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Abstract. A new method to determine the melting layer
height using a micro rain radar (MRR) is presented. The
MRR is a small vertically pointing frequency-modulated
continuous-wave radar that measures Doppler spectra of pre-
cipitation. From these Doppler spectra, various variables
such as Doppler velocity or spectral width can be derived.
The melting layer is visible due to higher reflectivity and
an acceleration of the falling particles, among others. These
characteristics are fed to a neural network to determine the
melting layer height. To train the neural network, the melt-
ing layer height is determined manually. The neural network
is trained and tested using data from two sites that cover all
seasons. For most cases, the neural network is able to de-
tect the correct melting layer height well. Sensitivity stud-
ies show that the neural network is able to handle different
MRR settings. Comparisons to radiosonde data and cloud
radar data show a good agreement with respect to the melting
layer heights.

1 Introduction

The bright band in radar meteorology shows the location of
the layer where solid precipitation melts into rain via a com-
plex process. Near the freezing level, aggregation leads to
larger ice particles. When melting begins, the particles begin
to contain liquid water, appearing as very large raindrops, un-
til all ice is melted and the particles collapse into raindrops.
The reflectivity maximum is partly due to the different di-
electric factors of ice and water. At the bottom of the melt-
ing layer (ML), the number of particles per unit volume de-
creases due to acceleration and smaller particle sizes, result-

ing in a decreasing reflectivity (e.g., Austin and Bemis, 1950;
Battan, 1959).

Although the bright band has been detected since the be-
ginning of radar meteorology in the 1940s (e.g., Byers and
Coons, 1947), it is not yet fully understood. The detection of
this layer is important for various applications, including the
correction of precipitation estimation or the prediction of the
kind of precipitation at the surface. Knowledge of the ML
is also important for aviation, and it is particularly useful to
know if icing might occur near airports. A typical rain event
with rain at the surface and snow above is not a concern for
airplanes. If, however, it is raining and the temperature is be-
low 0°C, the supercooled falling rain can turn to ice once
it hits a surface such as an airplane. The accumulating ice
causes the shape of the plane to change, thereby disturbing
the aerodynamic properties of the wing. Thus, the detection
of the ML at airports can help assess the real-time and near-
future risk of icing by providing information on where melt-
ing is currently taking place and where it has taken place
in the near past, which can complement other measurements
such as ground temperature.

Many previous studies have used various radars to detect
the ML. Some researchers have used radars scanning a vol-
ume (e.g., Gourley and Calvert, 2003) or vertically pointing
radars (e.g., Fabry and Zawadzki, 1995; White et al., 2002;
Johnston et al., 2017) with different wavelengths, utilizing
reflectivity data or a combination of reflectivity and veloc-
ity data, others have used polarimetric radars, utilizing the
properties of the echoes to distinguish between snow and
rain (e.g., Giangrande et al., 2008). In contrast, this study
uses a smaller and less expensive remote-sensing instrument,
the micro rain radar (MRR) from METEK GmbH, which
has been widely used to measure vertical profiles of precip-
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itation in studies such as Loffler-Mang et al. (1999), Peters
et al. (2005), Yuter et al. (2008), Kneifel et al. (2011), and
Maahn and Kollias (2012). The MRR is a vertically pointing
frequency-modulated continuous-wave radar, which is oper-
ated at 24 GHz. Due to its compact size, it can easily be in-
stalled virtually independent of site conditions, and it mea-
sures Doppler spectra at high resolutions (METEK GmbH,
2018). From the spectra, it calculates two classes of vari-
ables. While the first class, which consists of the attenuated
equivalent reflectivity factor (ZEA), the Doppler velocity
(VEL), and the spectral width (WIDTH), is just a condensed
description of the spectral properties, the second class, which
consists of the drop size distribution, the path-integrated at-
tenuation, the Rayleigh radar reflectivity factor, the liquid
water content, and the rain rate (RR), represents a retrieval
of physical target properties under the assumption that the
backscattered signal is caused solely by rain drops. Although
variables from the latter class have no physical meaning in
the case of frozen or mixed precipitation, they may act as
indicators of the presence and height of an ML.

The MRR has previously been used to detect the ML
height. Perry et al. (2017) used the gradients of ZEA and
VEL to detect the top and bottom of the ML, respectively.
Cha et al. (2009) detected an ML where the largest positive
and negative vertical gradient of the rain rate embrace the
maximum rain rate. They also used a large dataset, exclud-
ing the winter months with surface temperatures below 0 °C.
Pfaff et al. (2014) compared this algorithm to two other al-
gorithms by fitting an analytical function to the reflectivity
profile and by combining reflectivity and falling velocity to
derive the ML height. They concluded that the combination
of reflectivity and falling velocity gives the best results. How-
ever, their data consisted of two case studies. For operational
use, a much larger dataset should be used for testing.

This paper presents a new method to extract the ML height
from the MRR data that can be used operationally under
all weather conditions. The abovementioned method uses a
neural network approach, which is well suited to nonlinear
and complex problems and does not rely on certain assump-
tions regarding the data distribution. A neural network (NN)
learns from examples, and there is no need to impose fixed
thresholds or to give the shape of reflectivity and/or velocity
profiles, in contrast to previous studies (e.g., Fabry and Za-
wadzki, 1995; White et al., 2002; Giangrande et al., 2008;
Cha et al., 2009; Perry et al., 2017). Hence, given the right
training, this approach is more flexible and is able to gener-
alize; thus, it is able to detect unusual MLs such as MLs on
the ground or two concurrent MLs. It is also possible to de-
sign an NN in different ways so that it is, for example, able
to either detect a specific height, such as the height where
melting starts, or detect the whole vertical extent over which
the melting occurs. Our NN was designed to detect the whole
ML, and it was trained and tested using data with a high tem-
poral resolution that included all seasons and different pre-
cipitation types, such as rain, snow, and sleet.
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Section 2 presents the NN approach and describes how the
training data are generated as well as the setup of the NN.
In Sect. 3, the performance of the NN is described; it also
demonstrates how the performance of the NN is assessed, the
kinds of situations that it handles well, and the limits of this
approach. Section 4 presents the discussion and a conclusion.

2 Method

The NN approach is well suited to complex nonlinear prob-
lems, which meteorological phenomena often are. Although
the NN lacks a physical basis, it can yield accurate results
(e.g., Marzban and Stumpf, 1996; Liu et al., 2001). A diffi-
culty with NNs is the need for training data. During train-
ing, an NN is given the input data as well as the desired
output; through this process it learns patterns and can sub-
sequently be applied to previously unknown data. In the fol-
lowing, the measurement data used are described, the method
used to generate the training data is presented, and a descrip-
tion of the NN, the training process, and the post-processing
is given.

2.1 Measurement data used

For this study, most data were measured by two MRR-PRO
instruments (METEK GmbH; the MRR-PRO is the suc-
cessor of the MRR-2) that were deployed by the German
Weather Service at Hamburg airport, which is located on
the North German Plain, and at Hohenpeilenberg, which
is a topographically isolated mountain that is almost 1km
high, in Germany. The measurements from Hamburg were
taken from November 2017 to April 2018 with an interrup-
tion in the first half of January due to technical issues. The
measurements at Hohenpeilenberg range from August 2017
to December 2018 with interruptions from December 2017
to April 2018 and in May 2018. The measurements were
taken at 128 range gates with a vertical resolution of 15m
in Hamburg and 25 m at Hohenpeiflenberg and with a 10s
time resolution at both sites. Only days with precipitation
were used, resulting in 166 d from Hohenpeil3enberg and 90 d
from Hamburg. Within the course of a day, precipitation can
change substantially. Therefore, the days were subdivided
into four 6h intervals. This made the selection of training
data more flexible and avoided the inclusion of long time
spans with no precipitation (short periods of rain were de-
sired for use) as well as avoiding the data being split into too
many very small intervals, which are impractical to process.

Additional data were measured by METEK in Elmshorn
in order to test the sensitivity of the NN to other height reso-
lutions: 1d (“d” refers to day) with a resolution of 50 m, and
4 d with a resolution of 100 m.

The dataset covers many different situations, including
cases without precipitation, cases of light drizzle and snow
without MLs, high and low MLs, MLs on the ground with
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sleet at the surface, and even rare situations with hail or two
concurrent MLs.

2.2 Generating training data

Training an NN requires training data with knowledge of the
desired output. This means that reference data containing the
true location of the ML are needed. One option for determin-
ing the ML is to consider the height of 0 °C in a temperature
profile. Temperature could be measured by a mast, which can
only provide data up to limited heights, or by radiosondes,
which are restricted to a few sample points on the time axis.
Airplanes flying through the ML could provide very detailed
data, but they would be completely impractical for generat-
ing a large set of training data. Data from models are avail-
able at a high spatial and temporal resolution; however, due
to inherent uncertainties, they cannot be relied upon to pro-
vide the correct ML height at the exact location of the radar
with a resolution in the order of seconds, as the ML height
can be very variable in time and space. Therefore, a different
method for finding the true ML height must be used.

Looking at time-height series of ZEA, VEL, and other
output from the MRR, the human eye is easily able to de-
tect the ML height in many situations (e.g., by the increase in
VEL or the maximum in RR or ZEA). Therefore, a tool was
build to draw the upper and lower boundaries of the ML into
plots of different MRR output variables by moving the mouse
over the plot by hand (see Fig. 1). This has the advantage
that the “true” ML is determined with the appropriate time
resolution at the location of the MRR. Different variables
show different properties of the ML. Some variables show
a stronger gradient at the upper boundary, whereas the gra-
dients of other variables are stronger at the lower boundary
of the ML. For example, the reflectivity shows the strongest
gradient at the upper boundary of the ML, as it has a max-
imum where the particles are already coated with water but
are still large because the ice has not melted completely yet.
The velocity grows toward the lower boundary of the ML
when the air resistance decreases and the density of the par-
ticle increases. Therefore, the upper and lower boundary of
the ML were determined using different variables.

Figure 1 shows the five variables that were used to draw
the ML height. For each variable, two lines were drawn (up-
per and lower boundary) using the same color. For WIDTH
and RR, the strongest gradients define the boundaries of the
ML. For VEL/, the area of negative gradients encompasses
the ML. For ZEA’, the area where the gradient is either
clearly positive (lower part of ML) or negative (upper part
of ML) defines the ML, whereas the middle of the posi-
tive values defines the upper and lower boundary of the ML
for ZEA”. These five variables were used to determine the
ML because the ML is generally visible to the human eye
in these cases. The ML could also have been detected us-
ing only VEL and ZEA, but using more variables reduces
the uncertainty involved in the process. For the upper bound-
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Table 1. Overview of the training cases of 6 h intervals.

No Snowor ML above MLon Showers
precipitation drizzle ground  ground
3 14 48 7 7

ary, the RR and the gradient and curvature ZEA’ and ZEA”
(first and second derivative of ZEA) were used, whereas the
lower boundary was determined by WIDTH and the gradi-
ents VEL' and ZEA'. The plot shows that the lines that are
drawn can deviate considerably for the five variables, which
is why not all variables were used to determine both the upper
and lower boundaries of the ML. The lines from the variables
chosen for physical reasons lie fairly close together, giving
confidence in the choice of variables. In the optimal case,
this choice results in two triplets of lines for the upper and
lower boundary of the ML. The drawing of the lines has an
inherent uncertainty, stemming from the ability of the human
eye to detect the pattern of the ML and from the imperfect
movements of the mouse. Therefore, the standard deviation
of both triplets was calculated. The transitions in the upper
and lower boundary of the ML, describing the uncertainty,
are determined by =+ 1 standard deviation centered around
the triplet averages. Within the transition, the uncertainty of
the procedure is expressed as a linear function between zero
(no ML) and one (certain ML). If there are less than three
lines available, the uncertainty is not determined by the stan-
dard deviation but by fixed values that grow with the decreas-
ing number of available lines. Figure 1f shows the resulting
“true” ML in gray, overlain with the lines drawn from the
five variables. The dark gray area depicts the region where
there is definitely an ML, and the light gray area depicts the
transition region. Thus, the training data for the NN consist
of one profile for each measuring time, with values ranging
between zero and one.

The ML can only be determined by eye for cases where
the ML is fairly continuous in time; therefore, only events
such as these were chosen to generate the “true” data. Many
cases consist of fairly continuous rain at the surface and a
well-developed ML above, but the training data also include
MLs at the surface, cases with no ML due to snow or drizzle,
and cases without any precipitation. Moreover, some cases
with showers were included, where no ML was detected by
eye and the desired output is “no ML”. In total, 79 intervals
of 6 h were drawn, giving a total time of 474 h. An overview
of the cases is given in Table 1. Within one interval, there
can be more than one situation. In many cases, precipitation
starts or stops; thus, the cases were classified on the basis of
the most significant characteristic (e.g., “ML above ground”
even if there was no precipitation for half the time).
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Figure 1. Determining the “true” melting layer (ML) for Hamburg on 8 March 2018 from 15:00 to 18:00 UTC. Shown are the WIDTH, RR,
ZEA’, VEL/, ZEA”, and the “true” ML. The manually determined ML heights from each variable are shown using colored lines: blue lines
represent WIDTH, orange lines represent RR, purple lines represent ZEA’, red lines represent VEL', and green lines represent ZEA” . The
resulting “true” ML is shown in panel (f) using gray shading (see text).

2.3 Neural network (NN) is calculated, and the weights are slightly adjusted to mini-
mize the error. Once the NN is trained, it is evaluated using
previously unseen data.

As input data, profiles of both ZEA and VEL proved to be
the best choice. The combination of these two variables also
produced the best results in Pfaff et al. (2014). Before using
these profiles within the NN in this study, they needed to be
prepared. First, the data were interpolated to a vertical res-
olution of 25m, and aliasing of VEL was corrected. More-

NNs are modeled on the human brain. The idea is to con-
nect individual artificial neurons and train them for a specific
task. A neuron receives input data, combines the weighted
input, and gives an output according to an activation func-
tion. The weights determine the importance of the input data,
and the activation function determines the level of activity of

the neuron. The output value is only transmitted if a thresh-
old is exceeded. In a simple NN, such as the one used here,
the neurons are arranged into an input and an output layer,
with optional hidden layers in between, and the data only
move forward through the NN. Each neuron is connected to
all neurons in the previous and following layer. The connec-
tions between the neurons have a weight, which is random
at the beginning and is adjusted during the training process
to give the desired output. The training process is performed
by providing the NN with data multiple times. Each time, the
output of the NN is compared to the desired output, an error
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over, where ZEA values fell below a threshold of —5 dBZ,
ZEA and VEL were considered to be invalid. Because the
NN is not able to process missing values, they were set to O
for VEL and to —10 for ZEA. As the NN needs the values of
the input to roughly range between zero and one, ZEA and
VEL were scaled accordingly. To use the fact that the height
of the ML shows some persistence in time, profiles of ZEA
and VEL from four previous time steps were also used as in-
put. Those four profiles were not taken from the time steps
directly before but were spaced apart by six time steps in or-
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der to be able to “see” farther into the past without having
to use all 24 profiles. To account for the fact that most MLs
in the training dataset are located roughly in the middle of
the profiles and to increase the volume of training data, the
profiles were then subdivided. From each profile, the bottom
64 heights were taken as one sub-profile. The interval of 64
heights was then shifted by one height, and these 64 heights
were taken as another sub-profile. This procedure was con-
tinued to the top 64 heights, resulting in 65 sub-profiles. This
improved the prediction of MLs at the very bottom and top
of the profiles. This whole preprocessing of the data resulted
in an input array consisting of sub-profiles of multiple time
steps of both ZEA and VEL, yielding 2 x 65 x 64 x4 = 33280
values for each measurement time step of the MRR.

The NN used here is a feed-forward NN with two hidden
layers. Each hidden layer has 64 neurons, and the learning
rate at the beginning is 0.002. The “scikit-learn” Python li-
brary (Pedregosa et al., 2011) was used to develop the NN.
Due to the large amount of training data, it was impractical
to load all of the data into memory at once; thus, the order of
the data and how often the individual datasets were used in
training was determined manually. To be able to determine
the performance of the NN during training, validation data
were used. The training procedure of the NN began with it-
erating through all 6 h intervals of the training dataset once,
successively in a random order. After each 6 h interval, the
performance of the NN was determined with the validation
data, and the mean square error (MSE) between the predic-
tion and the “true” ML was calculated. For the calculation of
the MSE, the prediction was slightly tweaked for false posi-
tive values to nudge the NN toward a conservative prediction.
After one epoch, the mean MSE was calculated, and all 6h
intervals with an MSE larger than the mean MSE were not
used for training in the following epochs. This means that
the amount of training data decreases for each epoch until
there are no more data left, denoting the end of the training.
After each epoch, the learning rate was divided by 2, and the
remaining data were again shuffled. If the mean MSE of one
epoch was worse than that of the epoch before, that epoch
was not used for training.

The validation data consisted of seven 6 h intervals, cho-
sen to represent different situations such as an ML above the
ground, an ML on the ground, a case with showers, and a
case with snow. The common method of splitting all data
randomly into training and validation data seemed imprac-
tical here, because it was important to cover many different
meteorological situations within the validation set to ensure
that the NN can handle them all well. Picking the validation
data randomly would either result in not covering different
situations or the random picking would have to be applied to
individual profiles instead of 6 h intervals. However, this was
impractical due to memory constraints and turned out to be
unnecessary.

To ensure that the NN was not overfitted to the validation
data, the rest of the measurement data, for which no “truth”
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was created, were used as test data. As the NN should han-
dle all possible situations, the performance of the NN was
assessed visually for the test data. The NN was adjusted, and
the training process was repeated until the visual inspection
showed a satisfactory result (see also Sect. 3).

The trained NN consists of a number of weights. Figure 2
visualizes these weights for the input layer. The x axis shows
the index of the input parameters, with indices 1-320 corre-
sponding to the five sets of 64 heights of attenuated equiv-
alent reflectivity and indices 321-640 corresponding to the
fall velocity inputs; the y axis represents the index of the
nodes of the second layer; and the colors denote the value
of the weight. Figure 3 highlights the weights used to calcu-
late the input for second-layer node 22 which are applied to
the fall velocity. The sine-wave-like structure functions sim-
ilarly to a gradient approximation, showing that the NN ex-
tracted the importance of the fall velocity gradient from the
training data. The maximum and minimum of this structure
correspond to heights 175 m apart, which aligns well with
the expected width of the ML. The amplitude of the weights
decreases with time, showing that the NN assigns higher im-
portance to more recent velocity values and lesser impor-
tance to values that are farther in the past. Similar structures
can be found for different second-layer nodes but at different
heights, demonstrating that the NN searches for gradients in
the fall velocity.

After the training was complete, situations occurred in
which an ML was incorrectly detected. Many of these sit-
uations had similar characteristics: they were situations with
a high ML and an incorrectly detected second ML near the
surface. Furthermore, sometimes the upper edge of valid
MRR data was wrongly taken as an ML. Therefore, a post-
processing step was included to remove the incorrect detec-
tions in these specific cases, based on fixed thresholds of the
RR and signal-to-noise ratio. In addition, MLs that lasted less
than six time steps were removed to avoid short-term clutter,
and MLs with a confidence of less than 0.2 were set to 0.
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3 Results

This section describes the performance of the fully trained
NN, starting with a straightforward case of a well-developed
continuous ML. Then, more complex cases are shown to
give an overview of the range of possible situations and to
show how the NN is able to handle these situations. Sensi-
tivity studies of vertical and temporal resolutions and com-
parisons with an ML detected by weather radars, with ra-
diosonde data, and with a cloud radar are also shown.

3.1 Performance of the NN

An example of the performance of the NN is given in Fig. 4
for a well-developed ML. In the time period shown, there is
a continuous ML at about 1900 m and rain below this level.
The output of the NN is shown in the range between zero and
one, indicating the uncertainty with which the NN detects the
ML. Values close to one indicate a high confidence in the ex-
istence of an ML. The ML detected by the NN is fairly broad.
This is due to the training data, in which the ML starts at the
top with completely frozen particles and ends only when all
particles are liquid. This means that the NN will also give
broad MLs. The NN could also have been trained with one
ML height, such as the middle of the ML height; this is a
design choice. The thickness of the ML is influenced by the
precipitation intensity in the training data, and the ML thick-
ness detected by the NN in the test data is also influenced by
the precipitation intensity. This behavior has previously been
observed in studies such as Klaassen (1988).

Although the performance of the NN in the situation
shown in Fig. 4 is obviously good, the NN needs to be val-
idated for many different situations if it is to be used oper-
ationally. However, calculating a metric to quantify the er-
ror is difficult, as common metrics such as the mean square
error or probability of detection all need to know the ex-
pected outcome. Section 2.2 describes the procedure with
which “true” data were generated, which were needed for
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Figure 4. ZEA, VEL, and ML detected by the NN for Hohenpeifen-
berg on 13 June 2018 from 00:00 to 03:00 UTC.

training the NN. We wanted to use as much data as possible
for the training process, because the performance of the NN
depends on the amount of training data. Therefore, most of
the data for which a “truth” was generated were used to train
the NN, and the rest of the “true” data were used for vali-
dation. During training of the NN, it was constantly tested
against a validation dataset and the mean square error was
calculated (see Sect. 2.3), which determined when the train-
ing was complete. For testing the NN, no “true” data were
used, as the creation of “true” data is time-consuming and
only possible for situations where the eye can easily iden-
tify an ML. Moreover, we wanted the NN to be conservative,
meaning that a false negative is considered less severe than a
false positive. Therefore, during the development of the NN,
its performance was visually inspected and a low MSE was
not automatically considered to be a good result. The final
evaluation of the NN was conducted by plotting the output
of the NN as well as the time series of the profiles of ZEA,
VEL, and other variables. All of the available 261 d of data
were then visually inspected and evaluated. In the following,
a few cases are shown that are exemplary of the performance
of the NN under different weather conditions.

Figure 5 shows a case without an ML. The temperature
on the ground is below 0°C, and the precipitation is snow
throughout the measurement range. ZEA has no maximum,
and VEL shows no acceleration. The NN correctly detects
the absence of an ML.
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Figure 5. Same as Fig. 4 but for Hohenpeifienberg on 18 November
2018 from 18:00 to 21:00 UTC.

Figure 6 shows a case where the ML lifts from the ground.
Surface observations measured a temperature (at a height
of 2m) of around 1.5°C at 00:00 UTC, increasing to about
3.5°C at 03:00UTC, and the precipitation at the surface
turned from sleet to rain. In the beginning, the snow had
started to melt, but the melting process had not finished
above ground. With increasing temperature, the melting be-
gan higher up and was complete before the precipitation hit
the ground.

Figure 7 shows a convective case with showers. In these
situations, the ML is not continuous in space and time as it
is in a case with a homogeneous cloud layer and stratiform
rain. During these short rain events, the measured profiles
of vertical velocity and reflectivity are distorted because the
falling rain is skewed; thus, the NN is not given profiles in
which the melting is fully contained. The detection of an ML
by eye is consequently difficult or even impossible in such
cases; accordingly, the NN has difficulties dealing with these
situations. During the training process, the NN was tuned to
detect as little as possible in the abovementioned situations,
but it was not possible to train the NN not to detect anything
without impeding its abilities in other cases. Therefore, the
NN has the most problems with convective cases.

In our dataset we found two cases where two concurrent
MLs were clearly visible, one of which is shown in Fig. 8.
At Greifswald at 12:00 UTC, the radiosonde measured two
layers with temperatures above freezing, one freezing layer
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Figure 9. Radiosonde from Greifswald on 31 March 2018 at
12:00 UTC.

in between, and freezing temperatures above (Fig. 9). The
two MLs in the radar data are visible to the eye, especially in
the reflectivity data. The time difference in the occurrence of
the two ML in the radiosonde and radar data can be sourced
to the different locations, which are about 100 km apart. The
NN also observes the two MLs, despite the fact that there
were no such cases in the training dataset. This is a sign that
the NN is able to generalize.
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3.2 Sensitivity studies

For the NN to work operationally, it must be ensured that
it can handle various MRR operation parameter settings.
Therefore, four 6 h intervals with precipitation from an MRR
located in Elmshorn with a vertical resolution of 50 m and
ten 6 h intervals with a resolution of 100 m were tested. As
all data are first interpolated to a resolution of 25 m and the
NN expects 128 height levels, no ML can be detected above
3200 m. Because the ML heights in the data from Elmshorn
are below this height, the NN was able to detect the ML well,
proving that it can handle data with various vertical resolu-
tions up to 100 m. For even coarser vertical resolutions, the
NN might have trouble detecting an ML, as the resolution
might then be of the same order as or even larger than the
vertical extent of the ML.

The sensitivity of the NN to the temporal resolution of the
data was also tested. The NN was trained with a temporal
resolution of 10s and with profiles of five different times
that were each 1 min apart from the next profile. As the NN
should work for different MRR operational settings, it should
also give good results when an MRR is operated with a larger
averaging interval. Therefore, part of the test dataset (20 d)
was averaged over 30 s and 1 min, respectively, and the NN
was again given five profiles that were each 1 min apart from
the next. The output of the NN was then visually inspected.
Only averages up to 1 min were tested because MRRs are
seldom operated with longer averaging intervals. The differ-
ence between the various averaging intervals are small (not
shown). In general, for a longer temporal average, the de-
tected ML gets smoother. In some cases, the NN with a larger
averaging interval incorrectly detects an ML with a low prob-
ability for short periods of time (“clutter”). Moreover, the
edges of the ML are less clearly defined, which is manifested
by slightly larger tails with a low probability of an ML being
detected. However, in some cases there are small gaps in the
detected ML for the short averaging interval of 10s where
the ML is detected in some time steps but not in others. This
results in small fragments of a correctly detected ML which
might, in addition, be filtered out by the criterion that MLs
lasting less than six time steps are removed. For larger av-
eraging intervals, these gaps are sometimes filled due to the
smoothing of the data. The described differences only ap-
pear in cases where the detection of an ML is somewhat dif-
ficult due to factors such as showers, whereas differences be-
tween the different temporal averages are hardly discernible
for most cases. Therefore, we conclude that the NN is able
to handle different temporal resolutions of MRR data up to a
resolution of 1 min.

3.3 Comparison to C-band radar
The ML height detected by the NN was compared to the

ML height detected by C-band radars deployed by the Ger-
man Weather Service (DWD). The DWD is in the process
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of developing an ML detection algorithm for the opera-
tional weather radars in Germany, which is supported by the
COSMO-D2 numerical model. For the two MRR instrument
locations where most of the data used in this study were col-
lected, the ML was compared to the ML detected by the sur-
rounding C-band radars. For the MRR at Hamburg airport,
the surrounding weather radars are located at Boostedt, Ro-
stock, and Hannover. For Hohenpeilenberg, they are located
at Tiirkheim, Isen, and Memmingen. Data are available un-
til June 2018. For 35 (18) of the 90 (84)d during which the
MRR detected precipitation in Hamburg (Hohenpeiflenberg),
at least one weather radar in the vicinity of the MRR detected
an ML at the location of an MRR. Many cases were detected
by the MRR but not by the weather radars. This is primarily
due to the fact that the weather radars are too far away from
the MRR.

Figure 10 shows an example of the MRR data with the ML
detected by the algorithm using weather radars and model
data overlain as dots on the output of the NN. The C-band
radars do a volumetric scan every 5 min; therefore, the tem-
poral resolution of the detected ML is much coarser than that
of the MRR. In the case shown, the different weather radars
disagree on the exact height of the ML, possibly because the
weather radars measure with a low elevation angle and are lo-
cated between 40 and 90 km away from the MRR; therefore,
the vertical resolution of the C-band radar over the MRR is
around 700 m for the closest radar and around 1500 m for
the farthest radar. Furthermore, the coarser spatial resolution
could explain the differences from the MRR, as the scanned
volume might be different. The MRR seems to be much bet-
ter suited to detecting the ML height at one location; thus, the
information from the MRR might aid the detection algorithm
of the weather radars.

3.4 Comparison of the ML height to radiosondes

The ability of the NN to determine the ML height has mostly
been assessed by visual comparison with the other data mea-
sured by the MRR (see Sect. 3.1). As explained in Sect. 2.2, it
is difficult to find other sources of the ML height with which
a meaningful comparison can be made. At Hohenpeilenberg,
radiosondes are launched about twice a week to measure
ozone. These radiosondes also measure temperature; thus, a
comparison can be made between the height of the freezing
level of the radiosonde and the top height of the ML detected
by the NN, as the frozen particles should start to melt at the
0°C temperature level. Such a comparison has limitations,
because precipitation must be detected by the MRR within a
short time period of the radiosonde launch time. Moreover,
the weather conditions must be fairly constant so that a sud-
den change in ML height is unlikely and it can be assumed
that the ML height detected by the MRR can be compared
to the 0 °C height of the radiosonde. When sorting through
the available radiosonde data, cases were rejected when it
was clear from MRR data that the precipitation and, there-
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Figure 10. ZEA, VEL, and ML detected by the NN for Hohen-
peiBBenberg on 10 August 2017 from 15:00 to 18:00 UTC. The
dashed lines indicate the top and bottom of the ML heights de-
tected by three weather radars: green represents Isen, blue repre-
sents Memmingen, and pink represents Tiirkheim.

fore, the ML height might be changing too quickly or the
duration of the precipitation was less than 2 min. From all
available data from Hohenpeilenberg, 18 cases were found
for which a fairly reasonable comparison can be made. Fig-
ure 11 shows a comparison between the freezing level of the
radiosonde and the top height of the ML determined by the
NN. As the time difference between the detected ML by the
NN and the measurement of the radiosonde is up to about 5 h
and the radiosonde drifts horizontally as it rises, the value
of this comparison is limited. Nevertheless, there is a good
overall agreement between the radiosondes and the NN al-
most independent of the time difference between the ML
measured by the NN and the radiosonde. The largest differ-
ence between the ML top and freezing level is about 320 m
for a case where the time difference between both measure-
ments is about 3.5 h. In four cases, the radiosonde measured
negative temperatures at the surface and the NN correctly de-
tected no ML (blue circles at height Om in Fig. 11).

3.5 Comparison of the ML height to the cloud radar

For 4 additional days in December 2018 and January 2019, a
comparison between the ML detected by the NN and a cloud
radar (MIRA-35 by METEK, 30m vertical resolution) was
made. The cloud radar determines an ML height to iden-
tify plankton. The ML is determined from the linear depo-
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larization ratio (LDR) in the vicinity of the ML taken from
a database (METAR-data, radio soundings, or model data).
Figure 12 shows an example of this comparison. The back-
ground shows ZEA measured by the MRR for reference. The
gray area denotes the ML detected by the NN, and the blue
line is the ML detected by the cloud radar. The ML from
the NN is fairly broad and encompasses the maximum of the
reflectivity, as described in the previous sections. The ML
from the cloud radar mostly follows the bottom boundary of
the ML detected by the NN. This is caused by the way that
the ML is determined by the cloud radar. The LDR is sensi-
tive where the particles are already mostly melted, whereas
the NN considers the whole process of melting. Consider-
ing these differences in the purpose and determination of the
ML, the agreement between both instruments is very good.

4 Discussion and conclusion

We have developed an NN to detect the ML from MRR data
operationally. The available data encompass measurements
from all seasons and from two MRRs at two locations in Ger-
many: an isolated mountain in the very south of Germany and
a location on the North German Plain. Using this dataset, the
NN was tested extensively.

Overall, the NN was able to detect the correct ML height
well. Some weather conditions were more difficult for the
NN to handle than other situations. Cases where an ML was
located well above the ground and was fairly continuous
in time and space were the easiest situations, and the NN
handled them best. The most frequent situations in which
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the NN was not able to capture the ML height well were
those with discontinuous precipitation associated with con-
vection. In these cases, the human eye could also hardly de-
tect the ML height in the measurement data. These situations
are more frequent in summer due to stronger and more fre-
quent convection in this season. Moreover, in some situations
with snowfall, the NN detected clutter near the ground (in-
correctly detected MLs with a low probability and a small
vertical and temporal extent), which is not covered by the
suppression of clutter in the post-processing. More uncom-
mon situations where the NN was sometimes unable to cor-
rectly detect an ML were situations when (i) there was strong
horizontal wind, (ii) the signal directly below the ML was
weak, (iii) there were disturbances in the signal, or (iv) the
dealiasing of the fall velocity failed. Horizontal wind leads
to slanted structures of precipitation, which violates the as-
sumption of the NN that an ML can be derived from charac-
teristics within one vertical profile. Although aliasing of the
fall velocity is corrected, this algorithm is not able to han-
dle rare situations where the fall velocity is shifted by large
amounts due to strong convection.

To ensure that the NN is able to handle different averaging
intervals of the input data and different settings of the vertical
resolution of the MRR, sensitivity studies were carried out.
These tests showed that the NN is able to handle temporal
averaging up to 1 min and different vertical resolutions of up
to 100 m. Furthermore, a comparison to radiosonde data was
made at Hohenpeilenberg where one MRR was located and
radiosondes were launched. Although there were only a few
simultaneous ML observations, the agreement with respect
to the ML height was very good. In addition, the detected
ML is consistent with measurements from a cloud radar.

The NN presented here was designed to be used opera-
tionally and to handle different weather conditions and MRR
settings. Some decisions were made during development
concerning the design of the NN and the desired output.
One such choice was the broad width of the detected ML,
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encompassing the whole process of melting. While tuning
the NN, a balance was sought between too many false pos-
itive detections and too many false negative detections. For
some applications, few false positives might be more bene-
ficial, whereas few false negatives might be more important
for other applications. The decisions made for this NN were
aimed to ensure validity over a broad range of applications.

This study showed that an NN approach is well suited for
detecting the pattern of the ML from radar data. Although
we used the MRR, in principle this approach can be used
by other types of radars as well. In contrast to deterministic
methods (e.g., Fabry and Zawadzki, 1995; White et al., 2002;
Cha et al., 2009; Perry et al., 2017), the NN is able to detect
uncommon MLs such as MLs on the ground or two MLs at
once, and it does not need to be given thresholds or the shape
of a profile with an ML in advance. A disadvantage of this
method is that an NN lacks a physical basis and is, thus, not
suited to study the physics within the ML. In principle, the
time resolution of our approach can be as high as the time
resolution of the measuring radar, allowing the possibility to
detect fast changes in the ML height, which can be important
for applications such as those at airports. Post-processing can
include time-averaging and filtering of short ML occurrences
if a false positive detection is deemed worse than a false neg-
ative detection.

Future work could include using data from other climatic
regions. Also, the preparation of the data, such as the dealias-
ing of the fall velocity, or the post-processing of the NN
could be improved. The chosen algorithms for data prepa-
ration and post-processing are designed to be fast enough
for real-time use within an MRR; therefore, their complex-
ity was limited. Extending these algorithms might improve
the performance of the NN.

Possible applications for the NN presented are, for exam-
ple, airports, where reliable ML data could add important in-
formation to help detect the danger of icing. Local data can
also be used as supporting information to improve the quality
of spatial ML data as provided by weather radars or numeri-
cal models.
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