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Abstract. We investigate the potential of the Copernicus
Anthropogenic Carbon Dioxide (CO2) Monitoring (CO2M)
mission, a proposed constellation of CO2 imaging satellites,
to estimate the CO2 emissions of a city on the example of
Berlin, the capital of Germany. On average, Berlin emits
about 20 MtCO2 yr−1 during satellite overpass (11:30 LT).
The study uses synthetic satellite observations of a con-
stellation of up to six satellites generated from 1 year of
high-resolution atmospheric transport simulations. The emis-
sions were estimated by (1) an analytical atmospheric inver-
sion applied to the plume of Berlin simulated by the same
model that was used to generate the synthetic observations
and (2) a mass-balance approach that estimates the CO2 flux
through multiple cross sections of the city plume detected
by a plume detection algorithm. The plume was either de-
tected from CO2 observations alone or from additional ni-
trogen dioxide (NO2) observations on the same platform.
The two approaches were set up to span the range between
(i) the optimistic assumption of a perfect transport model that
provides an accurate prediction of plume location and CO2
background and (ii) the pessimistic assumption that plume
location and background can only be determined reliably
from the satellite observations. Often unfavorable meteoro-
logical conditions allowed us to successfully apply the ana-
lytical inversion to only 11 out of 61 overpasses per satellite
per year on average. From a single overpass, the instanta-
neous emissions of Berlin could be estimated with an aver-
age precision of 3.0 to 4.2 Mtyr−1 (15 %–21 % of emissions
during overpass) depending on the assumed instrument noise
ranging from 0.5 to 1.0 ppm. Applying the mass-balance ap-

proach required the detection of a sufficiently large plume,
which on average was only possible on three overpasses per
satellite per year when using CO2 observations for plume
detection. This number doubled to six estimates when the
plumes were detected from NO2 observations due to the bet-
ter signal-to-noise ratio and lower sensitivity to clouds of
the measurements. Compared to the analytical inversion, the
mass-balance approach had a lower precision ranging from
8.1 to 10.7 Mtyr−1 (40 % to 53 %), because it is affected by
additional uncertainties introduced by the estimation of the
location of the plume, the CO2 background field, and the
wind speed within the plume. These uncertainties also re-
sulted in systematic biases, especially without the NO2 ob-
servations. An additional source of bias was non-separable
fluxes from outside of Berlin. Annual emissions were esti-
mated by fitting a low-order periodic spline to the individ-
ual estimates to account for the seasonal variability of the
emissions, but we did not account for the diurnal cycle of
emissions, which is an additional source of uncertainty that is
difficult to characterize. The analytical inversion was able to
estimate annual emissions with an accuracy of< 1.1 Mtyr−1

(< 6 %) even with only one satellite, but this assumes per-
fect knowledge of plume location and CO2 background. The
accuracy was much smaller when applying the mass-balance
approach, which determines plume location and background
directly from the satellite observations. At least two satel-
lites were necessary for the mass-balance approach to have
a sufficiently large number of estimates distributed over the
year to robustly fit a spline, but even then the accuracy was
low (> 8 Mtyr−1 (> 40 %)) when using the CO2 observa-
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tions alone. When using the NO2 observations to detect the
plume, the accuracy could be greatly improved to 22 % and
13 % with two and three satellites, respectively. Using the
complementary information provided by the CO2 and NO2
observations on the CO2M mission, it should be possible to
quantify annual emissions of a city like Berlin with an accu-
racy of about 10 % to 20 %, even in the pessimistic case that
plume location and CO2 background have to be determined
from the observations alone. This requires, however, that the
temporal coverage of the constellation is sufficiently high to
resolve the temporal variability of emissions.

1 Introduction

Anthropogenic carbon dioxide (CO2) emissions will have to
be reduced drastically in the coming decades to limit global
warming below the goals set in the Paris climate agreement
(Rockström et al., 2017). Cities will play an essential role
in solving this challenge, because they are responsible for
over two-thirds of the global energy consumption and conse-
quently for a large fraction of global CO2 emissions (Interna-
tional Energy Agency, 2008). Recognizing their importance,
many cities worldwide are now introducing stringent policies
to reduce their carbon footprint and improve their resilience
to climate change (e.g., C40 cities, 2018). However, track-
ing progress towards their reduction targets requires consis-
tent, reliable and timely information on CO2 emissions. Such
information could be provided by atmospheric observations
of the CO2 concentrations over and downwind of cities, as
demonstrated in a number of measurement campaigns such
as the Indianapolis Flux Experiment (INFLUX) (Turnbull
et al., 2018) or as part of the Urban Climate Under Change
[UC]2 project for the city of Berlin (Klausner et al., 2019).
However, deducing emission fluxes from ground-based or
airborne observations is not trivial and requires a large and
expensive measurement infrastructure.

An alternative is to use satellite imaging spectrometers as
already demonstrated for measurements of nitrogen dioxide
(NO2) over cities (Beirle et al., 2011; Lorente et al., 2019)
and sulfur dioxide (SO2) over large point sources (Fioletov
et al., 2015). The advantage of satellite observations is that
they measure the total amount of a gas in the vertical column
rather than the concentration at a single point. Emissions can
then be deduced from the divergence in the total column field
(Beirle et al., 2019). The same concepts could be applied to
CO2, but this will require satellites with imaging capability
similar to those available for NO2 and SO2. The potential of
such observations for quantifying CO2 emissions has already
been demonstrated in studies with synthetically generated
observations for power plants (Bovensmann et al., 2010) and
cities (Pillai et al., 2016; Broquet et al., 2018; Wang et al.,
2020). The feasibility is further supported by recent studies
using real CO2 observations from the non-imaging Orbiting

Carbon Observatory 2 (OCO-2) (Nassar et al., 2017; Reuter
et al., 2019; Wu et al., 2020; Zheng et al., 2020).

Based on recommendations of a group of experts, which
investigated the requirements of a future observing sys-
tem to monitor anthropogenic CO2 emissions (Ciais et al.,
2015; Pinty et al., 2017; Janssens-Maenhout et al., 2020),
the European Commission and the European Space Agency
(ESA) are currently preparing the Copernicus Anthropogenic
CO2 Monitoring Mission (CO2M), a constellation of polar-
orbiting CO2 satellites with imaging capability (Sierk et al.,
2019). According to the current system concept, the satellites
will carry additional instruments with supporting observa-
tions of NO2, aerosols and clouds. One prime goal of CO2M
will be to support the quantification of emissions from hot
spots including cities and power plants.

The present study was carried out within in the framework
of an ESA-funded project on the use of satellite measure-
ments of auxiliary reactive trace gases for fossil fuel car-
bon dioxide emission estimation (SMARTCARB), for which
Observing System Simulation Experiments (OSSEs) were
conducted to provide guidance for the dimensioning of the
CO2M mission and its instruments, in particular to assess
the potential benefit of additional NO2 measurements on
the same platform (Kuhlmann et al., 2019b). The OSSEs
were based on high-resolution CO2 and NO2 simulations
with the COSMO-GHG atmospheric transport model and on
synthetic satellite observations generated from these simula-
tions. Similar simulations were conducted in previous studies
(Pillai et al., 2016; Broquet et al., 2018), but they did not have
comparable spatial resolution, temporal coverage, or detailed
treatment of emissions and fluxes.

By driving the model with state-of-the-art high-resolution
anthropogenic CO2 emissions and biospheric CO2 fluxes,
the synthetic observations should mimic true observations
as closely as possible. In a companion paper, Brunner et al.
(2019) demonstrated the importance of releasing anthro-
pogenic emissions using realistic vertical profiles in atmo-
spheric CO2 simulations, because a large proportion of these
emissions occur through stacks, notably from power plants.
The present study is based on the same simulations, where
stack height and meteorology-dependent plume rise were ex-
plicitly accounted for not only for power plants surrounding
Berlin but also for the larger point sources within the city.

In this paper, we investigate how well the individual satel-
lites of the CO2M mission will be able to quantify emis-
sions of the city of Berlin during single overpasses and
how well a constellation of satellites will be able to esti-
mate annual mean emissions. The emissions were estimated
with and without coincident observations of NO2 with differ-
ent assumptions about the precision of the CO2 instrument.
Two complementary approaches were used encompassing
the range between optimistic and pessimistic assumptions
regarding the capability of atmospheric transport models.
The first approach assumes that the atmospheric transport is
known perfectly. It uses an analytical inversion that is ap-

Atmos. Meas. Tech., 13, 6733–6754, 2020 https://doi.org/10.5194/amt-13-6733-2020



G. Kuhlmann et al.: Quantifying CO2 emissions of a city with the CO2M satellite mission 6735

plied to the simulated plume signature of the city provided
by the same model used to generate the synthetic observa-
tions. This approach follows the general concept used in pre-
vious OSSEs studies (Pillai et al., 2016; Broquet et al., 2018).
It does not account for the effect of model errors on the es-
timated emissions, in particular, the challenge to correctly
simulate the location of the emissions plume, which was also
not considered in previous studies. We also assume that the
CO2 background field from anthropogenic and natural fluxes
outside the city can be obtained appropriately from the sim-
ulations.

To present an alternative to these optimistic assumptions,
a mass-balance approach is used here as a second approach,
which estimates the flux of CO2 through control surfaces per-
pendicular to the main flow within the emissions plume (e.g.,
Beirle et al., 2011; Krings et al., 2013). A plume detection
algorithm is required to determine the location of the plume
in the satellite image. The location of the plume can also be
used to obtain the CO2 background field from satellite obser-
vations in the surroundings of the detected plume. The algo-
rithm used for detection has been presented in a second com-
panion paper (Kuhlmann et al., 2019a), which showed that
the number of detectable plumes is significantly increased if
additional NO2 measurements are available on the same plat-
form. Except for an estimate of the mean flow speed within
the plume, the mass-balance approach is entirely data-driven
and does not require any additional model information. This
makes it possible to determine how accurately the emission
can be quantified without considering prior knowledge from
a model.

2 Data

The input data for this study are synthetic satellite observa-
tions from high-resolution CO2 and NO2 simulations that
were generated in the SMARTCARB project. The model
setup and the satellite scenarios are summarized in the fol-
lowing and are described in detail by Brunner et al. (2019)
and Kuhlmann et al. (2019a).

2.1 Model simulations

CO2, carbon monoxide (CO) and nitrogen oxides (NOx =

NO+NO2) fields were simulated with the COSMO-GHG
model, which is a version of the non-hydrostatic regional
weather prediction model COSMO (Baldauf et al., 2011)
extended for the simulation of passive trace gases such as
greenhouse gases (Liu et al., 2017). The simulations were
conducted for a domain centered over the city of Berlin and
covering a large number of power plants in Germany and
neighboring countries. The simulation spans the whole year
2015 with 1km× 1 km spatial resolution. Initial and bound-
ary conditions were provided by the operational COSMO-7
analyses of MeteoSwiss for meteorology with 7 km horizon-

tal resolution, by the Copernicus CAMS operational prod-
ucts for NO and NO2 with 60 km resolution (Flemming
et al., 2015), and by special high-resolution runs of ECMWF
for CO and CO2 with 15 km resolution (Agustí-Panareda
et al., 2014). Anthropogenic emissions were taken from the
TNO/MACC-3 inventory (7km× 7km resolution) (Kuenen
et al., 2014, for version 2) and were merged with a de-
tailed inventory for Berlin provided by the city authorities
(AVISO GmbH and IE Leipzig, 2016). The emissions were
vertically distributed according to predefined vertical profiles
per source category. For large point sources, plume rise was
computed explicitly to account for the varying meteorolog-
ical conditions (Brunner et al., 2019). Temporal variability
was prescribed using fixed temporal profiles for hourly di-
urnal, weekly and seasonal variations per source category.
Biospheric CO2 fluxes were computed offline by the Veg-
etation Photosynthesis and Respiration Model (VPRM) at
1km×1km spatial and hourly temporal resolution (Mahade-
van et al., 2008).

The simulations included a total number of 50 differ-
ent tracers of CO2, CO and NOx that represented different
sources and release altitudes and included background trac-
ers constrained at the lateral boundaries by the global-scale
models. Two CO2 tracers were included that represent bio-
spheric CO2 fluxes due to respiration and photosynthesis. To
account for NOx chemistry in a simplified way, the NOx trac-
ers slowly decay with an e-folding lifetime of 4 h. NOx con-
centrations were converted to NO2 concentrations offline us-
ing an empirical formula that is often used for representing
NOx-to-NO2 ratios downstream of emission sources (Düring
et al., 2011).

Only a small number of these tracers were used in the
present study. We used two CO2 and two NO2 tracers repre-
senting time-constant and time-varying emissions of Berlin,
respectively. Furthermore, we created background tracers
that contain CO2 or NO2 fields from all emissions and bio-
spheric fluxes as well as inflow from lateral boundaries ex-
cept for the emissions of Berlin.

2.2 Synthetic satellite observations

The CO2M mission is a proposed constellation of polar-
orbiting satellites with Equator crossing times around 11:30
local time (Sierk et al., 2019). The main payload will be an
imaging spectrometer for retrieving CO2 from measurements
in the near-infrared and in two shortwave infrared spectral
channels. The current system concept envisages a pixel size
of 4 km2 and a swath width of at least 250 km. CO2M will
also provide additional measurements of NO2, aerosols and
clouds.

Synthetic satellite observations of column-averaged dry
air mole fractions of CO2 (XCO2) and NO2 tropospheric
columns were generated for a hypothetical constellation of
six CO2M satellites with 2 km× 2 km spatial resolution and
250 km wide swaths. Each satellite has a sun-synchronous
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orbit with an overpass time of 11:30 local time and a repeat
cycle of 11 d. The individual satellites are distinguished by
their Equator starting longitude for the first orbit, which was
chosen such that the satellites are spaced with equal angular
distance in a common orbit. The constellation of six satel-
lites has therefore angular distances of 60◦. The individual
satellites are designated by the letters a to f.

With a constellation of six satellites Berlin could be ob-
served every day. For more realistic scenarios with fewer
satellites, the constellation was divided into constellations
of one, two or three satellites (still with equal angular dis-
tances). This allows investigating the impact of the size of
the constellation on the accuracy of the estimated CO2 emis-
sions.

The error characteristics of the CO2 and NO2 measure-
ments were specified in the SMARTCARB project in close
collaboration with ESA (Kuhlmann et al., 2019a). For XCO2,
three uncertainty scenarios were prepared with 0.5, 0.7 and
1.0 ppm random noise for a ground pixel with a vegetation
surface and a solar zenith angle of 50◦ (VEG50 scenario).
The random errors were calculated based on solar zenith
angle and surface reflectances using the error parametriza-
tion formula of Buchwitz et al. (2013). Amplifications of the
random errors in the presence of cirrus clouds and aerosols
as well as the influence of systematic errors on the XCO2
measurements were not considered in our study. For NO2
columns, we only used the high-noise scenario with a ref-
erence noise σref of 2× 1015 cm−2 or 20 % – whatever was
larger. The NO2 noise was further modified based on cloud
fraction roughly doubling the noise at 30 % cloud fraction.
Table 1 summarizes the uncertainty scenarios.

The synthetic observations were flagged as cloudy using
the total cloud fractions simulated with the COSMO-GHG
model. Since the CO2 retrieval requires strict cloud filtering,
we removed all pixels with cloud fractions larger than 1 %.
NO2 retrievals can tolerate higher cloud fractions. We used a
cloud threshold of 30 % to flag cloudy pixels as often applied
in satellite NO2 studies (e.g., Boersma et al., 2011).

3 Methods

3.1 Analytical inversion applied to the simulated plume

The analytical inversion uses the CO2 tracer representing
the anthropogenic emissions of Berlin as simulated by the
COSMO-GHG model. The method thus assumes perfect
knowledge of atmospheric transport, which allows isolating
the uncertainties in the flux inversion due to instrument noise.
The inversion uses a forward model that computes the vector
ymod of size m of model-simulated values at the locations of
all XCO2 measurements within the plume. The plume was
defined as those pixels for which the enhancement of the
tracer is larger than a typical variability of the background
field set to 0.05 ppm. The vector ymod is given by the equa-

tion

ymod =Hx+ yBG , (1)

where x is a scalar representing the CO2 emission strength
of Berlin. H is the observation operator representing the sen-
sitivity of the XCO2 signal to changes in x, i.e., the emis-
sions, in the satellite image. Since x is a scalar, H is a row
matrix. It contains all XCO2 values obtained from the CO2
tracer simulated with constant emissions of Berlin that are
larger than 0.05 ppm. yBG is the XCO2 background, which
was computed from the model-simulated fields excluding the
emissions from Berlin, consistent with the assumption of a
perfect model with accurately known transport and anthro-
pogenic and biospheric fluxes outside of Berlin.

The emission of Berlin was found as the maximum like-
lihood optimal estimate by minimizing the following cost
function:

χ2(x)= (yobs−Hx− yBG)
T S−1

ε (yobs−Hx− yBG) , (2)

where yobs is the measurement vector containing the syn-
thetic XCO2 observations. Sε is the error covariance matrix
of the model–observation mismatch, which in our case of a
perfect transport model corresponds to the measurement er-
ror covariance matrix. The diagonal elements of the error co-
variance matrix were set to the square of the absolute noise
specified in Table 1.

The analytical inversion was applied to synthetic satel-
lite observations with constant and time-varying emissions of
Berlin. The uncertainty of the estimated emission was taken
from the covariance matrix estimated by the least square fit.
As a second measure of uncertainty, we computed mean bias
(MB) and standard deviation (SD) of the differences between
estimated and true emissions. Thereby, the true emission was
taken at 10:30 UTC during satellite overpass. The plume may
also contain emissions emitted earlier in the day, but the ob-
servation operator does not include information about the
temporal variability of emissions. The variation in the di-
urnal cycle of emissions is rather small in the hours prior
to the satellite overpass (Fig. S1 in the Supplement). Rel-
ative errors were computed relative to the annual mean at
overpass time, which is 16.9 MtCO2 yr−1 for constant and
20.0 MtCO2 yr−1 for time-varying emissions. The latter is
higher because emissions at 10:30 UTC are larger than daily
mean emissions.

3.2 Mass-balance approach applied to the detected
plume

The mass-balance approach estimates CO2 emissions from a
city plume detected by a plume detection algorithm. The ap-
proach calculates CO2 mass fluxes from plume signals that
are obtained by subtracting a background field from the satel-
lite observations. The plume signal is then integrated perpen-
dicular to the direction of propagation of the city plume to
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Table 1. Uncertainty scenarios and cloud flagging threshold for the instruments on board the CO2M satellites. For the NO2 measurements,
either absolute or relative noise is used depending on which is larger.

Scenario name Species Absolute noise Relative noise Cloud flagging

CO2 low noise CO2 0.5 ppm – > 1 %
CO2 medium noise CO2 0.7 ppm – > 1 %
CO2 high noise CO2 1.0 ppm – > 1 %
NO2 low noise NO2 1× 1015 molec.cm−2 15 % > 30 %
NO2 high noise NO2 2× 1015 molec.cm−2 20 % > 30 %

obtain line densities that are multiplied with an estimate of
the wind speed to obtain the fluxes. Under the assumption
of steady-state conditions, these fluxes are equivalent to the
emissions.

The plume detection algorithm described in Kuhlmann
et al. (2019a) was applied to determine the position of the
CO2 plume in the satellite observations. The algorithm was
applied either to the XCO2 observations or to the auxiliary
NO2 observations. As shown in Kuhlmann et al. (2019a), the
NO2 plumes largely overlap with the XCO2 plumes despite
the fact that NOx is released in the model primarily at the sur-
face by traffic emissions, whereas a larger proportion of CO2
is released from stacks at higher altitudes. The number and
size of the detected plumes was significantly larger when the
algorithm was applied to the NO2 measurements due to their
better signal-to-noise ratio and lower sensitivity to clouds.

To obtain the plume signal, the background needs to be
subtracted from the satellite observations. The CO2 back-
ground was estimated from the pixels surrounding the plume
assuming that it is spatially smooth. To compute the back-
ground, all pixels within the detected plume were masked
and replaced by interpolated values obtained by normalized
convolution applied to the unmasked pixels surrounding the
plume. The normalized convolution was performed with a
Gaussian filter with σ = 10 pixels, i.e., a width of the Gaus-
sian kernel of about 20 km.

Figure 1a shows a sketch of an CO2 city plume. To com-
pute line densities, we draw 10 km wide boxes (nearly rect-
angular polygons) perpendicular to the plume’s centerline.
Line densities were computed for each box. Figure 1b shows
the CO2 signals (in kgm−2) for one of the boxes. Choosing
a box rather than a single line across the plume reduces the
impact of noise and data gaps due to the larger number of
available pixels. The across-plume width of the polygons is
given by the maximum width of the detected plume plus an
additional boundary of at least 10 km on each side to ensure
that the entire plume is within the polygon even if only a part
of the plume was detected.

The centerline of the plume was computed by fitting a
two-dimensional curve to pixels within an extended plume
area, which consisted of the detected plume as well as pix-
els within 50 km distance of the plume or the source. The
surrounding pixels help stabilize the fit at the beginning and

at the end of the detected plume. For the curve fit, pix-
els were weighted with the local mean values above back-
ground calculated by the plume detection algorithm. Outside
the detected plumes, pixels were weighted either with a small
value of 0.05 ppm or 0.2× 1015 molec.cm−2 depending on
whether CO2 or NO2 was used for plume detection. The two-
dimensional curve p(r) consists of two parabolic polynomi-
als:

px(r)= a0r
2
+ a1r + a2, (3)

py(r)= b0r
2
+ b1r + b2, (4)

with coefficients ak and bk and radial distance r . The param-
eter r is calculated as the distance from the origin:

r =

√
(x− xo)2+ (y− yo)2, (5)

where x and y are easting and northing in the DHDN/Soldner
Berlin spatial reference system (EPSG: 3068). The origin
(xo, yo) is placed at least 50 km away from the source in the
direction opposite to the plume, i.e., in the west of Berlin if
the plume is in the east and vice versa. Figure 1a shows the
centerline with its origin O and the location of the source S.

To draw the polygons, pixel coordinates need to be con-
verted to along- and across-plume coordinates for each satel-
lite pixel. The across-plume coordinate yp is the distance be-
tween pixel P and the curve at radial distance rp, i.e., point
Q in Fig. 1, for which the line from Q to P is perpendicular
to the curve. The along-plume coordinate xp is the arc length
of the center curve from the source origin S to Q. xp and yp
were calculated with a computationally efficient analytical
solution as presented in the Supplement.

To compute line densities from the CO2 columns inside
the polygons (e.g., Fig. 1b), we tested two options: (1) inte-
grating in across-plume direction yp by adding up the plume
signals cp of all pixels whose center point is within the poly-
gon and (2) fitting a Gaussian function to the plume signals in
across-plume direction and computing its integral. The first
method does not make any assumption about the shape of
the cross section, which is an advantage for city plumes that
can be quite complex. The disadvantage is that it is more
difficult to deal with missing pixels, which lead to an un-
derestimation of line densities if not properly accounted for.
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Figure 1. (a) Sketch of a CO2 city plume with detected pixels and fitted centerline. Random noise has been added to the CO2 observations.
The center of the city source is denoted by S. The origin of the center curve is O = (xo,yo). For a satellite pixel P , the across-plume
coordinate yp is the distance between P and Q, and the along-plume coordinate xp is the arc length from S to Q. The yellow rectangles are
the polygons used for computing the line densities. (b) Example of CO2 mass columns in across-plume distance for the polygon containing
the pixel P . (c) Line densities computed for each polygon in the sketch. The line densities are zero upstream of the source, build up over the
city and remain constant downstream of the city.

To solve this issue, we sub-divided the polygons in across-
plume direction in 5 km wide sub-polygons, for which we
computed a mean value from the available pixels. Finally, we
integrated over the mean values of the sub-polygons. Poly-
gons were not used if the mean values of at least one of the
sub-polygons with detected plume pixels could not be com-
puted due to missing values. Note that this criterion rejects
more line densities from plumes detected from the NO2 ob-
servations than from the CO2 observations, because the latter
detect narrower plumes.

The second method has been used, for example, by Reuter
et al. (2019). Fitting a Gaussian curve has the advantage that
it automatically interpolates missing values. The disadvan-
tage is that the transects of a city plume do not necessarily
resemble a Gaussian curve. The Gaussian curve can be writ-
ten as

cp(y)=
q
√

2πσ
exp

(
−
(y−µ)2

2σ 2

)
, (6)

with line density q, shift µ and SD σ . To avoid misfits, espe-
cially when pixels near the center of the plume are missing,
a Gaussian curve was only fitted if at least one valid observa-
tion was available in each sub-polygon in the transect. When
NO2 observations are available, it is also possible to simul-
taneously fit a Gaussian curve to the NO2 observations us-
ing the same SD σ for both the CO2 and NO2 curve. Since
the NO2 observations have a higher signal-to-noise ratio, the
width of the CO2 curve is constrained by the NO2 observa-
tions. This method was demonstrated by Reuter et al. (2019)
and is used here as a third method.

An estimate of the mean flow speed within each plume
transect is required to convert line densities to emissions. The
mean flow speed is the projection of the CO2-weighted wind
vector onto the along-plume direction. Because we assume

not to know the vertical and horizontal distribution of winds
and CO2 concentrations sufficiently well from a model, we
take the average wind speed at the location of Berlin in the
lowest 500 m above surface assuming a well-mixed bound-
ary layer as a rough estimate. The wind profile was taken
from the COSMO-GHG model simulations at satellite over-
pass time but could be taken from any meteorological analy-
sis data. Not taking the wind speeds directly at the locations
of the cross sections was an attempt to account for uncertain-
ties in the simulated winds that would be encountered with
real rather than synthetic observations. To estimate the uncer-
tainty in this simplified estimate of the mean flow speed, we
also computed an effective wind speed for each polygon, tak-
ing into account the three-dimensional distribution of winds
and CO2 mass concentrations. The effective wind speed is
the weighted mean wind speed parallel to the plume’s cen-
terline and weighted by the partial CO2 mass column density
of the plume. These CO2 column densities are taken from the
model tracer that contains only emissions of the city.

Figure 1c shows line densities computed in along-plume
direction. The line densities are zero upstream of the source,
build up over the city and remain constant downstream of the
city. The fluxes were obtained by multiplying the line densi-
ties with the wind speed. Finally, the fluxes were averaged to
obtain an estimate of the mean source strength. We only con-
sidered values more than 10 km downstream of the city cen-
ter to ensure that fluxes are obtained from outside of the city
area. Uncertainties in the mean source strength were com-
puted from the standard error of the individual line densities
as well as by comparing with the true emissions at overpass.

To better understand the individual error components, the
differences between estimated and true emissions were fur-
ther analyzed using the detailed information available from
the simulation. For this purpose, the mass-balance approach
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was additionally applied to the detected plume using the
noise-free XCO2 observations, the true CO2 background and
the effective wind speed. By replacing the uncertain infor-
mation obtained from the observations with the accurate in-
formation from the model, four different types of error were
distinguished.

1. The method error is the difference between the true
emissions at satellite overpass and the emissions com-
puted using the model information. It represents the
intrinsic uncertainties of the method that arise from
simplified assumptions such as constant emissions and
wind speed, from the plume detection algorithm, and
from the fitting of the centerline.

2. The retrieval error represents the impact of the random
noise in the CO2 observations on the calculation of line
densities.

3. The background error is caused by errors in the esti-
mation of the background field and its impact on the
computed plume signals.

4. The wind error is the error that occurs if the mean
wind speed between 0 and 500 m above Berlin is taken
instead of the effective mean wind speed within the
plume.

Note that these different error types are still strongly related
to the size of detected plume and thus, in the case of the
CO2-based plume detection, to the instrument noise scenario.
These errors were therefore calculated separately for the dif-
ferent noise scenarios.

3.3 Estimating annual emissions

To estimate annual emissions and their uncertainties, the
temporal variability of emission has to be considered, which
includes seasonal, diurnal and weekend vs. weekday varia-
tions. Without accounting for this variability, annual mean
estimates derived from a small sample of satellite overpasses
at a fixed time of the day may be significantly biased.

In this study, only the seasonal cycle was estimated using a
Hermite spline with periodic boundary conditions (see Sup-
plement). The periodic boundary conditions help constrain
the cycle in winter months, where only few data points are
available. To properly fit the seasonal cycle, we used a spline
with four equidistant knots. The annual emissions were then
estimated by integrating over the seasonal cycle. The uncer-
tainty of the annual emissions was estimated by error prop-
agation from the precision of the CO2 emission estimates at
individual satellite overpasses. Since annual emissions esti-
mated in this way are only representative of emissions a few
hours before the satellite overpass, the estimated emissions
were compared with the emissions at overpass time. Uncer-
tainties in the ratio between emissions at overpass time and
daily mean emissions are thus not taken into account.

4 Results and discussions

4.1 CO2 emissions estimated by analytical inversion

The analytical inversion was applied to all CO2 plumes ob-
served by the CO2 satellites for constant and time-varying
emissions and for the low-, medium- and high-noise scenar-
ios with σVEG50 of 0.5, 0.7 and 1.0 ppm, respectively. Fig-
ure 2a and c show the time series of estimated CO2 emissions
for the medium-noise scenario (σVEG50 = 0.7ppm) with a
constellation of three satellites. CO2 estimates with uncer-
tainties larger than 10 Mtyr−1, i.e., 50 % of the mean emis-
sions at satellite overpass time for time-varying emissions,
were discarded to remove plumes with very weak CO2 sig-
nals or with a small number of pixels.

The boxplots (Fig. 2b and d) summarize the differences
between estimated and true emissions for all plumes ob-
served by the six satellites. A constellation of six satellites
was able to estimate emissions successfully, i.e., with an un-
certainty smaller than 10 Mtyr−1, for 60 to 74 overpasses for
time-constant emissions and 59 to 73 overpasses for time-
varying emissions depending on the noise scenario. The av-
erage number of successful estimates was 11 per satellite and
year but with a large range from 5 to 17 because of varying
cloud coverage and because some orbits cover Berlin less fre-
quently than others. Table 2 shows mean bias (MB) and stan-
dard deviation (SD) of the differences between estimated and
true emissions. To compute comparable statistics for each in-
strument scenario, the statistics were computed only for the
60 and 59 plumes, respectively, for which the uncertainties
were less than 10 Mtyr−1 in all three noise scenarios.

The constant emissions are generally well captured within
the uncertainty range determined by the measurement noise.
The uncertainties of the individual estimates vary strongly
because the amplitudes and sizes of the plumes differ from
case to case due to differences in wind speeds, cloud cover
and incomplete coverage of the plume by the swath. The MB
is close to zero for all noise scenarios.

In the case of time-varying emissions, the seasonal cycle
of the emissions can be reproduced quite accurately because
many plumes can be observed with three or more satellites
and because the individual estimates have an average uncer-
tainty of only 14 %–21 % depending on instrument noise sce-
nario. The rare opportunities for observing plumes in winter
due to frequent cloud cover, however, can easily be missed
by a small constellation of satellites, which will make it dif-
ficult to reliably trace the seasonal cycle. The MB slightly
deviates from zero (Table 2) mainly because the observa-
tion operator H was calculated assuming constant emissions,
while the measurement vector contains observations of time-
varying emissions from several hours before the satellite
overpass time. The SDs of the differences between the indi-
vidual emission estimates and the true emissions are 3.0, 3.4
and 4.2 Mtyr−1 for σVEG50 of 0.5, 0.7 and 1.0 ppm, respec-
tively (Table 2). These values agree well with the mean of the
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Figure 2. Time series of CO2 emissions of Berlin estimated with the analytical inversion using three satellites (#a, #c and #e) with σVEG50
of 0.7 ppm for (a) constant and (c) time-varying emissions. Emission estimates with uncertainties larger than 10.0 Mtyr−1 (50 % of mean
emissions at 11:30 LT) were removed. (b, d) Boxplots of the difference between estimated and true CO2 emissions of Berlin using six
satellites for the three different instrument noise scenarios. The boxes denote the range between 25th and 75th percentiles, orange lines are
median values, dashed lines are mean values, and whiskers are 5th and 95th percentiles. The numbers above the boxes are the cases where
the uncertainties for all three scenarios are less than 50 % (first number) and the number of successful emission estimates for each scenario
(second number).

Table 2. Performance of the analytical inversion for individual satellite overpasses in terms of mean bias (MB) and standard deviation (SD)
of the difference between estimated and true CO2 emissions of Berlin. More plumes could have been used for emission quantification for
scenarios with low noise (second value in column “Number of plumes”), but the statistics were computed only for those plumes that could
be used with the high-noise scenario (first value) for better comparability of the results.

Emissions σVEG50 Number of plumes Mean bias (MB) Standard deviation (SD)

(ppm) Mtyr−1 % Mtyr−1 %

Time constant 0.5 60/74 0.0 0.2 1.8 10.5
0.7 60/70 0.1 0.3 2.5 14.7
1.0 60/60 0.1 0.5 3.5 21.0

Time varying 0.5 59/73 −0.1 −0.6 3.0 14.8
0.7 59/66 −0.1 −0.3 3.4 17.0
1.0 59/59 0.0 0.2 4.2 20.9

estimated uncertainties, suggesting that the error propagation
yields a realistic estimate of uncertainties.

The theoretical uncertainty computed by the inversion
agrees well with the SDs computed for constant and time-
varying emissions in Table 2. This estimated uncertainty de-
pends on the number of pixels and the signal strength of the

plume. The signal strength in turn depends on the wind speed
and turbulent mixing. Figure 3 shows the dependency of the
theoretical uncertainty on the inverse of the square root of the
number of pixels and on wind speed for the medium-noise
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Figure 3. Dependency of the theoretical CO2 uncertainty on (a) in-
verse of the square root of the number of pixels and (b) wind speed.
The line is the fit of a multilinear regression model that was used to
determine the slope of the linear dependence on these quantities.

scenario. Fitting a robust linear regression model yielded

σem =

[
(91.5± 3.8)

σVEG50
√
n
+ (0.32± 0.08)u

]
Mtyr−1,

(7)

with number of pixels n and wind speed u. The uncertainty
depends strongly on the number of pixels and is smaller
than 10 Mtyr−1 (50 %) if the number of pixels is larger than
100 for all three noise scenarios. The dependency on wind
speed is less robust and does not depend on the noise sce-
nario. Most outliers are due to plumes of less than 100 pixels.
Note that the fit coefficients are specific to the emissions and
meteorological conditions of Berlin and cannot be general-
ized for other cities.

4.2 CO2 emissions estimated by mass-balance
approach

The mass-balance approach was applied to synthetic obser-
vations of the CO2M mission for a constellation of up to six
satellites using the uncertainty scenarios with σVEG50 of 0.5,
0.7 and 1.0 ppm. The location of the CO2 plumes was either
detected from the CO2 observations alone or from the addi-
tional NO2 observations on board the same satellite.

4.2.1 Example for 23 April 2015

The method is illustrated in Figs. 4 and 5 for a plume on
23 April 2015. In Fig. 4a, the CO2 plume is hardly visible,
because its signal-to-noise ratio is close to 1. In contrast, the

NO2 plume is clearly visible in the NO2 image (Fig. 5a). The
plume detected from the CO2 observations (Fig. 4) is signif-
icantly smaller than the plume detected from the NO2 ob-
servations (Fig. 5) (119 vs. 780 pixels). The plume detected
from the CO2 observations is also shorter with a length of
60 km as opposed to 120 km. This results in having fewer
polygons for computing line densities. Finally, the plume de-
tected from the CO2 observations is also narrower, suggest-
ing that a significant part of the real plume is attributed to the
background.

The CO2 concentrations were plotted in across-plume di-
rection for the polygon between 10 and 20 km downstream of
the center of Berlin (Figs. 4c–e and 5c–e) The XCO2 signal
in the plume is only about 1 ppm above background, which is
comparable to the instrument noise of 0.5 to 1.0 ppm of the
three instrument scenarios. A 1 ppm enhancement approxi-
mately corresponds to a CO2 column density of 10 gm−2.
The model tracer representing the emissions of Berlin shows
three distinct enhancements rather than a single Gaussian-
shaped plume caused by the three power stations in Berlin
(Fig. 4e). Nonetheless, the line density obtained by fitting the
values from the model tracer with a Gaussian curve agrees
well with the line density computed from the mean values
in the sub-polygons. Note that the line densities were only
computed between −20 and 20 km from the centerline, be-
cause pixels more than 10 km outside the detected plume
were masked to avoid issues from neighboring plumes or
variability in the CO2 background. Since the plume detected
from the NO2 observations is wider, the line densities from
the model tracer are slightly higher, because the plume edges
still contain some CO2 emitted from Berlin (Fig. 5e).

Figure 4d shows the across-plume column densities from
the satellite observations after subtracting the estimated
background. The line densities are 134± 25 and 161±
30 kgm−1 using the mean values in the sub-polygons and
the Gaussian fit, respectively. The uncertainty was computed
from the random noise of the measurements for the sub-
polygon means and from the quality of the fit for the Gaus-
sian function. Figure 5d shows the same for the plume de-
tected from the NO2 observations. In this case, the line densi-
ties are higher with 190±40 and 243±33 kgm−1. The reason
for these differences is on the one hand the larger and slightly
shifted polygon due to the different plume detection and on
the other hand because the estimated CO2 background is dif-
ferent when CO2 or NO2 observations are used for plume
detection (see Sect. 4.3 for details).

The line densities in along-plume direction are shown in
Figs. 4b and 5b. Upstream of the city, the line densities are
close to zero and then slowly build up over the city. They
reach their maximum downstream of the city and stay con-
stant because CO2 does not decay in the atmosphere. The fig-
ures also show the mean and effective wind speed along the
plume. While the average wind speed is constant, the effec-
tive wind speed is lower near the city center where the CO2
plume is still near the surface where wind speeds are lower.
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Figure 4. Illustration of the mass-balance approach applied to a plume on 23 April 2015 observed with low-noise CO2 observations. (a) De-
tected XCO2 plume with polygons used for computing the line densities. (b) CO2 flux and wind speed as a function of along-plume distance.
The CO2 fluxes estimated from the line densities are shown as markers with their uncertainty for the noise-free model tracer and the synthetic
satellite observations. The horizontal lines show true emissions of Berlin at 10:30 UTC (black line) and the estimated emissions. The extent
of the city is highlighted by the light gray area. (c) XCO2 satellite observations as a function of across-plume distance in the polygon between
10 and 20 km downstream of the source. (d) Same as panel (c) but CO2 column densities after subtracting the estimated background field.
Sub-polygon means and Gaussian fit are also shown. (e) CO2 column densities from the model tracer containing only emissions of Berlin.

The mean height of the plume increases downstream of the
city, and, therefore, the effective wind speed also generally
increases with distance from the city. The CO2 fluxes com-
puted from the noise-free model tracer are higher than the
true emissions in this example, which is caused by the sim-
plifications in the mass-balance approach, mainly by the as-
sumption of a constant flow parallel to the fitted center curve.
The fluxes computed from the synthetic satellite observa-
tions are lower than the true emissions at overpass. Near the
source, the error is quite small, but it gets larger downstream
mainly due to growing systematic errors in the estimation of
the background, since it gets increasingly difficult to separate
the plume from the background in the fading plume.

Figure 6 shows the same CO2 across-plume column den-
sities from the model tracer and the satellite observations
as Fig. 5, but it shows additionally the NO2 column densi-
ties. The CO2 line density was obtained by fitting a Gaussian
curve whose width was constrained by the additional NO2
observations. While the line density is the same as without
constraining the width of the curve for the present example,
the estimated uncertainty is smaller.

4.2.2 Time series of estimated emissions

With six satellites, the NO2-based plume detection could
identify about 40 plumes suitable for applying the mass-
balance approach. On average, seven plumes were identi-
fied per satellite, but with a very large spread between the
satellites (range: 1–14) because some orbits are more suitable
than others for observing Berlin as mentioned earlier. In addi-
tion, since the number of overpasses is small, the uneven dis-
tribution of cloud-free days in time can have a large effect on
the number of plume observations for a given satellite. From
the CO2 observations alone only about half of these plumes
could be detected because of the lower signal-to-noise ratio
and the more stringent cloud filtering required for the CO2
observations.

Because of the different cloud thresholds for CO2 and
NO2, some of the plumes detected from the NO2 observa-
tions do not have enough cloud-free CO2 pixels for com-
puting line densities and can therefore not be used for es-
timating emissions. The NO2-based plume detection gener-
ally results in significantly more pixels per plume with about
400 to 800 pixels compared to less than 300 pixels for CO2-
based detection. More details about the detectability of CO2
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Figure 5. Same as Fig. 4 but using the NO2 observations for detecting the plume.

Figure 6. Line densities computed from (a) the model tracer and
(b) synthetic satellite observations using the Gaussian curve con-
strained by the NO2 observations.

plumes from the CO2 and NO2 observations are presented in
Kuhlmann et al. (2019a).

Before applying the mass-balance approach, the detected
plumes and the centerlines were visually inspected to remove

plumes with obvious issues. In particular, for the CO2-based
plume detection several plumes were removed for which the
number of detected pixels was too small to reliably fit a cen-
terline parallel to the wind direction. In most cases, 50 or
more detected pixels were sufficient. Often less than 100 pix-
els were detected from the high-noise CO2 observations, but
it was often still possible to use these plumes with less than
100 pixels for estimating emissions. Three plumes were re-
moved where the CO2 plume of the Jänschwalde power plant
overlapped with the plume of Berlin. In many cases, the CO2
image alone did not show clearly which plumes had a rea-
sonable centerline, and therefore additional information such
as wind fields is helpful. The NO2 images are also extremely
helpful, because they are less affected by clouds and often
reveal weak interfering plumes in the surrounding area that
are not detectable from the CO2 observations.

The number of plumes remaining for reliable emission es-
timation was 34 for plumes detected from the NO2 obser-
vations, which are only between 0 and 10 plumes per satel-
lite and year with an average number of 5.7. These numbers
would be approximately halved with the CO2 observations
alone: 16 to 17 plumes could be used with six satellites for
the different noise scenarios, i.e., on average only 2.7 (range:
1–7) per satellite.

Figure 7a and c present the time series of estimated CO2
emissions for these plumes. The time series is shown for a
constellation of three satellites for the medium-noise sce-
nario (σVEG50± 0.7ppm) and line densities computed from
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the sub-polygon means. The time series for a less likely con-
stellation of six satellites are shown in the supplement. The
error bars show constant errors of 10.0 Mtyr−1 correspond-
ing to the SD of the differences between estimated and real
emissions.

A constellation of three CO2M satellites without addi-
tional NO2 observations can detect plumes and estimate
emissions from only 10 overpasses. These overpasses are
likely to cluster in specific months with good weather con-
ditions leaving significant gaps in other months. A constel-
lation of six satellites is able to detect more plumes proving
better temporal coverage of the different seasons. This can
also be achieved when NO2 observations are available for
plume detection. In this case, 16 plumes can already be used
with a constellation of three satellites.

Note that for a few overpasses where the emissions were
estimated from the plume detected from the CO2 observa-
tions (e.g., the only estimate from satellite #c), the emis-
sions were not estimated from the plume detected from the
NO2 observations. In these cases, only a fraction of the full
plume was detected from the CO2 observations, because the
plume was partly covered by clouds, while a larger plume
could be detected from the NO2 observations. Since our al-
gorithm rejects line densities with missing observations in
sub-polygons, no emissions were calculated for cases where
this affected all line densities.

4.3 Uncertainties in the mass-balance approach

As expected, uncertainties in the estimated emissions are
larger for the mass-balance approach compared to the an-
alytical inversion. Figure 7b and d show the difference be-
tween estimated emissions and the emissions at overpass for
different noise levels of the CO2 instrument. These boxplots
include all estimates for a constellation of six satellites.

Table 3 shows MB and SD of these differences. For bet-
ter comparability, these statistics were computed only from
those plumes that could be detected with all three noise sce-
narios, i.e., 16 plumes in the case of CO2-based detection and
34 plumes in the case of NO2-based detection. SDs are about
10 Mtyr−1, i.e., about 50 % of the 20.0 Mtyr−1 emissions of
Berlin at overpass time, which is about 3 times larger than for
the analytical inversion. For the plume detection based on the
CO2 observations, SDs are about 9 Mtyr−1 (45 %) and, inter-
estingly, do not depend significantly on the noise level of the
instrument. SDs are slightly larger with 10 Mtyr−1 (50 %) if
the NO2 observations are used for plume detection, because
applying the mass-balance approach to larger plumes is more
challenging.

The MB is positive for both CO2- and NO2-based plume
detection. With NO2-based plume detection it rises slightly
from 2.6 to 3.5 Mt yr−1 (13 %–17 %) from the low to the
high-noise scenario. With CO2-based detection, in contrast,
the lowest MB is surprisingly obtained for the high-noise sce-
nario.

The MB is caused by systematic errors in the method, re-
trieval, background and wind errors, which can have substan-
tial systematic errors that may add up or compensate for each
other in the total error. The results therefore need to be inter-
preted with great care. MB and SD of the individual error
components are summarized for the different noise scenar-
ios in Figs. 8 and 9 for CO2 and NO2-based plume detec-
tion, respectively. The method and total errors are computed
against the true emissions at overpass, while the other errors
are compared to the emissions computed using the model
information. The total errors are identical to the errors pre-
sented in Table 3. The relative MB and SD are tabulated in
the supplement. The different errors are discussed in detail in
the following.

4.3.1 Method error

The mass-balance approach relies on assumptions and sim-
plifications that result in uncertainties in the estimated emis-
sions. The main sources of uncertainty are the assumption of
constant emissions and constant flow parallel to the center-
line fitted to the detected plume. The method error also indi-
rectly depends on the instrument noise scenario that affects
the size of the detected plumes.

Figures 8a and 9a show that the MB is slightly posi-
tive when plumes were detected from CO2 observations and
slightly negative when plumes were detected from NO2 ob-
servations. The absolute MB is mostly smaller than 5 %,
suggesting that the assumptions in the mass-balance ap-
proach do not cause significant systematic errors. In partic-
ular, we do not find that emissions are overestimated, al-
though we compared estimated emissions with emissions at
overpass (10:30 UTC), while the plume may also contain
CO2 released a few hours earlier when emissions are higher
(Fig. S1). Note that such a bias would also affect the analyti-
cal inversion.

The SD of the method error is about 30 %, which gives a
rough estimate of the minimum SD achievable with the mass-
balance approach. The SD does not depend on the instrument
noise scenario or whether CO2 or NO2 was used to detect
the plume despite the influence this has on the size of the
detected plume.

4.3.2 Retrieval error

The retrieval error shown here is affected mainly by the com-
putation of the line densities from the noisy CO2 observa-
tions, because the effect of the retrieval error on the plume
detection algorithm is part of other error components. Fig-
ures 8b and 9b show that the SD of the retrieval error roughly
doubles from the low-noise scenario to the high-noise sce-
nario, which is consistent with the doubling of the random
error in the instrument scenarios. The SD is similar to the
uncertainty found in the analytical inversion (Table 2), which
also only includes errors from the instrument noise.
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Figure 7. Time series of estimated CO2 emissions of Berlin using a constellation of three satellites (#a, #c and #e) with medium-noise
instruments (σVEG50 = 0.7ppm). The plumes were detected from (a) the CO2 and (c) the NO2 observations. The error bars show constant
errors of 10.0 Mtyr−1 corresponding to the SD of the differences between estimated and real emissions. (b, d) The boxplots show the
difference between estimated and CO2 emissions at overpass of Berlin for six satellites. The boxes denote the range between 25th and 75th
percentiles, orange lines are median values, and whiskers are 5th and 95th percentiles. The numbers above the boxes are the number of
cases for which emissions could be estimated for all three scenarios (first number) and the number of successful emission estimates for each
scenario (second number).

Table 3. Mean bias (MB) and standard deviation (SD) of differences between estimated CO2 emissions and emissions at overpass time
(10:00–11:00 UTC) for Berlin based on observations with six satellites. The CO2 plume was either detected from CO2 or NO2 observations
(high-noise scenario). The results are for line densities computed from the sub-polygon means.

Plume σVEG50 Number of Median pixel Mean bias Standard deviation
detection plumes number of plumes (MB) (SD)

(ppm) Mtyr−1 % Mtyr−1 %

CO2 based 0.5 16/17 154 2.4 12.2 9.1 45.6
0.7 16/16 137 1.1 5.3 8.1 40.3
1.0 16/16 80 0.6 2.8 9.0 45.0

NO2 based 0.5 34/34 654 2.6 13.0 10.1 50.6
0.7 34/34 654 2.9 14.7 10.3 51.4
1.0 34/34 654 3.5 17.4 10.7 53.3

The retrieval error has a small positive bias that scales
with the absolute noise of the uncertainty scenarios. The rea-
son that the MB scales with the absolute noise is that the
same random errors, i.e., spatial noise pattern, were applied
to the three uncertainty scenarios of a scene except for a scal-
ing required to achieve the SD of the error σVEG50. Since

no systematic errors were applied to the satellite observa-
tions, we would expect that the MB of the retrieval error is
closer to zero. A likely explanation for the positive MB is that
the plume detection algorithm is more likely to detect CO2
pixels that are positive outliers, i.e., CO2 values that have
a large positive random error. If these outliers are included
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Figure 8. Mean bias (MB) and standard deviation (SD) of (a) method, (b) retrieval, (c) background, (d) wind and (e) total errors for CO2-
based plume detection. MB and SD are shown for the three uncertainty scenarios and for line densities computed from sub-polygon means
and Gaussian function, respectively.

Figure 9. Same as Fig. 8 but for plumes detected from NO2 observations.

when computing line densities, they result in a positive bias
in the estimated emissions. This artifact also affects plumes
detected from NO2 observations, because the same noise pat-
tern was applied to CO2 and NO2 observations. While this is
partly an artifact from setting up the OSSE in order to allow
for comparison between the different instrument scenarios, it
might also appear in real observations.

If line densities are calculated by fitting a Gaussian func-
tion to the plume detected from the CO2 observations, SDs
are higher likely due to the challenge of fitting the curve
through data with a low signal-to-noise ratio and because the
detected plume is narrow and does not include many back-
ground values outside the plume that would help stabilize the
baseline (Fig. 4d). Furthermore, the transect of the city plume
often does not resemble a Gaussian curve, which results in an
additional fitting error. In contrast, SDs are reduced when the
curve is fitted by constraining its width using the NO2 obser-
vations resulting in the lowest SDs of the retrieval errors.

4.3.3 Background error

The CO2 background has a strong impact on the estimated
emissions, because a bias in the background field results in
a bias in the CO2 signals and thus in the estimated emis-
sions. Figure 10 presents two examples of estimated and true
CO2 backgrounds for 27 February and 23 April 2015, re-
spectively. The true CO2 background was taken from the
model tracer that includes all emissions and fluxes except
emissions from Berlin. The background fields in the mass-
balance approach were estimated using the plume detected
from the NO2 observations (black dots). On 27 February, the
CO2 background field has a strong horizontal gradient and
the wind speed is relative low with 2 ms−1. On 23 April,
the background has no gradient and the wind speed is some-
what higher with 6 ms−1. In general, the estimated back-
ground field is smoother than the true background field,
which displays fine-scale patterns associated with meteorol-
ogy and CO2 fluxes. The MB of the differences within the de-
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tected plume is −0.03 ppm on 27 February and +0.04 ppm
on 23 April, which is small compared to the amplitude of
Berlin’s plume signal of about 1 ppm. The SD is 0.11 ppm
within the detected plume for both overpasses, which is much
smaller than the noise of the CO2 observations (σVEG50: 0.5
to 1.0 ppm).

However, the differences between estimated and true back-
ground vary spatially with local biases up to ± 0.3 ppm (see
Fig. 10c and f). The size, shape and orientation of these
patches depend on wind speed and direction. The patterns
are caused by the effect of meteorology on CO2 from anthro-
pogenic emissions outside of Berlin and biospheric fluxes
inside and outside of Berlin. Since the size of the patches
is similar to the size of the polygons used for computing
the line densities, the local biases in the background can re-
sult in biases in the line densities. For example, a MB of
0.1 ppm within a polygon would overestimate the line density
by about 30 kgm−1 for a typical plume width of 20 km. For
Berlin, we expect line densities of about 110 to 320 kgm−1

for emissions of 20 Mtyr−1, if we use wind speeds of 6 and
2 ms−1, respectively. As a result, the comparative small bias
of 0.1 ppm would result in a bias in the estimated emissions
of 10 % and 30 %. Since the patterns are rather random, the
resulting errors would mostly show up in the SD of the back-
ground error, and they would decrease if several line densities
were computed per plume. As plumes detected from NO2 ob-
servations are larger, SDs are expected to be smaller. Indeed,
this can be seen in the SDs of the background error, which
are about 50 % vs. 40 % for CO2- and NO2-based plume de-
tection, respectively (Figs. 8c and 9c).

The CO2 background concentrations obtained from the
plumes detected from the CO2 observations are slightly
higher (0.08 ppm on average) than the backgrounds from
the plumes detected from the NO2 observations. The reason
is that the plumes detected from the CO2 observations are
smaller and thus pixels outside the plume have higher CO2
values, because they still contain some enhanced values from
the Berlin plume or other smaller plumes in the vicinity. As a
consequence, the size of the detected plume has an impact on
the MB of the background error. For CO2-based plume de-
tection, the emissions are underestimated by 10 % to 30 %.
The effect increases with instrument noise, because detected
plume size decreases.

On the other hand, the plume detected from the NO2 ob-
servations is larger and thus includes all emission of Berlin
but might also include emissions in the vicinity of Berlin.
Therefore, the mass-balance approach does not only esti-
mate emissions from Berlin, but also emissions from sources
outside. Since there are no large point sources just outside
the city boundaries, emissions from outside of Berlin are
relative small. The CO2 emissions from outside Berlin are
4.2 Mtyr−1 (20 % of Berlin’s annual emissions at overpass)
within a radius of 25 km around Berlin’s city center. On av-
erage, emissions estimated from the plume detected from the
NO2 observations are about 10 % higher than Berlin’s emis-

sions. It is therefore necessary to interpret the emissions de-
termined with the mass-balance approach as emissions from
a footprint that may be larger than the area of the city (e.g.,
Pitt et al., 2019).

4.3.4 Wind error

The wind error computed here includes only the difference
between the mean wind below 500 m and the effective mean
wind speed within the detected plume. For the NO2-based
plume detection, its MB is close to zero (+0.04 ms−1, i.e.,<
1%) with a SD of about 1.6 ms−1 (32 %) for the 34 cases
with successful estimates. The mean effective wind speed for
these cases is 5.2 ms−1, which has been used to compute the
relative error. If CO2 observations are used for detecting the
plume, the mean difference increases from 0.5 to 0.7 ms−1

(14 %–19 %) for the low- to high-noise scenario, and the SD
is about 1.2 ms−1 (33 %) where the effective wind speed was
3.7 ms−1 for the 16 plumes.

The small MB with NO2-based plume detection shows
that the mean wind between 0 and 500 m was a suitable esti-
mate of the effective wind speed in the detected plume. The
MB increases for the CO2-based plume detection, because
mostly pixels in the vicinity of Berlin are detected from the
CO2 observations, while the plumes detected from the NO2
observations extend further downstream. In the vicinity of
the sources, the effective plume height is lower than further
downstream, because the city plume has undergone less ver-
tical mixing. Consequently, the effective wind speed is also
smaller, because wind speed is lower near the surface. The
small overestimation of the wind speed results in a significant
overestimation of emissions of about 6 % and 14 % to 22 %
for the NO2- and CO2-based plume detection, respectively.
The SD of the wind error leads to an error in the estimated
emissions of 30 % to 40 %.

We used the wind profile over the city of Berlin instead
of the wind inside the plume to account for model errors in
the estimated wind speed. As a result, SDs of the wind er-
ror were quite large (1–2 ms−1) but likely realistic, because
they are of a similar magnitude as difference between mea-
sured and simulated winds in model validation studies (e.g.,
Sharp et al., 2015). Although the mean wind between 0 and
500 m was found to be a suitable estimate of the effective
wind speed in this study, the choice of altitude range was
rather arbitrary. Averaging the wind, for example, between
0 and 1 km would overestimate emissions by 15 % on aver-
age as the wind speeds are higher. Choosing an optimal alti-
tude range is thus one of the largest challenges of the mass-
balance approach.

4.3.5 Total error

The breakdown of the errors shows that method, background
and wind error strongly contribute to the total error, while the
influence of the retrieval error is comparatively small. Since
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Figure 10. (a) Estimated background, (b) true background, and (c) difference between estimated and true background for 27 February 2015.
Black dots show the CO2 plume detected from the NO2 observations. Mean bias (MB) and standard deviation (SD) within the detected plume
are −0.03 and 0.11 ppm. (d–f) The same as (a–c) but for 23 April 2015 with MB and SD of 0.04 and 0.11 ppm, respectively. Note that MB
and SD are much smaller than the noise of the measurements. The effective wind speeds within the plumes are 2 and 6 ms−1, respectively.

the MB of the background error is negative for plumes de-
tected from the CO2 observations, the positive retrieval and
wind errors are partially compensated for, resulting in the de-
crease in the MB with increasing instrument noise (Table 3).

Our study did not include systematic errors from aerosols,
clouds and surface reflectance in the satellite observations.
Such systematic errors can lead to large-scale biases, which
would not affect the results if they influenced the observa-
tions inside and outside the city plume in the same way.
However, systematic error patterns correlated with the CO2
plumes, caused for example by enhanced aerosol concentra-
tions in the city plume, could lead to biased emission esti-
mates. Such effects are currently investigated in a study on
the use of aerosol information for estimating fossil fuel CO2
emissions (AEROCARB). They showed that the proposed
CO2M aerosol instrument (i.e., a multi-angle polarimeter)
can reduce systematic errors due to aerosols to a level suit-
able for monitoring CO2 emissions from cities (Houweling
et al., 2019).

The NOx chemistry used in our simulations was highly
simplified, accounting only for a constant NOx lifetime of
4 h. Laughner and Cohen (2019) recently estimated NOx life-
times of North American cities from satellite observation and
found annual mean lifetimes varying between 1 and 5 h for
different cities. In our study, a shorter lifetime would result
in NO2 signals that decrease faster downstream, and there-
fore the detectable plume would be correspondingly shorter.
A different plume length will reduce the number of polygons
available for computing line densities and thus could impact
the SD of the retrieval error. Berlin’s mean plume length

was about 90 km for plumes detected from the NO2 obser-
vations. A lifetime of 2 h would reduce the plume length to
about 45 km, which is the mean plume length from plumes
detected with the low-noise CO2 observations. The SDs of
the retrieval error are very similar between the shorter and
longer plumes detected from the CO2 and NO2 observations,
respectively (Tables S1 and S2 in the Supplement). This sug-
gests that the higher signals near the source are best for accu-
rate estimation of line densities, while CO2 observations fur-
ther downstream do not improve the emission estimate, be-
cause the line densities estimated for these more diluted parts
of the plume are more uncertain. We therefore expect that a
shorter lifetime does not affect our results. A full-chemistry
simulation would be necessary to fully understand the impact
of NOx chemistry on the mass-balance approach.

Overall, SDs of the total errors were smallest when the
NO2 observations were available for detecting the plume and
constraining the width of the transect. It might be possible to
reduce uncertainties when limiting the analysis to polygons
near the source where the plume is not yet strongly diluted
by turbulent mixing. The optimal distance presumably de-
pends on wind speed and atmospheric stability and has not
been analyzed here. The errors presented here could likely
be reduced further by better accounting for the temporal vari-
ability of emissions, the variability of wind speed within the
plume, and more generally by incorporating any other infor-
mation from models or observations that helps to constrain
the approach.
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4.4 Estimating annual emissions

The results up to now focused on estimated emissions at in-
dividual satellite overpasses. To obtain annual emissions (at
overpass time), seasonal cycles were fitted to the individual
estimates of the analytical inversion and the mass-balance ap-
proach. For the analytical inversion, the uncertainty of the in-
dividual estimates were taken from the uncertainties obtained
from the algorithm. For the mass-balance approach, we used
an uncertainty of 10 Mtyr−1 (50 % of emissions at overpass)
based on the estimated uncertainties in the approach. The
results are shown only for the medium-noise scenario and
for the method where line densities were computed from the
mean values in the sub-polygons.

Figure 2a and c show the seasonal cycle fitted for a con-
stellation of three satellites to the emission estimated by
the analytical inversion. For the time-constant emissions,
the annual emissions obtained from the fitted seasonal cycle
(17.5± 0.4 Mtyr−1) agree well with the true annual emis-
sions (16.8 Mtyr−1). For the time-varying emissions, the sea-
sonal cycle is also fitted well, but emissions are slightly
overestimated in winter where no emission estimates are
available. As a result, the estimated annual emissions of
21.6± 0.4 Mtyr−1 are slightly larger than the true emissions
at overpass (20.0 Mtyr−1).

Since the number of estimates is lower with the mass-
balance approach, fitting the seasonal cycle is more challeng-
ing, in particular, for the few estimates from the CO2 obser-
vations alone (Fig. 7a). Nonetheless, annual emissions were
estimated quite well with 20.9± 3.8 Mtyr−1 for a constel-
lation of three satellites. If NO2 observations are used for
detecting the plumes, the temporal coverage is better and
the seasonal cycle is fitted better, but emissions are overes-
timated in early summer. As a result, annual emissions are
also higher with 22.3± 2.5 Mtyr−1.

To analyze the effect of constellation size, we estimated
annual emissions for constellations of one, two, three and
six satellites (Fig. 11). Under the assumption of a perfect
model, the analytical inversion is able to estimate annual
emissions well for both constant and time-varying emissions
even with only one satellite (panels a and b) with an aver-
age precision of 1.1 Mtyr−1 (5.5 %). The time-varying emis-
sions are slightly overestimated, because the fitted seasonal
cycle tends to overestimate emissions in winter due to miss-
ing satellite overpasses in these months.

In contrast, estimating annual emissions with the mass
balance is very difficult if only the CO2 observations are
available for detecting the location of the plume. For a sin-
gle satellite, the number of overpasses with successful emis-
sion estimates is too small to fit a seasonal cycle in nearly
all cases, and even with two or three satellites the precision
is low with about 8.8 Mtyr−1 (44 %). The situation signifi-
cantly improves with additional NO2 observations. A single
satellite can estimate annual emissions in five out of six cases
with an average precision of 5.1 Mtyr−1 (26 %) due to the

better temporal coverage. The average precision increases to
4.4 Mtyr−1 (22 %) and 2.5 Mtyr−1 (13 %) for constellations
of two and three satellites, respectively. The annual emissions
are slightly overestimated, because of low temporal coverage
in winter and because the mass-balance approach is also sen-
sitive to emissions outside of Berlin.

To estimate annual emissions accurately, it is necessary to
resolve the real temporal variability of emissions. It should
be noted that the temporal variability in the COSMO-GHG
simulations used for generating the synthetic satellite obser-
vations likely underestimates the real variability. To generate
temporally varying emissions in the simulations, we applied
different diurnal, weekly and seasonal cycles to emissions
from different sectors such as energy production, traffic and
heating (Jähn et al., 2020). These fixed time profiles do not
account for effects from meteorology and human drivers such
as strikes, temporal traffic restrictions or holidays.

To resolve the temporal variability, a sufficiently large
number of individual emission estimates is required. The
number of estimates varies strongly between satellites due
to the uneven distribution of cloud-free days. Even with the
NO2 observations, it is still possible to have only four over-
passes with estimated emissions per year with two satellites.
Therefore, at least three satellites are likely necessary to get
reliable estimates of the annual emissions. Higher tempo-
ral coverage can alternatively be achieved by increasing the
swath width of the instrument.

Besides day-to-day variability of emissions, individual
emission estimates are also only representative of emissions
a few hours before the satellite overpass but not for the daily
mean (Broquet et al., 2018). It would therefore still be nec-
essary to apply a correction factor to obtain the annual mean
emissions, which introduces an additional source of uncer-
tainty not included in our estimate. In our simulation, the
emissions during overpass are about 18 % higher than the
daily mean, suggesting that the sampling bias would be of
the same order of magnitude. However, this result is entirely
driven by the sector-specific diurnal emission cycles pre-
scribed in the simulations. If the diurnal cycle of emissions
was known from other sources of information such as traf-
fic counts, electricity demand and heating statistics, a correc-
tion of the sampling bias could be applied, but this correction
would add an additional uncertainty. The uncertainty in cur-
rent estimates of diurnal emission variations is very poorly
known, which makes it difficult to derive uncertainties in di-
urnal cycle or precise knowledge about ratios between dif-
ferent periods of the day (Wang et al., 2020). Studies such as
those of Nassar et al. (2013), Gurney et al. (2019) or Peylin
et al. (2011) all present diurnal emission cycles from vari-
ous sources of information but no analysis of uncertainties.
The diurnal cycles presented in these studies are roughly in
line with our estimate of a sampling bias of the order of 20 %
with respect to the daily mean. Super et al. (2020) estimated
uncertainties in the diurnal variation from uncertainties in ac-
tivity data and emission factors, which, when applied to in-
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Figure 11. Estimated annual emissions at satellite overpass for (a) analytical inversion and (b) mass-balance approach with CO2-based
plume detection and (c) NO2-based plume detection for different constellation sizes. The number of overpasses with estimated emissions
are shown in brackets. If the number of estimated emissions is too small for computing the seasonal cycle, values are marked with a cross.
Error bars show the precision computed from the individual emission estimates at satellite overpass. The legend shows the mean error for
each constellation size.

dividual cities, would make it possible to better quantify the
potential sampling bias in estimating annual emissions from
sun-synchronous satellite observations in the future.

Finally, it should be noted that our results are representa-
tive for a city in mid-latitudes, where the temporal coverage
is larger, as the satellites can pass over a city twice during the
11 d repeat cycle, whereas at the Equator only one satellite
pass takes place per 11 d. The real temporal coverage is also
strongly affected by the number of cloud-free observations in
different latitudes.

5 Discussion and conclusions

In this study, a detailed analysis was conducted to investigate
the potential of a constellation of CO2 satellites with imag-
ing capability for quantifying the emissions of a large city
like Berlin with or without additional NO2 measurements.
The results are based on unique, 1-year-long very high res-

olution (1 km × 1 km) atmospheric CO2 simulations with
the COSMO-GHG model, which accounts for anthropogenic
and biospheric fluxes as realistically as possible. Synthetic
satellite observations were generated for 2km× 2km pix-
els from CO2 and NO2 model fields along the 250 km wide
swaths of a constellation of up to six satellites.

The CO2 emissions of Berlin were quantified by two dif-
ferent methods to assess the range of uncertainties associ-
ated with different assumptions regarding the capabilities of
atmospheric transport models. The emissions were quanti-
fied (1) by scaling the simulated CO2 tracer representing only
emissions from Berlin to match the synthetic CO2 observa-
tions without the CO2 background field and (2) by apply-
ing a mass-balance approach that estimates the flux of CO2
through vertical control surfaces perpendicular to the direc-
tion of propagation of the detected plume. The second ap-
proach relies on a plume detection algorithm using either the
CO2 or NO2 observations.
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The first method assumes perfect knowledge of atmo-
spheric transport and CO2 background fields. In this case, the
uncertainty of the emission estimates is entirely driven by the
ratio of instrument noise to the CO2 enhancements within the
plume, which varies from case to case due to varying winds
and cloud cover. The second method requires minimal model
information except for an estimate of the mean wind speed
within the plume, which would typically be obtained from a
numerical weather prediction model analysis.

The analytical inversion estimated emissions with a SD
of 3.0 to 4.2 Mtyr−1 for the low- to high-noise scenario and
without a bias because systematic retrieval errors were not
included here. The average number of successful estimates
is 11.0 per satellite and year (range: 5–17). For the mass-
balance approach 2.7 plumes per satellite (range: 1–7) were
available on average with CO2-based plume detection and
5.7 plumes (range: 0–10) with the NO2-based plume detec-
tion due to the better signal-to-noise ratio of the NO2 obser-
vations. The mass-balance approach had a precision of about
10 Mtyr−1 for both CO2- and NO2-based plume detection.

The results obtained here can be compared with the Re-
port for Mission Selection for CarbonSat that formulated a
requirement of 7 Mtyr−1 uncertainty for single overpasses
over a city with more than 35 Mtyr−1 (ESA, 2015). In our
study, annual mean emissions of Berlin were much smaller
(16.8 Mtyr−1) than assumed in previous studies due to the
use of a dedicated inventory provided by the city of Berlin.
Since emissions are higher during daytime than during night-
time, the emissions at satellite overpass time (11:30 LT)
are 20.0 Mtyr−1, which is still significantly smaller than
35 Mtyr−1. For this magnitude of emissions the requirement
of an uncertainty of 7 Mtyr−1 for single overpasses was
clearly met under the assumption that the CO2 signature of
the city plume and CO2 background field can be simulated
perfectly. When using a mass-balance approach applied to
the detected plumes, the requirement was almost met, irre-
spective of the uncertainty scenario used for the CO2 instru-
ment.

The emissions estimated with the mass-balance approach
can have significant systematic errors due to the challenge
of estimating the CO2 background and the wind field accu-
rately. Since the NO2 observations make it possible to not
only detect the full city plume but also other small plumes in
the vicinity, it is very helpful for estimating the CO2 back-
ground field more accurately and also for filtering out scenes
with interfering plumes from other sources. Additional NO2
measurements on the same platform as the CO2 measure-
ments are thus highly beneficial not only for detecting the
plume but also for estimating the CO2 emissions. Further-
more, the analysis showed that CO2 emission estimates do
not depend strongly on the precision of the CO2 observations
for large plumes, for example, a city plume with more than
100 pixels. For these cases, a wider swath and somewhat re-
duced CO2 single sounding precision might be a reasonable
trade-off. For smaller plumes, e.g., from power plants, a high

precision of the CO2 observations is likely more relevant be-
cause of the small number of pixels contained in the plume.

Annual emissions were estimated by fitting a seasonal cy-
cle to the individual estimates. The analytical inversion was
able to estimate annual emissions with good precision with
1.1 Mtyr−1 (< 6 %) even with only one satellite, but this as-
sumes perfect knowledge of the atmospheric transport. Esti-
mating the annual emissions was more challenging with the
mass-balance approach. If only the CO2 measurements were
available for estimating emissions, one satellite was not suffi-
cient for estimating annual emissions in most cases, because
the number of individual estimates was too small. The pre-
cision was still low with two or three satellites (9 Mtyr−1

(44 %)).
If NO2 observations were available to detect the CO2

plumes, the annual emission could be estimated with one
satellite in most cases (26 % precision) due to the bet-
ter temporal coverage. The precision improved further to
4.4 Mtyr−1 (22 %) and 2.5 Mtyr−1 (13 %) with two and three
satellites, respectively. It should be noted that the uncertainty
in an annual mean estimate derived from satellite obser-
vations does not only depend on the number of individual
plume estimates but also on the magnitude and correlation
structure of the temporal variability of the emissions. There-
fore, it is necessary to study how many individual emission
estimates are required to constrain this variability assuming
realistic temporal correlations.

Estimates of the city emissions are currently compiled in
emission inventories based on activity data, energy statis-
tics, emission factors and self-reported emissions. The un-
certainties in total city emissions have a large range depend-
ing on data availability, and many cities do not even have
an inventory (Gately and Hutyra, 2017). The characteriza-
tion of uncertainties in inventories is a complex topic, since
the characterization of uncertainties in the input parameters
and thus the propagation of uncertainties is difficult (Super
et al., 2020). The detailed emission inventory used for Berlin
in our study reports only sector-specific uncertainties from
which we estimate the uncertainty in total emissions to be
around 25 %–30 % (AVISO GmbH and IE Leipzig, 2016).
Our study therefore suggests that the CO2M mission will be
able to quantify annual emissions of a city like Berlin with
higher precision, even without knowledge about plume lo-
cation and CO2 background from a transport model, if addi-
tional NO2 observations are available for detecting the plume
and if the number of satellites is sufficiently large. With a
population of 3.5 million, Berlin belongs to the 150 largest
cities worldwide with more than 3 million inhabitants. The
total population of these cities is 1.1 billion, which is roughly
15 % of the world’s population (United Nations, 2018). Ac-
cording to the analysis of CO2 emission clusters by Wang
et al. (2019), there are also about 150 urban areas worldwide
that have similar or higher CO2 emissions than Berlin. Wang
et al. (2020) showed that it might even be possible to con-
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strain emissions of urban areas with emissions larger than
8 Mtyr−1, which would be about 300 cities.

Combining the mass-balance approach with additional in-
formation from models and other observations could further
improve the accuracy of the CO2 emission estimates if they
would help to constrain critical aspects of the method such
as the position of the plume or the wind speed. The Euro-
pean CO2 emission monitoring and verification support sys-
tem, as envisioned to be implemented in the Copernicus pro-
gram, would use the CO2M observations together with in-
formation from atmospheric transport models. Since spatial
mismatches between real and simulated plumes may lead to
large errors in the emission estimates, the system will have to
account for uncertainties in simulated atmospheric transport.
One way forward could thus be to develop an advanced data
assimilation system able to extract wind information directly
from the plume observation as demonstrated, for example,
by Allen et al. (2013) for a 4D-Var ozone assimilation sys-
tem. Since the shape and extent of the plume can be imaged
more accurately from the NO2 observations, the NO2 mea-
surements could be a very useful source of information in
such a data assimilation system.
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