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Abstract. A method to distinguish cloud thermodynamic
phase from polarized Micro Pulse Lidar (MPL) measure-
ments is described. The method employs a simple enumer-
ative approach to classify cloud layers as either liquid wa-
ter, ice water, or mixed-phase clouds based on the linear vol-
ume depolarization ratio and cloud top temperatures derived
from Goddard Earth Observing System, version 5 (GEOS-
5), assimilated data. Two years of cloud retrievals from the
Micro Pulse Lidar Network (MPLNET) site in Greenbelt,
MD, are used to evaluate the performance of the algorithm.
The fraction of supercooled liquid water in the mixed-phase
temperature regime (−37–0 ◦C) calculated using MPLNET
data is compared to similar calculations made using the
spaceborne Cloud-Aerosol Lidar with Orthogonal Polariza-
tion (CALIOP) instrument onboard the Cloud-Aerosol Lidar
and Infrared Pathfinder Satellite Observations (CALIPSO)
satellite, with reasonable consistency.

1 Introduction

Due to their high temporal and vertical resolutions and
unique spectral sensitivity, lidars are key instruments for at-
mospheric profiling of gaseous species, aerosols, and translu-
cent clouds. In addition to providing unambiguous layer
height information, lidars are used for retrievals or di-
rect measurements of backscatter, extinction, optical depth,
temperature, and concentrations of these respective atmo-

spheric constituents (Weitkamp, 2005). Polarized lidar sys-
tems transmit light in one linear state and, by use of an opti-
cal device, typically a beam splitter, detect the returned signal
from both the initial and orthogonal polarization states. The
ratio of these two signals is referred to as the linear depolar-
ization ratio (LDR),

δ =
P⊥

P‖
, (1)

where P⊥ is the signal measured from the orthogonal po-
larized state and P‖ is that from the signal parallel to the
initial polarization state. From the time the earliest polar-
ized lidar measurements were made, it was realized that the
LDR could be used to distinguish certain atmospheric con-
stituents (Cohen et al., 1969; Schotland et al., 1971; Pal and
Carswell, 1973). Specifically pertaining to clouds, liquid wa-
ter clouds exhibit low LDRs (near zero) because of their
spherical shape, while ice water clouds, due to their irreg-
ular shape, tend to have higher values (between 0.3 and 0.6),
and mixed-phase clouds exhibit LDRs in between these two
extremes (Sassen, 2005, and references therein). It is noted
that multiple scattering induces an increase in the apparent
LDR measured increasingly further into the clouds (Sassen
and Petrilla, 1986; Sassen, 1991; Hu et al., 2006), which
can lead to values for liquid water clouds approaching the
threshold for ice water clouds with increasing depth. Con-
versely, oriented ice plates produce relatively low LDRs that
can be mistaken for liquid water clouds if the lidar is not
tilted slightly off-zenith (Sassen, 1991).
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Reliable, long-term observations of cloud thermodynamic
phase are critical for studies of the Earth’s radiation bud-
get. Liquid water clouds are broadly characterized by rela-
tively warmer temperatures, smaller droplet sizes, and higher
number concentrations. Therefore, they are more efficient at
reflecting shortwave radiation and are generally associated
with an overall negative cloud radiative effect (CRE) or cool-
ing (Yi et al., 2017). Conversely, ice water clouds (and specif-
ically cirrus clouds) are broadly characterized by colder tem-
peratures, larger particle sizes, and lower number concentra-
tions. Therefore, they can be more efficient at trapping long-
wave radiation and are generally associated with an overall
positive CRE or warming, though its magnitude and sign
exhibit latitudinal and daytime temporal diurnal variations
(Campbell et al., 2016; Lolli et al., 2017; Campbell et al.,
2020). The CRE of mixed-phase clouds will vary depending
on the ratio of ice to liquid within the cloud (Sun and Shine,
1994; Korolev et al., 2017).

Future changes in Earth’s climate may result in changes
in the occurrence and global distribution of cloud types
(Stephens, 2005; Hu et al., 2010; IPCC, 2013), so it is im-
portant to record and monitor cloud phases across all climate
regions. Furthermore, current numerical weather prediction
and climate models misrepresent cloud phase (particularly,
ice and mixed phase) as seen by observations because the
processes that govern phase transitions are still not fully un-
derstood (Ramanathan et al., 1989; Ringer et al., 2006; IPCC,
2013; Tan et al., 2016; Costa et al., 2017). Because these pro-
cesses take place on spatial scales much smaller than model
grid sizes, more frequent and diverse observations are needed
to improve cloud parameterizations.

The National Aeronautics and Space Administration
(NASA) Micro Pulse Lidar Network (MPLNET) is a feder-
ated network of Micro Pulse Lidar (MPL) systems deployed
worldwide in support of basic science and the NASA Earth
Observing Systems (EOS) program (Wielicki et al., 1995;
Welton et al., 2001). Since beginning in 2000, MPLNET
has operated using a standardized instrument and common
suite of data processing algorithms with thorough uncertainty
characterization, which makes for straightforward compar-
isons between sites. Some typical parameters for the MPL
are provided in Table 1. Most MPLNET sites are collocated
with the Aerosol Robotic Network (AERONET), providing
profile and column measurements of aerosols and clouds
in tropical, mid-latitude, and polar climate regions (Holben
et al., 1998; Welton et al., 2002; Campbell et al., 2003).
Following the modified EOS convention, data are publicly
available at Level 1 (L1; near real time, no quality screen-
ing), Level 1.5 (L15; near real time, quality screened), and
Level 2 (L2; upon request, not real time) product levels (http:
//mplnet.gsfc.nasa.gov, last access: 15 December 2020).

The lidar signal data, normalized relative backscatter
(NRB; Campbell et al., 2002; Welton and Campbell, 2002),
are utilized in the processing of all other MPLNET prod-
ucts (i.e. aerosols, clouds, planetary boundary layer). The

Table 1. Instrument parameters.

Parameter

Wavelength 532 nm
Laser pulse energy 6–8 µJ
Repetition rate 2500 Hz
Receiver diameter 178 mm
Vertical resolution 75 m
Temporal average 60 s

Version 3 (V3) MPLNET cloud algorithm is described fully
by Lewis et al. (2016). Cloud-layer height retrievals are per-
formed using two methods. The first relies on gradients in the
lidar backscatter profile and is primarily used for low-level
liquid water phase clouds. The other uses the uncertainty in
the lidar signal, as described by Campbell and Sassen (2008),
and is primarily used for high-level clouds (i.e. cirrus). A
multi-temporal averaging scheme is used to improve high-
altitude cloud detection beyond the previous Version 2 cloud
algorithm. In addition to layer height information, the V3
cloud products include estimates of extinction and optical
depth for thin cirrus clouds, cloud fractions, and cloud ther-
modynamic phase. Polarized MPLs were introduced to the
network at the time Lewis et al. (2016) was written; however,
the depolarization variables were still in development and not
used as part of the algorithm. The goal here is to present a
method by which ice water, liquid water, and mixed-phase
clouds can be identified from polarized MPL measurements
to fully describe the cloud thermodynamic phase.

2 Determining cloud thermodynamic phase

2.1 Polarized micropulse lidar data

The concept of a polarized MPL was introduced by Flynn et
al. (2007). The original design used a single detector and a
nematic liquid crystal retarder (LCR) to switch between lin-
early and circularly polarized states. However, the LCR was
limited to millisecond switching speeds, at best, which was
too slow for some cloud observations and generally unwieldy
overall relative to the data acquisition system available for
MPL instruments at the time. Therefore, the original polar-
ized MPL design was never used within MPLNET. A new
design, using a ferroelectric liquid crystal (FLC) to provide
switching speeds of the order of microseconds, has been thor-
oughly tested and characterized within MPLNET and is the
basis for the new cloud thermodynamic phase algorithm. Po-
larized MPL data have previously been used to autonomously
detect light precipitation (Lolli et al., 2013, 2020). The polar-
ized MPL requires temperature and polarization calibrations
to reduce systematic biases in the measured signal and de-
polarization ratio to within fractions of a percent. Without
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proper calibration, systematic biases as large as 30 % may
occur (Welton et al., 2018).

Despite the design change, the data produced using the
FLC are similar to those shown by Flynn et al. (2007), and
the relationships given to obtain the total lidar signal power
and LDR are still applicable. Here, and from this point for-
ward, we refer exclusively to the linear volume depolariza-
tion ratio, which includes contributions from both particulate
and molecular backscatter. This is in contrast with retrievals
of the linear particle depolarization ratio, which removes the
molecular contributions. The total lidar signal is given by the
NRB,

NRB(z)= Pco(z)+ 2Pcross(z), (2)

where Pco is the co-planar signal and Pcross is the cross-
planar signal. The LDR, equivalent to Eq. (1), and its un-
certainty are given by

δ(z)=
Pcross(z)

Pco (z)+Pcross(z)
(3)

and

1δ(z)=

√√√√δ(z)2[(1Pcross(z)

Pcross(z)

)2

+

(
1P 2

co (z)+1P
2
cross(z)

(Pco(z)+Pcross(z))2

)]
. (4)

An example of the NRB and LDR measurements collected
at the NASA Goddard Space Flight Center (GSFC) site on
5 October 2019 is shown in Fig. 1. The LDR in Fig. 1
suggests the presence of supercooled liquid water/mixed-
phase stratified clouds around 9 km, liquid water clouds be-
low 2 km, and ice water (cirrus) clouds near 11 km toward
the end of the day.

2.2 Algorithm description

Cloud thermodynamic phase is determined using the LDR
and its uncertainty and the cloud top temperature (CTT) ob-
tained from the Goddard Earth Observing System, version 5
(GEOS-5), atmospheric general circulation model (AGCM;
Rienecker et al., 2008; Molod et al., 2012). Specifically, the
Forward Processing for Instrument Teams (FP-IT) GEOS-
5, version 5.9.1, data are utilized (http://gmao.gsfc.nasa.gov/
products, last access: 15 December 2020). A schematic of
the cloud-phase algorithm is shown in Fig. 2. The first step in
the process is to obtain the LDR and uncertainty for each al-
titude bin within the detected cloud layer. The reason for us-
ing individual altitude bin values instead of layer-integrated
values is to avoid the ambiguity that exists for mixed-phase
clouds due to the stronger signal return from liquid water
compared to that from ice crystals. An example of this is
shown in Fig. 3 for the mixed-phase cloud presented from
5 October 2019 at GSFC. The cloud layer observed between
8 and 9 km (CTT=−32.1 ◦C) exhibits higher NRB near the
cloud top in both the co-polar and cross-polar signals com-
pared to the signals nearer the cloud base. However, the co-
polar signal peaks to almost 2 orders of magnitude larger than

Table 2. Cloud-phase diagnostic.

CPD Likely phase Definition

1 No cloud –
2 Liquid δ−1δ ≥ 0.00 and δ+1δ ≤ 0.05
4 Ice δ−1δ ≥ 0.30 and δ+1δ ≤ 0.50
8 Mixed δ−1δ>0.05 and δ+1δ<0.30
16 Undetermined All others, including 1δ/δ>1.0

the cross-polar signal at the cloud top. The resulting LDR is
nearly 0.3, just above the cloud base (indicative of precipitat-
ing ice crystals) and less than 0.02 at the cloud top (indicative
of liquid water). In contrast, the layer-integrated LDR,

δ̄ =

∫ top
basePcross (z) dz∫ top

base [Pco (z)+Pcross(z)]dz
, (5)

has a value of 0.035 that could be mistakenly identified as
pure liquid water cloud phase. The ability to detect mixed-
phase clouds in this manner is unique to ground-based lidar
systems. Spaceborne lidar (e.g. Cloud-Aerosol Lidar with
Orthogonal Polarization or CALIOP) views clouds like the
one shown in Fig. 3 from above and thus risks the signal be-
ing attenuated within the liquid water portion of the cloud,
before reaching the underlying ice virga. As such, there is
the potential for CALIOP to misidentify mixed-phase clouds
as consisting solely of liquid water (Zhang et al., 2010).

Figure 4 shows the relationship between LDR and tem-
perature derived using the altitude bins resolved within each
cloud layer detected using the combined V3 algorithm at
GSFC from 2018 to 2019. As explained in Lewis et al.
(2016), strong aerosol layers at high altitudes can be misclas-
sified as cloud layers due to their highly variable scattering
ratios. Given recent pyrocumulonimbus and volcanic activity
in the stratosphere (Peterson et al., 2017, 2018; Kirin et al.,
2019; Torres et al., 2020), cloud retrievals in this study are
limited to the troposphere in order to reduce the impact of
false cloud retrievals. The LDR in Fig. 4 is averaged in 5 ◦C
increments and median values are plotted along with the in-
terquartile range (IQR). The increase in LDR with decreasing
temperature is qualitatively similar to Fig. 10 within Yorks et
al. (2011), though they use layer-integrated values. The LDR
at warmer (colder) temperatures most likely associated with
liquid (ice) water clouds remains below 0.05 (above 0.30).
Based on these results, each altitude bin is assigned a cloud-
phase diagnostic (CPD) value based on the LDR and its un-
certainty as defined in Table 2. This diagnostic value provides
the likely cloud phase for each altitude bin. An enumerative
approach is then used to determine the thermodynamic phase
of the entire cloud layer, based on the CTT and CPD.
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Figure 1. Examples of the NRB (a) and volume depolarization ratio (b) at GSFC on 5 October 2019. Altitude bins where the signal
uncertainty is twice the signal strength have been suppressed for easier viewing.

Accurately measuring the cloud top with ground-based li-
dar is problematic (Pal et al., 1992; Platt et al., 1994). Op-
tically thin clouds can be penetrated by the laser pulse. The
transition to a molecular signal above the cloud may then be
used to report the true cloud top. However, many optically
thicker clouds completely attenuate the lidar signal, and only
an apparent cloud top can be reported (Lewis et al., 2016),
which produces an inherent warm bias in the CTT. Never-
theless, the cloud thermodynamic phase is presumed to be
liquid water for all clouds, regardless of the CPD, if the CTT
is warmer than 0 ◦C. Similarly, cloud phase is presumed to be
ice water (cirrus genus) for all clouds with CTT colder than
−37 ◦C (Sassen and Campbell, 2001; Campbell et al., 2015).
Cirrus clouds are unaffected by the warm CTT bias, because
only ice water is physically possible at colder temperatures.
However, the presumption of liquid water phase based on
CTT alone has an unknown influence on phase retrievals of
optically attenuated clouds warmer than 0 ◦C (less than 5 %
of the GSFC sample). In such cases, ice water may very well
exist above the apparent cloud top, but since the necessary in-
formation is not contained in the lidar return, supplementary
data (e.g. from radar) are needed to make such a determina-
tion.

Only clouds in the temperature regime where water can ex-
ist in either liquid water, ice water, or some combination of

those use the CPD to classify the thermodynamic phase. As
mentioned previously, multiple scattering effects can induce
increases in the LDR of liquid water clouds to values similar
to that of ice water clouds. Though the narrow field of view
of the MPL (∼ 100 µrad) minimizes such effects, the relia-
bility of the CPD to detect ice is limited to a certain height
above the cloud base, denoted as1h. The value of1h is em-
pirically determined as the height where the estimated two-
way transmittance falls below 0.25, calculated as described
by Lewis et al. (2016) using the iterative equation

T 2
c (Zk)=T

2
c (Zk−1)exp{
−2S∗

[
R′ (Zk)

T 2
c (Zk−1)

]
βm(Zk)1z

}
, (6)

where S∗ is the effective extinction-to-backscatter ratio,
R′ is the attenuated backscatter ratio, βm is the molecular
backscatter determined from GEOS-5, 1z is the range reso-
lution of the instrument, and Zk is the altitude of bin k above
the cloud base. At the cloud base, we assume T 2

c (Z0)= 1.
Retrievals from the 2018–2019 GSFC data exhibited mean
values of 1h ranging from 0.4 km (for liquid water clouds)
to 1.2 km (for ice water clouds) within the mixed-phase tem-
perature range (−37–0 ◦C).

The remainder of the cloud-phase algorithm simply counts
the occurrences of the CPD to determine a classification for
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Figure 2. Schematic of the cloud-phase algorithm. Lowercase phases (e.g. ice) indicate the cloud-phase diagnostic (CPD) for individual
altitude bins and capitalized phases (e.g. Ice) indicate the phase determination for the entire cloud layer.

the cloud layer. If multiple ice bins are found within 1h,
then we inspect above the last ice bin for the presence of
liquid or mixed bins (i.e. a decrease in the LDR) to deter-
mine whether the layer is pure ice or mixed phase. If no ice
bins are found within1h but multiple liquid bins are present,
then we look within 1h for the occurrence of mixed bins to
determine whether the layer is pure liquid or mixed phase. If
neither ice nor liquid bins are found, the layer is classified as
undetermined if more than 25 % of the bins CPD are unde-
termined or mixed phase otherwise. Figure 5 shows a mask

of the retrieved cloud thermodynamic phase for the 5 Octo-
ber 2019 case presented in Sect. 2.1. The liquid water clouds
below 2 km and the ice water clouds near 11 km are classi-
fied using only the CTT. The supercooled water clouds and
mixed-phase clouds are effectively classified using the enu-
merative approach.

https://doi.org/10.5194/amt-13-6901-2020 Atmos. Meas. Tech., 13, 6901–6913, 2020
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Figure 3. Profiles of the cross-polar (solid line) and co-polar (dash–
dotted line) components of the NRB for a mixed-phase cloud at
GSFC on 5 October 2019 (06:40 UTC). The volume depolarization
ratio within the cloud layer is indicated by the red line (diamond
symbol).

3 Results

3.1 Frontal cloud example

Well-established temperature thresholds are used to clas-
sify thermodynamic phases in absolute terms for liquid wa-
ter (warmer than 0 ◦C) and ice water (colder than −37 ◦C)
clouds; therefore, we focus attention here on clouds occur-
ring in the ambiguous mixed-phase temperature regime be-
tween these two temperature thresholds. Figures 1, 3, and 5
illustrate an example of stratified liquid- and mixed-phase
clouds in the mixed-phase temperature regime. To provide
an example with very different synoptic conditions, Fig. 6
shows a frontal cloud occurring on 27 March 2018. Frontal
cloud systems are common in the mid latitudes and may con-
tain any combination of liquid, ice, and mixed-phase clouds
(Hogan et al., 2003; Costa et al., 2017).

The anvil cloud structure at the beginning of the day is
consistent with convection and is classified as ice from the
CTT, which is also consistent with high LDRs. As the cloud
base descends below 7 km, the cloud phase alternates be-
tween ice and mixed-phase clouds and is classified as mostly
liquid water clouds below 3 km. The limitations of using only
ground-based lidar to retrieve thermodynamic phase are ev-
ident as the signal is attenuated within optically thick liquid
water and ice clouds, which results in undersampling of the
atmospheric column above such clouds. Furthermore, pre-
cipitation (starting at 17:00 UTC) reaching near the surface

Figure 4. Median volume depolarization ratio as a function of tem-
perature for each altitude bin within all detected cloud layers at
GSFC (2018–2019) in temperature increments of 5 ◦C. Horizon-
tal bars indicate the interquartile range (IQR). Dashed vertical lines
indicate the thresholds for the CPD as defined in Table 2. Temper-
atures above 25 ◦C are not displayed because of small sample and
cloud precipitation.

is occasionally included as part of the cloud layer, which
may affect the quality of the cloud-phase retrieval. For in-
stance, raindrops have an irregular shape that enhances the
LDR (Lolli et al., 2020). Therefore, precipitation included
within in a true liquid-phase cloud might be interpreted as a
mixed-phase cloud.

3.2 Cloud thermodynamic phase statistics

Two years of GSFC cloud data (2018–2019) are used to ex-
amine cloud thermodynamic phase statistics derived and pre-
scribed from the method described in the previous section.
Figure 7 shows the distribution of LDRs for each altitude bin
within cloud layers detected during the 2-year period. The
bimodal distribution shows two peaks at ∼ 0.01 and ∼ 0.37
representing the liquid water and ice water cloud phases, re-
spectively. The fractional probability for liquid water clouds
also peaks near∼ 0.01, and a very small percentage of liquid
water clouds contain LDRs with values above 0.1. The frac-
tional probability for ice water clouds has a clear minimum
within the range where liquid water clouds are expected (0–
0.05). However, the fractional probability everywhere else
typically remains above 0.50. This is partially attributed to

Atmos. Meas. Tech., 13, 6901–6913, 2020 https://doi.org/10.5194/amt-13-6901-2020
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Figure 5. Example of the cloud thermodynamic phase retrieval at GSFC on 5 October 2019. The phase mask indicates liquid water clouds
(grey), mixed-phase clouds (magenta), ice clouds (cyan), and unknown phase (pink). The GEOS-5 temperature is shown by the contour lines
(in 10 ◦C intervals). The −37 ◦C isotherm is indicated by the dashed contour line.

Figure 6. Frontal cloud system at GSFC on 27 March 2018: NRB (a), volume depolarization ratio (b) and phase mask (c). Altitude bins
where the signal uncertainty is twice the signal strength have been suppressed for easier viewing. Note the use of a log scale for the NRB. The
phase mask indicates liquid water clouds (grey), mixed-phase clouds (magenta), ice clouds (cyan), and unknown phase (pink). The GEOS-5
temperature is shown by the contour lines (in 10 ◦C intervals). The −37 ◦C isotherm is indicated by the dashed contour line.

https://doi.org/10.5194/amt-13-6901-2020 Atmos. Meas. Tech., 13, 6901–6913, 2020
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Figure 7. (a) Distribution of volume depolarization ratios for each
altitude bin within all detected cloud layers at GSFC (2018–2019).
The vertical dashed lines indicate the thresholds for the CPD as de-
fined in Table 2. (b) Fractional probability of retrieved cloud phases
in 0.01 increments for the volume depolarization ratios shown in
(a). Cloud phases written in lowercase letters of (a) indicate these
are altitude bin designations, while phases written in uppercase of
(b) represent the layer-determined designations.

sampling, as there are many more bins within ice clouds than
other phases because the lidar signal does not attenuate as
quickly in such layers.

Table 3 indicates the number of layers and altitude bins
associated with each of the cloud phases. Another consid-
eration is that ice layers (especially those including virga
streaks) are generally more tenuous and, because linear vol-
ume depolarization values are used, the contribution from
molecular backscatter becomes more significant. As a result,
the LDRs for individual altitude bins can be much lower
than what is typically expected for pure ice. Mixed-phase
clouds peak at 0.05 and skew right until ∼ 0.47. Though
they represent a small percentage of the distribution, unde-
termined phase cases most frequently occur with negative
LDRs. While the layer-integrated LDR is not used in the al-
gorithm, the mean values shown in Table 3 agree well with
the median LDRs for each cloud thermodynamic phase.

Figure 8 shows the distribution of CTTs and fractional
probabilities of each cloud thermodynamic phase collected at
GSFC (2018–2019). The large majority of ice water clouds
(nearly 90 %) are found using the −37 ◦C CTT threshold
only. Similarly, but to a lesser extent, most liquid water
clouds (54 %) are found using only the 0 ◦C threshold. Within
the mixed-phase temperature regime, where water can ex-
ist as pure liquid, pure ice, or some combination of the two,
liquid and ice water distributions show an inverse relation-
ship. As a qualitative comparison, Campbell et al. (2015; see
their Fig. 1) present similar analysis using CALIOP obser-

Figure 8. (a) Distribution of cloud top temperatures for all detected
cloud layers at GSFC (2018–2019). The vertical dashed lines in-
dicate the boundaries of the mixed-phase regime (−37–0 ◦C). (b)
Fractional probability of retrieved cloud phases in 2 ◦C increments
for the cloud top temperatures shown in (a).

vations. They find that the fractional probabilities of liquid
and ice water clouds intersect near −27 ◦C, which is colder
than the intersection point in this work (−22 ◦C). In addi-
tion to the different methodologies used to determine the
cloud thermodynamic phase, the instruments also have dif-
ferent viewing geometries (zenith for MPLNET and nadir
for CALIOP), footprints, and sensitivities that prevent any
quantitative comparisons. Coopman et al. (2020) use pas-
sive spaceborne sensors to determine the glaciation temper-
ature at which ice and liquid equal 50 % and report a global
value of −24± 1 ◦C. The fractional probability for mixed-
phase clouds in this work peaks near −22 ◦C, while undeter-
mined phase remains relatively flat and is less than 7 % at all
temperatures. The shape of the mixed-phase distribution is
similar to that found by Shupe et al. (2006; see their Fig. 5)
for Arctic mixed-phase clouds, though the peak shifts toward
warmer temperatures in their study.

3.3 Supercooled liquid fraction

Much attention has been paid to the amount of supercooled
liquid water in the mixed-phase temperature regime (Choi et
al., 2010; Hu et al., 2010; Tan et al., 2014, 2016; Tan and
Storelvmo, 2019; Wang et al., 2019). As liquid water pres-
ence decreases, so generally does the cloud albedo, which
results in a reduced solar-reflective cooling effect. Addition-
ally, cloud lifetime and precipitation are governed by the
transition from liquid water to ice (Korolev et al., 2017).
Studies have shown that low biases in the amount of super-
cooled liquid present in climate models lead to misrepresen-
tations of the outgoing shortwave radiation and feedback re-
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Table 3. Cloud-phase properties for GSFC, 2018–2019. Number of layers (NLayers) and altitude bins within each layer (NBins), mean layer-
integrated LDR (δ̄Layers), median LDR (δBins), and interquartile range (IQR) for all altitude bins within each layer, and the mean cloud top
temperature (CTT).

Phase NLayers NBins δ̄Layers δBins CTT
(%) (%) Mean±SD [IQR] (◦C)

Liquid 146 983 996 025 0.018± 0.017 0.013 −0.7± 10.3
(29.0) (14.5) [0.007, 0.024]

Mixed 58 816 1 001 234 0.161± 0.125 0.207 −19.4± 9.6
(11.6) (14.6) [0.074, 0.310]

Ice 294 227 4 796 681 0.306± 0.105 0.336 −51.5± 12.1
(58.0) (70.0) [0.248, 0.390]

Undetermined 7293 56 068 0.093± 0.122 0.088 −18.0± 11.3
(1.4) (0.8) [0.008, 0.266]

sponse to a doubling of CO2 (Furtado et al., 2016; Tan et al.,
2016).

The CALIOP instrument onboard the Cloud-Aerosol
Lidar and Infrared Pathfinder Satellite Observations
(CALIPSO) satellite (Winker et al., 2010) can estimate the
global distribution of supercooled liquid water in the atmo-
sphere. Choi et al. (2010) and Tan et al. (2014) use CALIOP
retrievals to examine the supercooled liquid fraction (SLF)
or the ratio of the number of liquid-phase footprints to the
number of the total number of footprints (liquid-phase+ ice-
phase) within a specified grid box and isotherm. Similarly,
we define the MPLNET SLF as the ratio of the number of
liquid-phase cloud layers to the total number of cloud layers
(liquid-phase+ ice-phase+mixed-phase) for a specified
isotherm. Because MPLNET includes mixed phase as a
possibility, without partitioning ice from liquid, the resulting
SLF represents a lower limit on the presence of liquid water
in the atmosphere. The repercussions of this distinction from
the CALIOP SLF will be discussed further.

A comparison of SLFs derived from each instrument
(CALIOP and MPLNET) averaged from 2015 to 2019 is
shown in Fig. 9. Instead of direct comparisons using co-
incident overpass times of the GSFC site by the satellite,
the comparison uses a statistical approach to investigate
the representativeness of the two independent datasets. The
CALIOP SLFs were calculated for a 2.5◦ latitude× 5.0◦ lon-
gitude grid box using the procedure described by Tan et
al. (2014). The version 4.20, level-2 Vertical Feature Mask
(VFM) product was used in conjunction with National Cen-
ters for Environmental Prediction (NCEP)–Department of
Energy (DOE) Reanalysis 2 air temperature and pressure
data (Kanamitsu et al., 2002) at a resolution of ∼ 2.5◦ lat-
itude× 2.5◦ longitude. Only nighttime CALIOP retrievals
are used in order to avoid artifacts from solar noise. The
CALIOP SLFs below −10 ◦C are excluded because strong
lidar return-signal attenuation from clouds at these temper-

atures leads to significant measurement errors (Choi et al.,
2010).

Comparisons between ground-based and spaceborne lidars
are difficult, because the satellite moves quickly over the sta-
tionary point source of the ground-based lidar. Satellites, like
CALIPSO, provide good spatial coverage but poor tempo-
ral sampling. In contrast, ground sites in MPLNET provide
poor spatial coverage globally; however, continuous obser-
vations at a 1 min data rate provide full diurnal sampling.
Low, attenuating clouds also obstruct the view of high clouds
from the surface that are easily observed from space. These
two factors result in very different sampling volumes for
ground-based and spaceborne measurements. Furthermore,
as demonstrated by the example in Fig. 3, the opposite view-
ing geometries may lead to differing cloud-phase classifica-
tions, even if the same cloud is observed from both platforms.
Despite these unpreventable differences, Fig. 9 demonstrates
that MPLNET and CALIOP (at least qualitatively) observe
very similar patterns in regard to SLF. The inset of Fig. 9 also
suggests that the correlation lengths for SLF may be rather
large, based on the similar values for adjacent grid boxes.

We note that the CALIOP SLFs are always higher than and
outside the standard error of MPLNET SLFs at all isotherms
warmer than −30 ◦C but nearly match MPLNET at colder
temperatures where liquid phase is less likely to exist. A
possible explanation for this difference (aside from those
mentioned previously) is the potential misclassification of
mixed-phase clouds as liquid water by CALIOP (Zhang et
al., 2010). It is also plausible that MPLNET is underesti-
mating the presence of liquid water phase at warmer tem-
peratures, due to precipitating clouds, as indicated in the
frontal cloud example presented in Sect. 3.1. The final con-
sideration follows from the inclusion of mixed phase in the
MPLNET SLF that is not present in the CALIOP VFM. As
stated above, the MPLNET SLF represents a lower limit be-
cause the percentage of liquid water in the mixed-phase layer
is undetermined. Therefore, it is reasonable for the MPLNET
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Figure 9. Supercooled liquid fraction (SLF) averaged over GSFC
(2015–2019) from MPLNET (solid line) and CALIOP (black
×) observations. The inset shows the horizontal distribution of
CALIOP SLFs at the −20 ◦C isotherm surrounding GSFC (indi-
cated by the red ×). The CALIOP SLF profile is calculated us-
ing the 2.5◦ latitude× 5◦ longitude grid box containing GSFC. The
shaded area indicates the standard error for MPLNET observations.
CALIOP standard errors are less than 0.7 at all isotherms.

SLFs to be lower than the CALIOP SLFs at warmer tempera-
tures. However, more extensive analysis is necessary in order
to address these differences with any certainty. Such analysis
is beyond the scope of the current work but warrants explo-
ration in a future study.

4 Discussion and summary

The radiative impact of clouds is known to depend on the
partitioning of liquid and ice phases (Sun and Shine, 1994;
Korolev et al., 2017). However, sparse local observations
have limited the amount of information necessary to evaluate
and improve model parameterizations (Matus and L’Ecuyer,
2017). Mixed-phase clouds, which occur in all climate re-
gions and multiple cloud types, are particularly not well un-
derstood. Polarized lidar has the ability to provide vertical
profiles of cloud structure, at least to the limit of signal at-

tenuation, and add insight as to how ice and liquid water are
partitioned in the atmosphere.

This work introduces a simple, enumerative method to de-
termine the cloud thermodynamic phase from polarized Mi-
cro Pulse Lidar (MPL) measurements. In addition to the typ-
ical liquid and ice phases, we also attempt to assign mixed
phase to cloud layers within the −37–0 ◦C temperature
regime. The zenith-viewing geometry and narrow field of
view of the MPL make such classifications possible, though
low-level liquid water clouds may inhibit observations of the
full atmospheric column. Results using 2 years of cloud ob-
servations at the Greenbelt, MD, site are at least qualitatively
consistent with previous studies of thermodynamic-phase
distributions. A 5-year comparison with Cloud-Aerosol Li-
dar with Orthogonal Polarization (CALIOP) showed reason-
able agreement. However, a more extensive, long-term study
involving multiple MPLNET sites is needed in order to ad-
dress the differences between the complementary observa-
tions.

Though the polarized MPL was fairly new at the time,
an advanced cloud algorithm for MPL was introduced by
Lewis et al. (2016); the instrument has since been fully
tested and characterized and the Micropulse Lidar Network
(MPLNET) is now fully polarized. The ability to provide
continuous observations of cloud properties, including ther-
modynamic phase, across all climate regions using a stan-
dardized instrument and retrieval process is a distinctive fea-
ture of MPLNET. In a future work, we endeavour to explore
how cloud properties differ amongst MPLNET sites. Such
studies have already been performed investigating the cir-
rus cloud radiative effect at tropical, mid-latitude, and po-
lar MPLNET sites (Campbell et al., 2016; Lolli et al., 2017;
Campbell et al., 2020).

In closing, it must be noted that no one instrument or plat-
form will be able to fill the void in our understanding of cloud
thermodynamic phase. The results presented here have high-
lighted some of the strengths and limitations of ground-based
and spaceborne lidar retrievals. However, it is fundamentally
required to use a synergetic approach (combining in situ and
remote sensing, passive and active sensors, observations and
models, etc.) in order to gain a better perspective of how liq-
uid and ice phases are partitioned and transition from one
phase to another in the atmosphere. Adding to the complex-
ity, there is no one definition for mixed-phase clouds that can
be universally applied. Instead, the definition or threshold for
mixed phase depends on the spatial and temporal resolutions
and sensitivities associated with each observational method,
making it even more important to use multiple, simultaneous
measuring techniques to grasp the “big picture”. The cloud
thermodynamic phase data presented in this work, along with
the other MPLNET datasets (some sites with 10+ years of
data), offer a valuable piece of the picture for long-term stud-
ies of clouds and aerosol–cloud interactions.
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