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Abstract. The observation of the nocturnal boundary layer
height (NBLH) plays an important role in air pollution and
monitoring. Through 39 d of heavy pollution observation ex-
periments in Beijing (China), as well as an exhaustive evalu-
ation of the gradient, wavelet covariance transform, and cu-
bic root gradient methods, a novel algorithm based on the
cluster analysis of the gradient method (CA-GM) of lidar
signals is developed to capture the multilayer structure and
achieve night-time stability. The CA-GM highlights its per-
formance compared with radiosonde data, and the best cor-
relation (0.85), weakest root-mean-square error (203 m), and
an improved 25 % correlation coefficient are achieved via
the GM. Compared with the 39 d experiments using other
algorithms, reasonable parameter selection can help in dis-
tinguishing between layers with different properties, such as
the cloud layer, elevated aerosol layers, and random noise.
Consequently, the CA-GM can automatically address the un-
certainty with multiple structures and obtain a stable NBLH
with a high temporal resolution, which is expected to con-
tribute to air pollution monitoring and climatology, as well
as model verification.

1 Introduction

Air pollution has an important impact on human health, cli-
matic patterns, and the ecological environment (Shi et al.,
2019; Su et al., 2020a; Wang et al., 2020). The primary
anthropogenic emission source is particulate matter (PM),
which is the major source of severe haze in Beijing (Lv et al.,
2020; Ma et al., 2019). Many passive and active remote sens-
ing instruments have been combined to observe aerosol opti-
cal and microphysical properties (Ji et al., 2018b; Wang et al.,

2019), the relationships between PM and meteorology (Li
et al., 2019; Zhang et al., 2015), and aerosol–atmospheric
boundary layer height (ABLH) interactions (Dong et al.,
2017; Su et al., 2020b). With the development in star and
moon photometry, continuous day-to-night detection has im-
proved the estimation of column-integrated aerosol proper-
ties at night. (Benavent-Oltra et al., 2019; Pérez-Ramírez
et al., 2008). Nevertheless, there are a few experiments are
observed in the nocturnal boundary layer (NBL). The com-
plexity of weak wind forces, significant stratification, and in-
termittent turbulence (Stull, 1988; Weil, 2011) results in the
continuous accumulation of fine particles near the surface.
The turbulent mixing process is accompanied with a strong
physiochemical effect, which favours the formation of new
particles and worsens the pollution (Hao et al., 2018; Wang
et al., 2018). Therefore, accurately acquiring the nocturnal
boundary layer height (NBLH) during a polluted episode, es-
pecially at night, is of great significance toward combatting
air pollution.

Multiple approaches have been developed to determine the
ABLH based on various observations, including radio sound-
ing, remote sensing, and parameterization from laboratory
experiments (Li et al., 2017b; McGrath-Spangler and Den-
ning, 2012; Nakoudi et al., 2019; Su et al., 2020a). The li-
dar uses an aerosol as a tracer for mixing processes with
high space and temporal resolutions (Kumar, 2006; Leven-
tidou et al., 2013; Yuval et al., 2020). The stable condition
shows greater agreement between lidar and radiosonde than
the unstable condition because of the complex aerosol struc-
ture that complicates NBLH retrieval (Emeis and Schäfer,
2006; Martucci et al., 2007; Sawyer and Li, 2013). At night,
the NBLH, as determined by elastic lidar, is either the top of
the residual layer or the top of the mechanically driven sur-
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face mixing layer (Dang et al., 2019a; Yuval et al., 2020).
In the absence of external forces, aerosols in the atmosphere
become stratified, resulting in single or multiple layers (ele-
vated or advent aerosols), depending on the location and type
of the atmospheric aerosols (Dudeja, 2019; Martucci et al.,
2007). A more complex vertical backscatter signal profile can
also be formed under specific environmental conditions, such
as cloud contamination and local signal noise effect (Dang
et al., 2019a; Stull, 1988).

The classical methodologies of lidar-retrieved algorithms
are difficult to employ in the identification of multilayer
structures in cases of night-time pollution. Gradient-based
methods, such as the first-order gradient method (GM) (Hay-
den et al., 1997), inflexion point method (Menut et al., 1999),
logarithm gradient method (Toledo et al., 2017), and cubic-
root gradient method (CRGM) (Yang et al., 2017), are sensi-
tive to noisy data unless signal averaging is performed to pre-
vent the loss of some useful instantaneous information. The
threshold method is too subjective to set a universal threshold
for different weather and terrain (Frioud et al., 2003), while
the variance method (Hooper and Eloranta, 1986) is easily af-
fected by lofted aerosol layers and reduces the temporal res-
olution by calculating the variance profile. The Haar wavelet
covariance transform (WCT) (Davis et al., 2000) and the
idealized backscatter (Steyn et al., 1999) methods are more
robust to noise; however, they can still be affected by low-
level clouds and lofted aerosol layers (Caicedo et al., 2017).
Some graph theory methods, such as the extended Kalman
filter (Banks et al., 2014), Pathfinder and PathfinderTURB
(de Bruine et al., 2017; Poltera et al., 2017), k-means clus-
tering (Liu et al., 2018; Toledo et al., 2014), and the STRAT-
2D algorithm (Haeffelin et al., 2012) have been proposed to
yield promising results via an automated method that reduces
the incorrect detection of ABLH. However, these techniques
strongly depend on the vertical distribution of particle layers
(aerosols and clouds) and are prone to increase the uncer-
tainty under complicated multilayer conditions.

The retrieval of ABLH under cloudy conditions is quite
challenging. Some researchers have used the threshold of the
attenuated scattering ratio (Campbell et al., 2008; Winker
and Vaughan, 1994), the ratio of peaks to the base of the
range-corrected signal (RCS) (Wang and Sassen, 2001) to
locate cloud tops and bases, while others have employed the
objective upper limit of the convective condensation level
(CCL) (Li et al., 2017a) and analysed the signal continuity to
classify whether the cloud caps within the ABL (Dang et al.,
2019b). The height restriction has significant advantages in
removing the influence of clouds. Elevated aerosol layers
(EALs) are characteristically similar to the aerosol trapped in
ABL, using the threshold of lidar backscatter coefficient can
distinguish them (Dubovik et al., 2002; Hänel et al., 2012;
Peng et al., 2017). More instrument and multi-wavelength
lidar systems are combined to obtain more accurate results
identify the EALs (Liu et al., 2019; Ortega et al., 2016).

Digressing from these previous efforts to estimate the
ABLH, we herein present a new approach – cluster analysis
of the gradient method (CA-GM) – to overcome the multi-
layer structure and remove the noise fluctuation of NBLH
with raw data resolution. This study proposes a reason-
able parameter to reduce the interference of the cloud layer,
EALs, and local noise over the air pollution in megacity re-
gions. The results were evaluated by comparison with the
nearby radiosonde site, and they were confirmed through
continuous observation via traditional methods in different
atmospheric layers.

2 Instruments and datasets

2.1 PM2.5 data and radiosonde

Beijing, located in the North China Plain, experienced severe
intermittent haze pollution from December 2016 to Decem-
ber 2017. The 39 d lidar and radiosonde data were recorded
during that period, and the average concentrations of PM2.5
reached 140 µgm−3. The dataset for lidar, average PM, and
air quality index are provided in Sect. S1 in the Supplement.
In situ PM2.5 daily measurements in China are primarily ob-
tained from the official website of the China National En-
vironmental Monitoring Centre (CEMC; http://www.cnemc.
cn/, last access: 26 November 2020). The radiosonde data are
released daily from Nanjiao Station (39.80◦ N, 116.47◦ E),
which is located southeast of the Beijing Institute of Tech-
nology lidar (BIT-lidar) system (39.95◦ N, 116.32◦ E). The
L-band radiosonde provided a high-resolution profile of tem-
perature, pressure, relative humidity, wind speed, and direc-
tion twice a day at 08:00 and 20:00 LST (local standard time)
(Guo et al., 2016). The sample temporal resolution is 1.2 s
(Zhang et al., 2018), and the vertical resolution is less than
20 m. Previous studies (Hennemuth and Lammert, 2006; Sei-
del et al., 2012) have adopted the radiosonde as a reference
for detecting ABLHs for daily and annual changes in lidar
measurements. We resampled the radiosonde data using lin-
ear interpolation to achieve the same vertical resolution of li-
dar and compared it to the 1 h average NBLH centred around
the radiosonde launch times. As a result of the complexity
of the transition during the morning and early at night, the
boundary layer is in a transition between stable and unstable
conditions. To determine NBLH from the radiosonde vertical
profiles of temperature and humidity, the elevated tempera-
ture inversion layer or the height of a significant reduction in
moisture is used (Peng et al., 2017). The potential tempera-
ture gradient (PTG) should have a good correlation with the
relative humidity gradient (RHG), with an allowable error of
100 m (Wang and Wang, 2016). In this study, if the difference
between the PTG and RHG is in excess of 100 m, the PTG
is considered first, whereas if there is no significant temper-
ature change or the evident changes belong to the cloud or
EALs, the result of RHG is referred to as the NBLH.
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Table 1. Key parameters of the BIT-lidar.

Parameter BIT-lidar

Laser Nd:YAG
Pulse energy 180 mJ
Repetition 20 Hz
Wavelength 532 nm
Telescope Newtonian
Telescope diameter 0.4 m
Mode coaxial
Temporal resolution 50 s
Vertical resolution 2.5 m

2.2 BIT-lidar system

A single-wavelength Raman–Mie lidar is operated on the
campus of the Beijing Institute of Technology, providing
aerosol, cloud, ABLH, and temperature measurements. This
lidar system has been continuously enhanced to capture
aerosol loading (Chen et al., 2014; Ji et al., 2018a). The
standardized RCS is subjected to the correlation lidar factor
correction (correction of electronic noise error, background
noise error, and overlap factor) and distance correction. The
backscatter coefficient can be calculated using the Fernald
method (Fernald, 1984), and the assumed lidar ratio is 70 sr
(Rosati et al., 2016) owing to the polluted continental aerosol
particles. The detailed parameters of the BIT-lidar are listed
in Table 1.

3 Rationale and implementation of the novel algorithm

3.1 Weighted k-means clustering

The NBL shows more complex internal structure at night, the
particulate can be used as an important indicator of atmo-
spheric layering because its vertical distribution is strongly
affected by the thermal and dynamic structure of the atmo-
sphere (Neff and Coulter, 1986). The assumption of the NBL
at which the aerosol concentration and turbulence intensity
are significantly higher in the NBL top than in the free at-
mosphere (FA) (Dang et al., 2019a; Wang et al., 2020). Ow-
ing to the influence of the multilayer structure, the minima
of RCS gradients are the potential locations of the NBL top.
The assembly of these distinguishing peaks with height over
time into groups can be considered space- and time-averaged
aerosol concentrations. Therefore, it can solve the inadver-
tent jump between different atmospheric layers. A theoreti-
cal schematic of the k-means clustering principle is shown
in Fig. 1. To form clusters, the Euclidean distance dis(xi,xj )
between two given signal points xi and xj , with coordinates
(GMi , hi) and (GMj ,hj ), is defined according to Eq. (1) as
follows:

dis(xi,xj )=
[(

GMi −GMj

)2
+
(
hi −hj

)2]1/2
, (1)

Figure 1. Theoretical schematic of the k-means clustering. The Eu-
clidean distance dis(xi ,xj ) between two given signal points xi and
xj , with coordinates (GMi , hi ) and (GMj , hj ), in the cluster Ci and
cluster Cj.

where GMi (GMj ) is the value of the RCS gradient and hi
(hj ) is the height of the peak.

Subsequently, we apply the k-means clustering algorithm
to classify the datasets with the notable peaks. The cluster
number is preset, and the k-means method builds clusters
iteratively by moving the centroid until the target function
sum of squared errors (SSE) approaches the local minimum
(Toledo et al., 2014). The SSE is calculated using Eq. (2) as
follows:

SSE=
k∑
i=1

∑
x∈Ci

dis(ci,x)2, (2)

where k is the number of clusters and ci and x represent
the cluster centroid and all observations in the cluster Ci,
respectively. To obtain accurate data for compact and well-
separated clusters, the criteria for cluster validation are nec-
essary. The Davies–Bouldin index is employed for the cluster
validation analysis and defined as follows:

DB=
1
k

k∑
i 6=j

max
[
Sk(ci)+ Sk(cj )

S(ci,cj )

]
, (3)

where Sk is the averaged intra-distance between the obser-
vations and their cluster centroid and S(cicj ) is the distance
between cluster centroids ci and cj . The minimum DB index
is considered an optimal cluster classification.

The standard k-means algorithm must be normalized in
cases where the variable is rather different, and data normal-
ization is based on min–max normalization (Virmani et al.,
2015). The normalized k-means clustering is “isotropic” in
all directions of space, and it tends to capture a spherical
shape. Nevertheless, herein we propose putting weight on
height and excluding variances that are greater in height.
Therefore, the assembling groups of the distribution tend to
be separated along variables with greater variances, which is
conducive toward setting the upper and lower limiter altitude
to classify different atmospheric layers vertically (Fig. 2b).
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Figure 2. The theoretical schematic of the weighted k-means clustering. (a) The real profile of a lidar RCS (light grey line) and the hour-
averaged RCS (black line). (b) The gradient of RCS (light grey line), the hour-averaged gradient RCS (black line), and the three minima in
the profile (yellow points). (c) The distribution of the gradient minima within an hour.(d, e) The results obtained by standard k-means and
weighted k-means clustering, where two clusters are differentiated, as shown by hollow and solid red and blue points, respectively.

The weighted G is calculated by the difference between the
maximum altitude hmax and the minimum altitude, hmin, as
shown in Eq. (4), while the weighted height hw is rescaled
by the normalized height data hnor, as presented in Eq. (5) as
follows:

G= hmax−hmin, (4)
hw =G ·hnor. (5)

3.2 Multilayer classification

Because of the presence of the strong gradient signature of
the backscatter profile, a dataset of three minima of RCS gra-
dient within an hour works as the dataset of k-means classi-
fication (Fig. 2e). The three minima are calculated by a win-
dow of 25 m, and selected in orders. The cloud layer (CL)
has a larger gradient magnitude of extinction and backscat-
tering coefficient than the aerosol layers (Palm et al., 2012).
Additionally, the typical nocturnal clouds are shallow cu-
mulus, stratocumulus, and stratus (Kotthaus and Grimmond,
2018). They have shallow vertical dimensions and are denser
than aerosols at the same altitude; hence, they can be dis-
tinguished from the aerosol layer (Wang and Sassen, 2001).
Meanwhile, the accuracy of the NBLH from GM can be
affected by background and electronic noise: it has a non-
regular distribution and appears at higher altitudes with lower
signal-to-noise ratios. The noise layer lacks a stratified struc-
ture but has a GM value similar to that of the lower height.
Thus, we calculated the range of vertical extension of dif-
ferent layers, indicating the cluster significance of the noise

and other layers. As for the EALs, their presence above
the NBL represents a difficulty when retrieving the upper
height of the NBL, particularly when the EALs are close
to it. Both aerosol layers have a similar characteristic of
gradient variance and range of height, which we discover
by seeking the empirical threshold value of the EALs in
the backscatter coefficient (Hänel et al., 2012). The typical
backscatter threshold for a 532 nm wavelength lidar is de-
fined as βth= 1.786× 10−3 km−1 sr−1, which is calculated
using the Ångstöm parameter as 1.2 under urban-industrial
and mixed conditions (Dubovik et al., 2002). The gaps be-
tween NBL and EALs in the multilayer structure are deter-
mined by Dth= 100 m (Peng et al., 2017).

3.3 Implementation of the CA-GM algorithm

The CA-GM method, which is based on the k-means cluster-
ing analysis of different types of atmospheric layers, is gen-
erally used to retrieve multiple layers in polluted cases. The
specific ideas are shown in the flowchart in Fig. 3, and the
specific steps are as follows (detailed results are presented as
a case study).

The algorithm is divided into three parts: pre-processing,
layer attribution classification, and NBL inspection. The CA-
GM algorithm is implemented if the data collection exceeds
30 min within an hour period. First, the standardized lidar
RCS is applied to a Savitzky–Golay filter for preliminary
de-noising. The profile of the backscatter coefficient (β) is
calculated, and the reference height (href) is limited by the
Fernald method as the theoretical height limiter (Comerón
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Figure 3. Flowchart of the retrieval method for the CA-GM. hCi(hCj) is the height of centroid of cluster Ci(Cj). Dinter is the inter-cluster
distance between minimum hCi and maximum hCj. RhCi is the intra-cluster range from the minimum hCi and maximum hCi.SCi(SCj) is the
SD of the GM in the cluster Ci(Cj). Vi(Vj) is the vertical uniformity calculated by RCi/NCi(RCj/NCj), the NCi(NCj) is the amount of peak
in the group Ci(Cj). βth is the typical backscatter aerosol layer (1.786× 10−3 km−1 sr−1). Dth is the threshold of distance to define a gap
between multiple aerosol layers (100 m). Dsig is the empirical threshold, set as 50 m. C is the empirical value, set as 1.5. hnbl is the final
location of the nocturnal boundary layer height.

et al., 2017; Ji et al., 2017). Notably, G∗ is a dataset of three
gradient minima of the RCS. The cluster is preset as a pair,
and k-means clustering is carried out once to seek the min-
imum DB index as the optimal grouping, Ci and Cj. Sec-
ond, there is a parameter Dinter that is defined as the min-
imum inter-cluster distance, which can measure the cluster-
stratified significance to classify the cloud and noise mixed in
G∗. IfDinter exceeds the thresholdDsig, it can distinguish the
noise from other layers. Dsig is the empirical value to distin-
guish noise layer for verified stratification. Furthermore, SCi
and SCj are a quality control function for noise layer attribu-
tion. For the cloud layer, the vertical extension RhCi (RhCj )
of the cloud is lower than the aerosol layers; therefore, we
define an empirical constant C for this study. In addition, the
vertical uniformity parameter Vi(Vj) works as a quality con-
trol tool for the features of the cloud and other layers. If a
cloud layer or noise exists, the original G∗ is removed from
the upper limiter as hcloud or hnoise, respectively. After the
elimination of cloud and noise interference, the EALs can be

determined from the typical aerosol layer, βth, and the gap
distance, Dth. Finally, the new dataset, G∗, which has been
removed from the different attributed layer, goes to the final
step with the cluster as Ci and Cj (or Ci′ and Cj′). Owing to
the assumption of NBL distribution, the largest deviation of
cluster indicates the location of the NBLH (hnbl).

In summary, by k-means clustering analysis of the
vertical–temporal gradient of the GM once or twice within
an hour, the multilayer NBL structure can be separated ac-
cording to the physical characteristics of its different layers.
The CA-GM method is an objective and robust method for
judging the attribution of different layers (NBL, EALs, and
CL) and noise.
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Table 2. Statistical parameters of the lidar-retrieved algorithm compared with radiosonde measurement. Mean bias (MB), correlation coeffi-
cient (R), root-mean-square deviation (RMSE), and the percent of relative absolute bias difference (PRD) are shown below.

NBLH-retrieved method Mean bias (m) R RMSE (m) PRD (%)

Gradient method (GM) 162 0.68 292 30
Wavelet covariance transform transition method (WCT) −13 0.80 241 21
Cubic root gradient method (CRGM) 186 0.73 277 32
Cluster analysis with gradient method (CA-GM) 28 0.85 203 17

Figure 4. Comparison between the radiosonde-determined and lidar-retrieved NBLH measurements via the gradient method (GM, red circle),
wavelet covariance transform transition method (WCT, blue triangle), cubic root gradient method (CRGM, orange star), and cluster analysis
of gradient method (CA-GM, black circle). The correlation coefficient is represented by R. The solid black line is the 1 : 1 line.

4 Evaluation and comparative analysis with classical
methods

4.1 Evaluation with radiosonde data

The L-band radiosonde provided accurate thermodynamic
profiles, and the radiosonde-determined NBLHs were used
to evaluate the accuracy of the lidar-retrieved NBLHs. Com-
pared with the two-moment radiosonde with the other three
algorithm, it was found that the correlation coefficients (R)
ranged from 0.68 to 0.85. The CA-GM had the highest con-
sistency among the classical methods, with the highest corre-
lation coefficient (0.85), the weakest root-mean-square error
(RMSE) (203 m), the smaller mean bias (28 m), and the min-
imum mean relative absolute difference (PRD) (17 %) (Ta-
ble 2).

The NBLH retrieved by GM and CA-GM (Fig. 4) had a
good correlation with the radiosonde approach, and the latter
method enhanced the correlation coefficient by 25 %. With
the implementation of CA-GM, the data were concentrated,
and the RMSE was reduced from 292 to 203 m (Table 2). The
means bias of GM is greater than that of the CA-GM, corre-
sponding to the decrease in PRD from GM to CA-GM. Ad-
ditionally, compared with the WCT and CRGM, the former
underestimated the NBLH by approximately 13 m, whereas

the latter overestimated the altitude by 186 m. The RMSE of
CA-GM is less than that of WCT and CRGM, which is simi-
lar to the PRD result. Therefore, the CA-GM showed a good
correlation with the radiosonde method, and evinced the least
fluctuation and highest consistency in NBLH retrieval.

4.2 Comparison with other classical methods

To enrich our analysis, a comparison of CA-GM with GM,
WCT, and CRGM in the 39 d night-time period was applied
to compensate for the rare temporal resolution of the ra-
diosonde approach. The results are shown in Fig. 5.

Valid CA-GM data were implemented for a total of 256 h,
and the data were analysed for comparison with other re-
trieval algorithms. Under conditions without the interference
of multiple layers, the CA-GM had a good correlation of
0.90, 0.70, and 0.82 for GM, WCT, and CRGM, respectively,
and the RMSE was the lowest compared to other situations.
Consequently, the CA-GM was more similar to the other
three methods in cases without a multilayer structure, which
proved the feasibility of the CA-GM relative to the classical
boundary layer retrieval methods.

Moreover, the extensive results showed that the WCT
method was more accurate than the GM during the night
(Caicedo et al., 2017), and it was less affected by the low
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Figure 5. Correlation coefficient and RMSE results compared with
the CA-GM method under all conditions (see text for details) using
the gradient method (GM), wavelet covariance transform transition
method (WCT), and cubic root gradient method (CRGM). The sam-
ple number is shown at the top of the column, and the condition is
represented by the x axis.

signal-to-noise ratio condition (Brooks, 2003). The dilation
and threshold of the WCT method were selected carefully in
this study (Mao et al., 2013); thus, the performance of the
WCT could ensure the identification of the noise and most
of the cloud layers. Notably, compared with the consistency
for the WCT to the CA-GM, the improvement of the correla-
tion coefficient from 0.70 to 0.84 in cloud contamination and
from 0.70 to 0.72 in noise effect was observed, which proves
its ability to remove the attributed layers. Although the fluc-
tuations in noise and cloud layers were relatively large, the
CA-GM exhibited an outstanding ability for cloud removal
to eliminate noise. As for EALs, because of their ambiguous
cluster, as well as the NBL, all the methods had poor corre-
lation coefficients with the CA-GM. Observing EALs is the
most challenging part in multilayer structures; hence, more
active remote sensing instruments (such as multi-wavelength
lidar and polarized lidar), as well as additional methods, are
required to determine the accurate layout of EALs.

Table 3 presents the criterion parameters in the CA-
GM. The cluster-significant parameter Dinter for noise
was 20.75± 14.62 m, which was significantly lower com-
pared to other conditions. The typical altitude of NBL,
EALs, cloud, and noise in severe haze pollution is
590.49± 202.84, 1024.69± 166.36, 1252.52± 303.28, and
1100.66± 253.04 m, respectively. The vertical extension of
the cloud layer was shallower than the other layer, with a
typical extension of 128.6± 82.13 m. The backscatter coeffi-
cient of EALs was 1.12± 0.76× 10−3 km−1 sr−1, which was
evidence for choosing a suitable empirical βth value. The
cloud had the smallest value in vertical uniformity, which in-
dicated a denser peak distribution than other layers.

4.3 Case study with a multilayer structure

4.3.1 Effects of cloud contamination

On 23 December 2016, there was a cloud layer that was
1.3 kma.g.l. (above ground level) between 18:00–23:00 LST
(Fig. 6), which is presented as a light blue region in Fig. 6.
Below the cloud base, there was a distinct aerosol layer sur-
face and a strong signal negative gradient, indicating the
WCT method capture. The cloud significantly influences the
GM and CRGM determination and captures the upper edge
of the cloud. After 21:00 LST, the cloudiness decreases and
the lidar can capture the NBL signal. After defining the min-
imum in the upper cluster (Ci) as the top limiter altitude,
the CA-GM captured slowly increased the NBLH, as shown
in Fig. 6. Figure 7 shows the significant two-layer structure
distribution hourly for the first k-means clustering distribu-
tion. The centroid of the two layers indicated the approx-
imate location at 839 and 1428 m (Fig. 7b), and the cloud
located at the upper layer, which had a shallow vertical ex-
tension and a relatively dense distribution. The radiosonde
measurement had a good correlation with the lidar-retrieved
NBLH in Fig. 8. The PTG exhibited the steepest slope at
1.37 km, but it corresponded to the height at the cloud loca-
tion. Therefore, we selected NBLH, using the RHG method,
at 0.78 km, which was less than the CA-GM retrieved height
at 20:00 LST.

4.3.2 Noise effect

On 6 April 2017, the noise distribution was prone to ap-
pear when the low-load aerosol was utilized for the GM.
The gradient-based methods were affected by noise and had
a wide range of fluctuations (Fig. 9). Conversely, the WCT
adequately captured the edge of the aerosol concentration.
From the distribution of the GM with height distribution,
Fig. 10 shows evident mixing without a stratified layer struc-
ture. Therefore, the noise was mixed in the upper layer of
the centroid at 1479 and 1452 m at 19:00 and 20:00, which
set the upper limiter and recalculated the NBLH in an hourly
manner, due to the SD not meeting the requirement of the al-
gorithm (Sci < Scj) at 21:00 UTC. Therefore, the NBL is in
the cluster of the upper layer (Sci = 0.016, Scj = 0.033). The
radiosonde data were calculated through the rapid change of
the PTG method as 0.79 km (Fig. 11), corresponding to the
height retrieval by using CA-GM as 0.74 km.

4.3.3 Nocturnal aloft aerosol layer

On 2 January 2017, the EALs appeared frequently in the
lower troposphere. There was a distinct aerosol layer be-
tween 0.7 and 1.2 kma.g.l. between 17:00 and 22:00 LST
(Fig. 12). Without any limitation, the GM, CRGM, and WCT
captured the height of the EALs when the negative gradient
signal at the EALs was stronger than the NBL, corresponding
to the lofted aerosol structure from 17:00 to 22:00 LST. As
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Table 3. Computed criteria parameters for layer attribution.

Parameter definition Parameter NBL EALs Cloud Noise

Inter-cluster distance (m) Dinter 119.84± 83.70 103.41± 87.41 198.3± 86.69 20.75± 14.62
Altitude (m) hCi, hCj 590.49± 202.84 1024.69± 166.36 1252.52± 303.28 1100.66± 253.04
Vertical extension (m) RhCi , RhCj 383.77± 188.02 317.39± 89.59 128.6± 82.13 390.14± 176.58
Backscatter coefficient (km−1 sr−1) β 6.23± 5.36× 10−3 1.12± 0.76× 10−3 7.77± 7.42× 10−3 6.55± 8.40× 10−4

Vertical uniformity Vi,Vj 5.95± 2.19 5.87± 2.47 4.63± 1.63 7.39± 4.21

Figure 6. Time–height cross section of range-corrected signal (RCS) with four NBLH retrieved methods on 23 December 2016.

Figure 7. Distribution of altitude and normalized gradient method (GM) values at 18:00–21:00 LST. Panels (a–c) indicate hourly intervals.

shown in Fig. 13, the two distinct peaks of the cluster were
the two aerosol layers; the deviation of the upper layer was
larger initially, and both layers gradually exhibited approx-
imately the same gradient magnitude as the time transition.
The upward centroid of the upper cluster provides additional
evidence for the NBLH with topped EALs. After using the
CA-GM method to limit the base of the lofting aerosol lay-
ers, the effect of EALs in the polluted cases can be success-
fully separated. Similarly, in Fig. 14, the first gradient max-
ima above the surface inversion layer is the NBLH, and both
PTG and RHG showed good consistency, while the NBLH

was at 0.44 km. The other peak with PTG and RHG corre-
sponded to the height of the EALs.

5 Discussion and conclusion

Elastic lidars are excellent instruments to determine the
NBLH with high space and vertical resolution. Multilayer
structures in severely polluted cases impede buoyancy forces
and influence pollutant dispersion and dilution. Herein, a
novel CA-GM algorithm was developed to capture the mul-
tilayer structure and achieve stability at night with raw reso-
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Figure 8. Planetary boundary layer height estimates using radiosonde. Profiles include temperature, potential temperature, relative humidity,
potential temperature gradient (PTG), and relative humidity gradient (RHG). Estimated NBLH by PTG (red) and RHG (blue) are shown by
dashed horizontal lines.

Figure 9. Time–height cross section of RCS with four NBLH retrieval methods on 6 April 2017.

lution. A 39 d heavily polluted observation experiment over
Beijing (China) thoroughly established the limitations of the
current methods employed for boundary layer height deter-
mination, and a suitable algorithm for pollution conditions
was developed.

Overall, the CA-GM method highlights its high perfor-
mance relative to the radiosonde approach; the best correla-
tion (0.85), weakest RMSE (203 m), and an improved 25 %
correlation coefficient of the GM were established. The pos-
sible deviations are due to the different definitions of ther-
modynamic NBLs from radiosondes and aerosol NBLs. The
sound data are also multilayered because of the effect of the
aerosol and cloud layers, and the radiosonde-retrieved NBLH
combines the PTG and RHG methods to discuss the uncer-
tainty of NBLs in the pollution period. The calculation of the
three minimum gradients can be used to determine the poten-

tial stratified layer structure, which provides a worst case sce-
nario for estimating the surface concentrations of pollutants
released into the NBL. Compared with the 39 d performance
of other algorithms, a reasonable parameter selection can dis-
tinguish different atmospheric layers, such as cloud layer, el-
evated (or advected) aerosol, and random noise. The Dinter,
RhC , β, and Vi provide a novel idea of classifying multiple
layers based on their physical characteristics, which is more
objective for automatic clustering under complex conditions.

The correlation coefficient with the CA-GM and WCT had
an elevated correlation coefficient from 0.7 to 0.84 and 0.7 to
0.72 in cloud and noise effect, which proved the ability of the
CA-GM to ensure the upper edge of the low-level cloud and
remove the random noise. The EALs are often located at the
top of NBLs, with a similar characteristic to the NBLs. Thus,
using the empirical threshold on a single-wavelength elastic
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Figure 10. Distribution of altitude and the normalized gradient method (GM) value during 19:00–22:00 LST.

Figure 11. Planetary boundary layer height estimates using radiosondes. Profiles include temperature, potential temperature, relative humid-
ity, potential temperature gradient (PTG), and relative humidity gradient (RHG). Estimated NBLH by PTG (red) and RHG (blue) are shown
by dashed horizontal lines at 20:00 LST.

Figure 12. Time–height cross section of RCS with four NBLH retrieval methods. The discontinuity of the RCS at 18:06–18:07 LST is the
result of detecting electric noise. The discontinuities of RCS at 20:39–20:58 LST and 23:18–23:39 LST were because of the laser energy
adjustment and the signal test.
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Figure 13. Distribution of altitude and the normalized gradient method (GM) value during 16:00–23:00 LST.

Figure 14. Planetary boundary layer height estimates using radiosondes. Profiles include temperature, potential temperature, relative humid-
ity, potential temperature gradient (PTG), and relative humidity gradient (RHG). Estimated NBLH by PTG (red) and RHG (blue) are shown
by dashed horizontal lines at 20:00 LST.

lidar is a good way to classify EALs in polluted cases. Conse-
quently, the CA-GM approach can deal with the uncertainty
of the multilayered structure and obtain a stable NBLH with
a high temporal resolution, which is expected to contribute

to the long-term observation of the single-wavelength lidar
system and micro-pulse lidar monitoring in air pollution.

The resolution of the CA-GM is at a high resolution com-
pared to previous studies (Martucci et al., 2010; Su and
Patrick McCormick, 2019; Tsaknakis et al., 2011). The av-
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eraged times for an elastic lidar system are 2, 15, or 30 min,
and it will lose the raw time resolution in tracing the aerosol
distribution. However, the CA-GM are taking into account
the overall set of observations in the effective time (which at
least exceed 30 min) and maintain the raw resolution of the
data.

The uncertainty of the CA-GM is calculated by the real
signal provided in Sect. S2 in the Supplement. Concerning
the robustness of the CA-GM approach, the effect of the li-
dar RCS noise in determining the NBLH has been analysed.
Unlike other gradient derivation methods, CA-GM results
are slightly affected by lidar signal noise. NBL top height
as obtained for “noised” lidar RCS with an additive Gaus-
sian noise coefficient α < 4 % is better than GM results. The
intensity of the CLs changes (± 40 %) will not affect with
the classification of the CA-GM in the polluted cases; the
significantly stratified structure is related to the relative dif-
ference on the backscatter signal. As for the EALs, the strict
threshold will define the EALs accurately. The limitation of
the CA-GM based on the nocturnal boundary layer is stable,
hence, we can calculate the distribution of the minima RCS
gradients at an hour interval to use weighted k-means cluster-
ing for height restriction of the layers. Secondly, based on the
limitation of the lidar system, the lower limit of the BIT-lidar
is around 300 m. Shallow nocturnal boundary layer heights
are not detectable. Thirdly, the method should be used under
high signal-to-noise ratio conditions, such as during night-
time and where air pollution is present.

Code and data availability. Data can be accessed by contacting
Siying Chen (csy@bit.edu.cn).
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