. Hence, for the rest of the paper, we will consider
only the missing fraction f = 0.13. Moreover, considering
jointly Fig. 7 and Table 2, Lamont, Payerne, and Lauder have
slightly larger RMSE:s at all gap sizes.

Figure 8 depicts the vertical behaviour of the linear in-
terpolation uncertainty at GRUAN sites, with average gap
size increasing from the top to bottom panel. As expected,
the uncertainty’s minimum is near the tropopause. Moreover,
after a fast increase, it stabilises at a value which is often
larger than the lower atmosphere uncertainty level. The var-
ious sites have globally similar values, but again, Lamont,
Payern, and Lauder typically have the largest values.

In order to re-interpret the GP-based linear interpolation
uncertainty formula of Figs. 3 and 4, we consider the en-
semble of all the estimated local GP model parameters set
W from the entire cross-validation exercise. Coherently with
the known small intrinsic error declared by Vaisala, Fig. 9a

Atmos. Meas. Tech., 13, 6445-6458, 2020
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Table 2. Comparison of cross-validation RMSEs between GP and linear interpolation for increasing average gap length ug = 4, 10, 30 and
60s. Cross-validation is based on B = 50 block-bootstrap replications, each with missing fraction f = 0.13. The last line reports the total

number of profiles and the average RMSE.

ng=4s | wug=10s | wug=30s | ug=60s
Site Profiles GP Linear ‘ GP Linear ‘ GP Linear ‘ GP Linear
BEL 15 0.084 0088 | 0.159 0.160 | 0.338  0.363 | 0.590  0.604
LAU 320106 0.107 | 0.180  0.184 | 0370 0389 | 0.599  0.612
LIN 45 0.073 0074 | 0.145 0.145 | 0314 0324 | 0.548  0.542
NYA 35 0072 0.073 | 0.127 0.130 | 0269 0269 | 0.463  0.460
PAY 30 0.098 0.098 | 0.180 0.181 | 0.370  0.391 | 0.659  0.658
SGP 16 0.107 0.109 | 0.189  0.187 | 0401  0.420 | 0.703  0.698
SOD 4 0074 0076 | 0.137 0.138 | 0281 0363 | 0426 0478
Average 177 0087  0.088 | 0.159  0.160 | 0.334 0349 | 0.574  0.576

0.5

0.45

Bootstrap setup
—o— pu=4s, =0.05
—c— 1=10s, f=0.05

1=30s, f=0.05
—%— p=4s,=0.13
—%— ;=10s, f=0.13
1=30s, f=0.13
—&— p=4s, f=0.20
—<&— u=10s, £=0.20
&— u=30s, f=0.20

0.05
BEL LAU LIN

NYA PAY SGP SOD avg
GRUAN Station

Figure 7. Linear interpolation uncertainty by GRUAN site and aver-
age gap size ug =4, 10, and 30s. The cross-validation uncertainty
(y axis) is based on the root mean square error (RMSE) for missing
fractions f = 0.05, 0.13, and 0.20.

shows very small values of o.. Moreover, from Fig. 9b, we
see that the values o5 < 1K are common and, in particular,
oy = 0.5K used in Figs. 3 and 4 is quite plausible. Eventu-
ally, Fig. 9c shows that the correlation range 6 may be easily
between 1 and 15 min.

8.1 Interpolation distance

In general, the connection between the uncertainty curves of
Figs. 3 and 4 and the cross-validation evidence are worth
studying. Considering both the gap size and the distance
from the observations at various altitudes gives rise to hard-
to-manage curve plots and a multiplicity of results. For this
reason, the subsequent analysis is based on the interpolation
distance in seconds, which is denoted by d and given by the
geometric mean of the temporal distances of all missing data

Atmos. Meas. Tech., 13, 6445-6458, 2020

from the closest observations y~ and y* in the notation of
Sect. 3.

Figure 10 depicts the cross-validation RMSEs of the lin-
ear interpolation as a function of interpolation distance by
altitude, namely
MSE(d|ALT) = avg(e?|d, ALT), (13)
where avg(-|ALT, d) is the average of all the cross-validation
terms with altitude in the layer ALT and interpolation dis-
tance d. We note that, in order to have high sampling in-
formation for both low and high interpolation distances, the
graph is obtained by merging the results obtained for pg =
10 and 30s. We also note that, thanks to the geometric dis-
tribution used in the block-bootstrap procedure in Sect. 5,
we are able to consider distances larger than 30s. In par-
ticular, Fig. 10 only depicts interpolation distances up to
70s. Indeed, the block bootstrap with an average distance
of ug =30s provides little testing data at larger distances,
especially at high altitudes. Of course, using the same ap-
proach, longer interpolation distances may be easily explored
by generating testing sets with larger ug.

In addition, Fig. 11 depicts the corresponding graph for the
linear interpolation SE(¢#*) = SE(¢*|s, [, b), given by Eq. (8),
and quadratically averaged over site s, launch /, and boot-
strap replication b, namely

SE(d|ALT) = \/avg(SE(t*|s, 1,b)2|d, ALT). (14)
The corresponding graph for the GP-SE of Eq. (10) is not
reported here because it gives very close results. Indeed, not
only are the two interpolation methods exchangeable, as no-
ticed above, but their SEs are also very close, with a mean
absolute difference between the two of less than 0.005 K.
Figures 10 and 11 have similar increasing behaviour, but
the average linear interpolation SE is generally smaller than
the corresponding RMSE and approximately equal at the
very short distance d = 1's. From Eq. (7), we expect that they

https://doi.org/10.5194/amt-13-6445-2020
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Figure 8. Linear interpolation uncertainty of GRUAN sites. The
cross-validation uncertainty (x axis) is based on the RMSE and
missing fraction f = 0.13. (a) Average gap size is ug = 4s; (b) av-
erage gap size is ug = 10s; (c¢) average gap size is ug = 30s.
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Figure 10. Each line shows the cross-validation RMSE of linear in-
terpolation as a function of the interpolation distance (s) for a spe-
cific atmospheric layer in the range of 2—-37 km. The interpolation
distance (x axis) is given by the geometric mean of the distances of
all missing data from the closest good data, y~ and y*. The graph is
obtained my merging the block-bootstrap simulations with average
gap sizes g = 10 and 30s.
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Figure 11. Each line shows the linear interpolation SE as a func-
tion of the interpolation distance (s) for a specific atmospheric layer
in the range of 2-37 km. The depicted SE is the quadratic average
of Eq. (8) for each altitude and interpolation distance in the vali-
dation data set. The interpolation distance (x axis) is given by the
geometric mean of the distances of all missing data from the clos-
est good data, y~ and yT. The graph is obtained my merging the
block-bootstrap simulations with average gap sizes g = 10 and
30s.

differ by a quantity depending on the measurement error un-
certainty, o.. Recalling Fig. 9, the latter is very small, and it
is not enough to explain such a discrepancy. Indeed, Eq. (7)

Atmos. Meas. Tech., 13, 6445-6458, 2020

would hold exactly if (i) the used GP were a perfect model
for our data, (ii) its coefficients ¥ were known exactly, and
(iii) the cross-validation estimation of the RMSE were ex-
act. The latter two conditions hold approximately due to the
large data set used. Hence, the SE underestimates the “true”
interpolation uncertainty, primarily due to the GP model ap-
proximation.

For the above reasons, we propose a bootstrap-corrected
interpolation uncertainty estimate by merging the informa-
tion of the single profile (s, /) captured by the corresponding
GP and the average offset of the uncertainty given by the
RMSE:

u(t|s,)? = SE(t]s, 1) + (MSE(d|ALT)
- SE(d|ALT)2>. (15)

In practice, the first summand, SE, must be computed for
every single profile, while the term based on MSE may be
implemented as a lookup table.

8.2 Practical aspects

As an illustration of the method, the profile of the So-
dankyld site on 3 March 2017 12:00 UTC is considered in
Fig. 12a. This profile has T = 4722 measurements and no
original missing values. Using the block bootstrap, 563 mea-
surements have been deleted (pseudo-missing), generating
gap lengths between 1 and 24s. From a practical point of
view, such missing rates and gap lengths can be considered
a relatively common, yet serious, case for interpolation. In
Fig. 12b, the results of the previous subsection, based on the
entire data set, are used to show both & the GP uncertainty
of Eq. (8) and = the bootstrap uncertainty of Eq. (15), com-
puted at the interpolated pseudo-missing values. The result
is that the bootstrap-corrected interpolation uncertainty never
exceeds 0.3 K along this profile. In doing this computation,
Egs. (13) and (14) are implemented as lookup tables with
entries geometric distance and altitude.

Figure 13 zooms in on the above profile at around 22.5 km
height and shows in detail the interpolation of a single point
gap (C), two small gaps (A, B), and three larger gaps (D-F).
For Gap C, the uncertainty is almost negligible using both
methods. As far as the gap size increases, both the uncer-
tainty and the difference between the two methods increase.
In the most extreme case, Gap D, the bootstrap uncertainty
is about twice the uncorrected amount. Of course, this is
the case where any interpolation method but Delphi’s ora-
cle would fail. Nonetheless, the error (interpolated minus ob-
served) is approximately 3u in absolute value, where u is the
bootstrap-corrected uncertainty of Eq. (15). Hence, also in
this difficult interpolation case, our bootstrap-corrected ap-
proach provides a sensible estimate of the uncertainty.

It follows that the implementation of GRUAN data pro-
cessing providing interpolated temperature profiles along
with their uncertainty requires some effort divided into two

https://doi.org/10.5194/amt-13-6445-2020
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different phases. First, massive GP offline computation is
needed to prepare the lookup table related to Egs. (13) and
(14). Second, for each profile, an online local GP calibration
is needed to provide the SE (Eq. 8) for the interpolated val-
ues. After this processing, Eq. (15) easily gives the corrected
interpolation uncertainty.

9 Conclusions

This paper offers a multifaceted assessment of the interpola-
tion uncertainty of Vaisala RS41 temperature profiles at vari-
ous altitudes, using an extensive data set from seven GRUAN
sites. Moreover, it provides a general framework for the in-
terpolation of generic atmospheric profiles.

Two complementary uncertainty approaches have been de-
veloped and integrated. The first is a cross-validation ap-
proach based on block bootstrap, which shows that the av-
erage of the root mean square error of linear interpolation
is about 0.1 K for small gaps, which increases up to 0.58 K
for gaps of an average duration of 60s. These results may
be made operational as lookup tables characterising interpo-
lation uncertainty with entry altitude and interpolation dis-
tance. The resulting lookup table could be made available to
the scientific community.

Since the cross-validation outputs are averages, the indi-
vidual profile contribution to the uncertainty is not consid-
ered. Hence, the second approach addresses interpolation un-
certainty using Gaussian process assumptions. This approach
allows for obtaining a formula for the interpolation uncer-
tainty which depends on the autocorrelation structure of each
single profile.

Atmos. Meas. Tech., 13, 6445-6458, 2020

Integrating the above two approaches, a bootstrap-
corrected formula for the individual interpolation uncertainty
is proposed. Based on these results, a future version of
GRUAN data processing could implement interpolated tem-
perature profiles, uncertainty included.

The extension of this approach to other essential climate
variables (ECVs) and/or other instruments requires some
consideration. From the modelling point of view, provided
that enough field data are available, the extension is rela-
tively straightforward. Indeed, the approach is quite general,
and model selection and optimisation are data-driven. Hence,
similar results may be expected for temperature profiles ob-
tained by other instruments, provided that vertical resolution
and instrumental error are comparable to the present case.
Further, similar results are also expected for other smooth
variables, such as pressure.

On the other hand, the interpolation uncertainty could be
greater for ECVs which are known to have large variations
in the small scale. For example, relative humidity commonly
shows highly intermittent profiles in the troposphere, with
very large and very fast-changing gradients. In these cases,
we can expect that the cross-validation uncertainty could be
high even for small gaps. In addition, the vertical autocorre-
lation could have a shorter range, and the corresponding GP
model could provide interpolation uncertainties close to the
white noise case considered in Sect. 3.
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Appendix A: Linear interpolation uncertainty

To see Eq. (8), let us rewrite the interpolation error of Eq. (6)
as follows:

m(t) —st) =ay"+(1—a)y” — (1) +e@) =d'u, (Al)

lffft__ as in Sect. 3.1, a’ = (x(r),1—
a(t),—1,+1) is a vector of constants for fixed times 1~ <
t<tTand u' = ("), y( ™), —y(t), +e(t)) is a stochastic

vector. With these symbols, Eq. (8) may be written as

where «a(t) =

SE(1)> = E(m(t) — s(1))> = a’X,a, (A2)
where X, is the variance—covariance matrix of u given by

o2 ytt—t7) yatt—1 0

y

2 - _
Zu: Uy )/(t 5 t) 0 (A3)
o 0
0_2

€

The conclusion follows by straightforward algebra.
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