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Abstract. As part of control techniques, gust-alleviation sys-
tems using airborne Doppler lidar technology are expected
to enhance aviation safety by significantly reducing the risk
of turbulence-related accidents. Accurate measurement and
estimation of the vertical wind velocity are very important
in the successful implementation of such systems. An esti-
mation algorithm for the airflow vector based on data from
airborne lidars is proposed and investigated for preview con-
trol to prevent turbulence-induced aircraft accidents in flight.
An existing technique – simple vector conversion – assumes
that the wind field between the lidars is homogeneous, but
this assumption fails when turbulence occurs due to a large
wind-velocity fluctuation. The proposed algorithm stores the
line-of-sight (LOS) wind data at every moment and uses re-
cent and past LOS wind data to estimate the airflow vector
and to extrapolate the wind field between the airborne twin
lidars without the assumption of homogeneity. Two numeri-
cal experiments – using the ideal vortex model and numerical
weather prediction, respectively – were conducted to evalu-
ate the estimation performance of the proposed method. The
proposed method has much better performance than simple
vector conversion in both experiments, and it can estimate ac-
curate two-dimensional wind-field distributions, unlike sim-
ple vector conversion. The estimation performance and the
computational cost of the proposed method can satisfy the
performance demand for preview control.

1 Introduction

Atmospheric turbulence poses a potential risk to aircraft op-
eration. Statistics reported by Boeing (2018) show that 322
non-fatal and 51 fatal accidents occurred worldwide in com-
mercial jet flights from 2009 through 2018. Of the fatal ac-
cidents, the largest proportion (25.5 %) were due to loss of
control in-flight (LOC-I). The International Air Transporta-
tion Association (2016) shows that LOC-I frequently occurs
when the aircraft speed is well below the stall speed; in con-
junction with weather conditions, low speed is the most com-
mon factor in LOC-I accidents. A total of 42 % of LOC-I ac-
cidents occurred under degraded meteorological conditions
affecting aircraft speed, in particular strong wind shear and
atmospheric turbulence.

For both fatal and non-fatal aircraft accidents, the im-
pact of atmospheric turbulence can be significant. The Japan
Transport Safety Board (2020) has stated that accidents
caused by turbulence accounted for 48 % of non-fatal air-
craft accidents in Japan involving commercial airplanes from
2003 to 2012. An increase in the rate of accidents related to
turbulence was reported by the Federal Aviation Adminis-
tration (2006), Kim and Chun (2011), and Williams (2017).
Accidents caused by convective systems such as cumulonim-
bus clouds have decreased due to advances in airborne radar
(Airbus, 2020; Sermi et al., 2015). However, non-cloud at-
mospheric turbulence, called clear-air turbulence (CAT), can-
not be detected by radar, as reported by Soreide et al. (2000),
Barny (2012), and Inokuchi et al. (2009). Airborne CAT-
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observation systems to minimize risks of turbulence-related
accidents are essential for aviation safety.

Numerical weather prediction (NWP), which is an essen-
tial tool for aircraft operation, can forecast weather condi-
tions for days and even weeks in advance and output broader-
area weather information than can radar or lidar. How-
ever, NWP cannot explicitly resolve disturbances as small
as most turbulence, leading to a very large predictive un-
certainty (Sharman et al., 2006, Kim et al., 2011). There-
fore, some researchers have developed an alternative ap-
proach that predicts turbulence potential by calculating tur-
bulence indicators from NWP results; for example, Sharman
et al. (2006) have developed an approach called graphical
turbulence guidance (GTG) that combines such indicators.
The turbulence potential can also be used to determine op-
erational flight routes (Kim et al. 2015), but it has a large
spatiotemporal gap on the scale of aircraft motion because
it is based on NWP results such as the mesoscale model.
It thus provides insufficient information to implement turbu-
lence avoidance on aircraft in flight.

Recently, airborne Doppler lidar has been developed by
Soreide et al. (2000), Barny (2012), Inokuchi et al. (2009),
Machida (2017), and Inokuchi and Akiyama (2019). Emitted
laser light is scattered by fine aerosol particles in the atmo-
sphere; the back-scattered light is condensed by telescopes
and received by an optical transceiver. Since the wavelength
of the received light varies according to the velocity of the
aerosol particles due to the Doppler effect, wind speed can
be calculated by comparing this wavelength with that of
the received light (Inokuchi and Akiyama, 2019). However,
when rain is too heavy, the backscattering signal is weak-
ened due to strong attenuation by raindrops and a decrease
in aerosols (Wei et al., 2019), making it difficult to mea-
sure the wind velocity at a distance. The Japan Aerospace
Exploration Agency (JAXA) is researching and developing
a coherent Doppler lidar capable of remotely detecting air
turbulence in clear-air conditions and has conducted a flight
demonstration of a lidar system that can provide turbulence
information to pilots (Inokuchi et al., 2009; Machida, 2017;
Inokuchi and Akiyama, 2019). Inokuchi (2012) have shown
observationally that airborne Doppler lidar can detect CAT
in front of an aircraft in flight at altitudes of 3200 m; the lidar
information can be detected 30 s before the turbulence af-
fects the aircraft. The aircraft’s flight speed in the test was
320 kt (160 ms−1), so it detected CAT from a distance of
about 4.8 km.

Based on advance airflow information, flight demonstra-
tions have been carried out with the aim of providing pilots
with the information they need to make decisions: whether
to change course to avoid wind shear, and whether to turn
on seat-belt-sign lighting during cruise and altitude changes
(Inokuchi and Akiyama, 2019). Although lidar systems are
useful for providing onboard wind information to pilots,
avoiding turbulence at high altitudes is difficult as the range
of detection that facilitates pilots to be warned is short

(Hamada, 2019). Gathering such information involves emit-
ting a laser beam and receiving the scattered light from
aerosol particles that are much smaller than precipitation
droplets in the air. Therefore, when the number of aerosol
particles that emit scattered light is small, it is difficult to
measure wind information at a distance. Furthermore, as al-
titude increases, the aerosol density decreases, and the obser-
vation range tends to decrease accordingly. The maximum
observation range and aerosol density measured at each alti-
tude are shown in Inokuchi and Akiyama (2019).

Advance knowledge of turbulent atmospheric condi-
tions would improve the performance of automatic aircraft-
vibration reduction systems. Automatic control to alleviate
aircraft vibration is called gust alleviation and has been stud-
ied since the 1970s, mostly with only the help of feedback
sensors such as inertial measurement units (Regan and Jutte,
2012). Recently, methods of reducing the vibrations due to
turbulence with the help of preview controlling based on air-
borne lidar observation have been reported by Schmitt et
al. (2007), Fezans et al. (2019), and Hamada (2019). The
aim of the Aircraft Wing with Advanced Technology Oper-
ation (AWIATOR) project is the development of new direct-
lift control devices and a lidar system for turbulence mea-
surement (Schmitt et al., 2007). Another project – “Demon-
stration of Lidar-based CAT detection” (DELICAT) (Barny,
2012) – developed airborne ultraviolet lidar for gust and tur-
bulence measurements. The test flights were carried out us-
ing an Airbus A340 aircraft equipped with ultraviolet lidar.
In both the AWIATOR and the DELICAT experiments, the
measurement range was short, because the lidar was devel-
oped for controlling the aircraft automatically.

In order to implement an airborne Doppler lidar gust-
alleviation system successfully, it is very important to mea-
sure the vertical wind velocity accurately. Both horizontal
and vertical winds affect aircraft motion, but the effect of
changing the vertical wind velocity is greater. This is be-
cause the effect of modifying the angle of attack is relatively
larger than the effect of changing the horizontal wind ve-
locity, which affects only the airspeed (Fezans et al., 2019).
However, a fixed single Doppler lidar system can only detect
the line-of-sight (LOS) wind, providing a one-dimensional
piece of information; the vertical wind velocity in front of
the aircraft cannot be measured by such a system (Hamada,
2019). It is necessary to perform the lidar measurements in
two directions, upward and downward, to obtain the verti-
cal wind velocity (Neininger, 2017). Figure 1 shows a rep-
resentation of this concept. The vertical wind-velocity vec-
tor is generated from the differences between the upward
and downward LOS winds by using simple vector conver-
sion. Unfortunately, this method is incapable of estimating
the vertical wind velocity with high accuracy to control the
aircraft automatically because the technique assumes homo-
geneity between the upward and downward lidars (Fezans
et al., 2019). In this study, a fully turbulent field with atmo-
spheric turbulence and gusts is considered; under these con-
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Figure 1. Concept of the airborne lidar observation system.

ditions, it is difficult to estimate the vertical wind velocity
with high accuracy using simple vector conversion. In par-
ticular, the estimation accuracy of the vertical wind velocity
rapidly worsens when the estimation position is located far-
ther ahead from the aircraft.

In addition, actual lidar observations involve errors, noise,
and loss of data, with negative effects on aircraft control, as
reported by Misaka et al. (2015); these problems are worse
at higher altitudes, where the aerosol density is smaller than
it is at lower ones. Misaka et al. (2015) proposed a filtering
algorithm based on a simple Kalman filter to remove wind-
velocity errors from lidar measurements. For preview con-
trol, it is essential to deal with the lidar errors, noise, and loss
of data more carefully. An accurate airflow-vector-estimation
method and an efficient real-time filtering algorithm are re-
quired.

In this study, an estimation method and an airflow-vector-
filtering algorithm are proposed for preview control to
prevent turbulence-induced aircraft accidents. The method
works for both horizontally and vertically directed winds,
and uses both upward and downward lidars. (In this study,
“horizontal wind” means any headwind/tailwind component
that does not include the crosswind component.) The lidar
system in this paper is that also used by JAXA in its ongoing
“lidar-based gust alleviation control” research project. The
proposed algorithm stores the LOS wind data continually
and uses recent and past LOS wind data to estimate the air-
flow vector and the wind field between lidars, whereas simple
vector conversion utilizes only recent LOS wind data. The
airflow vector is calculated by using wind data extrapolated
from the horizontal and vertical wind components; the esti-
mation accuracy of the airflow vector in front of the aircraft
is improved by using such extrapolated wind data because
the region between the lidars represents a non-homogeneous
one. A polynomial expression is used to extrapolate the wind
field. In addition, the proposed method can estimate the two-
dimensional distribution of the wind field between the lidars,
which simple vector conversion cannot.

Two test configurations – an ideal vortex flow field and a
weather field – are calculated by an NWP system and utilized
to evaluate the performance of the airflow vector. These ex-
periments generate a large number of pseudo-lidar measure-

ments along flight routes from the reference wind field for
evaluation of the estimated performance. Comparing the pre-
diction results with the reference wind field can confirm all
the wind-field values.

2 Methods

2.1 Airborne lidar specifications

The airborne lidar observation system currently under devel-
opment by JAXA for preview control to prevent turbulence-
induced aircraft accidents is shown in this section. This sys-
tem has airborne lidars that are aiming upwards and down-
wards; the angle between them is 20◦, that is, 10◦ between
the horizontal line and each lidar. The lidar sensor is shown
in Fig. 2; its specifications are given in Table 1 (Inokuchi
and Akiyama, 2019). Laser pulses generated by an optical
transceiver are amplified by optical amplifiers (Sakimura et
al., 2013) incorporated into an optical antenna and radiated
into the atmosphere from optical telescopes. The heat gener-
ated by the optical amplifiers is dissipated by a water-cooled
chiller unit. The optical antenna is equipped with a 150 mm
large-aperture telescope for long range observations and a
50 mm small-aperture telescope for vector conversion of
short-range observations. Each lidar measures the LOS wind
velocity with an observational accuracy of ±0.09 ms−1; the
paired values are used to estimate the airflow vector in the
region between the lidars. The observational resolution of
each lidar is approximately 25 m. There are additional per-
formance requirements for preview control: the estimation
frequency and estimation accuracy of vertical wind velocity.
The frequency of estimation must be more than 5 Hz, and the
estimation accuracy of the vertical wind velocity must be bet-
ter than 2.6 ms−1 in the LOS distance of 500 m. The control
requirements are the conditions that are necessary for halving
the peak variation in acceleration by control. This value has
been specified using control simulations (Hamada, 2019),
and Monte Carlo simulations have also been performed.

Next, an existing technique for estimating the airflow vec-
tor from a pair of LOS wind values is reviewed. The airflow
vector in the region between the upward and downward li-

https://doi.org/10.5194/amt-13-6543-2020 Atmos. Meas. Tech., 13, 6543–6558, 2020



6546 R. Kikuchi et al.: Real-time estimation of airflow vector based on lidar observations

Figure 2. Coherent Doppler lidar used in this work.

Table 1. Coherent Doppler lidar specifications.

Laser wavelength 1.55 µm
Laser output 3.3 W
Pulse repetition frequency 1000 Hz
Laser beam diameter 150, 50 mm
System weight 83.7 kg
Power consumption 936 W
Data rate 5 Hz

dars is conventionally estimated via simple vector conver-
sion. This procedure is similar in concept to the vertical az-
imuth display approach used in general ground lidar systems
(Newsom et al., 2017). The simple vector conversion is given
by

uTx =

(
W T

1 +W
T
2
)

2cos θ
(1)

uTz =

(
W T

1 −W
T
2
)

2sin θ
,

where uTx and uTz are the horizontal and vertical wind-
velocity measurements at the observation time T ; W T

1
and W T

2 are the LOS wind velocities of the upward- and
downward-directed lidars at the observation time T ; and θ
is the angle between the horizontal line and each lidar, which
is 10◦ in this study. The simple vector conversion assumes
that the wind-field region between the lidars is homoge-
neous (Newsom et al., 2017). The assumption of homogene-
ity seems natural: the regions between the lidars are 69.5 and
173.6 m at the LOS distances of 200 and 500 m ahead of
the aircraft (Fig. 3). Nevertheless, the assumption would be
wrong if a large fluctuation in wind velocity occurs, creating
turbulence. In homogenous conditions, a simple vector con-
version can estimate the airflow vector accurately; however,
in non-homogenous conditions, the estimation is expected to
have poor accuracy.

2.2 Estimation algorithm based on extrapolation

Whereas simple vector conversion utilizes recent LOS wind
data to estimate the airflow vector, our proposed method

stores the LOS wind data continuously and uses both recent
and past values to extrapolate the wind field in the region
between the lidars where it has not been directly measured.
The airflow vector is then calculated from Eq. (1) and the
extrapolated horizontal and vertical components of the wind
velocity. The airflow-vector-estimation accuracy far ahead of
the aircraft is improved relative to simple vector conversion
by using the extrapolated wind data because the region be-
tween the upward and downward lidars is no longer assumed
to be homogeneous; our algorithm uses a polynomial expres-
sion to extrapolate data points from both recent and past mea-
surements, allowing it to be used in non-homogenous wind
fields. In addition, the proposed method can estimate the two-
dimensional distribution of the wind field between the lidars,
again unlike simple vector conversion.

Figure 4 shows the overview of the proposed estimation
method when a current data point and two past data points
are used. When the aircraft speed is V and the time span
of observation is dt , the airflow moves backwards at V × dt
because the aircraft is advancing. Current observation times
are denoted as T and past observation times as T − 1 and
T − 2. The proposed method uses the current LOS wind val-
ues (W T

1 and W T
2 ) and the past LOS wind values (W T−1

1 ,
W T−1

2 and W T−2
1 , W T−2

2 ). The perpendicular distances be-
tween the horizontal line and each lidar are denoted as zT ,
zT−1, and zT−2, respectively. Depending on the amount of
past LOS wind data used, the order of the polynomial expres-
sion used in the extrapolation varies. The aerosol concentra-
tion in the upper sky is low, suggesting that there are con-
siderable missing data and noise. A sufficient amount of past
LOS wind data may not be available to estimate a high-order
polynomial expression, and this could affect the robustness
of the control. For this reason, a first-degree polynomial ex-
pression is adopted in this study and used in the least-squares
method (LSM) to extrapolate the wind-field values accord-
ing at the horizontal line. The airflow vector is calculated by
Eq. (1) using the extrapolated LOS wind. The equation used
in the extrapolation method is
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where
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2.3 Filtering error and the lack of wind-velocity data

In this study, two filtering algorithms are used to remove the
error and the loss of data in airborne lidars. First, a filtering
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Figure 3. Distance to wind-field region between the lidars for two LOS distances.

Figure 4. Overview of estimation by proposed method when line-
of-sight wind data from 0, 1, and 2 past time steps dT are used. V is
the speed of the aircraft;WT

1 andWT
2 are the wind speeds measured

at time T by the two lidars; z is the vertical distance perpendicular
to velocity of the aircraft.

algorithm that is a simple representation of a Kalman filter
with simplified Kalman gain is used; this filtering algorithm
is described in detail in the study of Misaka et al. (2015).
The algorithm assumes that infinite variance is used to ex-
clude outliers and loss of data. This method uses the li-
dar spectrum data at each range bin; the algorithm defines
the validity of the measurements during the lidar data peak-
detection process. To identify the correct and incorrect LOS
wind-velocity values, two spectrum thresholds are defined.
First, the largest and second-largest spectrum values, k1st and
k2nd, which are the fast Fourier transform points for the first
and second spectrum peaks, respectively, are adjacent to each
other; i.e., the magnitude of the distance between the largest
and second-largest spectrum values in the fast Fourier trans-
form is equal to 1. Second, the distance between k1st and the
averaged spectrum peak kave is required to be less than a cer-
tain value kdif, which represents the only hyperparameter in
this algorithm as well as a parameter related to smoothness.
kave is the index that conveys the location of the spectrum
peak averaged in short ranges, e.g., 2–30 range bins from the
lidar origin. Figure 5 shows a conceptual explanation of the
variables of simplified Kalman gain in the cases of correct
measurement and of an error peak. In this study, the filtering
algorithm is carried out first when the observation data are
obtained:

K =

{
1 |k1st− k2nd| = 1and |k1st− kave|< kdif
0 Otherwise.

}
(4)

Secondly, a robust least-squares estimation, based on
Tukey’s biweight methodology (Huber, 2008), is carried out
to reduce the impact of the error in the LOS wind velocity.
This method is based on the LOS wind data in contrast to
the spectrum data from lidar observations in the first method.
Although the filtering algorithm based on a simple Kalman
filter can remove the error from the lidar spectrum data, error
filtering via this algorithm is not perfect despite being useful.
As error data can be a reason for miscontrol, it is essential
to deal with the error and the loss of data of the lidars more
carefully when the filtering algorithm is used for the preview
control. Therefore, the robustness of the estimated airflow
vector is secured by combining the simple Kalman filter-
ing algorithm with the results of robust LSM, using Eqs. (2)
and (3). In addition, the robust LSM estimation can employ
the extrapolation algorithm effectively as per Eqs. (2) and
(3). Therefore, a simpler and more robust algorithm is pro-
vided. Figure 6 explains the concept behind Tukey’s biweight
methodology as applied to lidar. The fundamental principle
involves comparing the observed LOS wind values with the
estimated ones from the polynomial expression used in the
LSM. In the first step, the LOS wind is estimated using the
general LSM (Eq. 2). In the second step, the difference dTj
between the observed LOS wind value and that estimated
from the polynomial expression is found:

dTj =W
T
j −

(
ajz+ bj

)
. (5)

A permissible difference range L is defined and weights
wTj (dTj ) are calculated depending on where dTj falls in the
distance range:

wTj

(
dTj

)
= 0

(
dTj <−L

)
wTj

(
dTj

)
=

1−

(
dTj

wTj

)2
2(
−L≤ dTj ≤ L

)
.

wTj

(
dTj

)
= 0

(
dTj > L

)
. (6)

Weights are assigned to each LOS wind-velocity value. In
the third step, a new first-degree polynomial expression for
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Figure 5. Conceptual explanation of the variables of simplified Kalman gain. (a) Correct measurement case of K = 1. (b) Case with the
error peak of K = 0.

Figure 6. Conceptual explanation of Tukey’s biweight methodology
applied to LOS wind at various distances. The first step is the sim-
ple least-squares fit. The second step is observations are compared
with the estimate. The data are weighted, and extreme outliers are
excluded, using Eq. (6). The third step is the least-squares fit of the
weighted data.

the LSM with the weighted data is estimated as follows.
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This process is repeated until the weight of the error value
decreases and converges.

2.4 Filtering wind-velocity noise

Lidar is subject not only to measuring errors and loss of LOS
data values but also to random noise; this type of noise also

leads to a poor estimation of the airflow vector. The ran-
dom noise is caused by the reduced intensity of the received
light due to the thin aerosol concentration in the sky. A gen-
eral lidar signal consists of random noise superimposed on
the spectral signal. If the signal intensity is low, peak search
may only detect the random noise. (Additional randomness
caused by environmental factors and data processing in lidar
is considered here as randomness of the wind-speed values.)

A simple spline algorithm generates a curve that passes
through all sample points; therefore, it is not able to generate
a smooth curve when the sample points have random noise,
and a smoothing spline algorithm is often applied to remove
the random noise in the lidar LOS wind values, as in the study
by Woltring (1986). The curve generated by this algorithm
does not pass through all sample points, and because of that,
it can be smoother, even when there is random noise from
lidar LOS wind measurements. The smoothing spline model
minimizes the criterion function Cp,

Cp =
∑n

i=1
vi
{
yi − sp (x)

}2
+p

∫ (
d2sp

dx2

)2

dx, (8)

where yi is a sample point value, sp(x) is the value gener-
ated by a simple spline algorithm, vi is a weighted factor,
and p is the regularization parameter. The smoothest curve is
generated when the criterion function Cp is minimized.

2.5 System flowchart

The airflow-vector-estimation algorithm is a sequence of five
different processes, which are summarized below. The sys-
tem flowchart is shown in Fig. 7.

1. The filtering algorithm based on a simple Kalman fil-
ter is used to remove the error in lidar LOS wind-data
values.

2. The smoothing spline method is applied to reduce the
negative effect of the random noise in LOS wind-data

Atmos. Meas. Tech., 13, 6543–6558, 2020 https://doi.org/10.5194/amt-13-6543-2020



R. Kikuchi et al.: Real-time estimation of airflow vector based on lidar observations 6549

Figure 7. System flowchart for the airflow-vector-estimation algo-
rithm.

values and extrapolates the values at positions for which
no measurements can be read. This is identified as the
first-step error.

3. Extrapolation, based on the polynomial expression, is
carried out to estimate the wind-field values by using
current and past LOS wind data.

4. A robust LSM model is applied to obtain a more ac-
curate polynomial expression. The calculation repeats
until the parameter converges.

5. The airflow vector is calculated by Eq. (1) with the ex-
trapolated LOS wind.

3 Test configurations

3.1 Ideal vortex model

We have conducted numerical experiments to evaluate the
performance of actual airborne lidars. The ideal vortex model
is defined and used to evaluate the estimated performance of
the airflow vector. In this study, the Burnham–Hallock vor-
tex model (Hinton and Tatnall, 1997) is used. The experi-
ment generates a large number of pseudo-lidar values, from
which the airflow vector is estimated. The estimation results

Figure 8. The distribution of vertical wind velocity generated by
the Burnham–Hallock vortex model.

are then compared with the reference wind-field values of
the ideal vortex model. Figure 8 shows the distribution of
wind velocity generated using the Burnham–Hallock vortex
model.

3.2 NWP model

The results predicted by a numerical weather model
– the Japan Meteorological Agency Non-Hydrostatic
Model (JMA-NHM) – are used to evaluate airflow-vector-
estimation performance (Saito et al., 2007; Kikuchi et al.,
2015). To obtain high-resolution weather prediction, a one-
way multi-nesting technique (Kikuchi et al. 2015) is em-
ployed for downscaling purposes. The computational domain
is nested four times to increase grid resolutions from 5.0 to
0.05 km gradually (in the sequence of 5.0, 1.5, 0.5, 0.15, and
0.05 km).

The 3 h mesoscale objective analysis data, collected using
a mesoscale four-dimensional variational data-assimilation
system at the Japan Meteorological Agency (Saito et al.,
2007), are used for the initial condition of 5.0 km grid res-
olution. The experiment generates a large number of sim-
ulated twin-lidar observation values along flight routes from
the wind-field data generated by JMA-NHM, which are more
realistic than ideal-vortex model results. The airflow vector is
estimated from the pseudo-lidar observations and compared
with the JMA-NHM reference field. Figure 9 shows the dis-
tribution of the vertical wind-velocity values generated by
JMA-NHM.

3.3 Generation of pseudo-errors and noise

To confirm the effectiveness of the proposed filtering algo-
rithms, errors and noise are generated artificially by using the
parameter of the backscattering coefficient in the atmosphere
and the statistics-based coherent lidar equation (Kameyama
et al., 2007). The backscattering coefficient is strongly re-
lated to the aerosol density in the atmosphere, and it has
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Figure 9. Vertical wind-velocity distribution map generated by JMA-NHM.

Figure 10. Probability of error and standard deviation of noise as functions of signal-to-noise ratio (SNR) bandwidth.

an impact on the lidar measurements and estimation perfor-
mance. When the backscattering coefficient is very low, the
measurement performance is worse, and the LOS wind data
show errors and noise. Apart from this, the measurement per-
formance is related to the focal distance, pulse width, and li-
dar power (Kameyama et al., 2007). The signal-to-noise ratio
(SNR) at the receiver, at each LOS distance, is calculated by
using the coherent lidar equation and the detailed operating
condition of JAXA’s lidar (Inokuchi and Akiyama, 2019):

SNR(R)=
ηPt 1RβK

2R πD2

4R2

hf B SRF(R)
(9)

SRF(R)= 1+
{

1−
R

F

}2
{
k(AcD)

2

8R

}2

+

{
AcD

2S0(R)

}2

(10)

So (R)= (1.1k2RC2
n)
−

3
5 . (11)

Here, R is the observation distance, η is the system ef-
ficiency, Pt is the light-transmission power, 1R is the res-
olution range, β is the backscattering coefficient, K is the
atmospheric transmittance, D is the opening size of the op-
tical antenna, h is Planck’s constant, f is optical frequency,
B is received bandwidth, F is focal distance, k is wave num-
ber, Ac is the vignetting factor of the optical antenna, and
C2
n is the atmospheric structure constant. In this study, the

conditions are set according to the design specification for
airborne lidars. Six atmospheric conditions are prepared in
order to evaluate the filtering performance. The backscat-

tering coefficients are (standard case) 1.8× 10−8 sr−1 m−1,
(a) 1.8×10−11 sr−1 m−1, (b) 1.35×10−11 sr−1 m−1, (c) 0.9×
10−11 sr−1 m−1, (d) 0.45× 10−11 sr−1 m−1, and (e) 0.18×
10−11 sr−1 m−1. Figure 10 shows the statistics for the error
and noise as functions of SNR bandwidth.

4 Results

4.1 Ideal vortex model without error and noise

The numerical experiments with the ideal vortex model have
been carried out, and Figs. 11 and 12 show the distribu-
tions of the horizontal and vertical wind components that
are estimated by the simple vector conversion and the pro-
posed method. The flights start at the edge of the compu-
tational space. Figures 11 and 12 show the results after 10
and 15 s, respectively. Thus, they represent the instants of
time before and during the aircraft’s close approach to the
vortex core. As shown in Figs. 11 and 12, the simple vec-
tor conversion method, which assumes that the wind field of
the region between the lidars is homogeneous, cannot accu-
rately reproduce the two-dimensional distribution between
the lidars. On the other hand, the figures confirm that the
proposed method can estimate the two-dimensional distribu-
tion of wind-field values between the lidars. Figure 11 shows
that the two-dimensional distribution obtained with the pro-
posed method is very similar to that of the reference field.
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Figure 11. Distributions of the horizontal and vertical wind components estimated by the simple vector conversion method vs. the proposed
method (at a time of 10 s). (a, b) Ideal vortex model; (c, d) simple vector conversion method; (e, f) proposed method with five past LOS wind
datasets. (a, c, e) Horizontal wind values; (b, d, f) vertical wind values.

Figure 12. Distributions of the horizontal and vertical wind components estimated by the simple vector conversion method vs. the proposed
method (at a time of 10 s). (a, b) Ideal vortex model; (c, d) simple vector conversion method; (e, f) proposed method with five past LOS wind
datasets. (a, c, e) Horizontal wind values; (b, d, f) vertical wind values.

https://doi.org/10.5194/amt-13-6543-2020 Atmos. Meas. Tech., 13, 6543–6558, 2020



6552 R. Kikuchi et al.: Real-time estimation of airflow vector based on lidar observations

In addition, the results show that the horizontal wind veloc-
ity with simple vector conversion is approximately−7 ms−1,
whereas that with the proposed method is −9.5 ms−1; the
horizontal wind velocity of the reference field is −9.0 ms−1

at a LOS distance of 450–500 m. Figure 12 shows that the re-
sults of the horizontal and vertical wind velocities with sim-
ple vector conversion are considerably lower than those of
the reference field. The horizontal wind results show that the
value obtained with the simple vector conversion is approx-
imately −9.5 ms−1, whereas that with the proposed method
is approximately −3.5 ms−1; the horizontal wind velocity
of the reference field is approximately −4.5 ms−1 at a LOS
distance of 450–500 m. The vertical wind results show that
the value obtained with simple vector conversion is approxi-
mately −1.0 ms−1, whereas that obtained with the proposed
method is approximately 8.5 ms−1; the vertical wind veloc-
ity of the reference field is approximately 7.0 ms−1 at a LOS
distance of 450–500 m. Therefore, simple vector conversion
has significantly large errors between the reference and es-
timated values. The errors in both the horizontal and verti-
cal wind values estimated by the proposed method are much
smaller than those estimated with simple vector conversion.
Although the two-dimensional distribution of the horizon-
tal wind-field values of the proposed method is larger than
that of the reference field at a LOS distance of 450–500 m,
the vertical wind-field values can provide a good assessment
of the reference field shown in Fig. 12. The 15 s timing in
Fig. 12 is a more challenging case than others because the
aircraft is positioned very close to the center of the vortex,
and the wind direction changes abruptly. Although it is dif-
ficult to estimate the perfect wind-field value at this time by
using the proposed method, the proposed estimation method
demonstrably has a much higher accuracy than simple vec-
tor conversion. Overall, the proposed method has much bet-
ter performance than the simple vector conversion method,
and it can estimate the two-dimensional distribution of wind-
field values accurately, unlike the simple vector conversion
method.

Next, the statistical estimation performance is evaluated
using 100 pseudo-routes that are randomly generated 750 m
above and below the center of the vortex core; Fig. 13 shows
the results for the vertical wind values, along with the perfor-
mance required for automatic control. The root mean square
error (RMSE) between the reference-field value and the esti-
mated wind-field value is used for evaluating the estimation
performance. Moreover, the effect of the number of past lidar
observations used to determine the wind field, i.e., the past
LOS wind, is checked. Simple vector conversion cannot sat-
isfy the performance requirement at a LOS distance greater
than 350 m. This means that achieving preview control using
the simple vector conversion method may be difficult. At a
LOS distance of 500 m, the RMSEs of the vertical wind val-
ues of the simple vector conversion and proposed methods
are approximately 4.0 and 1.2 ms−1, respectively. The pro-
posed method can cater to the performance demand even if

Figure 13. Statistical estimation performance (root mean square er-
ror) of vertical wind values (ideal vortex model). Num is the number
of past LOS wind values used.

the number of past LOS wind values used is different; a lower
number leads to better estimation performance.

4.2 Numerical weather prediction without error and
noise

We also conducted numerical experiments with NWP val-
ues. Figs. 14 and 15 show the distributions of the horizon-
tal and vertical wind components that are estimated by sim-
ple vector conversion and the proposed method. Figure 14
shows the results for the instants of time before and dur-
ing the approach to a vertical wind fluctuation. The simple
vector conversion method cannot accurately reproduce the
two-dimensional distribution of the wind field between the
lidars. On the other hand, the proposed method can estimate
the two-dimensional distribution of the wind field between
the lidars more accurately. Figure 15 shows that the wind
velocities predicted by the simple vector conversion method
are higher than the reference fields at 300–500 m of LOS dis-
tance in contrast to those of the proposed method.

Next, the statistical estimation performance is evaluated
using 100 pseudo-routes that are randomly generated be-
tween 2 and 10 km altitude. Figure 16 shows the results,
along with the performance requirement for automatic con-
trol. The effect of the number of past LOS wind values used
is also checked. In this case, both simple vector conversion
and the proposed method can satisfy the performance de-
mand for preview control; however, the performance results
of simple vector conversion are much worse than those of the
proposed method. Moreover, the proposed method can esti-
mate quite accurate wind-field values. In this case, the use
of a higher number of past LOS wind values leads to better
estimation performance.
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Figure 14. Distributions of horizontal and vertical wind components estimated via simple vector conversion and proposed method before
approach to vertical wind fluctuation. (a, b) Ideal vortex model; (c, d) simple vector conversion method; (e, f) proposed method with five
past LOS wind datasets. (a, c, e) Horizontal wind values; (b, d, f) vertical wind values.

Figure 15. Distributions of horizontal and vertical wind components estimated via simple vector conversion and proposed method immedi-
ately during approach to vertical wind fluctuation. (a, b) Ideal vortex model; (c, d) simple vector conversion method; (e, f) proposed method
with five past LOS wind datasets. (a, c, e) Horizontal wind values; (b, d, f) vertical wind values.
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Figure 16. Statistical estimation performance (root mean square error) for numerical weather prediction results. Num is the number of past
LOS wind values used.

4.3 Ideal vortex model with error and noise

In this section, numerical experiments with error and noise
in LOS wind values are conducted to evaluate the esti-
mation performance of the proposed method. These nu-
merical experiments show the error-/noise-filtering perfor-
mance difference between simple vector conversion and
the proposed method with extrapolation from the past
LOS wind. Six atmospheric conditions are prepared in or-
der to evaluate the filtering performance. The backscat-
tering coefficients are (standard case) 1.8× 10−8 sr−1 m−1,
(a) 1.8×10−11 sr−1 m−1, (b) 1.35×10−11 sr−1 m−1, (c) 0.9×
10−11 sr−1 m−1, (d) 0.45× 10−11 sr−1 m−1, and (e) 0.18×
10−11 sr−1 m−1.

First, numerical experiments with the ideal vortex model
are carried out. Figure 17 shows the LOS wind values, which
include the measured data with error and noise, the reference
wind, the smoothing spline, and the general spline model re-
sults. Figure 17 shows that the smoothing spline can filter
the error and noise data of LOS wind values. When the gen-
eral spline is used, the error can be filtered correctly by us-
ing a simple Kalman filter and a robust LSM; however, the
noise cannot be filtered. Next, the statistical estimation per-
formance is evaluated using 100 pseudo-routes that are ran-
domly generated 750 m above and below the center of the
vortex core. Figure 18 shows the results of the statistical es-
timation performance with error and noise. In addition, the
difference due to the atmospheric conditions in the six cases
with different backscattering coefficients is also checked.
Simple vector conversion cannot satisfy the performance de-
mand at a distance farther than 350 m LOS and cannot work
correctly under atmospheric condition (e). The proposed
method can always satisfy the performance demand except
under atmospheric condition (e). It thus shows much better
performance than simple vector conversion, even though it is
difficult to estimate the wind-field values by either method
for atmospheric condition (e), which contains much larger
noise levels than the other conditions.

In addition, the cross-plots of the reference and the esti-
mated vertical wind are shown as Fig. 19. In Fig. 19a and

Figure 17. LOS wind values: measured data with error and noise,
reference wind, smoothing spline, and general spline.

b, the results of the simple vector conversion are presented;
Fig. 19c and d show the results of the proposed method. Fig-
ure 19a and c are the cases without error and noise, whereas
Fig. 19b and d are the cases with error and noise. By compar-
ing Fig. 19a and c, we can deduce that the proposed method
provides a much better estimation than does simple vector
conversion. The results in Fig. 19b and d are spread wider
than those in Fig. 19a and c because of the noise data of LOS
wind values. It is worth mentioning that the noise data have
more negative effects on the result at 500 m LOS distance
than at 100 and 300 m LOS. Nevertheless, comparison of
Fig. 19b and d shows that the proposed method can provide
more accurate estimations than the simple vector conversion
method.

4.4 Numerical weather prediction with error and noise

We also carry out numerical experiments with NWP. The
statistical estimation performance is conducted by using
100 pseudo-routes between 2 and 10 km altitude. Figure 20
shows the results of the statistical estimation performance
with error and noise. Six different atmospheric conditions
(standard, (a), (b), (c), (d), and (e), defined by their backscat-
tering coefficients) are used. In this case, both simple vector
conversion and the proposed method can satisfy the perfor-
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Figure 18. Statistical estimation performance (root mean square error) for LOS wind velocities including error and noise under six
atmospheric-condition scenarios (a–e and standard) (assuming ideal vortex model). (a) Simple vector conversion; (b) proposed method.

Figure 19. Cross-plots of the reference and the estimated vertical wind data. Left figures: 100 m LOS distance; middle figures: 300 m LOS
distance; right figures: 500 m LOS distance. (a, b) Simple vector conversion; (c, d) proposed method. (a, c) Cases without error and noise;
(b, d) cases with error and noise. The dots indicate the wind speed estimated at 5 Hz, and the dotted lines indicate the performance demand
for control.
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Figure 20. Statistical estimation performance (root mean square error) for LOS wind velocities (including error and noise) under six
atmospheric-condition scenarios (a–e and standard) with numerical weather prediction data. (a) Simple vector conversion; (b) proposed
method.

mance requirement for preview control; however, the simple
vector conversion shows worse performance than the pro-
posed method. The proposed method can estimate wind-field
values quite accurately and displays better performance than
the simple vector conversion method. As in the previous ex-
periment, it is difficult to estimate the wind-field values for
atmospheric condition (e) by using either simple vector con-
version or the proposed method.

5 Conclusions

In this study, an airflow-vector-estimation algorithm based
on upward and downward airborne lidars has been proposed
for preview control to prevent turbulence-induced aircraft ac-
cidents. This estimation algorithm uses the technique of ex-
trapolating the wind-field values by using the LSM and the
current and past LOS wind datasets to improve the accuracy
of estimated wind values. Two test configurations for numeri-
cal experiments (ideal vortex flow and realistic NWP weather
field values) have been used to evaluate the estimation of the
airflow vector.

Numerical experiments on LOS wind estimation show that
the proposed extrapolation method has much better perfor-
mance than simple vector conversion methods, and it can es-
timate the two-dimensional distribution of wind-field values
accurately, which simple vector conversion cannot. The esti-
mation performance and the computational cost of the pro-
posed method can satisfy the performance demand for pre-
view control.

Numerical experiments with error and noise in the LOS
wind data have been conducted to evaluate the performance
of the proposed estimation method. These numerical ex-
periments show that the smoothing spline model can filter
noise correctly and reduce its negative effects. The proposed
method performs much better than the simple vector con-
version method, although it is difficult to estimate the wind-
field values for atmospheric condition (e) with either method.
Atmospheric condition (e) has more noise than other condi-
tions, and when the noise exceeds a certain level, it becomes

difficult to estimate the air flow regardless of the method ap-
plied.

The proposed algorithm can satisfy the performance de-
mands for preview control in both estimation performance
and computational cost. It can estimate a two-dimensional
distribution that cannot be estimated by existing methods.
This is valuable for improving the accuracy of the preview
control: for example, the proposed method can cope with the
critical case where the flight direction of the aircraft is at a
steep angle with the aircraft either ascending or descending.

The findings of this study are subject to certain limitations.
The target size of the atmospheric turbulence is assumed by
the proposed algorithm to be comparable to or larger than the
observation region between the lidars. Therefore, it is diffi-
cult to estimate a wind field with turbulence smaller than this.
The effect on the aircraft vibration due to such minor turbu-
lence, however, is minimal. An exception to this is aircraft-
generated wake turbulence, which still poses a safety risk.
The radius of the actively fluctuating wake-turbulence core is
only a few meters, so the proposed method could lead to erro-
neous predictions. A second limitation is that the current re-
sults are obtained from numerical experiments and not from
evaluations of actual observations. Currently, the lidar sys-
tem is being modified to be smaller and lighter in order to suit
small experimental aircraft. The onboard lidar system and
real-time airflow-vector estimation will be validated by flight
experiments in 2021; the whole gust-alleviation system, in-
cluding preview control, will be demonstrated in 2022. The
results of this research will be applied to this flight demon-
stration.
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