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Abstract. Meteors and hard targets produce coherent radar
echoes. If measured with an interferometric radar system,
these echoes can be used to determine the position of the
target through finding the direction of arrival (DOA) of the
incoming echo onto the radar. Depending on the spatial con-
figuration of radar-receiving antennas and their individual
gain patterns, there may be an ambiguity problem when de-
termining the DOA of an echo. Radars that are theoretically
ambiguity-free are known to still have ambiguities that de-
pend on the total radar signal-to-noise ratio (SNR). In this
study, we investigate robust methods which are easy to im-
plement to determine the effect of ambiguities on any hard
target DOA determination by interferometric radar systems.
We apply these methods specifically to simulate four differ-
ent radar systems measuring meteor head and trail echoes,
using the multiple signal classification (MUSIC) DOA de-
termination algorithm. The four radar systems are the Mid-
dle And Upper Atmosphere (MU) radar in Japan, a generic
Jones 2.5λ specular meteor trail radar configuration, the Mid-
dle Atmosphere Alomar Radar System (MAARSY) radar in
Norway and the Program of the Antarctic Syowa Mesosphere
Stratosphere Troposphere Incoherent Scatter (PANSY) radar
in the Antarctic. We also examined a slightly perturbed Jones
2.5λ configuration used as a meteor trail echo receiver for
the PANSY radar. All the results are derived from simula-
tions, and their purpose is to grant understanding of the be-
haviour of DOA determination. General results are as fol-
lows: there may be a region of SNRs where ambiguities are
relevant; Monte Carlo simulation determines this region and
if it exists; the MUSIC function peak value is directly corre-
lated with the ambiguous region; a Bayesian method is pre-
sented that may be able to analyse echoes from this region;

the DOA of echoes with SNRs larger than this region are
perfectly determined; the DOA of echoes with SNRs smaller
than this region completely fail to be determined; the loca-
tion of this region is shifted based on the total SNR versus
the channel SNR in the direction of the target; and asymmet-
ric subgroups can cause ambiguities, even for ambiguity-free
radars. For a DOA located at the zenith, the end of the am-
biguous region is located at 17 dB SNR for the MU radar and
3 dB SNR for the PANSY radar. The Jones radars are usu-
ally used to measure specular trail echoes far from zenith.
The ambiguous region for a DOA at 75.5◦ elevation and 0◦

azimuth ends at 12 dB SNR. Using the Bayesian method, it
may be possible to analyse echoes down to 4 dB SNR for the
Jones configuration when given enough data points from the
same target. The PANSY meteor trail echo receiver did not
deviate significantly from the generic Jones configuration.
The MAARSY radar could not resolve arbitrary DOAs suf-
ficiently well enough to determine a stable region. However,
if the DOA search is restricted to 70◦ elevation or above by
assumption, stable DOA determination occurs above 15 dB
SNR.

1 Introduction

Radar systems are a vital part of current research infrastruc-
ture. They are used for a wide variety of novel (e.g. Sato
et al., 2014; Kero et al., 2012b; McCrea et al., 2015) and rou-
tine remote sensing observations (e.g. Hocking, 2005, and
references therein). One subset of these observations is ob-
jects and phenomena in the atmosphere that produce coher-
ent radar echoes. Meteor head and trail echoes, satellite and
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space debris echoes, polar mesospheric echoes, field-aligned
irregularities and many more phenomena fall under this cate-
gory. However, to discern the position and motion of these
radar targets, interferometric or multi-static radar systems
must be used.

When determining the position of an object by interferom-
etry, there is an ambiguity problem (Schmidt, 1986). The po-
sition is determined by finding the direction of arrival (DOA)
of the incoming echo onto the radar. Depending on the spa-
tial configuration of the receiving antennas and their individ-
ual gain patterns, the voltage response can be the same for
several different plane wave DOAs, thereby making it im-
possible to determine the correct direction. This problem is
general for all DOA determinations made by radar systems
with interferometry baselines longer than half a wavelength.
In this study, it is put in the context of meteor head and trail
echo observations.

Every day the Earth’s atmosphere is bombarded by bil-
lions of dust-sized particles and larger pieces of material
from space. This incoming material gives us a unique oppor-
tunity to examine the motion and population of small bodies
in the solar system (e.g. Vaubaillon et al., 2005a, b; Kasti-
nen and Kero, 2017). Objects with sizes between 100 µm
and 1 m that move in interplanetary space are called mete-
oroids. Meteoroids originate from comets and asteroids; they
are abundant and can have high velocities (Whipple, 1951).
When meteoroids enter the atmosphere, they burn up causing
a phenomenon known as a meteor (Ceplecha et al., 1998).
The meteor itself can be divided into two parts that function
as hard targets, namely the dense plasma co-moving with the
ablating meteoroid and the trail of diffusing plasma left in the
atmosphere. These generate the meteor head and trail echoes.

Meteor trail plasma drifts with the ambient atmosphere.
The drift velocity is therefore a measure of the neutral wind at
the observation altitude. The typical ablation altitude where
meteor phenomena occur lies between 70 and 130 km. This
region is characterised by variability driven by atmospheric
tides and planetary and smaller-scale gravity waves. Specular
meteor trail radars have become widespread scientific instru-
ments for studying atmospheric dynamics deployed at loca-
tions covering latitudes from Antarctica to the Arctic Sval-
bard (Kero et al., 2019). To calculate the neutral wind, the
DOA of the specular echo must be determined.

Due to the altitude distribution of meteor phenomena, the
far field approximation is almost always valid, which means
that an incoming echo can be modelled as a plane wave (Kil-
dal, 2015). The only exception is the Arecibo radio tele-
scope due to its 300 m diameter large spherical reflector at
a 430 MHz operating frequency. Using an interferometric
radar system to determine the DOA of a meteor head echo
as a function of time allows the construction of a meteoroid
trajectory (e.g. Kero et al., 2012b; Jones et al., 2005, 1998;
Szasz et al., 2008; Chau and Woodman, 2004; Close et al.,
2000). This trajectory is the base for computing the meteor

position, meteoroid velocity and radar cross section and for
reconstructing the original meteoroid solar system orbit.

There are analytical methods for determining all the ambi-
guities present in a radar system, although these scale poorly
and have several restrictions (Kastinen, 2018; Schmidt,
1986). Systems that have no theoretical ambiguities also suf-
fer from ambiguous DOA solutions due to noise (Kastinen,
2018; Jones et al., 1998). These so-called noise-induced am-
biguities are not multiple solutions to the DOA determi-
nation. Instead, the DOA determination output becomes a
stochastic variable that is no longer centred on the true DOA
but is spread out between several different DOA solutions
with similar radar responses. Thus, when determining the
DOA of a noisy signal, there is a probability of misclassi-
fying the DOA. This misclassification probability is separate
from the DOA error introduced by the noise that is usually
the focus in measurement pipelines (Kero et al., 2012b) and
depends on the signal-to-noise ratio (SNR) of the received
signal. In these cases, point spread functions (PSFs) have be
used to determine the morphology of expected ambiguities.
However, these do not relate SNR to DOA misclassification
probabilities (Chau and Clahsen, 2019). The morphology of
the PSF may also depend on the input DOA itself (further
discussed in Appendix B).

The existence of head echo events, such as the one illus-
trated in Fig. 1, is what prompted this study. This meteor
is seemingly jumping from place to place in the sky, even
though the range and line of sight velocity was well deter-
mined. This was a special case among thousands of other
successful and validated measurements using the same anal-
ysis and system. Hence, the goal of this study is to under-
stand enough about DOA determination behaviour to inves-
tigate these types of events, especially today when analysis
is automated and databases can contain millions of events
(Campbell-Brown, 2019). If even a small fraction of these
events stand out as interesting but are the result of ambigui-
ties or other artefacts, consequent research can be negatively
influenced. On the other hand, given strange results, large
portions of data may be discarded when in fact some are not
a consequence of ambiguities or algorithmic errors (Schult
et al., 2013). Having a good understanding of DOA determi-
nation behaviour may also allow us to analyse events with
lower SNR than at present (Jones et al., 1998).

There are no methods, to our knowledge, for resolving
noise-induced ambiguities in DOA determinations or for de-
termining the probability of misclassification. We have there-
fore extended upon the study performed in Kastinen (2018).

In Sect. 2 we present a numerical method for determining
the DOA ambiguities, which works irrespective of whether
the ambiguities are noise induced or not. The method can be
applied on arbitrary radar systems and experiences no large
scaling problems with system complexity. It also allows for
arbitrary receiver models to be used.

Section 3 provides an overview of how we have applied the
multiple signal classification (MUSIC) algorithm. The MU-
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Figure 1. Example meteor head event measured with the MU radar
which seems ambiguous. Panel (a) is the one-way range, panel (b)
is the line-of-sight velocity and panel (c) is the normalised wave
vector ground projection. The wave vector +y axis is aligned with
north and the +x axis with the east. The SNR varied between 8 and
16 dB for this event. The goal of this paper is to understand enough
about DOA determination behaviour to investigate these types of
events.

SIC method allows for an arbitrary sensor response model
and can thus be applied on any radar system.

We have focused on radars measuring the meteor phe-
nomena. However, the analysis methods applied are usable
on any kind of interferometric hard-target detections made
by radars. The radars that we have applied these techniques
on are described in Sect. 4, and the results are presented in
Sect. 5. The results for each system are also discussed in the
respective subsection. Finally, we conclude the results and
discuss the overall results in Sect. 6.

2 Method

2.1 Ambiguities

To find the ambiguities present when determining the DOA,
we need a radar sensor response model 8. A model for a
radar with antennas at locations rj with individual complex
gain functions gj (k), receiving a plane wave of amplitude A,
is described by the following:

8(k)=

 Ag1(k)e
−i〈k,r1〉R3

...

AgN (k)e
−i〈k,rN 〉R3

 . (1)

Here, k is the wave vector of the incoming plane wave. We
denote the inner product of a spaceX by 〈·, ·〉X, i.e. 〈·, ·〉R3 is

the real 3D inner product. In the case of radar systems with
sub-arrays, the gj (k) functions can be defined as follows:

gj (k)=

Nj∑
l=1

γj l(k)e
−i〈k,rj−ρj l〉R3 , (2)

where γj l(k) are the antennas’ individual gain functions, and
ρj l are the sub-array antenna locations. In this case, the rj
locations are the geometric centres of the sub-arrays, i.e. the
phase centres. In all radar systems we consider, the same type
of antennas are used throughout the system. Also, we are not
aware of any studies that find variability in individual antenna
gain patterns due to effects like mutual coupling for the radar
systems we have investigated. As such, we can use a common
function for all antennas γj l(k)= γ (k).

Usually, the wave amplitude A is unknown, and the DOA
determination algorithm should therefore be invariant of sig-
nal amplitude |8(k)|. As such, our definition of an ambiguity
should also be invariant of signal amplitude.

In the pursuit of an analytical solution, Kastinen (2018)
was unable to include the variable gain patterns gi of the
radar channels in the formula for finding ambiguities. The
calculation method presented there scaled badly with the
number of channels in the system and was not invariant to
signal amplitude. We have resolved these issues, thereby al-
lowing for any model 8 to be used, by numerically finding
ambiguities on a case-by-case basis.

The normalised sensor response model is written as fol-
lows:

8(k)

|8(k)|
= 8̂(k). (3)

Ambiguities are formed when the following occurs:∣∣∣〈8̂(k0),8̂(k)
〉
CN

∣∣∣≈ 1 : k0 6≈ k. (4)

Exactly what the conditions “approximate to” and “not ap-
proximate to” mean in this definition needs to be decided on
a case-by-case basis as explained further below. The reason
for this specific definition will also be covered further be-
low. Equation (4) is invariant to the individual antenna gain
γ (k). Thus, we may define γ (k)= 1 for all examined radar
systems.

We call an ambiguity perfect, i.e. unambiguous DOA
determination is impossible even at infinite SNR, if∣∣∣〈8̂(k0),8̂(k)

〉
CN

∣∣∣= 1 : k0 6= k.
We define a set of ambiguities to k0 as the vectors k that

fulfil Eq. (4), as follows:

�(k0)= {k :

∣∣∣〈8̂(k0),8̂(k)
〉
CN

∣∣∣≈ 1 : k0 6≈ k}. (5)

It is important to note that it is not sufficient to calculate the
set of ambiguities for only one k0, as this set may not display
the same pattern as the set for another direction k1.
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Following the definition in Eq. (4), an indicator function of
ambiguities is the normalised sensor response inner product,
as follows:

d(k)=

∣∣∣〈8̂(k0),8̂(k)
〉
CN

∣∣∣ . (6)

There are several other ways to define ambiguities. The
requirement is that the definition is invariant of the sensor
response norm and is to a constant phase offset in all dimen-
sions; which definition to use depends on the behaviour of
the DOA determination algorithm. One important property
of algorithms is whether or not they preserve orientation with
respect to 8̂(k0). Neither the MUSIC algorithm (see Sect. 3)
nor Eq. (6) preserve orientation. The latter is visualised by
imagining the inner product as a scalar projection of 8̂(k)
onto 8̂(k0). This projection contains the orientation of 8̂(k)
with respect to 8̂(k0). For real vector spaces, the orientation
is expressed in terms of + or −, while for complex vector
spaces it is expressed in the form of the phase of the complex
number. The orientation is disregarded in Eq. (6) when we
apply the absolute value.

One of several possible other formulations is using a
distance function. The definition would then be d(k)=∣∣∣8̂(k0)− 8̂(k)

∣∣∣. This is not invariant to the orientation. One
can also create a function that is not invariant by using the
inner product defined in Eq. (6) but not applying the ab-
solute value, i.e. d(k)=

〈
8̂(k0),8̂(k)

〉
CN

. These equations
and Eq. (6) often, but not always, produce equivalent solu-
tion sets given an ambiguity search, depending on search al-
gorithm configurations. We have elected to use Eq. (6) as an
ambiguity indicator function since it describes the behaviour
of MUSIC well.

If the set �(k0) is finite, the indicator function d must
have peaks with a single point top at every k in�(k0). These
peaks k are separated from k0 and have heights d that are
used to decide if they should be included in the ambiguity
set �(k0) or not. As the peaks identify ambiguities, we have
implemented a scattered gradient ascent method to determine
the ambiguity set � for a given k0. The step-by-step method
is as follows:

1. Define a source wave direction k0.

2. Generate a set of n start wave vectors {ai} distributed
(e.g. uniformly) on the hemisphere.

3. Do a gradient ascent search, using the gradient of
Eq. (6), for each start wave vector ai .

4. Collect the peak locations {bi} and peak heights {d(bi)}.

5. Remove duplicate results yielding the set of all ambigu-
ities and their peaks {ki,d(ki)}.

This method can be used with any sensor response model
to find ambiguities. After the set {ki,d(ki)} is acquired, it

is necessary to filter the set based on what is deemed ap-
proximate and not approximate as per Eq. (5). This is done
based on a minimum peak height εd and a minimum sepa-
ration from k0. The filtering prevents the inclusion of am-
biguities that only appear at unrealistically low SNRs. We
will from here on denote this filtered set of ambiguities by
�(k0)= {ki}.

An important factor to note is that these ambiguities are
not necessarily transitive relations. They are only transi-
tive when the indicator function is 1, i.e. they occupy the
same point in sensor response space. The intransitive rela-
tion means that, for d < 1, if k1 is ambiguous with k2 and
k2 is ambiguous with k3, k1 does not have to be ambiguous
with k3.

2.2 Noise

All the radar systems considered in this study have operating
frequencies in the very high frequency (30–300 MHz) range.
In this range, the galactic background radiation dominates
the noise (e.g. Bianchi and Meloni, 2007). This noise can be
well modelled (e.g. Polisensky, 2007). When measured by
an antenna, the noise is modelled as a circularly symmetric
complex normal random variable. Such a distribution is de-
fined as CN (µ= 0,6,C= 0), whereµ is the complex mean
vector, 6 is the covariance matrix, and C is the relation ma-
trix. We assume that the noise dynamics are the same for
every channel of an N -channel radar system. We can thus
use N random variables in a 1D complex space instead of an
N -dimensional complex space. Furthermore, since the dis-
tribution is circularly symmetric, we define the controlling
variable to be the variance of a single component, i.e. the
real or imaginary variance σ 2

c . The covariance matrix then
becomes 6 = 2σ 2

c . The sensor noise is defined as follows:

ξ =

 ξ1
...

ξN

 , (7)

ξi ∼ CN (0,2σ 2
c ,0). (8)

In pseudocode, the noise can now be sim-
ulated as xi = (rand_normal(N) +
1i*rand_normal(N))*sigma_c.

2.3 Signal-to-noise ratio

In order to relate results from simulations to measured data,
the noise-controlling variable σc needs to be related to a mea-
sured SNR. We have chosen to use an SNR that is calculated
after coherently integrating over all radar channels. The noisy
signal power is then defined as follows:

P =

∣∣∣∣∣ N∑
i=1

8i + ξi

∣∣∣∣∣
2

. (9)
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When we propagate the stochastic variables using standard
properties of complex normal distributions we find the fol-
lowing relation:

Nσ 2
c P ∼ χ

2(λ,2), (10)

where χ2(λ,2) is the non-central chi-squared distribution of
the second order, with λ parameter as follows:

λ=
1
N

(
AG(k)

σc

)2

. (11)

The order of a non-central chi-squared distribution is equal to
the number of squared normal distributions that are summed,
while the λ parameter is related to their mean values. Here
A is the signal amplitude, and G(k) describes the one-
directional gain in the source direction as follows:

G(k)=

∣∣∣∣∣ N∑
i=1

1
A
8i(k)

∣∣∣∣∣ . (12)

The expected value of the power is then the following:

E[P ] = (AG(k))2+ 2Nσ 2
c . (13)

Setting A= 0 gives the noise power E[Pn] = 2Nσ 2
c , and set-

ting σc = 0 gives the signal power E[Ps] = (AG(k))
2. SNR

is defined as the ratio between the signal power and the noise
power as follows:

SNR=
E[Ps]

E[Pn]
=

E[P ]
E[Pn]

− 1=
1

2N

(
AG(k)

σc

)2

. (14)

Assuming we have two measurements, namely one of the
noise power E[Pn] and one of the noisy signal power E[P ],
an SNR that is equivalent to that used in our simulations can
be calculated for any detected signal. Using Eq. (14), an ap-
propriate σc for a given SNR can be chosen for a simulation.

2.4 Direct Monte Carlo

Given a sensor response model and a noise model, we can
perform a direct Monte Carlo (MC) on any DOA determi-
nation algorithm. Given a true direction ki , the theoretical
noisy sensor response model is 8(ki)+ ξ . Then, a DOA de-
termination algorithm F can find an estimation of the source
direction as follows:

F(8(ki)+ ξ)= k̃. (15)

Thus, the estimated source direction k̃ also becomes a distri-
bution. We can sample this DOA determination output dis-
tribution by sampling the noisy signal distribution 8(ki)+ ξ
and applying the DOA determination algorithm F on each
sample. An example MC sampling of such a DOA output
distribution is illustrated in Fig. 2. This example was gen-
erated using the generic Jones 2.5λ sensor response model

Figure 2. Example Monte Carlo (MC) direction of arrival (DOA)
determination simulation with 500 samples. The generic Jones 2.5λ
radar model, as described by Eq. (30), was used to simulate the raw
data. Noise was introduced to an equivalent signal-to-noise ratio
(SNR) of 10 dB. The simulated noisy raw data were analysed us-
ing the two-step multiple signal classification (MUSIC) algorithm
(Sect. 3). The input DOA was located at 0◦ azimuth and 75.5◦ ele-
vation. At this SNR, noise-induced ambiguities are clearly visible.
The probability that the output is associated with the input is 79 %.

further described in Sect. 4.1. This radar model does not con-
tain any perfect ambiguities, yet at this SNR the DOA output
is scholastically clustered around noise-induced ambiguities.
The DOA determination was made using the MUSIC algo-
rithm described in Sect. 3. The interesting aspect that will al-
low a qualitative evaluation of measurement data is how the
DOA output behaviour evolves as a function of SNR, true
DOA, the sensor response model and the DOA determina-
tion algorithm. In Sect 5 we examine the first three of these
components while keeping the DOA determination algorithm
fixed.

2.5 Discretising the problem

The example MC DOA determination simulation in Fig. 2
contains apparent noise-induced ambiguities alongside the
spread of the DOA estimation around the input direction and
its ambiguities. This sampling of k̃ represents a continuous
distribution that contains information about both the DOA
determination accuracy and possible ambiguities. There are
many works that describe the error distribution of MUSIC for
DOA determination in radars (e.g. Kangas et al., 1994, 1996;
Ferreol et al., 2006). Here, we focus on the probability of
ambiguous DOA output and the general algorithm stabil-
ity. Therefore, we discretise the problem by using the set of
known ambiguities ki ∈�(k0) described in Sect. 2.1.

To account for a limited DOA determination accuracy, we
choose an inclusion distance s in the wave vector ground
projection plane. This distance determines the region around
an ambiguity and the true direction, within which we con-
sider that particular ambiguity to be chosen by the algorithm.
Thus, in the discretisation process, outputs will be consid-
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ered as associated to either an ambiguity or the true DOA;
otherwise, they have no association.

Practically, in the following, if:(
kix − k̃x

)2
+

(
kiy − k̃y

)2
< s2, (16)

then the sample k̃ is counted towards the probability Pi for
output point ki , assuming true input k0. The samples which
cannot be associated with any inclusion region are consid-
ered as algorithm failures, i.e. Pf = 1−

∑
iPi .

We are interested in the misclassification and algorithm
failure probability. We examine this by regarding the source
as a variable j and constructing a discrete conditional proba-
bility P(output i|input j)= Pij as a function of both source
and output location, i.e. only the rows i sum to 1.

Even though ambiguities are not necessarily transitive re-
lations, as mentioned in Sect. 2.1, there may still be some
overlap in the inclusion regions when we define them as
ki ∈�(kj ). We therefore need to give some thought to how
to practically discretise the problem. If we consider the usage
of the simulations as a tool for evaluating a set of ambigu-
ous observationsOobs = {kobs−l : l ∈ [1,Nobs]}, then one can
choose a k0 using this set of observations, by, for example,
picking the mean of the largest cluster or picking the kobs−l
with the largest SNR.

Assuming that we have chosen an echo from the target
and that our models are representative, then either k0 or one
of its ambiguities �(k0) is the true source. Consider that an
ambiguity ki ∈�(k0) would have an ambiguity kh ∈�(ki)
which is not part of our original set kh 6∈�(k0). The proba-
bility that kh is the source is zero as it could not have gener-
ated our observation k0.

To provide a set of input and output wave vectors that ac-
counts for all possible true k, two separate sets of points �X
and �Y should be formed. The process of constructing these
sets is illustrated in Fig. 3. This is useful when quantitatively
evaluating measurements as the same set �Y of output re-
gions i can be used for all simulation inputs j from the set
�X. The set �Y is chosen as the collected set of all ambigu-
ities to the simulated sources, i.e. �Y =

⋃
j

�(kj ) : kj ∈�X.

Practically, considering several sets of ambigu-
ous measurements from independent events, i.e.
Oobs−i,Oobs−i+1, . . ., were analysed using the methods
proposed here. If the individual ambiguity sets �(kj )

consistently do not explain the clusters of measured output
wave vectors, there is a high probability that either the
applied models are wrong or other effects are influencing the
DOA determination. These effects could be radar-phase cal-
ibration issues (e.g. Chau et al., 2014), antenna malfunctions
or erroneous phenomena models (e.g. multiple simultaneous
signals, signal interference or wave diffraction).

There are some practical consideration when implement-
ing the construction of �X and �Y , namely that duplicate
locations should not be included in �Y . These are handled

by removal based on closeness in relation to the inclusion ra-
dius. The ordering of the sets �X and �Y are so that the first
elements of �Y correspond to the elements of �X for clarity
when examining simulation results.

Using the definitions for �X and �Y , we represent the
probability Pij as a matrix, excluding all irrelevant associ-
ation probabilities. Taking a second look at Fig. 2, one can
imagine how a column of this matrix would be constructed.
For each DOA in�Y , we count the output inside its inclusion
radius. The probability Pij is this number divided by the total
number of samples. For the particular example in Fig. 2, the
probability that the output is associated with the true input is
79 %.

The columns of the matrix Pij describe different DOA in-
puts for the simulation, and its rows describe the probability
that the DOA determination algorithm outputs a location as
the result. The most desirable form of this matrix would be a
diagonal unit matrix, i.e. given true input j , the DOA algo-
rithm always finds the corresponding location as the output.
Unfortunately, this is not always the case as this probability
matrix is a function of the SNR, Pij (SNR).

The error of the probability matrix Pij estimation can be
determined using a Bernoulli distribution. The discretisation
can be viewed as a set of Bernoulli distributions that define
a success as “the output DOA fall into the inclusion region”
and a failure as “it did not”. Then, we can measure the prob-
ability parameter Pij for a region and the Bernoulli distri-
bution i, given input j through the fraction of samples in-
side that region out of all samples, i.e. P̃ij . This estimator’s
variance var(P̃ij ), i.e. the accuracy of estimation, can be ap-
proximated by substituting the distribution variance with the
measured Bernoulli variance and applying the central limit
theorem as follows:

var
(
P̃ij

)
≈

P̃ij

(
1− P̃ij

)
Ns

, (17)

where Ns is the number of samples. This estimator vari-
ance has an upper limit where the parabola is maximum at
P̃ij = 0.5. As such, the largest estimator standard error is√(

0.25
Ns

)
. Using 1000 samples, the largest error in probability

is
√(

0.25
1000

)
≈ 1.6 %.

2.6 Bayesian inference

It is generally not advisable to use data that are ambigu-
ous. Quantitatively describing when data are too ambiguous
for further usage is one of the goals of this study. For ex-
ample, as illustrated in Fig. 2, which represents a simula-
tion of a measured event, the event could be analysed given
that enough independent echoes were measured. The reason
why the event is usable is that the simulation shows that the
true direction has by far the highest output probability. This
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Figure 3. Overview of the relation between ambiguity sets.

means that one can pick the largest cluster of output DOAs
and conclude that this probably represents the true DOA.
However, for more complex radar systems and other input
DOAs, the situation would look different. This line of rea-
soning also does not give us a quantitative confidence in our
choice of true DOA.

If there is a need to analyse ambiguous data, we suggest
a Bayesian approach. As an example, let us return again to
the simulation presented in Fig. 2. We argued that, using the
simulation results when given enough independent measure-
ments of such an event, the measurements could be used to
infer the true DOA of the target. Bayesian inference gener-
alises this type of argument by optimally using all available
information to assign probabilities to all possible true input
DOAs.

Given a model with parameters x that represents an event
which has generated some observations D, Bayesian infer-
ence can be used to find the probability distribution of pos-
sible model parameters given the observed data, i.e. P(x|D).
This distribution is called the posterior. Here | indicates con-
ditional probability, i.e. P(A|B) is read as the probability of
A given B. The posterior is calculated through the use of
Bayes’ theorem, as follows:

P(x|D)=
P(D|x)P(x)

P(D)
. (18)

The P(x) term is called a prior probability, i.e. it de-
scribes what we think the probability distribution of possible
model parameters is before any observations. One can view
Eq. (18) as an update of the prior distribution by including the
knowledge gained from the new observationsD. The P(D|x)
term describes how probable the observed data are, given the
model parameters x, which is commonly called the likeli-
hood function in the Bayesian inference community. Finally,
the term P(D) can be viewed as a normalisation constant. It
is commonly referred to as the prior predictive distribution as
it describes the probability of the data prior to updating our
belief.

This approach is compatible with the problem at hand.
Assuming the matrix of probabilities Pij is calculated and
known, the probability of observing ki , given the input kj , is

exactly given by Pij . Therefore, in the following:

P(D|x)= P(ki |kj )= Pij . (19)

For the first observed DOA, the prior is uniform over all kj ,
as follows:

P(kj )=
1
NI
, (20)

whereNI is the number of columns in Pij , i.e. the size of�X.
If we observe i = a1 as the first calculated DOA, we can find
the posterior as follows:

P1(kj )=
Pa1 j

NI∑
j=1

Pa1 j

. (21)

If subsequent DOAs are observed, we update the probabil-
ity distribution over the model parameters by setting the last
posterior as our prior and applying the same formula, as fol-
lows:

Px(kj )=
Pax jPx−1(kj )

NI∑
j=1

Pax jPx−1(kj )

. (22)

If the observations ax are done at different SNRs, the Pij
matrix should be allowed to change for every update x as
Pij (SNRx).

This method may be able to infer the true direction even
in very ambiguous data. At the very least, this method pro-
vides a probability distribution over the possible directions,
as exemplified in Sect 5.

2.7 Ambiguous measurement simulation

A method for investigating whether the Bayesian approach
makes a significant improvement on analysis is measurement
simulation. The matrix Pij describes the probability of the
DOA determination generating the output indexed i given a
noisy measurement of the true input DOA indexed j . We can
thus simulate measurements as a multinomial distribution,
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where the distribution probabilities are given by a column j
of the Pij matrix. Sampling this multinomial distribution will
give a set of n-simulated measurements as a list of location
indices (i.e. output DOAs). Given this list of indices, Eq. (22)
can be applied to calculate the most probable input, given the
simulated data, without running the DOA determination al-
gorithm. We can repeat this process to obtain a simulated dis-
tribution for the posterior Px(kj ). This distribution is what
we would expect to see as inference results from a measure-
ment series of n points, given some true input. This distri-
bution is useful for evaluating both the method itself and the
radar system as it contains the probability of the Bayesian in-
ference finding the true input. This information can thus also
provide the minimum SNR and measurement number needed
to achieve a desired success rate in DOA determination, as-
suming the Pij matrices accurately model reality.

2.8 Impact of phase offsets

Effects like mutual coupling, errors in cable lengths and other
hardware-related issues can introduce phase errors in radars
(Chau and Clahsen, 2019). In Appendix A, we show that
phase offsets on the radar channel level do not affect am-
biguity dynamics if taken into account in the DOA analysis.
If phase offsets are unknown, they affect the accuracy of the
DOA determination and the ambiguity dynamics.

There has been extensive work done to determine phase
offsets as a whole on radar channels (e.g. Chau et al., 2014;
Chau and Clahsen, 2019), but we have found no work that
has empirically measured or modelled the phase offsets of in-
dividual antennas within a subgroup for the radars examined
here. Therefore, we cannot simulate a realistic distribution of
phase errors within subgroups.

To examine the impact of phase errors on the antenna level
within subgroups, we performed a pair of MC simulations for
the MU radar subgroup model. As input, the �X set for kI,
as given in Sect. 5, was used. For each antenna, a random
phase error between −45 and 45◦ was introduced. Then, an
MC simulation at an SNR of 3 dB was performed for both
the phase error model and the standard model. The probabil-
ity matrix for each of these simulations was calculated, and
the difference between them was examined. There was prac-
tically no difference in the probability matrices.

It should be noted that in this test the phase offsets that
generated the simulated noisy signal were also included in
the MUSIC analysis model. Finally, we ran two MC simu-
lations at 5 dB SNR for the MU subgroup model, using kI
and kII as input DOAs. In these simulations, the noisy signal
was generated with channel phase offsets measured using a
technique similar to the one presented in Chau and Clahsen
(2019) but analysed using no phase offsets. For these two
cases, the uncorrected phase offsets did not impact the am-
biguity dynamics, but it did introduce a small error in the
DOA determination accuracy. As such, the results presented
here are applicable in general when phase errors are mea-

sured or modelled and possibly even when not measured or
modelled. Further examination of the impact on ambiguities
of unknown phase errors is desirable but outside the scope of
the current study.

3 DOA determination

For the purposes of consistency and simplicity, we have used
the same DOA determination method for all radar systems
examined, namely the MUSIC algorithm (Schmidt, 1986).
This method allows for an arbitrary sensor response model8
and can thus be applied on all systems. MUSIC is practically
equivalent to beam-forming DOA methods but with reduced
variance due to the subspace approach. We here give a short
overview of how we have applied the MUSIC method.

We define a measured sensor response as the complex vec-
tor x ∈ CN . The sensor response model in Eq. (1) refers to a
so-called decoded signal. The decoded signal is the signal
coherently integrated over all temporal samples of a radar
pulse. However, the lowest level of raw data also contains
these temporal samples of the radar pulse. Given M tempo-
ral samples of the coded pulse, the measurement matrix then
consists of N rows and M columns as follows:

X=

 x1 x2 . . . xM

 . (23)

The correlation matrix R of our measurements is calculated
using matrix algebra as follows:

R=
1
M

XX†. (24)

The correlation matrix consists of coherently integrated
channel-to-channel phase differences over the temporal sam-
ples. The eigenvalues of the correlation matrix correspond
to signal powers, and the eigenvectors corresponding to
the largest eigenvalues span the signal subspace (Schmidt,
1986). If there is noise, the eigenspace spans the entire sen-
sor configuration space, otherwise it only spans the signal
subspace. First, we extract the eigenvectors P i and eigenval-
ues λi of the correlation matrix using standard linear algebra
methods. Then, assuming one signal subspace dimension, i.e.
one signal from one direction, we define the noise subspace
as the column space of the following:

Q=
(
. . . P j−1 P j+1 . . .

)
, (25)

where P j corresponds to the largest eigenvalue λj =

max({λi : i ∈ [1,M]}). This eigenvector represents the signal
subspace. MUSIC is a multiple signal classification method.
If there are multiple signals present in the data, the sec-
ond eigenvector and eigenvalue is associated with the second
strongest signal, etc. As the column vectors of Q form an
orthonormal basis, we consider the space as follows:

Q= span
{
P 1, . . .,P j−1,P j+1, . . .,PM

}
. (26)
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The scalar projection function P into this linear subspace Q
is as follows:

PQ(x)
2
=

M∑
i=1,i 6=j

〈Pi,x〉2CM = |Q
†x|2. (27)

The space Q represents the noise; thus, any space orthogonal
to Q is a signal. The projection of a vector onto an orthog-
onal space is zero; thus, we are searching for vectors x that
minimises PQ(x).

We write the projection function in terms of matrix opera-
tions as follows:

PQ(x)
2
= |Q†x|2 = (Q†x)†(Q†x)= x†QQ†x. (28)

Normalising and inverting the projection, we maximise in-
stead of minimise and find the familiar MUSIC function.
As we have a model for x as a function of DOA, we set
x =8(k) and find the following:

f (k)=

(
PQ(8(k))2

|8(k)|2

)−1

=
8(k)†8(k)

8(k)†QQ†8(k)
, (29)

which is the form usually recited in literature. This function
needs to be maximised by an appropriate method to find the
sensor response 8(k) that best matches the detected signal,
thereby also determining the DOA, k, of the signal.

As Eq. (29) takes the scalar projection onto the signal com-
plement space, the function is invariant to the orientation of
the vector with respect to the signal subspace basis. Thus, the
definition in Eq. (6) is appropriate for describing the ambigu-
ities of MUSIC.

We have chosen to apply a two-step maximisation method.
First, a finite grid search over all possible k was applied.
Then, the maximum found during this grid search was used
as an initial condition for a gradient ascent applied on ∇f (k)
to find the peak point. Finally, the peak value is used as out-
put, i.e. as the determined DOA of the signal.

However, there is no guarantee that the initial grid search
will always be able to identify the correct slope as an ini-
tial condition for the gradient ascent. If the peak width is
smaller, then the grid size of any slope may be found instead.
To solve this problem, we also implemented an option of run-
ning multiple gradient ascents in parallel. When this option
is enabled, instead of using only the maximum point from the
grid search as a starting value, the N largest values that are
separated from each other by at least δX in kx,ky space are
used. The separation condition ensures that no two starting
points are located on the same slope. These N starting points
are explored by a gradient ascent, and the largest peak among
them is chosen as the algorithm output.

4 Radar systems

The sensor response for all radars covered in this study was
modelled using two different models, with a simplified model

as follows:

8(k)=

 An1e
−i〈k,r1〉R3

...

AnNe
−i〈k,rN 〉R3

 , (30)

where ni is the number of antennas summed to that radar
channel. And a model using the subgroup gain patterns was
implemented as follows:

8(k)=

 Ag1(k)e
−i〈k,r1〉R3

...

AgN (k)e
−i〈k,rN 〉R3

 , (31)

gj (k)=

Nj∑
l=1

ei〈k,rj−ρj l〉R3 . (32)

The exceptions are the Jones-type radar systems in which
there are no subgroups but only single antennas. As previ-
ously mentioned, in these models r i indicates the locations
of individual antennas or the geometric centres of the sub-
arrays, i.e. the phase centres.

In this study, we have assumed that the antennas have om-
nidirectional gain. This is, of course, not the case as men-
tioned in Sect. 2, but this assumption has no impact on the
current study. As all radar systems examined have the same
antennas throughout the system; the individual gain function
for an antenna cancels in any algorithm that is invariant to
signal amplitude. However, in the implementation of a data
analysis pipeline, it is important to implement the individual
antenna gain pattern γ and the subgroup generated gain pat-
terns in the sensor response model to be able to determine the
radar cross section correctly.

We hereafter refer to the model in Eq. (30) as the phase
centre model and the model in Eq. (31) as the subgroup
model.

In Fig. 4, the antenna positions of all examined radars are
illustrated so that their individual configurations and sizes
can be compared.

4.1 Jones 2.5λ radar

Radar systems designed for studying meteor trail echoes
commonly consist of a wide angle (all-sky) transmitter sys-
tem and an interferometric receiver system (e.g. Jones et al.,
1998; Hocking et al., 2001).

The receiver system design is beset by two problems
(Jones et al., 1998), namely that antennas spaced more than
λ/2 apart give rise to ambiguities in the DOA, and that an-
tennas spaced less than λ/2 apart give rise to strong mutual
impedance. The so-called Jones 2.5λ radar configuration is
an elegant solution suggested by Jones et al. (1998) to rem-
edy the situation. The solution consists of using five anten-
nas, with one central antenna and two spaced by 2.5λ and
2.0λ in each of the two perpendicular cardinal directions (see
Fig. 4).
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Figure 4. The different radars considered in the DOA determination
study. For the radars which consist of subgroups of antennas, the
subgroup centres have radar-specific colours, while antennas and
subgroup borders are always grey and black. The Jones 2.5λ radars
are single-antenna channel radars; thus, coloured markers indicate
antennas here.

As described by Jones et al. (1998), the phase measure-
ments at the outer antennas relative to the central antenna can
ideally be used to calculate an unambiguous determination of
the echo DOA, taking advantage of the fact that the internal
antenna distances to the central antenna differ by λ/2. Fur-
thermore, the phase difference of antennas with 4.5λ spacing
is used to give better angular precision at the cost of am-
biguous DOA, the most probable solution of which is then
selected using the λ/2 phase difference.

Holdsworth (2005) investigated the Jones antenna config-
uration and found that the usage of 2.5, 3 and 5.5λ spacings
could produce more accurate echo DOA. Younger and Reid
(2017) developed the concept further and presented a solu-
tion which utilises all possible antenna pairs of a meteor radar
antenna configuration, similar to the DOA calculations using
MUSIC in this paper. In addition to providing results in ex-
cellent agreement with the original interferometric algorithm
by Jones et al. (1998), the method presented by Younger and
Reid (2017) and the MUSIC algorithm allow for different
layouts.

The Jones antenna configuration has remained predomi-
nant in meteor radar installations and is often referred to as
removing (in principle) any angular ambiguities (Hocking
et al., 2001). However, as was pointed out already by Jones
et al. (1998), the determination is sensitive to noise and only
unambiguous if the SNR is large enough. The original simu-
lations by Jones et al. (1998) showed that the method started
to produce incorrect apparent echo directions for elevations
greater than 30◦ when the SNR was below 17 dB, but that,
at the same time, the fraction of these was small down to
about 10 dB. The standardised All-Sky Interferometric Me-
teor Radar (SKiYMET) software meteor-detection data con-
tain an ambiguity level classification. If the ambiguity param-

eter is equal to 1, the data were determined to be unambigu-
ous, and if it is greater than 1, then there is a possibility that
the meteor was erroneously located (Hocking et al., 2001).

To our knowledge, there are no further quantitative in-
vestigations of the Jones 2.5λ radar configuration perfor-
mance, except for the studies mentioned above and refer-
ences therein. The results of applying the method presented
in this paper on the Jones 2.5λ radar to quantify noise-
induced ambiguities are given in Sect. 5.1. As the mentioned
previously, studies on ambiguities already exist; thus, simu-
lating a Jones 2.5λ radar also provides a good reference sim-
ulation for validation of the methods presented in Sect. 2.

4.2 MU radar

The 46.5 MHz Middle And Upper Atmosphere (MU) radar
near Shigaraki, Japan (34.85◦ N, 136.10◦ E), has a nominal
peak transmitter power of 1 MW and a maximum beam duty
cycle of 5 %. The present setup of the MU radar hardware
comprises a 25 channel digital receiver system. It was up-
graded from the original setup (Fukao et al., 1985) in 2004
and is described by Hassenpflug et al. (2008). After the
upgrade, the MU radar always transmit right-handed circu-
lar polarisation and receive left-handed circular polarisation,
with a phase accuracy of 2◦. The output of each digital chan-
nel is the sum of the received radio signal from a subgroup
of 19 Yagi antennas. The whole array consists of 475 an-
tennas, evenly distributed in a 103 m circular aperture, with
a main lobe maximum gain of 34 dB and a minimum half-
power beam width of 3.6◦. A schematic view of the array
and the subgroups is given in Fig. 4.

Early meteor head echo measurements, using the original
setup with four receiver channels (Nishimura et al., 2001),
are not investigated further in this study. The focus is instead
on the current 25 channel set-up, which has been used more
extensively for hard targets such as meteors (e.g. Kero et al.,
2011, 2012a, b, 2013; Fujiwara et al., 2016; Kastinen and
Kero, 2017).

4.3 MAARSY radar

The new Middle Atmosphere Alomar Radar System
(MAARSY) was constructed in 2009–2010 on the Norwe-
gian island of Andøya (69.30◦ N, 16.04◦ E), following sim-
ilar design principles as for the MU radar. It is a monos-
tatic radar operated at 53.5 MHz, with an active phased ar-
ray antenna consisting of 433 Yagi antennas (Latteck et al.,
2010). The antennas are, similar to the MU radar, arranged in
an equilateral triangle grid with 0.7λ (4 m) spacing, forming
a 90 m circular aperture. This results in a rather symmetric
radar beam, with a maximum directive gain of 33.5 dB and
a minimum half-power beam width of 3.6◦. Each individ-
ual antenna is connected to a transceiver with independent
phase control and output power up to 2 kW, enabling flexi-
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Figure 5. An alternative configuration of MAARSY subgroups
used as radar channels to the one illustrated in Fig. 4. In this con-
figuration, 15 channels are used instead of eight so as to include
the information from smaller but closely located hexagonal groups,
thus producing shorter baselines for less ambiguous interferometry
(Schult et al., 2017).

ble beam forming, beam steering and approximately 800 kW
peak transmitter power with 5 % duty cycle.

The smallest MAARSY sub-array unit consists of seven
antennas distributed in a hexagonal pattern, as illustrated
in Fig. 5. The receiver system currently allows for 16 sep-
arate channels. Early meteor head echo observations with
MAARSY used eight channels which were defined accord-
ing to Fig. 4, where seven of the channels consisted of the
combined input from seven sub-arrays (i.e. 49 antennas) and
the eighth channel contained the combined input from all an-
tennas (Schult et al., 2013). Later meteor head echo observa-
tions have made use of the alternative MAARSY configura-
tion shown in Fig. 5 (Schult et al., 2017).

The radiation pattern of MAARSY has been studied
and validated through observations of cosmic radio sources
(Renkwitz et al., 2012, 2013), scattering of a sounding
rocket’s payload (Renkwitz et al., 2015) and meteor head
echoes (Renkwitz et al., 2017). Methods have also been de-
veloped to calibrate and validate the measured phases of the
individual channels, using cosmic radio noise and meteor
head echoes (Chau et al., 2014).

4.4 PANSY radar

The Antarctic Syowa Mesosphere Stratosphere Troposphere
Incoherent Scatter (PANSY) is a mesosphere–stratosphere–
troposphere/incoherent scatter (MST/IS) radar located at the
Japanese Syowa Station (69.01◦ S, 39.59◦ E) in the Antarctic
(Sato et al., 2014). The first sub-arrays of the PANSY radar
were installed in 2011. The first continuous observations of
polar mesospheric summer echoes were made with a single
sub-array in January–February 2012. Due to snow accumu-
lation in the originally symmetric antenna field consisting of
1045 crossed Yagi antennas summed into 55 channels, sev-
eral of the sub-arrays were moved to higher ground, as illus-
trated in Fig. 4. This is the antenna configuration we have
used in the simulations.

PANSY operates on a centre frequency of 47 MHz and
with a peak power of 500 kW and 5 % duty cycle. The radar
is a challenge for DOA determinations as the subgroups are
located at different altitudes and partially disjointed and have
to be moved or intermittently be disconnected from the sys-
tem, depending on snow accumulation conditions. Even the
antennas within subgroups are elevated non-symmetrically.
Currently the antennas are distributed in altitudes ranging be-
tween −2 and +8 m from the reference plane.

In 2017, a peripheral antenna array for detecting field-
aligned irregularities (FAI) was installed (Hashimoto et al.,
2019). This has enabled the suppression of FAI echoes and
increased the number of power profiles usable for incoherent
scatter measurements of the polar ionosphere by more than
20 %. In this paper, we do not investigate the peripheral FAI
array.

4.5 PANSY meteor radar

The PANSY radar has recently been complemented
by a meteor trail echo interferometric receiver system
(Taishi Hashimoto, personal communication, 2020). The an-
tenna configuration is displayed in Fig. 4. Since the operat-
ing frequency of PANSY (47 MHz) differs from meteor radar
systems (typically 35 MHz), the configuration is more com-
pact when displayed in units of metres, even though the num-
ber of wavelengths are the same. The main difference be-
tween the PANSY meteor radar receiver and the Jones 2.5λ
radar is that the former is not a planar array but that the an-
tennas are displaced in the vertical (z) direction with up to
0.8 m, corresponding to ∼ 0.12λ.

5 Results

To demonstrate the above methods, we present results from
numerical simulations. The next step will be applying them
on measurement data. We aim to implement these methods in
our data analysis pipelines for meteor head echoes measured
by the MU radar and the PANSY radar in the future and to
classify the location probability of ambiguous meteor radar
trail echoes using Bayesian inference. However, the current
study allows us to quantitatively evaluate how DOA deter-
mination behaves with respect to SNR and to qualitatively
evaluate if ambiguities are relevant or not. Such results are
useful in the configuration and construction of pipelines.

For each of the radar systems described in Sect. 4, we have
applied the methods described in Sects. 2 and 3. Three input
directions k0 were chosen as sources:

I. kI = azimuth: 0◦, elevation 75.5◦,

II. kII = azimuth: 0◦, elevation 90◦,

III. kIII = azimuth: 45◦, elevation 40◦.

For each of these chosen sources, the following steps were
performed:
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– Determine all ambiguities using 1000 starting condi-
tions according to the method outlined in Sect. 2.1. This
generates the �X and �Y sets.

– Run an MC simulation of 500 samples for each input di-
rection in�X at all SNR levels, according to the method
outlined in Sect. 2.4. An appropriate range of linearly
spaced SNRs in decibel was used to capture the transi-
tion from stable DOA determination to complete algo-
rithm failure.

– Discretise the MC results into probability matrices Pij ,
using the sets�X and�Y according to Sect. 2.5 with an
inclusion radius of s = 0.07.

– Simulate measurements according to Sect. 2.7, and cal-
culate Bayesian inference distributions according to
Sect. 2.6, if applicable.

The ambiguity dynamics change as a function of input
DOA for all systems but the planar Jones 2.5λ configura-
tion. A complete overview of the indicator function d(k,k0)

is therefore 4D. To visualise the ambiguity dynamics, a grid
of k vectors over all possible k0 was used, and only the worst
ambiguity was saved for each grid point. That is, on each grid
point, k0 all ambiguities were calculated, and the maximum
value ambiguity was saved for that direction.

This kind of map shows in which source directions the
radar is able to resolve well and in which directions it cannot
uniquely determine. While it does not illustrate the morphol-
ogy of ambiguities, it does show the qualitative connection
between input DOA and limiting SNR. The white areas are
regions where no ambiguities were found using the selected
algorithm settings.

The analysis results for each of the radar systems (except
the planar Jones 2.5λ radar) are illustrated in Fig. 6. Overlaid
on these maps are red crosses illustrating the chosen source
directions further examined. These input DOAs kI–kIII were
chosen to cover a wide range of the worst ambiguity and ele-
vation angle. The same three directions were selected for all
systems to enable cross comparisons. We did not take pop-
ulation models or detection probabilities into consideration
when choosing these input directions.

Additionally, on the maps for the MU radar and the
MAARSY 15 channel radar, two elevation limits are shown
as two concentric circles. The inner circle represents the el-
evation above which DOA determination is practically un-
ambiguous. The outer circle illustrates the elevation below
which unambiguous DOA determination is practically im-
possible.

Before application on measurement data, one should val-
idate that the sets �X and �Y are predicting the behaviour
of the MC simulations so that unexpected dynamics intro-
duced by the DOA determination algorithm itself are not dis-
regarded. If the measurement data cannot be explained by
MC simulation, either the sensor response model or the phe-
nomenon model are most likely not representative.

5.1 Jones 2.5λ radar

First, we report results for the Jones 2.5λ radar as this is
the simplest system examined in the study. Furthermore, triv-
ial and previously published results exist for reference (e.g.
Jones et al., 1998; Chau and Clahsen, 2019).

Following the steps outlined above, the resulting DOA sets
�X and�Y for kI,kII and kIII were determined. As expected,
the generated ambiguity maps indicate that the Jones con-
figurations has prominent ambiguities at ±0.43 in the direc-
tional cosine along both of the array axes. As this is a simple
radar system, these ambiguities can be found with conven-
tional methods equivalent to the Nyquist–Shannon sampling
theorem (Jones et al., 1998). These ambiguities can also be
found by analytically solving Eq. (B1) from Appendix B.
Any ambiguity map for the Jones system is simply a transla-
tion in k space of the map at zenith, as shown in Appendix B.

A series of MC simulations were performed using the set
�X as input DOAs. The probability Pij was calculated for
each simulated SNR using the set �Y . The Pij matrix ele-
ments as a function of SNR are illustrated in Fig. 7 for the
source kI. One panel in Fig. 7 illustrates a column of the Pij
matrix, and each curve represents a row of the matrix. Out-
put 1–10 (⊂�Y ) correspond to input 1–10 (�X), while out-
put 11–19 (⊂�Y ) are scattered according to the second de-
gree ambiguities. Numerical values of input 1–10 are given
in Table 1, Jones 2.5λ and I.1–10.

As expected, the results for kII and kIII (not shown here)
are practically identical (as the ambiguity maps are identical)
to the ones illustrated in Fig. 7 but shifted in SNR space. The
relative SNR shifts are due to array gain differences and are
given numerically in Table 1.

Figure 7 shows the region where noise-induced ambigui-
ties are relevant. For example, the DOA of input 1 is always
correctly determined above 10 dB SNR. Noise-induced am-
biguous solutions appear between −10 and 10 dB SNR. At
lower SNR, the algorithm returns approximately uniformly
distributed results classified as algorithm failure. Different
input directions have different thresholds, as shown in Ta-
ble 1. For most directions 10 dB array SNR is not sufficient
for 99 % confidence.

Following the method outlined in Sect. 2.6, we have gen-
erated a simulated series of observations for the Jones 2.5λ
radar and analysed that series with Bayesian inference to find
Px(kj ). We have examined how often the Bayesian inference
Px(kj ) was able to correctly identify the true input by as-
signing it the largest probability. This gives an estimation for
the ideal expected success of applying Bayesian inference on
ambiguous echoes for that SNR. Repeating the process for
every SNR level that was simulated, we found the probability
of correct classification as a function of SNR and number of
observed outputs. Generally, the simulations showed that the
ideal relation between needed SNR and needed observations
followed an inverse relation with the number of observations.
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Figure 6. Map of worst ambiguity as a function of input DOA for the MU radar subgroup model (a), the PANSY subgroup model (b),
the MAARSY 15 channel radar subgroup model (c) and the 2.5λ receiver model (d). For each k0, an ambiguity search over k of d(k,k0),
as defined in Eq. (6), was performed. The result from the ambiguity search yields �(k0). The ambiguity with the largest inner product to
k0 gives the d value at the location k0 in the maps to the left. Using the applied colour scale, white indicates a better situation and black
indicates a worse situation with respect to ambiguities. An example of such an ambiguity search result is shown in panel (e) for a particular
k0. Overlaid on these maps are red crosses illustrating the further examined source directions and concentric elevation limits described in
Sect. 5. Note the difference in the colour scale between the top and bottom rows.

Figure 7. The discretised output DOA distribution as a function of SNR and input DOA for the Jones 2.5λ radar, when using kI to generate
�X and �Y . Outputs 1–10 (⊂�Y ) correspond to inputs 1–10 (�X), while outputs 11–19 (⊂�Y ) are scattered according to the second-
degree ambiguities. Numerical values of inputs 1–10 are given in Table 1 (Jones 2.5λ; I. 1–10). The DOA outputs that do not fall into any
discretisation region are classified as algorithm failure.
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Table 1. Summary results for all input DOAs used to perform an MC DOA determination simulation. These are the �X sets for kI, kII
and kIII. These limits show when the DOA determination with MUSIC for the respective radar system is stable to a level of 99 % output
probability of the true input. Thus, for the given DOA, echoes below the given SNR are possibly ambiguous. Note: Az – azimuth angle; El
– elevation angle in local radar coordinates. SNR – signal-to-noise ratio. An empty SNR indicates that none of the simulations produced an
input–output correspondence of 99 % or higher. For MU, MAARSY and PANSY radars, these results are from using the model described
by Eq. (31). For the Jones 2.5λ and the PANSY 2.5λ, the model in Eq. (30) was used. The indices correspond to the initial k vector and the
input–output maps illustrated for each radar system in Sect. 5.

Jones 2.5λ MU PANSY 2.5λ

Index Az (◦) El (◦) SNR (dB) Index Az (◦) El (◦) SNR (dB) Index Az (◦) El (◦) SNR (dB)

I.1 −60.63 59.60 15.86 I.1 87.15 72.13 −1.03 I.1 −33.55 35.82 12.07
I.2 −113.52 61.08 8.97 I.2 −169.72 58.77 −6.55 I.2 −60.66 59.59 9.31
I.3 −179.33 79.01 12.41 I.3 −126.53 60.68 0.34 I.3 113.94 61.19 6.55
I.4 0.18 46.26 17.59 I.4 3.72 52.37 −2.41 I.4 179.26 79.13 13.45
I.5 −144.89 39.22 12.41 I.5 −146.41 37.47 – I.5 0.00 75.50 9.31
I.6 60.20 59.46 8.97 I.6 26.70 30.27 – I.6 −0.51 47.18 16.21
I.7 152.76 13.23 19.31 I.7 −33.30 56.18 −5.17 I.7 103.93 25.95 12.07
I.8 −0.00 75.50 14.14 I.8 0.00 75.50 −1.03 I.8 60.88 59.93 14.83
I.9 32.58 34.58 14.14 I.9 144.19 63.80 −2.41 I.9 145.82 38.68 13.45
I.10 −102.45 25.12 12.41 I.10 109.76 49.88 −6.55 II.1 −32.97 90.00 23.10
II.1 −135.00 51.17 23.97 I.11 41.21 58.17 0.34 II.2 −90.28 63.82 21.72
II.2 −116.75 8.09 27.76 II.1 −27.64 90.00 16.67 II.3 90.85 64.03 21.72
II.3 89.71 63.84 23.97 III.1 45.00 40.00 34.24 II.4 179.94 63.64 21.72
II.4 −179.72 63.83 22.07 III.2 −26.28 20.42 38.31 II.5 −0.51 64.20 23.10
II.5 103.35 90.00 23.97 III.3 145.18 43.81 39.66 II.6 −28.23 15.52 20.34
II.6 45.00 51.17 23.97 III.4 −162.23 20.66 34.24 II.7 −45.83 51.62 20.34
II.7 63.25 8.08 27.76 PANSY II.8 −65.41 10.70 23.10
II.8 0.28 63.84 23.97 II.1 −98.84 90.00 3.28 II.9 119.07 6.66 28.62
II.9 26.75 8.09 27.76 MAARSY 15 channel II.10 135.85 51.01 21.72
II.10 −90.29 63.83 23.97 I.1 −71.17 49.50 – III.1 45.00 40.00 16.21
II.11 −153.25 8.09 27.76 I.2 173.42 35.64 – III.2 −120.83 48.76 13.45
III.1 −74.33 69.17 14.14 I.3 64.25 47.34 – III.3 78.60 56.08 16.21
III.2 79.43 56.71 12.41 I.4 −139.15 67.37 24.48 III.4 169.87 55.14 13.45
III.3 164.33 69.17 14.14 I.5 −111.75 19.13 – III.5 −79.52 54.73 13.45
III.4 45.00 40.00 12.41 I.6 18.55 33.16 – III.6 85.27 11.42 17.59
III.5 44.98 82.01 14.14 I.7 102.44 13.94 – III.7 5.50 13.99 16.21
III.6 −135.00 36.11 7.24 I.8 0.01 75.50 30.00 III.8 10.80 55.83 16.21
III.7 10.57 56.72 14.14 I.9 175.81 35.15 – III.9 −148.83 48.88 13.45
III.8 −135.00 60.76 12.41 I.10 −23.32 34.67 –

5.2 MU radar

In contrast to the Jones 2.5λ radar, the MU radar channels
consists of subgroups of antennas. If all subgroups were iden-
tical and had a reflection symmetry line, this would mathe-
matically assure that the sub-array gains do not have imag-
inary components and have the same dependence on input
DOA. Practically, it would mean that the sub-array gain pat-
terns gj could be omitted. However, as is illustrated in Fig. 4,
the MU radar has six outer subgroups that are not symmet-
rical nor equal. Thus, the subgroup gain will affect the nor-
malised sensor response model and the DOA determination
capabilities. Therefore, we consider both of the models de-
scribed in Eqs. (30) and (31).

Given the MU asymmetric subgroups, one could consider
the model in Eq. (30) as being unphysical. Nevertheless, the
phase centre model has been successfully used to analyse
meteor head echoes from the MU radar (Kero et al., 2012b).
The reason is that the two models obviously converge to-
wards the zenith and are very similar in the main lobe and
first side lobes as they are both models of planar arrays. Since
most meteor head echo detections occur in the main lobe of
the radar, only a small portion of the events are affected by
the difference between the two models.

As the ambiguity results for the phase centre model are
close to trivial (see Appendix B), we do not present any am-
biguity maps for that model. It is sufficient to note that there
are no ambiguities with d = 1 due to the geometric centres of
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the six outer groups breaking the symmetry of the 19 hexag-
onally symmetric inner groups.

The MU radar subgroup model is expected to have an
ambiguity map that varies as a function of input DOA. We
present maps for kI, kII and kIII and the resulting DOA sets
�X and �Y in Fig. 8 to exemplify the variability in the am-
biguity map morphology in addition to the variability in the
worst ambiguity (see Fig. 6).

Comparing the phase centre model with the subgroup
model, the DOA determination situation improves slightly
for kI and kII, as many ambiguities become less prevalent.
This can be attributed to the fact that the two models di-
verge at lower elevations, thereby making it easier to distin-
guish a low-elevation DOA from a DOA near the zenith. For
kI, the closest ambiguities basically remain at the same dis-
tance d = 0.97. Furthermore, for kIII, there is even a close-to-
perfect ambiguity (d = 0.999988), as illustrated by Fig. 8c.
This may appear surprising as previously there were no per-
fect ambiguities. However, the change makes sense given the
internal antenna configuration of the outer subgroups that dif-
ferentiate between the ambiguities formed by the 19 inner
subgroups.

The phase output of subgroup 1, the outer subgroup to the
west in Fig. 4, using the subgroup model versus the phase
centre model is illustrated in Fig. 9. The two red crosses cor-
respond to the two directions labelled d = 1.00 in Fig. 8c.
Here it is clearly seen that the phases have equal values for
these two directions when including subgroup gain in the
left panel of Fig. 9, while the phase values were very differ-
ent when using the phase centre approximation shown to the
right of Fig. 9. This channel is the main contributor to dif-
ferentiating between these two ambiguities that appear due
to the 19 inner subgroups. This highlights the advantage of
numerically investigating ambiguities, either by sensor re-
sponse model ambiguity indicator maps or by MC simula-
tion, as this ambiguous DOA would probably have gone un-
noticed otherwise.

As the phase centre model and subgroup model converge
towards the zenith, we only present MC results from the sub-
group model. The summary of the MC MUSIC DOA deter-
minations for that model is illustrated for kI, kII and kIII in
Figs. 10, 11 and 12, respectively.

From Fig. 10 we see trouble with determining directions
uniquely if they are in the dark zone indicated by the MU
panel in Fig. 6. The input and output locations are given by
Fig. 8. Here, the MUSIC DOA determination is unable to se-
lect the correct output for input 5 and 6, even though there is a
small difference between the signals (d = 0.999988, as men-
tioned previously). As these simulations were using a single
starting point for the MUSIC gradient ascent, the behaviour
could be caused by a narrow peak problem. When using a
fixed grid to select the starting point for the MUSIC gradient
ascent, it may miss a narrow peak.

To test if a narrow peak was causing problems, we applied
the parallel gradient ascent technique described in Sect. 3

when performing MC simulations for kIII. We chose the
N = 20 largest grid points with a minimum separation of
δX = 0.1 as initial conditions for the gradient ascents. We
also increased the examined SNR range to find the region in
which a d = 0.999988 ambiguity could be correctly deter-
mined. The resulting MC statistics are illustrated in Fig. 12.
For targets with SNR higher than 40 dB, an unambiguous
DOA determination in this region is possible. Candidates
for producing such strong echoes include bolides with large
radar cross sections and active satellites.

As in Fig. 6a, all directions located close to the zenith are
very robustly determinable. Therefore, no extensive MC sim-
ulations are needed for kII. Instead, we ran a set of sparse
simulations in the SNR space to examine the onset of algo-
rithm failure, illustrated in Fig. 11. In this case, the onset
occurs below around 12 dB SNR.

The different input locations differ significantly in the
SNR needed for stable DOA determination. This SNR limit
also differs with respect to the used sensor response model.
As such, the MUSIC peak value is a more stable quality in-
dicator than SNR for DOA determination. The MUSIC peak
value directly describes how well the used sensor response
model matches the measured signal. The MUSIC peak dis-
tribution for the MU sub-array model simulations is given in
Fig. 13. The simulations are the same as those illustrated in
Fig. 11. In the SNR range (SNR.10 dB) where the MUSIC
peak value appears to be independent of SNR, the algorithm
cannot find any significant matches. The SNR region just
above the flat section of the distribution is where ambigui-
ties can occur. Measured echoes deviating from this relation
between SNR and MUSIC peak value indicate an erroneous
sensor response model.

As the MU radar is a more complex system than the Jones
2.5λ radar, it might be misleading to simulate Bayesian in-
ference, and we have therefore not done so. Also, the results
indicate that for many directions ambiguities are not relevant.

5.3 MAARSY radar

The MAARSY radar system is limited to 16 output channels
but with a flexible subgroup configuration. Studies looking
at the interferometry of meteor echoes with MAARSY have
predominantly used two different configurations. These con-
figurations are illustrated in Figs. 4 and 5, and we hereafter
refer to the them as MAARSY eight channel (Schult et al.,
2013) and MAARSY 15 channel (Schult et al., 2017).

The phase centre model of the MAARSY eight channel
configuration contains many perfect ambiguities. In this an-
tenna configuration, all subgroups contain reflection symme-
try lines, which means that their individual subgroup gains
do not resolve ambiguities. However, the MAARSY eight
channel configuration also contains the entire array as one of
the channels. This channel has a significantly different gain
pattern compared to the other channels. This creates a small
shift in the sensor response between different directions. We
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Figure 8. Ambiguity analysis summary illustration for the MU radar using the subgroup model. The three columns represent the source
DOAs kI (a, d), kII (b, e) and kIII (c, f). For each column, the top row consists of sensor response inner product d(k) maps calculated using
Eq. (6). The value of d(k) ranges from 0 to 1 as Eq. (6) effectively describes the norm of the projection of one point on a unit sphere onto
another; thus, the maximum distance is 1. Overlaid on the map is the reference DOA k0, the simulated input DOA set kj ∈�X and the
possible output DOA set ki ∈�Y . Panels (d)–(f) show an indexing map for input–output locations.

Figure 9. Comparison of the signal phase measured using the sub-
group model and the phase centre model of MU radar channel 1
(the outer asymmetric subgroup to the west, illustrated in Fig. 4).
The inclusion of the asymmetric antenna positions in the subgroup
model affects the expected phase measurements of the signal as a
function of wave DOA. The two red crosses mark two directions
that are ambiguous in the subgroup model but not in the phase cen-
tre model.

have neither included an illustration of the ambiguity analy-
sis of the phase centre model nor the subgroup model for the
MAARSY eight channel configuration as they are trivial and
ambiguous.

For the phase centre model of the MAARSY 15 chan-
nel configuration, there are many close-to-perfect ambigui-
ties and a few perfect ones. The distribution of ambiguities
is close to identical to the MAARSY eight channel one. The

addition of the smaller hexagonal subgroups, illustrated in
Fig. 5, creates a decent basis for being able to determine a
trajectory uniquely. But, in practice, if no assumptions are
applied to restrict the DOA, our results such as, for exam-
ple, Fig 14 indicate that it works reliably only for high-SNR
targets.

In the MAARSY 15 channel configuration, half of the
channels have vastly different antenna gain patterns. This fact
makes the configuration better when the subgroup model is
applied. We do not present any MC simulations for the phase
centre model of the MAARSY 15 channel configuration but
focus on the subgroup model.

In Fig. 6c, the sweep of worst ambiguity as a function of
input DOA is illustrated. There are still a significant number
of input DOAs that produce large inner-product ambiguities
using this configuration. Considering the stability inside the
main lobe, as indicated by the inner circle, and the distribu-
tion and severity at lower elevations, one can expect inter-
ferometric capabilities for a large portion of all meteor head
echo events.

A significant complication was discovered regarding the
application of the MUSIC algorithm on the MAARSY 15
channel subgroup model in that the vast differences in gain
between channels narrow down the peaks in the MUSIC
spectrum significantly. This is usually a desirable property as
it allows more precise DOA determination. However, if the
narrowing is extreme, a simple grid search for a peak will be-
come unreasonably costly in terms of computations. As the
difference in gain between the channels increases with zenith
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Figure 10. The discretised output DOA distribution as a function of SNR and input DOA for the MU radar, using the subgroup model and
kI to generate �X and �Y . The numerical values of inputs 1–11 (�X and corresponding to output 1–11) are given in Table 1, MU; I. 1–11.

Figure 11. The discretised output DOA distribution as a function of
SNR and input DOA for the MU radar, using the subgroup model
where input 1 is kII (�X) and output 1 is also kII (�Y ).

angle, the narrowing is a function of elevation, thus making
low-elevation sources harder to determine with grid methods.

A peak at 45◦ elevation from a 10 dB SNR echo would
have a peak width that requires a 3×105 by 3×105 point grid
(i.e. 9×1010 points) to be robustly discovered, as opposed to
the 200× 200 point grid we have used for the MU radar.

As such, we applied the multiple gradient ascent method
described in Sect. 3. This proved to be successful for solving
the narrow peak problem of MAARSY with a N = 50 and
δX = 0.1 for all tested cases.

The most prominent problem for DOA determination of
echoes in the zenith with the MAARSY 15 channel config-
uration is that they are ambiguous with many DOAs below
57◦ elevation. If one can restrict the DOA to high elevations,
a DOA determination algorithm should be fairly robust with
respect to correctly identifying the correct direction. This is
also supported by the MC simulations of this configuration.

Figure 12. The discretised output DOA distribution as a function of
SNR and input DOA for the MU radar, using the subgroup model
and kIII to generate �X and �Y . The numerical values of inputs
1–4 (�X and corresponding to outputs 1–4) are given in Table 1;
MU; III. 1–4.

As the results are very similar for kI, kII and kIII, only the
summary results for the kI simulations, without any eleva-
tion restriction, are illustrated in Fig. 14.

We also simulated a case in which an elevation restric-
tion was added to the DOA determination algorithm. It was
found that if the algorithm could be restricted to only accept
matches above 70◦ elevation by some reasonable arguments
or using a priori data, DOA determination for kI would be
stable above 15 dB SNR.
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Figure 13. Distribution of MUSIC peak values as a function of SNR
compiled from all MU subgroup model MC simulations, with the
zenith as the input DOA (see Fig. 11).

For kIII, as illustrated in Fig. 6, the DOA determination
suffers the same problem as the MU radar using the sub-
group model because there are perfect ambiguities at low
elevations. The general DOA determination performance is
worse for the MAARSY 15 channel configuration than the
MU radar, but they still display very similar behaviour for
kIII. The actual value for the ambiguity is d = 0.9999994, i.e
20 times closer to one than for the MU radar. It is unrealistic
to expect this ambiguity to be resolved within any reasonable
SNR for low-elevation DOAs.

5.4 PANSY radar

The PANSY radar is a special and interesting case when it
comes to DOA determination. Firstly, all antennas are dis-
tributed vertically, ranging between−2 and+8 m. The distri-
bution is asymmetric also within the subgroups themselves.
Secondly, as is illustrated in Fig. 4, the radar is split into five
larger collections of subgroups. These disjointed collections
are of different sizes and shapes and located relatively far
apart. This radar configuration would not be analysable with
conventional ambiguity analysis methods due to its complex-
ity. These reasons also make the subgroup gain patterns even
more important, and a phase centre approximation would be
outright unphysical to consider. Thus, we do not present any
results for the phase centre model. Examining the ambiguity
results for the subgroup model show very promising DOA
determination capabilities. However, we can also see a po-
tential problem with DOA determination algorithms due to
the bumpiness of the surface. Therefore, we have applied the
scattered gradient ascent method with the same configuration
as for MAARSY.

The MC DOA determination simulation summary for kII
is illustrated in Fig. 15. The results for kI and kIII are prac-
tically identical to the results for kII but have shifted in SNR
space. Examining these summary results shows that there is
no need to perform the Bayesian analysis. Ambiguities are
not prevalent enough, and usually only one clustering forms
in low-SNR conditions. Instead of ambiguities affecting the

quality of DOA determinations, sensor response model er-
rors should to be most problematic for PANSY meteor head
echo observations as the system setup varies over time due to
Antarctic conditions.

5.5 PANSY meteor radar

We only present summary results for the PANSY 2.5λ me-
teor receiver system as the very similar standard Jones 2.5λ
system results have been covered in Sect. 5.1. Since the an-
tennas are placed at the appropriate distances for a Jones 2.5λ
radar in the x–y plane but displaced in the z direction, the ac-
tual distances between the antennas are slightly larger than a
standard Jones 2.5λ system. Also, as it is not a planar array,
the ambiguity situation is dependant on input DOA, as shown
in Appendix B. As such it was also included in the ambiguity
sweeps in Fig. 6.

To summarise the comparison between the standard Jones
2.5λ and the PANSY 2.5λ receiver, the system performs
better then the standard system for DOAs originating from
south–east but performs worse for the opposite direction. The
MC simulations for this system is basically equivalent to the
standard system but slightly shifted in SNR space. The mag-
nitudes of these shifts are equal to the differences of the SNR
limits given in Table 1.

6 Conclusions

The main purpose of the ambiguity analysis and the MC
DOA determination simulations was to provide improved un-
derstanding of DOA determination dynamics. These results
and methods provide simulated theoretical references that are
useful when analysing real measurement data.

We compared the phase centre models and subgroup mod-
els for the MU, PANSY and MAARSY radars. For the MU
radar, even though the subgroup model has ambiguities at
low elevations, this is the expected behaviour in real data as
well. Its performance in terms of limiting SNR is also better
than the phase centre model. As such, the subgroup model is
overall the better choice. For the PANSY radar the situation
is similar as the phase centre model is outright nonphysical
and should not be used. In the case of MAARSY, if the DOA
search is restricted to high elevations, either model is suffi-
cient.

The simulations also provided insight into the construc-
tion of DOA determination algorithms. It was shown for the
MAARSY, MU and PANSY systems that an additional step
of a scattered gradient ascent had to be implemented due
to the topology of the MUSIC function. The success of this
method suggests that there may be other optimisation algo-
rithms that could further improve performance, such as the
bird swarm algorithm (Meng et al., 2016).

The comparison between a standard Jones 2.5λ system and
the PANSY meteor radar showed slight performance differ-
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Figure 14. The discretised output DOA distribution as a function of SNR and input DOA for the MAARSY 15 channel radar, using the
subgroup model and kI to generate �X and �Y . The numerical values of inputs 1–11 (�X and corresponding to outputs 1–11) are given in
Table 1; MAARSY 15 channel; I.1–11.

Figure 15. The discretised output DOA distribution as a function
of SNR and input DOA for the PANSY radar, using the subgroup
model where input 1 is kII (�X) and output 1 is also kII (�Y ).

ences, especially in the limiting SNR as a function of input
DOA. This knowledge can help calibrate thresholds for fu-
ture data analysis pipelines. The comparison showed the ad-
vantage of doing ambiguity analysis and MC simulation prior
to the construction of such pipelines as it reveals the expected
DOA determination performance of a system.

Considering the application of these methods and results
on measurement data, they provide a reference, not only for
SNR limits but also for model validation. If measurements
do not follow the dynamics simulated by these methods, as-
suming the pipeline itself is validated and stable, it points
towards the models not representing reality. This makes such
simulations a good validation tool for analysis pipelines. For
example, it has been frequently shown that multiple-receiver
radar systems are in need of phase calibrations (e.g. Chau
et al., 2014). In the case of the results presented here, the
dynamics would all be modified to some degree if one would

add constant phase offsets to each receiver in our models (see
Appendix A). The framework of DOA determination simu-
lation provides a possibility to test these matters.

We have explored a Bayesian approach to determine the
most probable DOA of a target given several measurements
distributed among noise-induced ambiguities. Such an ap-
proach can be applied if it is not possible to increase the SNR
using coherent integration. The results indicate that this is a
suitable method for providing a quantitative probability for
which DOA is correct. Using the Bayesian method, it ap-
pears possible to analyse echoes down to 4 dB SNR for both
the standard Jones 2.5λ radar and the PANSY meteor radar,
given enough independent data points from the same target.

Lastly, the MC simulations in this paper demonstrated
quantitatively that ambiguities are more or less relevant, de-
pending on radar system configurations. In systems where
ambiguities are not prevalent, the DOA determination fail-
ure onset is the important variable to determine. In systems
where noise-induced ambiguities are relevant, it is important
to determine the SNR range in which they emerge. Our re-
sults show that the PANSY system is not affected by noise-
induced ambiguities, while the MU radar has a small region
of SNRs where they could be relevant. The Jones-type sys-
tems and MAARSY all have relevant noise-induced ambigu-
ities.

Table 1 contains all the MC simulations performed in our
study, collected in terms of limiting SNR and input DOA.
Any DOA determination on data with SNR above the limit-
ing value will provide the correct output DOA with > 99%
confidence.

Using interferometric radar systems to perform meteor
head echo measurements, the trajectory can be directly de-
termined (e.g. Kero et al., 2012b). Techniques like the ones
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presented here can be employed to avoid misclassifying the
DOA and, thereby, avoiding nonphysical results. For exam-
ple, the existence of high-altitude radar meteors is still an
open question (Gao and Mathews, 2015; Kero et al., 2019).
Some previous studies have been centred on the low prob-
ability of side lobe detections as the explanation (e.g Vieri-
nen et al., 2014). With interferometric systems, this question
could be further addressed using these methods.
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Appendix A: Impact of known phase offsets on
ambiguities

Adding a phase offset to each element in the subgroups de-
fined in Eq. (32) gives the following:

gj (k)=

Nj∑
l=1

ei(〈k,rj−ρj l〉R3+φj l). (A1)

Inserting the phase offset subgroup model from Eq. (A1)
into Eq. (31), the explicit form of the inner product calcula-
tion in Eq. (6) becomes the following:

d(k)=

∣∣∣∣∣∣
M∑
j

 1
|8(k0)|

Nj∑
l

Ae−i(〈k0,ρj l〉+φj l)

∗
 1
|8(k)|

Nj∑
l

Ae−i(〈k,ρj l〉+φj l)

∣∣∣∣∣∣ . (A2)

Here, ∗ denotes complex conjugation. This form is valid
for all possible phase offsets, including radars with and with-
out subgroups. Using matrix algebra, Eq. (A2) can be rewrit-
ten as follows:

d(k)=

∣∣∣∣∣ 1
|8(k0)||8(k)|

M∑
j

w†
jvj (k0)v†

j (k)wj

∣∣∣∣∣ , (A3)

where

wj =

 e−iφj1

...

e
−iφjNj

 , vj (k)= A


ei〈k,ρj1〉

...

e
i〈k,ρjNj

〉

 . (A4)

If Nj = 1, i.e. single-antenna channels, then the vectors in
Eq. (A3) become scalars and the phase offsets wj are com-
mutative. Thus, w†

j and wj cancel to 1. As they cancel, the
phase offsets do not impact d(k). Therefore, phase offsets do
not impact the ambiguity dynamics.

Additionally, if φj l = φj , i.e. phase offsets are indepen-
dent of antenna in a subgroup, then wj = eiφj 1. The eiφj is a
scalar and is commutative. Thus, eiφj can be moved to can-
cel e−iφj , and phase offsets do not impact d(k). In all other
cases, the phase offsets will affect d(k) and change the am-
biguity dynamics of a system.

The results are the same if the ambiguity indicator d is
defined without the absolute value or if the distance |8̂(k0)−

8̂(k)| is used.

Appendix B: Ambiguities of planar arrays with
single-antenna channels

What follows is a derivation of the fact that planar arrays with
single-antenna channels are uniquely identified by a single
translated ambiguity map.

Inserting Eq. (30) into the inner product calculation in
Eq. (6) gives the following:

d(k)=

∣∣∣∣∣ M∑
j

1
|8(k0)|

ei〈k0,rj 〉
1
|8(k)|

e−i〈k,rj 〉

∣∣∣∣∣=
=

(
A

M∑
j

nj

)−2 ∣∣∣∣∣ M∑
j

e−i〈k−k0,rj 〉

∣∣∣∣∣ . (B1)

Equation (B1) shows, that for the phase centre model, a
singular function will define the morphology of the ambigu-
ity map which is only translated in k space. The k vectors
only move on the surface of a sphere in 3D. When the set of
rj vectors are planar, the translations become linear in 2D.
However, if the set of rj are not planar, the projection down
to 2D becomes non-linear, and the ambiguity maps are no
longer simple translations of the base function.

The results are the same if the ambiguity indicator d is
defined without the absolute value or if the distance |8̂(k0)−

8̂(k)| is used.
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