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Abstract. This paper investigates the potential benefit of
ground-based microwave radiometers (MWRs) to improve
the initial state (analysis) of current numerical weather pre-
diction (NWP) systems during fog conditions. To this end,
temperature, humidity and liquid water path (LWP) retrievals
have been performed by directly assimilating brightness tem-
peratures using a one-dimensional variational technique (1D-
Var). This study focuses on a fog-dedicated field-experiment
performed over winter 2016-2017 in France. In situ mea-
surements from a 120 m tower and radiosoundings are used
to assess the improvement brought by the 1D-Var analysis
to the background. A sensitivity study demonstrates the im-
portance of the cross-correlations between temperature and
specific humidity in the background-error-covariance matrix
as well as the bias correction applied on MWR raw measure-
ments. With the optimal 1D-Var configuration, root-mean-
square errors smaller than 1.5 K (respectively 0.8 K) for tem-
perature and 1 gkg™! (respectively 0.5 gkg™") for humidity
are obtained up to 6 km altitude (respectively within the fog
layer up to 250 m). A thin radiative fog case study has shown
that the assimilation of MWR observations was able to cor-
rect large temperature errors of the AROME (Application of
Research to Operations at MEsoscale) model as well as ver-
tical and temporal errors observed in the fog life cycle. A
statistical evaluation through the whole period has demon-
strated that the largest impact when assimilating MWR ob-
servations is obtained on the temperature and LWP fields,
while it is neutral to slightly positive for the specific humid-
ity. Most of the temperature improvement is observed dur-

ing false alarms when the AROME forecasts tend to signifi-
cantly overestimate the temperature cooling. During missed
fog profiles, 1D-Var analyses were found to increase the
atmospheric stability within the first 100 m above the sur-
face compared to the initial background profile. Concern-
ing the LWP, the RMSE with respect to MWR statistical re-
gressions is decreased from 101 gm™? in the background to
27 gm~2 in the 1D-Var analysis. These encouraging results
led to the deployment of eight MWRs during the interna-
tional SOFOG3D (SOuth FOGs 3D experiment for fog pro-
cesses study) experiment conducted by Météo-France.

1 Introduction

Each year large human and economical losses are due to fog
episodes, which, by the large reduction of visibility, affect
air, marine, and land transportation (Gultepe et al., 2007).
Fog forecasts remain quite inaccurate due to the complex-
ity, non-linearities and fine scale of the physical processes
taking part in the fog life cycle. Fog results from a com-
bination of radiative, turbulent and microphysical processes
as well as interactions with surface heterogeneities which
will drive the relative importance of local and large-scale
circulations. Recently, three-dimensional models have re-
placed one-dimensional models to forecast fog in most na-
tional weather services. Currently, convective-scale numer-
ical weather prediction (NWP) models run with a horizon-
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tal resolution of approximately 1km with frequent data as-
similation cycles. While the importance of vertical resolution
(Philip et al., 2016), aerosol activation (Mazoyer et al., 2019)
or water deposition (Tav et al., 2018) have recently been
highlighted to improve fog forecasts, fog is also known to be
highly sensitive to initial conditions (Bergot and Guedalia,
1994; Bergot et al., 2005; Hu et al., 2014). Therefore, accu-
rate initial temperature, humidity and wind profiles are cru-
cial to successfully forecast fog. However, the atmospheric
boundary layer (ABL) has also been identified as a part
of the atmosphere which is undersampled by observations.
Even though satellite data enable global coverage all over
the world, they provide limited information on the ABL due
to the attenuation by clouds and degraded vertical resolution
in the ABL. Additionally, uncertainties in surface properties
(such as skin temperature and emissivity) limit the assimi-
lation of surface-sensitive channels over land (Gued;j et al.,
2011). Recently, an observing system simulation experiment
(OSSE) by Hu et al. (2017) has demonstrated that temper-
ature and moisture at the surface have a larger impact on
fog forecast than surface wind observations, concluding that
temperature and humidity profilers could potentially play a
major role in the improvement of fog forecast initialization.
Ground-based microwave radiometers (MWRSs) are robust
instruments providing continuous observations of tempera-
ture and humidity profiles as well as integrated liquid and
water contents during all-sky weather conditions. Even if
their vertical resolution degrades with altitude (Cimini et al.,
2006), most of their information content resides in the ABL
(Lohnert and Maier, 2012) and their high temporal resolu-
tion (few minutes) makes them suitable to monitor the evolu-
tion of fog. Despite the potential impact of MWRs in NWP
models, assimilation experiments of their data have been lim-
ited to a few attempts. The first preliminary study of Vanden-
berghe and Ware (2002) has demonstrated a positive impact
of the assimilation of a single MWR unit into the 10 km hori-
zontal resolution MMS (https://www2.mmm.ucar.edu/mm5/,
last access: 17 November 2020) mesoscale model in the con-
text of a winter fog event. The impact of a simulated net-
work of 140 MWRs through an OSSE was also investigated
by Otkin et al. (2011) and Hartung et al. (2011) on a winter
storm case. This study confirmed a positive impact on tem-
perature and humidity analyses as well as up to 12 h forecasts
on moisture flux. More recently, a real network of 13 MWRs
was assimilated by Caumont et al. (2016) into the 2.5km
horizontal resolution convective-scale model AROME in the
context of heavy-precipitation events in the western Mediter-
ranean. The impact of this network was found to be neutral
on temperature and humidity fields but positive on quantita-
tive precipitation forecasts up to 18 h. In addition, Martinet
et al. (2015, 2017) have demonstrated the positive impact
that could be expected on NWP temperature profile analy-
ses by the direct assimilation of MWR brightness tempera-
tures into the AROME model with a one-dimensional varia-
tional framework (1D-Var). All these studies showed an en-
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couraging positive impact of the assimilation of MWR ob-
servations into NWP, though they are limited to single deep-
convection case studies on low-resolution limited-area mod-
els or restricted to temperature analyses only. The purpose
of this article is to evaluate the expected benefit of MWRs
on kilometre-scale NWP analyses during fog events on an
extended dataset over a 6-month fog experiment. This ex-
pands the studies by Martinet et al. (2015, 2017) to humidity
and liquid water path retrievals and evaluates the impact of
new tools developed to optimize the assimilation of MWRs
during COST Actions TOPROF (Illingworth et al., 2019)
and PROBE (Cimini et al., 2020). A fog-dedicated field ex-
periment was carried out in the north-east of France during
the winter 2016-2017 during which a 14-channel MWR has
been operated. The impact of MWR brightness temperatures
on temperature, humidity and liquid water content profiles
forecast by AROME has been evaluated during the 6-month
period against in situ data collected during intensive observa-
tion periods (IOPs) and continuous measurements deployed
on a 120m instrumented tower. This paper begins with an
overview of the dataset and the AROME model and a de-
scription of the 1D-Var settings in Sect. 2. A sensitivity study
of the 1D-Var retrievals to the background-error-covariance
matrix and bias correction to select the optimal configura-
tion is presented in Sect. 3. Section 4 presents a case study
of the first IOP showing large AROME errors during a thin
radiative fog event that are corrected when using the 1D-Var
retrieval. Section 5 generalizes the results obtained in Sect. 4
through a statistical evaluation of 1D-Var retrieval errors and
expected impact on the AROME analyses. Section 6 presents
the deployment of a regional-scale MWR network for fog
forecast improvement as continuity of this study, while fi-
nally Sect. 7 summarizes the main conclusions.

2 Dataset and methodology
2.1 Instrumentation

Data sampled during a field experiment dedicated to fog
process studies carried out at the ANDRA (the French na-
tional radioactive waste management agency) atmospheric
platform located in Houdelaincourt (48.5623° N, 5.5055° E)
in the north-east of France during the winter 2016-2017 are
used in this study. The experimental site was chosen due to
the high occurrence of fog and the possibility to take ad-
vantage of a 120m instrumented tower. A large range of
in situ instrumentation was deployed during the 6-month ex-
periment: visibility sensors, liquid water content and droplet
size distribution measurements, and temperature and relative
humidity measurements at different levels above ground (10,
50, 120 m). In addition to in situ measurements, a 14-channel
HATPRO MWR (Rose et al., 2005) manufactured by Ra-
diometer Physics GmbH (RPG) was deployed on site dur-
ing the experiment. The HATPRO MWR is a passive instru-
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ment measuring the naturally emitted downwelling radiance
in two spectral ranges: 22.24 to 31 GHz to retrieve humidity
profiles with a low resolution but highly accurate integrated
water vapour (IWV) content and liquid water path (LWP)
and 51 to 58 GHz range, located in the 60 GHz O, absorp-
tion complex line, to retrieve temperature profiles. Elevation
scans from 5.4 to 90° were used to improve the vertical res-
olution of temperature profiles, assuming that horizontal ho-
mogeneity in the vicinity of the instrument is respected. A
ceilometer (Vaisala CL31) was deployed during October to
December 2016 and replaced by a Vaisala CT25K from Jan-
uary to April 2017 to determine the cloud base altitude. In
addition, 21 Vaisala RS92 radiosondes with an expected ac-
curacy of 0.5 K in temperature and 5 % in relative humidity
were launched during IOPs. Tethered balloon measurements
were also carried out with the deployment of a cloud particle
probe and a turbulence probe.

2.2 The AROME NWP model

In this study 1h forecasts from the French convective-scale
model AROME (Application of Research to Operations at
MEsoscale; Seity et al., 2011) are used as a priori profiles
or “backgrounds”. AROME is a limited-area model covering
western Europe with non-hydrostatic dynamical core. Since
beginning in 2015, the horizontal resolution of AROME has
been increased from 2.5 to 1.3km as well as the number of
vertical levels from 60 to 90 (Brousseau et al., 2016). Verti-
cal levels follow the terrain in the lowest layers and isobars in
the upper atmosphere. The detailed physics of AROME are
inherited from the research Meso-NH model (Lafore et al.,
1997). Deep convection is assumed to be resolved explicitly,
but shallow convection is parameterized following Pergaud
et al. (2009). A bulk one-moment microphysical scheme
(Pinty and Jabouille, 1998) governs the equations of the spe-
cific contents of six water species (humidity, cloud liquid wa-
ter, precipitating liquid water, pristine ice, snow and graupel).
This new version also performs 3D-Var analyses every hour
instead of every 3 h to optimize the use of frequent observa-
tions. All conventional observations are assimilated together
with wind profilers, winds from space-borne measurements
(Atmospheric Motion Vectors and scatterometers), Doppler
winds (Montmerle and Faccani, 2009) and reflectivity (Wat-
trelot et al., 2014) from ground-based weather radars, satel-
lite radiances and ground-based GPS measurements (Mah-
fouf et al., 2015).

2.3 1D-Var framework

To retrieve temperature and humidity profiles and evaluate
the impact on AROME analyses, a 1D-Var framework sim-
ilar to the one described in Martinet et al. (2017) is used.
Based on the optimal estimation theory by Rodgers (2000),
MWR observations are optimally combined with an a pri-
ori estimation of the atmospheric state which, in this study,
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refers to 1 h AROME forecasts. To this end, the two sources
of information are weighted by their corresponding uncer-
tainty that is called the background-error-covariance ma-
trix (B) for the a priori profile and the observation-error-
covariance matrix (R) for the observation to find the optimal
state. In order to find the optimal state minimizing the dis-
tance to the observation, a radiative transfer model is needed
to compute the equivalent observation from the a priori data.
The method iteratively modifies the state vector x from the a
priori x; to minimize the following cost function:

1 Tp—1
J(x)=§(x—xb) B (x —xp)
1
+5(y—H(x))TR—‘<y—H(x)>,

where H represents the observation operator (radiative trans-
fer model and interpolations from model space to observa-
tion space), symbol “T” represents the transpose operator and
“~1” the inverse operator. The observation-error-covariance
matrix R should take into account representativeness and for-
ward model errors as well as radiometric noise. Throughout
the article, the atmospheric state minimizing the cost func-
tion is called the “analysis” (x,), “increment” refers to the
difference between the a priori x; and the analysis, and “in-
novation” refers to the difference between the observation
and the a priori xp.

For the first time, the fast radiative transfer model RTTOV-
gb (De Angelis et al.,, 2016; Cimini et al., 2019), devel-
oped specifically to simulate MWR observations for oper-
ational applications during the Cost Action TOPROF, is used
within the 1D-Var package maintained by the NWP Satellite
Application Facility (NWPSAF; https://www.nwpsaf.eu/site/
software/1d-var/, last access: 17 November 2020). To this
end, the 1D-Var has been adapted to the ground-based sens-
ing configuration of MWRs and interfaced with RTTOV-gb.
In this study the control vector x consists of temperature and
the natural logarithm of specific humidity on the same 90
levels as defined in AROME. These levels cover the atmo-
spheric range from the ground up to 30 km, with the vertical
resolution decreasing with altitude: 20—100 m below 1km,
100-200m from 1 to Skm and around 400 m at 10km. In
addition to temperature and humidity, the liquid water path
is also included in the control vector. Following the current
implementation of the NWPSAF 1D-Var, no correlation be-
tween the LWP and the other variables is assumed in the B
matrix. The observation vector y consists of brightness tem-
peratures (BT) in all K-band! and V-band channels? at zenith
and only opaque channels (above 54 GHz) at low elevation
angles: 42, 30, 19.2, 10.2 and 5.4°. Transparent channels are
not used at low elevation angles due to the violation of the
assumption of horizontal homogeneity.

12224, 23.04, 23.84, 25.44, 26.24, 27.84 and 31.4 GHz
251.26, 52.28, 53.86, 54.94, 56.66, 57.3 and 58 GHz
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3 Evaluation of 1D-Var retrievals
3.1 Background errors

In variational data assimilation (either 1D-Var or 3D/4D-
Var), the accuracy of the analysis will depend on the
background-error-covariance matrix B. This matrix specifies
how much weight is given to the a priori profile compared
to the observation, specifies how the information from the
localized observation is spread in the model space both ver-
tically and horizontally (for 3D/4D-Var assimilation), and
imposes the balance between the model control variables.
However, due to difficulties in measuring the “true” state,
this B matrix has to be modelled. Currently, climatologi-
cal, spatially homogeneous and isotropic background-error
covariances are used operationally in the AROME model
(Brousseau et al., 2011). They are computed from 3 h range
forecast differences from an ensemble data assimilation over
long time periods and the whole model domain. As demon-
strated by Ménétrier and Montmerle (2011), climatological
covariances are inadequate for fog areas which exhibit a
much stronger positive coupling between temperature and
humidity and attenuated vertical correlations above the fog
layer. For this study, a similar approach as the one described
in Ménétrier and Montmerle (2011) has thus been used to in-
fer background-error covariances adapted to fog layers and to
the AROME configuration and the time period of the exper-
iment. To this end, the AROME ensemble data assimilation
(AROME EDA) schemes that mimic in a variational context
the approach taken in the stochastic ensemble Kalman filter
(Evensen, 2003) has been used. The EDA explicitly perturbs
the observations, the model and the boundary conditions and
gives in return estimates of analysis and background-error
covariance (Fisher, 2003; Zagar et al., 2005). The AROME
EDA consists of running an ensemble of 3D-Var analyses
in parallel, where the observations are perturbed according
to their prescribed error statistics. The model perturbations
are represented by an online multiplicative inflation scheme
(Raynaud and Bouttier, 2015). The inflation factor is derived
from the skill over spread ratio. The perturbed boundary con-
ditions are taken from the global EDA (Raynaud et al., 2011).
The EDA configuration used for this study corresponds to the
operational implementation since July 2018 with a horizontal
resolution set to 3.2 km and an ensemble size of 25 members.

Firstly, using this AROME EDA, a so-called “climatolog-
ical” B was obtained by computing the forecast differences,
e];’l = x]; - xé, between members k and [ for all grid points
of the whole AROME domain and all assimilation cycles on
the 28 October 2016 (IOP1). A specific fog B matrix was
then computed by applying a fog mask in order to only se-
lect grid points for which most of the EDA members forecast
fog. According to the discussion on the fog-model predic-
tor used in Ménétrier and Montmerle (2011), the fog mask
was based on the presence of liquid water contents above
10~%kgkg™! in the first three layers of the model. Several
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fog B matrices have been computed using different assimi-
lation cycles. The fog B matrix showing the best results in
terms of root-mean-square errors (RMSEs) with respect to
radiosoundings has then been selected for this study. Simi-
larly to Brousseau et al. (2016), background-error standard
deviations are multiplied by a factor « < 1 in order to take
into account the forecast error reduction while the back-
ground range decreases from 3 to 1 h (as the AROME EDA
provides 3 h forecasts, whereas the 1D-Var deals with 1h
forecasts). Based on comparison with in situ measurements,
an optimal value of o = 0.7 was found. This multiplicative
factor is only applied on background-error standard devia-
tions, while cross-correlations are assumed to be the same at
the 1 and 3 h forecast ranges. Figure 1 compares background-
error standard deviations for temperature and the natural log-
arithm of specific humidity computed for the climatologi-
cal and fog B matrices. Similar shape and magnitude are
observed between the two B matrices for the natural loga-
rithm of specific humidity. However, in the case of temper-
ature, background errors in fog areas are found to be larger
within the first 500 m with a maximum of 0.7 K at 250 m.
On the other hand, the climatological B matrix shows val-
ues below 0.5 K within the whole fog layer. Figure 2 shows
the cross-correlations between specific humidity and temper-
ature. Similarly to Ménétrier and Montmerle (2011), a strong
positive coupling appears in the fog layer within the first
200 m. This coupling implies that a positive temperature er-
ror will be translated into a positive specific-humidity error
(and vice versa) due to saturated conditions. This structure
significantly differs from the one observed in climatological
conditions with almost no coupling between the two vari-
ables in the boundary layer. The fog layer is also uncoupled
with atmospheric layers above the fog top which exhibit a
negative coupling between temperature and humidity.

3.2 Optimal configuration of 1D-Var retrievals

The accuracy of 1D-Var retrievals depends not only on the
background-error-covariance matrix but also on an adequate
specification of the observation-error-covariance matrix. Ob-
servation errors are assumed to follow Gaussian distributions
with zero mean. A similar method as described in Martinet
etal. (2015), De Angelis et al. (2017) and Cimini et al. (2020)
has been used to implement a bias correction of BT measure-
ments based on 6-month differences between MWR obser-
vations and BTs simulated from AROME 1 h forecasts with
the use of RTTOV-gb (so-called “O-B monitoring”). Table 1
reports the biases obtained for each channel at 90° and the
most opaque channels at low elevation angles. The values are
consistent with those reported in De Angelis et al. (2017). A
static bias correction of all channels based on Table 1 has
been applied to the measurements.

Observation errors due to liquid nitrogen calibration and
spectroscopic errors in radiative transfer models were up-
dated according to recent studies from Maschwitz et al.
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Figure 1. Background error standard deviations for temperature (a) and the natural logarithm of specific humidity (b) for a climatological B

matrix (red line) or a specific fog B matrix (blue line).
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Figure 2. Cross-correlations between the natural logarithm of specific humidity (y axis) and temperature (x axis) for a fog B matrix (a) or a
climatological B matrix (b). The x axis and y axis are labelled according to altitude above ground in metres.

(2013) and Cimini et al. (2018). Therefore, in addition to
commonly used values of instrumental noise (0.5 K for trans-
parent channels and 0.2 K for the most opaque channels), the
individual errors defined by Maschwitz et al. (2013) and Ci-
mini et al. (2018) were added in quadrature:

— 2 2 2
Otot = \/Unoise + 0Zaiib + OFm>

with oy, the total observation errors, oyeise the uncertainty
due to noise, ocalip calibration uncertainties and ogy the un-
certainty due to spectroscopic errors in the radiative transfer
model. It is important to note that calibration errors of mod-
ern MWRs are lower than the ones used in this study due to
new developments in the manufacturer software and liquid
nitrogen target used for the radiometer calibration. Table 2
summarizes the total observation uncertainty for each chan-
nel.

In order to define the best configuration of 1D-Var re-
trievals in terms of background-error-covariance matrix and
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bias correction, statistics have been performed over the 6-
month period by comparison with the 120 m tower measure-
ments. For each altitude instrumented with a weather station
(50 and 120 m altitude) and each variable (temperature and
specific humidity), the error reduction brought by the analy-
sis over the background is defined as

RMSE,,
RMSE,;’

with RMSE,, the root-mean-square errors of the 1D-Var re-
trieved profiles with respect to the mast measurements and
RMSE,;, the root-mean-square errors of the background pro-
files with respect to the mast measurements. It is important to
note that, given the relative low vertical resolution of MWR
retrievals, the retrievals at 50 and 120m are likely to be
highly correlated.

Table 4 reports the calculated error reduction for each vari-
able, each altitude and each 1D-Var configuration. The 1D-
Var configuration maximizing each ER will be selected as the

ER=1-
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Table 1. Bias of the observation minus background departures computed from AROME forecasts for all frequencies at 90° elevation angle

and only the most opaque channels (54.94 to 58 GHz) at lower elevation angles.

2224 23.04 2384 2544 2624 2784 314 5126 5494 56.66 573 58
90° 0.41 0.66  0.17 0.18 0.15 —-043 031 -1.30 —-0.04 0.06 0.16 0.20
42° - - - - - - - - 004 018 022 023
30° - - - - - - - - 0.07 024 027 027
19.2° - - - - - - - - 0.14 031 033 0.30
10.2° - - - - - - - - 023 037 035 032
5.4° - - - - - - - - 0.18 024 025 021

Table 2. Observation uncertainties (K) prescribed in the observation-error-covariance matrix for each channel.

Frequency (GHz): 2224 23.04 23.84 2544 2624 27.84

314 5126 5228 5386 5494 56.66 573 58

oo (K): 1.34 1.71 1.16 1.08 1.25

1.19 3.21 3.29 1.30 0.37 042 042 0.36

best configuration. Statistics are divided between fog profiles
only (lower part) or all weather conditions except fog (upper
part). In addition to tower measurements limited to only two
levels, the different 1D-Var configurations were also eval-
uated in terms of bias and RMSE against 21 radiosondes
(Fig. 3). Radiosondes were launched during IOPs in different
atmospheric conditions: the majority was under stratus cloud
and fog conditions and a few of them in clear-sky conditions.
Table 3 gives a list of the different configurations evaluated in
this section. The three first configurations aim at evaluating
the impact of the background-error-covariance matrix, while
the last two configurations focus on the bias correction.

3.2.1 Sensitivity to the background-error-covariance
matrix

In order to evaluate the impact of the background-error-
covariance matrix, three experiments have been designed.
The CTRL run mimics the configuration of the operational
AROME 3D-Var data assimilation system with a climatolog-
ical B matrix, taking into account cross-correlations between
temperature and specific humidity. As cross-covariances
highly depend on the weather conditions (H6Im et al., 2002;
Michel et al.,, 2011) and the use of fixed covariances is
not optimal when dealing with different atmospheric sce-
narios, Configl aims at evaluating the impact of the cross-
correlations between temperature and humidity on the re-
trievals. To this end, Configl corresponds to the same con-
figuration but removing the cross-correlations between tem-
perature and specific humidity. It can be noted that this
approach is still used in various 3D/4D-Var operational
schemes (Barker et al., 2004). Config2 mimics the use of a
flow-dependent B matrix during fog conditions only with a
fully correlated fog-specific B matrix during fog events but a
non-correlated climatological B matrix for all other weather
conditions. For these three configurations, the bias correction
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based on clear-sky O-B monitoring is applied to the raw BT
measurements.

The worst results are obtained with the CTRL configu-
ration, which considers a climatological B matrix, taking
into account cross-correlations between temperature and hu-
midity. With this configuration, the specific-humidity RMSE
with respect to tower measurements is degraded by up to
20 % (respectively 7 %) at 120m altitude during fog condi-
tions (respectively all weather conditions). This demonstrates
the importance of the B matrix cross-correlations on 1D-Var
accuracy and particularly in the case of observations with
low information content on the vertical structure (as MWRs
are mainly sensitive to the total column water vapour con-
tent due to vertically quasi-constant weighting functions).
The humidity profile degradation is significantly reduced to
less than 3 % thanks to the use of a block diagonal B ma-
trix in Configl. Humidity profiles are finally improved by up
to 21 % in RMSE at 120 m during fog conditions with the
use of a specific fog B matrix adapted to the meteorologi-
cal conditions. Figure 3 confirms that the best configuration
in terms of B matrix corresponds to Config2 compared to
the CTRL configuration. In fact, the use of a climatologi-
cal B matrix with cross-correlations degrades both temper-
ature and humidity retrievals but more significantly specific
humidity up to 4 km. Overall, these results confirm that, for
MWRs, humidity increments in the lowest levels are signif-
icantly driven by the cross-correlations between temperature
and humidity. These correlations (sign and amplitude) be-
ing highly dependent on the weather conditions, the B ma-
trix should ideally be updated for each profile. When it is
not possible, the use of a block diagonal B matrix might be
preferable to avoid degradation in the retrievals due to inac-
curate cross-correlations. This result is in line with the study
of Dee and Da Silva (2003), which showed that, when humid-
ity is less adequately observed than temperature, it is more
accurate to neglect humidity—temperature error covariances.
However, when an adapted flow-dependent B matrix is used,
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Table 3. List of 1D-Var experiments.

Experiment Description Bias correction (BC)

CTRL Climatological B¢jjy, matrix BC from AROME O-B monitoring
computed from the AROME EDA with
cross-covariances between T and Q

Configl: Climatological Bjj;, matrix BC from AROME O-B monitoring

Bclim NO CROSS CORR  computed from the AROME EDA

without cross-covariances between 7 and Q

Config2:
Bflow dependent

Cross-correlated Bfog matrix if visi_10m < 1000 m
Bjim Without cross-correlations for visi_10 m > 1000 m

BC from AROME O-B monitoring

Config3: Bflow dependent
no BC 54-58 GHz

Cross-correlated Bfog matrix if visi_10m < 1000 m
B jim without cross-correlations for visi_10m > 1000 m

BC from AROME O-B monitoring
for channels 22-53.86 GHz;
no BC for channels 54.54 to 58 GHz

Config4: Bflow dependent
BC 4T <5K

Cross-correlated Bfog matrix if visi_10m < 1000 m
Bjim Without cross-correlations for visi_10 m > 1000 m

BC from AROME O-B monitoring
based on all clear-sky profiles with T500m — Tground < 5K

Table 4. Reduction in the RMSE with respect to tower measurements after the 1D-Var analysis (RMSEy,) compared to the background

RMSE,,

(RMSE, ;) for all weather conditions (upper part) or only fog events (lower part): ER =1— RMSE. (%). Statistics performed on temperature

(T, K) and specific humidity (Qspec, kg kgfl) at 50 and 120 m altitude.

ER 1D-VAR

CTRL: Bcjiy,  Configl: Bejjm  Config2: Biog Belim ~ Config3: Bog Beim ~ Configd: Beog Befim

Cross-CofT. NO Cross-cofrr. no BC 56-58 GHz BC AT <5K

All conditions except fog (statistics on 2534 profiles)
T 50m 42 42 42 57 54
T 120 m 40 40 40 50 50
Ospec S0m —4 0.2 0.3 0.3 0.3
QOspec 120m -7 0.1 0.1 0.1 0.1
Fog cases (statistics on 351 profiles)
T 50m 37 37 34 50 44
T 120 m 21 21 24 32 32
Ospec 50m -7 -1 -5 15 6
Ospec 120m —-20 -3 21 20 21

the specific-humidity analysis is improved. In the future, the
use of ensemble data assimilation schemes should enable de-
riving optimal B matrices evolving in time and space to be
consistent with the weather conditions in order to optimize
specific-humidity retrievals.

3.2.2 Sensitivity to the bias correction applied on
opaque channels

One other source of errors in the lowest levels could come
from the bias correction applied on the most opaque chan-
nels. In fact, the bias correction has been inferred from dif-
ferences with respect to the AROME model which is known
for larger errors in the boundary layer below 2km altitude
(Martinet et al., 2015, 2017). Two additional configurations
have thus been designed to evaluate the impact of the bias
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correction applied on raw measurements. Config3 is similar
to Config2 except that the bias correction is not applied on the
last four most opaque channels (54-58 GHz range). Config4
is similar to Config2 except that the bias correction applied to
all channels is based on statistics of O-B departures made on
clear-sky profiles with a temperature gradient between 500 m
altitude and surface smaller than 5 K. Table 4 shows that 1D-
Var retrievals are already improved with Config4 in fog con-
ditions. Consequently, removing larger model errors during
very stable conditions in the O-B monitoring leads to an im-
proved estimation of the bias correction. The best scores are
finally obtained with Config3 with improved temperature re-
trievals by 15 % at 50 m. Figure 3 confirms that if the bias
correction based on the AROME monitoring is applied to the
54-58 GHz channels, a significant degradation in the temper-
ature retrievals is observed in the first 500 m. Removing the

Atmos. Meas. Tech., 13, 6593-6611, 2020



6600

(a) RS minus MWR

P. Martinet et al.: Microwave radiometers for fog forecast improvement

(b) RS minus MWR

6000 6000
—— BACK. ARO —— BACK. ARO
— CTRL — CTRL
—— Config2 Config2
—— NO BC - B fog —— NO BC - B fog
5000{ — Config3 5000 —— Config3
4000 4000
E
()
S 3000 3000
<
2000 2000
1000 1000
0 0
-3 -2 -1 -0.8-0.5-0.2 0.0 0.2 0.5 0.8 1.0

Temperature [K]

Humidity [g/kg]

Figure 3. Vertical profiles of (a) temperature and (b) specific-humidity bias (solid line) and root-mean-square errors (dashed lines) of 1D-
Var retrievals (coloured lines) and AROME backgrounds (black line) against 21 radiosondes launched during IOPs: 1D-Var retrievals from
AROME 1 h forecasts with bias correction and a cross-correlated climatological B matrix (CTRL, magenta), with bias correction and a
cross-correlated dedicated fog B matrix (Config2, blue), with bias correction except channels 11-14 and a cross-correlated dedicated fog B
matrix (Config3, red), without any bias correction and a cross-correlated dedicated fog B matrix (cyan).

bias correction applied to transparent channels causes a sig-
nificant degradation of the specific-humidity retrievals above
2 km altitude. This result demonstrates that, even though the
bias correction of MWR BT measurements can be computed
from AROME short-term forecasts for transparent channels,
this method is not optimal for opaque channels without a
thorough screening of the O-B innovations. In fact, the bias
correction of opaque channels depends on the accuracy of the
forecast model within the boundary layer, which is known
to be degraded during stable conditions. Similar conclusions
are found in Martinet et al. (2017), despite the larger period
of O-B monitoring (6 months instead of 2 months) and a less
complex terrain.

Figure 3 finally shows that the best performance is ob-
tained with Config3 through the whole atmospheric column
(both for temperature and humidity). For temperature, with
this best configuration, RMSE is smaller than 0.6 K within
the fog layer and below 1.6 K when considering the whole
atmospheric profile up to 6 km altitude. The 1D-Var analysis
outperforms the background in the first 800 m with a maxi-
mum improvement observed within the fog layer (RMSE de-
creased from 2.2 to 0.6 K at 75 m). As expected, most of the
information from the MWR observations are located below
2000 m and mainly below 1000 m. For humidity, RMSE ac-
curacies are less than 1 gkg™' for the best scenario. Most
of the improvement brought to the background is located
below 3000 m with a maximum RMSE decrease reaching
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0.2 gkg~! at 75 and 1800 m. Config3 is used in the following
sections.

4 Thin radiative fog case study

This section focuses on a thin radiative fog case observed
on 28 October 2016. Figure 4 shows the cloud base height
retrieved from a CL31 ceilometer (top panel), the visibility
measurements on the instrumented tower at 10 and 120 m al-
titude (blue and green lines, respectively, middle panel), and
the 1 h AROME forecasts of liquid water content (LWC) for
the same day (bottom panel). During the whole period, fog is
only observed at 10 m altitude during 40 min at midnight and
then during 4 h from 05:00 to 09:00 UTC. A stratus cloud is
then observed from 10:00 UTC until midnight with a cloud
base height between 300 and 500 m. The AROME back-
grounds simulate a continuous thick fog event from 00:00
to 13:00 UTC, which is then lifted until 15:00 UTC into a
stratus cloud at 500 m altitude. The stratus cloud is then dis-
sipated to appear again after 20:00 UTC. In this example, two
main deficiencies in the AROME 1 h forecasts are observed:
a temporally longer and vertically thicker fog event and the
erroneous dissipation of the stratus cloud between 15:00 and
20:00UTC.

Figure 5 compares the time series of temperature pro-
files (top panels) and specific-humidity (bottom panels) fore-
cast by AROME (left panels) and retrieved with the 1D-
Var scheme using the optimal configuration. We can note
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Figure 4. (a) Cloud base height (m) derived from the CL31
ceilometer measurements; (b) visibility at 10 m (blue) and 120 m
(green line); (¢) AROME 1h forecasts of liquid water content (in
gkg_l) on 28 October 2016.

the large temperature increment by up to 5K from 00:00
to 12:00 UTC essentially in the first 250 m after 1D-Var is
applied; this is the period when the model simulates a thick
fog event not confirmed by the observations. This is followed
by a temperature cooling within 2 K during the stratus cloud
(16:00 to 24:00 UTC). The specific humidity is only modified
during the fog event (05:00 to 09:00 UTC) with an increase
of 1 gkg™! in the first 1500 m.

In order to quantify the accuracy of the 1D-Var increments
in this specific fog case, Fig. 6 evaluates the corresponding
diurnal evolution of temperature, specific humidity and rela-
tive humidity at 50 and 120 m altitude. A large underestima-
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tion of the temperature by 4 to 6 K is observed in the AROME
forecasts by night until 13:00 UTC. AROME forecasts are
also found to be too warm by 2 K after 18:00 UTC. The as-
similation of MWR brightness temperatures in a 1D context
greatly improves the model background (temperature) during
the night-time fog event with temperature errors smaller than
2 K after assimilation. The 1D-Var retrievals almost perfectly
fit the in situ observations after 13:00 UTC for temperature
(both at 50 and 120 m altitude).

In terms of specific humidity, AROME tends to underes-
timate the specific humidity at night-time probably due to
an overestimation of the saturation. Indeed, as the fog layer
was thicker in AROME than in the observations, we be-
lieve the model converts too much water vapour into liquid
erroneously, which makes it underestimate specific humid-
ity. On the contrary, the specific humidity is overestimated
in the afternoon. After 1D assimilation of MWR measure-
ments, specific humidity is nearly identical to the AROME
forecasts except during the longest fog event (between 04:00
and 09:00 UTC) where the 1D analysis is closer to the tower
measurements than the background. This is likely due to the
use of the cross-correlated fog B matrix under these condi-
tions as opposite to the use of a block diagonal B matrix when
fog is not observed. Most of the model increment is thus pro-
duced by the B matrix cross-covariances. Background errors
are reduced from 0.5 to 0.1 gkg™!. Although closer to the
in situ observations, 1D-Var retrievals slightly overestimate
specific humidity between 04:00 and 09:00 UTC. This is
most likely due to over-estimated positive cross-correlations
between temperature and humidity in the B matrix. In terms
of relative humidity, the temperature warming by night leads
to the effect that the fog layer is not saturated any more in
agreement with the tower in situ measurements. However,
this field is degraded after 13:00 UTC. In fact, the 1D-Var
scheme correctly reduces the temperature but is not able to
decrease the specific humidity. The relative humidity is thus
wrongly increased by the 1D-Var analysis.

In view of the future inclusion of hydrometeors in the data
assimilation control variables, the information brought by
MWRs to the liquid water path (LWP) could also be very
valuable. Figure 7 shows the time series of LWP forecast by
AROMEE, retrieved through the 1D-Var and retrieved from a
quadratic regression applied on BT measurements. It can be
seen that the AROME model clearly overestimates the fog
LWP with a maximum reaching 90 gm~2 at 07:00 UTC. This
value, however, decreased down to 25 gm_2 after the 1D as-
similation of MWR brightness temperatures. During the pe-
riod when the model fails to simulate the stratus cloud, the
LWP is significantly increased in the 1D-Var analysis with
values between 30 and 80 gm~2 even if the background pro-
file has no cloud layer between 14:00 and 20:00 UTC. These
LWP modifications brought by the 1D-Var are consistent
with the in situ observations on the instrumented tower as
well as ceilometer observations.

Atmos. Meas. Tech., 13, 6593—-6611, 2020
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Figure 5. Time series of temperature profiles (a, b) and specific-humidity (c, d) forecast by AROME (a, ¢) and retrieved with the 1D-Var
scheme with the optimal configuration (Config3, b, d) on 28 October 2016.

5 The 6-month statistics

While the previous section focuses on an extreme fog case,
this section aims at more general conclusions on the expected
impact of MWR BTs assimilation on AROME analysis. To
this end, a statistical evaluation of the expected model incre-
ments (analysis minus background differences) after assim-
ilating MWR measurements has been conducted using the
tower measurements during the 6-month period. The 1D-Var
retrievals have been performed using the optimal configura-
tion described in Sect. 3.2. A total of 351 h of fog (rain events
have been removed) could be observed with the MWR. In or-
der to evaluate the performance of the AROME background
profiles (1 h forecast) to accurately forecast fog events, statis-
tics based on the hit ratio (HR), false alarm rate (FAR), fre-
quency bias index (FBI) and critical success index (CSI)
were computed. If GD (good detection) is the number of fog
profiles well detected, ND (not detected) is the number of
undetected fog profiles and FA is the number of false alarms,
then these scores are defined by

GD
R=——
GD+ND
FA
FAR= —
GD + FA
GD +FA
FBI= ——
GD +ND
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GD

CSl= ————.
GD+ND+FA

ey

To detect fog profiles in the model space, a new visibility
diagnosis specifically developed for the AROME model has
been used (Ingrid Dombrowski-Etchevers, personal commu-
nication, July 2020). In this new diagnosis, the visibility is di-
rectly deduced from the liquid water content at ground. It was
computed through a statistical regression between hourly
maximum of liquid water content forecast by AROME and
observed minimum of visibility on 100 ground stations dur-
ing 5 months. A hit ratio of 73 % and a false alarm rate of
58 % was found. A FBI of 1.77 means that the AROME back-
ground profiles tend to forecast too many fog events. CSI
equal to 0.35 means that only 35 % of fog events (observed
and/or predicted) are correctly forecast by the model. These
statistics emphasize that quite large errors are observed in
the AROME 1h forecasts of fog with an excessive num-
ber of false alarms. In order to evaluate the potential bene-
fit of MWR observations to adjust the AROME background
profiles, the statistical study of model increments is split
between the good detections, missed fog profiles and false
alarms. Firstly, the frequency distributions of differences of
ID-Var analysis and background with tower measurements
at 50 m are displayed in Fig. 8 (both for temperature and spe-
cific humidity). For temperature and for all subsets, the distri-
butions of 1D-Var analysis errors are more centred and more
symmetric compared to the background-error distributions.
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Figure 6. Diurnal evolution of temperature (a, b), specific humid-
ity (¢, d) and relative humidity (e, f) forecast by AROME (red),
measured by weather station (black) and retrieved by the 1D-Var
algorithm (blue) on 28 October 2016.
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Figure 7. Time series of liquid water path forecast by AROME
(red), retrieved by the 1D-Var algorithm (blue) or retrieved from the
MWR alone through a quadratic regression (magenta) on 28 Octo-
ber 2016.

Thus, the largest background errors (above 2K in absolute
values) are successfully corrected by the 1D-Var analysis.
Background error distributions also present a larger tail to-
wards negative values with a secondary peak centred around
—4K in the case of false alarms and to a smaller extent in
the case of good fog detections. The largest temperature im-
provement is observed in the case of false alarms with only
35 % of the background errors being within —0.5 to 0.5K,
which is against 69 % for the analysis. RMSEs with respect
to tower measurements are also significantly improved with
values between 1.3 and 1.9 K in the background against 0.6 K
in the analysis. The frequency distribution of specific hu-
midity errors for 1D-Var analysis and background are close,
with similar bias and RMSE for good detections and false
alarms. A slight degradation is observed for missed fog de-
tections with a RMSE of 0.33 gkg~! in the analysis against
0.25 gkg~! in the background. Overall, the impact on humid-
ity is less evident than on temperature at 50 m altitude.

To get a vertical perspective, Fig. 9 shows the profiles of
the frequency distribution of analysis minus background dif-
ferences. As more than 90 % of the water vapour increments
are within 1 gkg ™! up to 1500 m altitude, only the impact on
temperature is discussed. For each vertical bin, the frequency
of the temperature increments within a given range of values
is shown. The frequency distribution of 1D-Var increments
has been separated between cases of correct fog detection,
missed fog and false alarms. For all of the dataset, most of the
temperature analysis increments are observed below 750 m
and span the range —5 to 5 K. The largest increments are
observed between 100 and 300 m altitude for which around
20 % of the analysis minus background differences are larger
than 2K in absolute values. We can note significant differ-
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Figure 8. Frequency distribution of 1D-Var analyses (orange) and background (blue) differences compared to tower measurements for
temperature (a—c) and specific humidity (d—f) at 50 m altitude. Statistics performed over 255 profiles of good fog detection (a, d), 95 profiles

of undetected fog (b, e) and 368 profiles of false alarms (c, f).

ences in the shape of the increment distributions depending
on the forecast score. While the distribution of good detec-
tions is quite symmetric, it is not the case for missed fog
profiles and false alarm distributions. In the case of missed
fog events, the distribution is negatively skewed close to the
ground, whereas it is positively skewed above 100 m altitude.
This asymmetry means that the largest analysis increments
in magnitude tend to decrease the temperature close to the
ground and increase the temperature above 100 m. Conse-
quently, we can expect 1D-Var analyses to increase the at-
mospheric stability in the first 150 m, which is key for fog
formation. In the case of false alarms, the distribution is pos-
itively skewed for all vertical levels. This asymmetry means
that the largest analysis increments, though less frequent in
the distribution, occur when the AROME forecasts tend to
significantly overestimate the temperature cooling. By limit-
ing the temperature cooling, the 1D-Var analyses might limit
the erroneous saturation leading to false alarms in the back-
ground.

The additional value of MWR data for NWP forecasts and
process studies is in the LWP product. In fact, MWR is one of
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the most reliable sources for this variable (Crewell and Loh-
nert, 2003), which is key for better understanding the micro-
physics of fog life cycle and limiting the forecast spin-up (i.e.
the unbalance of thermodynamic profiles with microphysical
variables during the analysis). In fact, as hydrometeors are
currently not included in the control variables of most op-
erational variational data assimilation schemes; these fields
are kept unchanged during the analysis. Thus, the analysed
hydrometeor fields correspond to the previous background.
Consequently, in the following statistics, the background val-
ues of LWP correspond in fact to the LWP in the opera-
tional AROME analysis. These fields are then modified ac-
cording to the updated temperature and humidity analyses in
the first time steps of the forecast through the model physics.
The statistical study performed here is also useful to evalu-
ate the expected impact on the AROME analyses if MWR
observations were assimilated and the LWP included in the
control variables. To this end, Fig. 10 investigates the fre-
quency distribution of LWP increments split by forecast skill
(good detections, undetected fog, false alarms). Firstly, we
can note that the LWP increments are higher than 50 gm™2
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P. Martinet et al.: Microwave radiometers for fog forecast improvement

(a) 2D hist. of Temperature increment idx_GD60
0

(b) 2D hist. of Temperature increment idx_NDso
0

6605

(c) 2D hist. of Temperature increment idx_FA 60
0

1750 so 1750 so 1750 so
1500 1500 1500
—_ 40 —_ 40 —_ 40
E 1250 E 1250 E 1250
[} [} ()
S 1000 30 S 1000 30 S 1000 30
2 = =
% 750 2 % 750 . % 750 2
500 500 500
10 10 10
250 = 250 250 = "
0- 0 0- 0 4 0
-2 2 4 6 6 -4 -2 2 4 6 6 -4 -2 2 4 6

0
dT [K]

0
dT [K]

0
dT [K]

Figure 9. Vertical profiles of the frequency distribution of temperature increments (analysis minus background differences). Statistics per-
formed over 255 profiles of good fog detection (a), 95 profiles of undetected fog (b) and 368 profiles of false alarms (c).

in absolute values for approximately 50 % of good detections
and missed fog profiles and 30 % of false alarms. During
false alarms, 95 % of the background LWP values are below
20 gm_2 (not shown), which is close to the MWR sensitiv-
ity which might explain smaller 1D-Var increments during
false alarms. The mean increment is the highest in the case
of missed fog events (57 gm™2) and the smallest in the case
of false alarms (15gm™2). It is important to note that dur-
ing false alarms, the LWP increment might be positive due
to the presence of cloud layers, though we would expect the
1D-Var analysis to decrease the LWP within the fog layer. If
we restrict the statistics to false alarms without cloud aloft,
the mean increment is reduced to —2gm™2. As expected,
large positive increments occur more often in fog cases un-
detected by AROME with 47 % of the distribution showing
increments above 50 gm~2 against 35 % in good detections
and 22 % in false alarms (8 % for false alarms without cloud
layers aloft). To further investigate the LWP increments and
retrieved values, more in situ data are necessary, e.g. from
the cloud droplet probe mounted on the tethered balloon or
cloud radar measurements. However, the lack of cloud radar
measurements to differentiate the LWP within the fog layer
and cloud aloft makes this evaluation complex. Too few cases
during which MWR observations were co-located with an
entire sounding of the fog layer with the tethered balloon
have been sampled to make an independent evaluation of this
product. This is why we use the LWP derived from the MWR
alone through a quadratic regression as a reference. The ex-
pected accuracy of this product is 15 to 20 gm~2 according
to Crewell and Lohnert (2003). To this end, Fig. 12 shows the
scatterplot between the LWP retrieved with the MWR alone
(through multichannel regressions provided by the manufac-
turer) and the 1D-Var analyses or background profiles (left
panel). We can note the large improvement in correlation be-
tween the LWP forecast by the background (0.72) versus the
1D-Var analysis (0.98) with respect to the MWR multichan-
nel retrieval. This is of course expected as the 1D-Var min-
imization tends to get closer to the MWR brightness tem-
peratures which are also used in the multichannel retrieval.
However, this evaluation is a good sanity check, showing the
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good behaviour of the 1D-Var algorithm and its capability to
extract the information from the observation even with very
large errors in the first-guess background profiles. The mean
error of the AROME LWP is —49 gm™2 and is reduced to
—2 gm~2 after 1D assimilation. The root-mean-square error
is significantly reduced from 102 to 27 gm~2.

The same evaluation has been carried out on the IWV
(Figs. 11 and 12). Since MWRs are more sensitive to col-
umn integral than vertical distribution, a more significant im-
pact is expected on IWV than specific humidity profiles. The
IWV increments span from —4 to 4kgm~2, which corre-
spond to a change in the background IWV of up to 30 %.
The distribution of IWV increments is positively skewed for
correct fog detection, meaning that the largest increments
in magnitude are observed when the background underesti-
mates the integrated water vapour content. On the contrary, it
is negatively skewed for missed fog profiles, meaning that the
largest increments occur when the model overestimates the
integrated water vapour content. It is more symmetric in the
case of false alarms. The correlation coefficient with respect
to the MWR multichannel retrieval (Fig. 12) is slightly in-
creased from 0.97 to 1. The RMSE is improved from 1.30 to
0.71 kgm~2. The impact of MWR observations is thus pos-
itive on IWV, though the good quality of AROME humidity
forecast leaves little room for improvement. This could be
explained by the assimilation of observations sensitive to the
total column water vapour like Global Navigation Satellite
System (GNSS) zenith total delay. Further investigation on
multiple sites would be needed to confirm this hypothesis.

The next natural step of this study would be to calculate
updated scores of fog detections with the new 1D-Var analy-
ses compared to the background profiles. However, forecast
scores are only based on the LWC at ground, whereas the
1D-Var works on the liquid water path without information
on the cloud vertical structure. During false alarms, conclu-
sions on the impact on forecast scores are complexified by
the presence of cloud layers above fog in a majority of false
alarms, which can cause an increase in LWC at ground. As
for the hit ratio, it is increased from 73 % in the background
to 81 % in the analysis. The rate of missed fog events is also
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Figure 10. Frequency distributions of 1D-Var LWP increments (g m~2). Statistics performed over 255 profiles of good fog detection (a),

95 profiles of undetected fog (b) and 368 profiles of false alarms (c).
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Figure 11. Frequency distributions of 1D-Var IWV increments (kg m~2). Statistics performed over 255 profiles of good fog detection (a),

95 profiles of undetected fog (b) and 368 profiles of false alarms (c).

decreased from 27 % in the background to 19 % in the 1D-
Var analysis. However, as this evaluation is only based on
the LWC change at the ground, it is necessary to evaluate
the impact of the new temperature and humidity fields on the
LWC after a few time steps of forecasts, but this is beyond
the scope of this paper. This investigation into the forecast
impact will be studied in the future within the framework of
the SOFOG3D experiment (Sect. 6).

6 A regional-scale MWR network for fog process
studies: the SOFOG3D experiment

This study has proved MWRs to be potential good candi-
dates to be assimilated into current mesoscale models with
a special focus on fog forecast improvement. However, our
conclusions are currently limited by the small dataset (only
one winter at one site) and the lack of impact studies on fog
forecast. Although, a positive impact is expected on the anal-
ysis of the ABL temperature profile and the LWP and, to a
smaller extent, to the IWV; the next step will be to quan-
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tify the impact of a more accurate initial state on fog fore-
cast capability. Among the huge number of observations cur-
rently assimilated into operational models, the assimilation
of only one MWR unit would probably not be efficient to
effectively constrain the boundary layer in the model anal-
ysis and to keep the valuable information brought by this
local observation over the forecast range. In order to go
further into this evaluation, the deployment of a dense net-
work of MWRs is necessary to perform a data assimila-
tion study into the operational AROME 3D-Var assimilation
system. Thanks to the strong European collaboration built
in the framework of the COST Action TOPROF (https://
www.cost.eu/actions/ES 1303 /#tabsIName:overview, last ac-
cess: 17 November 2020), pursued by the COST Action
PROBE (PROfiling the atmospheric Boundary layer at Euro-
pean scale; Cimini et al., 2020), an unprecedented regional-
scale network of eight MWR units has been deployed in
the south-west of France during the period October 2019 to
April 2020. This work will serve the data assimilation exper-
iment, fog process studies and model evaluation of the in-
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Figure 12. Scatterplot between a multichannel regression based on MWR observations (y axis) and the background forecast by AROME
(red dots) or the 1D-Var analysis (blue dots) for LWP (a) and IWV (b). Statistics performed over 351 observed fog profiles.

ternational SOFOG3D (SOuth FOGs 3D experiment for fog
processes study) experiment led by Météo-France. Figure 13
shows the domain of the dedicated 500 m horizontal resolu-
tion AROME version in test for evaluation during SOFOG3D
and the location of the eight MWR units deployed for the
experiment. MWR locations have been chosen for an homo-
geneous spread over the AROME domain at sites known for
their high frequency of fog occurrence. An increased den-
sity of MWRs is found at the super-site with two co-located
MWRs and a third humidity profiler deployed approximately
7km away from the super-site to document the impact of
surface heterogeneities on fog characteristics. The method-
ology introduced in this paper will be extended to the eight
MWRs deployed during SOFOG3D. This large dataset will
help with quantifying the spatio-temporal variability of fog
parameters (thermodynamics and microphysics) between the
different sites; better understand the main processes playing
a role in fog formation, dissipation, and development; and
run real data assimilation experiments using the operational
3D-Var assimilation scheme of the AROME model to quan-
tify the expected fog forecast improvement thanks to ground-
based MWRs.

7 Conclusions

In this study, the expected benefit of ground-based MWRs
on NWP analyses during fog conditions has been investi-
gated with a 1D-Var technique. Temperature, humidity and
LWP have been retrieved through the optimal combination
of short-term forecasts and MWRs brightness temperatures.
In this study, a new retrieval algorithm, combining the NWP-
SAF 1D-Var and the fast radiative transfer model RTTOV-gb,
has been evaluated on a 6-month period spanning 351 h of
fog conditions. The first part of this work aimed at deriving
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an optimal background-error-covariance matrix for fog con-
ditions with the use of the newly developed AROME EDA.
Similarly to Ménétrier and Montmerle (2011), background-
error standard deviations were found to be approximately
40 % larger within the first 250 m for temperature compared
to a commonly used climatological B matrix. For specific
humidity, similar standard deviations were observed. Most
of the differences between a climatological B matrix and
a fog B matrix were observed in the cross-correlations be-
tween temperature and specific humidity, with a strong pos-
itive coupling within the fog layer and uncoupling between
the fog layer and atmospheric layers above. The impact of the
B matrix and bias correction has been investigated through
a statistical evaluation of the retrieval accuracy with respect
to the in situ measurements on the instrumented tower at 50
and 120 m altitude. The optimal configuration has been de-
fined through the definition of the error reduction brought
by the analysis over the background for each variable (tem-
perature and specific humidity) and each altitude. The best
scenario mimics the use of a “flow-dependent” B matrix
by using a cross-correlated fog B matrix when fog is de-
tected by visibility measurements and an uncorrelated cli-
matological B matrix during the other conditions. The re-
trievals of specific humidity at 120 m altitude are the most
impacted: contrary to the significant degradation of the back-
ground by around 20 % with a suboptimal B matrix, an im-
provement of 21 % of the background is obtained with an
optimal B matrix. This demonstrates the crucial role of the
B matrix cross-correlations when assimilating observations
with low information content on the vertical structure. Con-
sequently, the ongoing development of a 3D-EnVar scheme
for the AROME model (Montmerle et al., 2018) is a neces-
sary step to optimally assimilate MWR observations into the
AROME model. The use of a static bias correction based on
the monitoring of observation minus background innovations
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was also evaluated. Biases of less than 0.5 K were observed
for K-band and opaque V-band channels and up to —4.7K
for the most transparent V-band channels. The found bias is
similar to previous studies; its correction applied to BT mea-
surements improves humidity retrievals above 2000 m but
degrades temperature retrievals in the first 200 m. This degra-
dation is most likely due to well-known larger model errors in
the boundary layer during stable conditions, which are incor-
rectly included in the bias correction. Restricting the compu-
tation of the bias correction to clear-sky unstable conditions
was found to remove most of the degradation. Overall, with
the best configuration (flow-dependent fog B matrix and no
bias correction for most opaque channels), temperature and
humidity profiles could be retrieved with RMSE below 1.6 K
and 1 gkg™! up to 6km in the troposphere.

A thin radiative fog sampled during the first IOP of the
experiment was then described. For this specific case, the
AROME model was found to simulate a temporally longer
and vertically thicker fog event and is not able to maintain
the stratus cloud in the afternoon. After 1D assimilation of
MWR observations, a large warming up to 5K is observed
within the first 500 m during the fog event associated with an
increase in specific humidity and a decrease of LWP by 40 to
70 gm™2 consistent with in situ measurements showing the
large impact brought by MWR observations to modify the
initial state of the model in fog conditions.

Finally, a statistical evaluation of the expected model in-
crements after assimilating MWR measurements has been
conducted using tower measurements. Large forecast errors
were observed in the AROME backgrounds with a tendency
to overestimate the presence of fog. During missed fog pro-
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files, 1D-Var increments pull towards lower temperatures
close to the ground and higher temperatures above 100 m
altitude, i.e. higher atmospheric stability. The largest anal-
ysis increments and background errors are observed during
false alarms when the AROME forecasts tend to significantly
overestimate the temperature cooling. Overall, RMSE val-
ues from 1.3 to 1.9 K are observed in the background against
0.6 K in the analysis. For specific humidity, analysis incre-
ments are small and below 1 gkg™! within the fog layer. On
the contrary, a large impact has been found on the LWP with
increments up to 200 gm~2 in extreme missed fog events. A
larger impact was found on the IWV than the humidity pro-
file with a RMSE with respect to tower measurements that
decreased from 1.3 to 0.7kgm™2 during observed fog pro-
files. However, it was noted that the AROME backgrounds
are more accurate for the IWV compared to temperature and
LWP, which leaves less chances for improvement.

Using for the first time the RTTOV-gb fast radiative trans-
fer model, this study investigated the impact of assimilating
MWR observations in the AROME model during fog con-
ditions. This evaluation, previously limited to temperature
profiles only, was extended to humidity and LWP. Promising
results are shown, with significant positive impact on tem-
perature and LWP and small but slightly positive impact on
humidity. In order to confirm the results obtained in a 1D-
Var framework, the next step is now to assimilate a real net-
work of ground-based MWRs through a 3D-Var or 3D-EnVar
data assimilation scheme. Following the recommendations of
Caumont et al. (2016) and thanks to the strong European col-
laboration built within the TOPROF and PROBE COST Ac-
tions, eight MWRSs have been deployed in the south-west of
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France from October 2019 to April 2020 in the context of
the international fog campaign SOFOG3D. The locations of
the MWR units have been chosen to optimize their impact in
the model specifically for fog forecast evaluation. A 1D-Var
plus 3D-EnVar approach will be used to assimilate profiles
retrieved through the 1D-Var algorithm presented here, tak-
ing the most out of the lessons learnt in this work.
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