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Abstract. Marine low clouds display rich mesoscale mor-
phological types and distinct spatial patterns of cloud fields.
Being able to differentiate low-cloud morphology offers a
tool for the research community to go one step beyond bulk
cloud statistics such as cloud fraction and advance the un-
derstanding of low clouds. Here we report the progress of
our project that aims to create an observational record of
low-cloud mesoscale morphology at a near-global (60◦ S–
60◦ N) scale. First, a training set is created by our team mem-
bers manually labeling thousands of mesoscale (128 × 128)
MODIS scenes into six different categories: stratus, closed
cellular convection, disorganized convection, open cellular
convection, clustered cumulus convection, and suppressed
cumulus convection. Then we train a deep convolutional neu-
ral network model using this training set to classify individ-
ual MODIS scenes at 128 × 128 resolution and test it on a
test set. The trained model achieves a cross-type average pre-
cision of about 93 %. We apply the trained model to 16 years
of data over the southeastern Pacific. The resulting clima-
tological distribution of low-cloud morphology types shows
both expected and unexpected features and suggests promis-
ing potential for low-cloud studies as a data product.

1 Introduction

Marine low clouds are important for the mass, heat, and
momentum transport in the planetary boundary layer (PBL)
and between the PBL and free troposphere, the radiative en-
ergy balance of the climate, and the magnitude of feedback
strength under climate change. Observations of marine low
clouds are indispensable for advancing our understanding of
these clouds for deriving new theories and insights and for
model validation and constraining. Modern satellite observa-
tions have the advantage of providing global and long-term
coverage. Current satellite products offer detailed pixel-level
retrievals of cloud properties such as cloud optical depth,
cloud droplet effective radius, and cloud phase. Most cloud
classification schemes are based on either single pixel mea-
surements or joint histograms of two cloud properties.

However, marine low clouds are known to have various
mesoscale morphology types since first satellite observations
of clouds became available (Agee and Dowell, 1974). These
mesoscale morphology types are created by the characteris-
tic patterns into which clouds are organized (Fig. 1). Cloud
mesoscale morphology types are not only phenological clas-
sifications of satellite images, but also a manifestation of a
complex mixture of underlying physical processes (Atkinson
and Zhang, 1996; Stevens et al., 2005; Wang and Feingold,
2009; Wood, 2012; Wood and Hartmann, 2006). These phys-
ical processes are critical for fundamental understanding and
better modeling of marine low clouds because of their impact
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on mass, heat, and momentum transport, on radiative energy
balance, and their feedbacks to climate change. Wood and
Hartmann (2006) trained a two-layer neural network on prob-
ability distribution functions and 2-D power spectra of liquid
water path to classify cloud morphology into four categories
for 256×256 scenes. The method has been successfully used
to analyze morphology types and associated cloud properties
(McCoy et al., 2017; Muhlbauer et al., 2014).

Here we introduce a NASA-funded project to classify ma-
rine low-cloud observations into six different mesoscale mor-
phology types based directly on full images without engi-
neering features. The goal is to produce a community data
record that spans about two decades at near-global scales that
will enable the research community to go beyond bulk cloud
statistics and will advance our understanding of low-level
mesoscale convective clouds through exploiting the rich spa-
tial information content of observations. Section 2 describes
the data and methodology; Sect. 3 introduces preliminary re-
sults, and Sect. 4 gives discussions of future plans and out-
look of the data product; Sect. 5 concludes.

2 Data and methods

2.1 Data source

The primary observational data for this study are from the
MODerate resolution Imaging Spectrometer (MODIS) on
board the Aqua satellite. We use reflectance from channels
1 (0.65 µm), 3 (0.47 µm), and 4 (0.55 µm) and cloud opti-
cal depth, cloud droplet effective radius, cloud mask, and
cloud top height from the MODIS cloud product (Platnick
et al., 2017) in building up the training set. The spatial res-
olution of these parameters is 1 km at nadir. The cloud op-
tical depth and effective radius retrievals are combined to
produce the cloud liquid water path (Platnick et al., 2017).
Reflectance from channel 4 is used for deep neural network
model training and inference, while the other MODIS obser-
vations and products are used for data quality control, filter-
ing, and contextual information, as explained below.

We first break MODIS images into 128×128 pixel scenes.
The selection of 128 × 128 results from a balance because
larger sizes suffer from too much mixing of different types
in a scene, while smaller sizes contain not enough contextual
information for classification. We filter out scenes that con-
tain a significant fraction of high clouds (no more than 10 %),
defined as pixels with cloud top height above 6 km, or whose
low-cloud fraction is lower than 5 %. We also exclude scenes
whose viewing zenith angle is greater than 45◦. Scenes with
more than 10 % land coverage are also excluded. The result-
ing scenes are treated as dominated by marine low clouds.

For training purposes, we create auxiliary images that con-
tain the broad context of the scene of interest and distribu-
tions of the liquid water path and cloud top height for the
scene (Fig. 2). The scene image, together with the auxil-

iary images, is presented to a panel of human experts on the
Zooniverse platform (https://www.zooniverse.org/projects/
cloud-class/clouds-with-a-type, last access: 28 November
2020) for manual labeling. We intend to use the same plat-
form in the future to crowdsource the labeling task.

Spatiotemporally collocated Modern-Era Retrospective
analysis for Research and Applications, version 2 (MERRA-
2) (Gelaro et al., 2017) data are used to provide meteorolog-
ical variables for each scene.

Morphology types

Marine low-cloud mesoscale morphology patterns are ex-
tremely diverse. In order to keep the task manageable, we set-
tle on six representative types. These are stratus, closed cellu-
lar convection, disorganized cellular convection, open cellu-
lar convection, clustered cumulus, and suppressed cumulus
(Fig. 3). These types are by no means exhaustive given the
diversity of observable patterns. However, these six types are
the most common and largely representative of the data when
we inspect a large collection of scenes. In the current ver-
sion, each low-cloud scene will be assigned one of these six
types. We also believe that these types have distinct underly-
ing physical processes. Stratus is mostly created by relatively
uniform radiative cooling or driven by synoptic weather sys-
tems such as fronts, while closed cellular convection is driven
by radiative cooling and organized into distinctive honey-
comb mesoscale patterns. Disorganized cellular convection
is characterized by a combination of elements of convection
and a large portion of stratiform clouds that tend to have large
droplet sizes and small cloud optical depths, creating their
characteristic appearance. Their cellular sizes are typically
larger, on the order of 100 km, compared to closed cellular
convection, on the order of 10 km. Open cellular convection
is characterized by cells that are clear in the center and ex-
hibit vigorous shallow convection around it. These convec-
tive clouds are often precipitating based on satellite and ship-
based observations, which is a likely driving force that cre-
ates and maintains this mesoscale morphology type (Wang
and Feingold, 2009). Clustered cumulus convection is made
up of shallow, vigorous convective elements that aggregate
together, accompanied by scattered shallower and optically
thinner cumulus clouds nearby. The suppressed cumulus type
is dominated by individual, scattered cumulus clouds that can
sometimes have patterns like lines and branches.

2.2 Method

To illustrate the difficulty of classifying morphology types
using one-point statistics such as histograms, we show the
mean probability density functions (PDFs) of cloud optical
depth and droplet effective radius for each type in Fig. 4.
We randomly select 1000 scenes for each cloud type from
2006 data in the southeastern Pacific region. The significant
overlap between PDFs of different types makes it quite hard
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Figure 1. A full disk image of GOES-16 on 6 August 2018 and six scenes of MODIS images at smaller scales representing different
morphology types at corresponding locations in the GOES image. Except scene 1, all scenes are from the same day. Scene 1 is from a
different day because there were no representative stratus scenes on this day in the southeastern Pacific region.

Figure 2. The Zooniverse interface for manual labeling. The center image is made up of five panels. Panel (a) shows the full granule (usually
2030 × 1350 pixels) true-color image for a large context. Panel (b) shows a portion of the granule immediately surrounding the scene to be
labeled, outlined by the red square. Panel (c) shows the visible scene image while panels (d, e) show the cloud top height and liquid water
path fields in the scene to be labeled. The panels to the right of the center image show labeling choices. The tutorial document is available by
clicking on the “FIELD GUIDE” tab on the right side. Additional options for scenes with heavily mixed types, scenes with sea ice, or scenes
with other issues are found in the “other” menu. The image is a screenshot of our Zooniverse project.
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Figure 3. Example scenes of MODIS single-channel images for the six different types. From left to right: stratus, closed cellular, disorganized
cellular, open cellular, clustered cumulus, and suppressed cumulus types. Images taken by the NASA MODIS.

to classify the scenes based on these PDFs. On the other
hand, deep convolutional neural network (DCNN) models
have been shown to separate complex patterns into different
categories at a human level (LeCun et al., 2015). We apply a
transfer learning approach to our classification task in a su-
pervised fashion, although separate efforts of unsupervised
training also seem promising (Yuan, 2019).

Specifically, we use a pretrained model (Simonyan and
Zisserman, 2015) as a feature extractor and fine-tune it with
our training set. The pretrained model is a 16-layer DCNN
that is trained on the large-scale ImageNet dataset (Deng et
al., 2009). Its weights are fixed. We add three additional lay-
ers to the pretrained model, called VGG-16, and train the
resulting full model on our training set, the fine-turning step.
The output of the full DCNN model is a six-element vector
whose elements sum up to 1 and are interpreted as the prob-
ability that the model assigns to one of the corresponding
types. We assign every scene to the type that has the high-
est probability, and therefore effectively we have a metric to
measure how confident the model is for each classification,
which provides useful information for users who may apply
filters to the data.

To build the training set, our team together with several
expert-level volunteers first manually labeled thousands of
scenes using the Zooniverse online tool. We retain only those
scenes that are unambiguously belonging to a certain type to
present the best possible training set, which includes hun-
dreds of samples for each type. We augment the training set
by rotating each scene by 90 and 180◦ and also flipping the
open cellular scenes to increase their sample size. The flip-
ping operation is achieved by mirroring the original image
across a horizontal axis.

3 Results

Here we report results for the training, show the classification
at work at a granule level and for two typical low marine low-
cloud regimes: winter time midlatitude region downwind of
the east coast of USA and Canada and the subtropical south-
eastern Pacific region.

3.1 Training performance

The training asymptotically converges to a plateau in terms
of accuracy pretty quickly, within about 30 epochs (Fig. 5).
Around epoch 30, the validation accuracy reaches a maxi-
mum. The training and validation accuracies are at around
98 % and 93 %. We save the model configuration with the
best validation accuracy. After training, the model is applied
to a test set that it has never seen before. The resulting confu-
sion matrix is shown in Fig. 6. The confusion matrix summa-
rizes the classification prediction results. For each cloud type,
or row, it shows the percentage of correct predictions on the
diagonal and percentages of incorrect predictions off the di-
agonal. The trained model achieves an average precision of
about 93 % across different types. Open cellular and disorga-
nized cellular convection are the two morphology types with
the lowest accuracy mainly because they had the lowest num-
ber of training samples. With a further increase in training
samples in the future, we are confident that corresponding ac-
curacies can be further improved. The biggest challenge for
the model comes from separating disorganized cellular, open
cellular, and clustered cumulus types. It is also worth noting
that there is inherent uncertainty with the classification since
even expert labelers sometimes disagree on the same scenes.
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Figure 4. PDFs of cloud optical depth and cloud effective radius for six morphology types. We randomly selected 1000 samples for each
type, and mean distributions are shown here. Significant overlaps are observed for PDFs of both variables among different morphology types.

Figure 5. Training (a, b) and validation (c, d) accuracy and loss
trajectories. By around epoch 30, the validation accuracy peaks
while validation loss bottoms out, and the training loss and accuracy
asymptotically reach their minimum and maximum, respectively,
which indicates further training may be overfitting the model.

3.2 An example granule

An example of a classified MODIS granule is shown in
Fig. 7. The classification results are overlaid on the visi-
ble MODIS image as colored circles whose position repre-
sents the center of corresponding 128 × 128 scene. This is
a low-cloud-dominated granule with a complex mix of dif-
ferent morphology types. The few missing scenes within the
viewing zenith angle limits are due to subvisible high clouds
overlapping the visible low clouds, which is not rare even for
these low-cloud-dominated regions (Yuan and Oreopoulos,
2013), as well as a couple of scenes with too few low clouds.
One can visually confirm that the model performs quite well
in picking up morphology types and their transitions, corrob-
orating the results in Fig. 5. It is worth noting that a scene

Figure 6. Confusion matrix of the model predictions on test data.

does not have to be fully occupied by a cloud type to be clas-
sified into this particular type. For example, the scene cen-
tered around 14◦ S and 78◦ W is partially occupied by stratus
and nonetheless classified as stratus.

3.3 Test run over the wintertime northwestern Atlantic

During the winter, there can be many cold-air outbreak
events over the northwestern Atlantic region. They create
maritime low-cloud systems with various mesoscale mor-
phology types. We apply our model to data in the winter
of 2011. We first filter the raw data to include only marine
low-cloud scenes using the criteria discussed in Sect. 2. The
128×128 pixel scenes are fed into the trained DCNN model
for classification. For each scene, we record its morphol-
ogy type, geolocation, and time and save the 2-D MODIS
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Figure 7. An example granule illustrating the results of the clas-
sification algorithm. This is quite a complex granule with differ-
ent morphology types mixed together. The left and right margins
are not classified because the current algorithm filters out scenes
whose sensor viewing zenith angles are greater than 45◦. The im-
age is taken by NASA MODIS.

cloud retrieval parameters such as cloud optical depth, cloud
droplet effective radius, and cloud top pressure. In this run,
we do not oversample the data and therefore scenes do not
overlap with each other.

Figure 8 shows frequency of occurrence maps for each
cloud type along with surface wind vectors. Stratus clouds
dominate in the Hudson Bay and Labrador Sea. They also
frequently appear over waters around Newfoundland and, to
a lesser degree, along the east coast of USA and Canada.
There is also a local maximum in the western part of the Gulf
of Mexico. Closed cellular type dominates the warm water of
the Gulf Stream where cold continental air meets the warm
water, which induces a large flux of moisture and heat from
the ocean into the boundary layer and gives rise to forma-
tion of low clouds. These low clouds mostly appear as the
closed cellular type according to MODIS. The disorganized
type only appears in a significant quantity in the subtropics
away from the coast. Open cellular clouds peak in the area
south of the Greenland Sea and in the Labrador Sea and have
a local maximum that is centered around 60◦ W and 35◦ N.
Both are downwind of the closed cellular cloud peaks. The
clustered and suppressed cumulus clouds mostly occur in the
subtropics and tropics.

3.4 Results over the southeastern Pacific region

We obtained all relevant Aqua MODIS level-1b and level-
2 files for the southeastern Pacific region (5–45◦ S, 70–
125◦ W) between 2003 and 2018. The total volume of data is

Figure 8. Frequency distributions of six morphology types obtained
from the classification algorithm in the northwestern Atlantic region
off the east coasts of USA and Canada in the winter of 2011. The
top two panels show the SST and EIS distributions using MERRA-
2. Seasonal mean wind vectors at 850 hPa are plotted to illustrate
the flow. We double the values for frequency of the open-cellular
type to make them numerically comparable with other types.

about 30 TB. This region is well known for semi-permanent
stratocumulus clouds.

Figure 9 shows the 16-year climatology of sea surface tem-
perature (SST), estimated inversion strength (EIS) (Wood
and Bretherton, 2006), and frequency of occurrence maps
for each morphology type in the southeastern Pacific region.
The frequency is normalized by the number of total MODIS
scenes, including both low-cloud and non-low-cloud ones.

Stratus clouds predominantly occur near coastal upwelling
regions in the subtropics as well as in the midlatitude regions
south of 40◦. Both features agree with our expectations. Stra-
tus can still occur in other parts of the domain, but with fre-
quencies generally below 10 %. Their frequency significantly
drops away from the local maxima in the midlatitudes and
along the coast. The local maxima of stratus occurrence fre-
quency coincide spatially with cold SST.

The closed cellular type occurs most frequently about
500 km away from the coastlines. The absolute maximum is
located around 27◦ S and 75◦ W, which is also where EIS
peaks. Indeed, the frequency of closed cellular type roughly
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Figure 9. Frequency distributions of various morphology types ob-
tained from the classification algorithm in the subtropical east-
ern Pacific off the coast of South America for the period 2003–
2018. The top two panels show the SST and EIS climatology from
MERRA-2 for the same period. Note the doubling of scale on the
stratus and open-cellular types.

correlates with the EIS pattern. The frequency of this type
drops off from its peak location more gradually compared to
that of the stratus. Its frequency is nevertheless below 10 %
west of 90◦ W, and the direction of the frequency of occur-
rence gradient is almost east to west. The location of peak
frequency for the disorganized type is further away from the
coast and occurs around 21◦ S and 89◦ W. The frequency map
of this type also has an overall correlation with the EIS west
of 90◦ W.

The frequency map for the open cellular type is the most
distinct. Its peak features a bull’s-eye pattern and occurs fur-
ther downwind of the peak of the disorganized type, with a
peak frequency of only about 10 %. This type also appears
relatively frequently in the midlatitudes associated with mid-
latitude cyclones. Its spatial pattern has no direct correla-
tion with either EIS or SST patterns, possibly implying in-
ternal mechanisms that are responsible for their appearances.
Both the closed and open cellular locations agree qualita-
tively with the findings of Wood and Hartmann (2006), al-

though the addition of other cloud types resulted in lower
frequencies of these types in our dataset. It is also worth
mentioning that the disorganized cellular type has a differ-
ent geographic occurrence when compared to the findings of
Wood and Hartmann (2006). This is because under that clas-
sification scheme, “disorganized” includes the bulk of scenes
which we classify as suppressed and clustered; the more nar-
rowly defined disorganized cellular type in our classification
is geographically more closely associated with the other cel-
lular cloud types. The clustered cumulus type occurrence ap-
pears to have a general anticorrelation with the EIS map. The
suppressed cumulus type occurs most frequently in the trop-
ics where the SST is the warmest.

4 Discussions and future work

4.1 Notable new insights

Open cellular clouds are less prevalent than previously
thought (Atkinson and Zhang, 1996; McCoy et al., 2017;
Muhlbauer et al., 2014), especially in subtropical regions. We
attribute this to the combination of advanced quantitative ob-
servation techniques developed here and the delineation of
clustered cumulus and open cellular types. The early stud-
ies did not have comprehensive observations to rely on. The
more recent results may have included the two types together
into the open cellular type, which overestimated the occur-
rence frequency of the open cellular type in the subtropics.
However, given the relatively minor presence of clustered cu-
mulus type in the midlatitudes, the open cellular type may
indeed be quite prevalent there, which agrees with previous
studies.

There is a strong spatial correlation between both EIS and
SST and the frequency of stratus in the two regions ana-
lyzed, especially north of 35◦ N, suggesting a strong control
of atmospheric stability and cold SST on this cloud type in
higher-latitude regions. Their control on other cloud types
may not be as tight given the loose spatial correspondence
between both EIS and SST and the frequency of other cloud
types, implying either other large-scale variables are in con-
trol or internal cloud processes are more important. We will
leave such explorations for future studies.

4.2 Expanding the scale of test runs and further
analysis

We plan to expand the test run to near-global scales for about
two years. These runs will include time periods that over-
lap those of several field campaigns that have rich in situ and
ground and airborne remote sensing data. Together with these
datasets, the satellite product will help to advance the un-
derstanding of low-cloud mesoscale morphology. The global
scale will also allow us to examine the general distributions
of morphology types and intercompare the characteristics of
low-cloud morphology in different ocean basins. Further data
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analysis of the current test run and future runs will target
questions related to the variability of low-cloud morphology
and its driving forces. We plan to release part or all of the test
run results to beta testers for feedback and test use from the
community.

4.3 Collocating with other satellite sensors and
meteorology

We plan to collocate each classified low-cloud scene with
data from sensors like CloudSat cloud profiling radar,
CALIOP lidar, the Advanced Microwave Scanning Ra-
diometer for EOS (AMSR-E and AMSR-2), and Atmo-
spheric InfraRed Sounder (AIRS) as well as the MERRA-2
reanalysis products. Such a collocated set of variables will
be useful to the research community for studying the behav-
ior of low-cloud morphology under different environmental
conditions.

4.4 Further improvement of the model

The current model works pretty well overall, particularly for
closed cellular, suppressed cumulus, and clustered cumulus
types. However, there is room for improvement for other
types. We target two fronts for improvement: improving the
model itself and increasing the quality and quantity of train-
ing data. For the former goal, we plan to test different pre-
trained models and what features to keep and how to best set
up the classifier on top of these extracted feature vectors. For
the latter goal, we have developed analysis tools to help us
understand the agreement among human experts in the train-
ing set. This helps us to target types that need the improve-
ment. We will use the Zooniverse tool to achieve this. Further
increase in training data also allows us to better characterize
the uncertainty in expert labeling of each category. We are
looking for expert-level volunteers to join us in increasing
the training sample size.

4.5 Increasing the number of types

Some of the mesoscale types can be further divided into
subtypes. For example, the frequency of suppressed cumu-
lus type is quite high in the low latitudes, and based on the
manual labeling they could be further divided into multiple
subtypes. We will explore the feasibility of this by assessing
resource constraints and the feedback from the community.

5 Conclusions

We have developed a working deep neural network model to
automatically classify cloudy scenes into six mesoscale mor-
phology types. Initial test run results showed promising re-
sults for the southeastern Pacific and northwestern Atlantic.
Using the tool, we plan to extend the dataset and create a
community mesoscale morphology type product for low ma-

rine clouds observed by MODIS. We will further develop the
product and actively look forward to community involvement
such as beta testing, volunteering, and user feedback.
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28 November 2020, LAADS DAAC, 2020).

Author contributions. TY implemented the method to train the net-
work model. HS, JM, and TY prepared the training data. All coau-
thors contributed to compiling the training dataset. TY wrote the
manuscript with contributions from all coauthors.

Competing interests. The authors declare that they have no conflict
of interest.

Acknowledgements. Authors except SP are funded by NASA’s
Making Earth Science Data Records for Use in Research Environ-
ments (MEaSUREs) Program. The program is managed by Lucia
Tsaoussi.

Financial support. This research has been supported by the
NASA’s MEaSUREs Program (grant no. 80NSSC18M0084).

Review statement. This paper was edited by Sebastian Schmidt and
reviewed by two anonymous referees.

References

Agee, E. M. and Dowell, K. E.: Observational Stud-
ies of Mesoscale Cellular Convection, J. Appl.
Meteor., 13, 46–53, https://doi.org/10.1175/1520-
0450(1974)013<0046:OSOMCC>2.0.CO;2, 1974.

Atkinson, B. W. and Zhang, W. J.: Mesoscale shallow con-
vection in the atmosphere, Rev. Geophys., 34, 403–431,
https://doi.org/10.1029/96RG02623, 1996.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Li, F. F.: Im-
ageNet: A large-scale hierarchical image database, IEEE Com-
puter Vision and Pattern Recognition (CVPR), 248–255, 2009.

Gelaro, R., McCarty, W., Suarez, M. J., Todling, R., Molod, A.,
Takacs, L., Randles, C. A., Darmenov, A., Bosilovich, M. G., Re-
ichle, R., Wargan, K., Coy, L., Cullather, R., Draper, C., Akella,
S., Buchard, V., Conaty, A., da Silva, A. M., Gu, W., Kim, G.-
K., Koster, R., Lucchesi, R., Merkova, D., Nielsen, J. E., Par-
tyka, G., Pawson, S., Putman, W., Rienecker, M., Schubert, S. D.,
Sienkiewicz, M., and Zhao, B.: The Modern-Era Retrospective
Analysis for Research and Applications, Version 2 (MERRA-2),
J. Climate, 30, 5419–5454, https://doi.org/10.1175/JCLI-D-16-
0758.1, 2017.

Atmos. Meas. Tech., 13, 6989–6997, 2020 https://doi.org/10.5194/amt-13-6989-2020

https://ladsweb.modaps.eosdis.nasa.gov/
https://doi.org/10.1175/1520-0450(1974)013<0046:OSOMCC>2.0.CO;2
https://doi.org/10.1175/1520-0450(1974)013<0046:OSOMCC>2.0.CO;2
https://doi.org/10.1029/96RG02623
https://doi.org/10.1175/JCLI-D-16-0758.1
https://doi.org/10.1175/JCLI-D-16-0758.1


T. Yuan et al.: Mesoscale low-cloud morphology with deep learning 6997

LAADS DAAC, NASA, Goddard Space Flight Center, https:
//ladsweb.modaps.eosdis.nasa.gov/, last access: 28 November
2020.

LeCun, Y., Bengio, Y., and Hinton, G.: Deep learning, Nature, 521,
436–444, https://doi.org/10.1038/nature14539, 2015.

McCoy, I. L., Wood, R., and Fletcher, J. K.: Identifying Meteoro-
logical Controls on Open and Closed Mesoscale Cellular Con-
vection Associated with Marine Cold Air Outbreaks, J. Geophys.
Res., 122, 678–702, https://doi.org/10.1002/2017JD027031,
2017.

Muhlbauer, A., McCoy, I. L., and Wood, R.: Climatology of
stratocumulus cloud morphologies: microphysical properties
and radiative effects, Atmos. Chem. Phys., 14, 6695–6716,
https://doi.org/10.5194/acp-14-6695-2014, 2014.

Platnick, S., Meyer, K. G., King, M. D., Wind, G., Amarasinghe, N.,
Marchant, B., Arnold, G. T., Zhang, Z., Hubanks, P. A., Holz, R.
E., Yang, P., Ridgway, W. L., and Riedi, J.: The MODIS Cloud
Optical and Microphysical Products: Collection 6 Updates and
Examples From Terra and Aqua, IEEE T. Geosci. Remote., 55,
502–525, https://doi.org/10.1109/TGRS.2016.2610522, 2017.

Simonyan, K. and Zisserman, A.: Very Deep Convolutional Net-
works for Large-Scale Image Recognition, arXiv [preprint],
arXiv:1409.1556, 2015.

Stevens, B., Vali, G., Comstock, K., Wood, R., van Zanten, M. C.,
Austin, P. H., Bretherton, C. S., and Lenschow, D. H.: Pockets of
open cells and drizzle in marine stratocumulus, B. Am. Meteorol.
Soc., 86, 51–58, https://doi.org/10.1175/BAMS-86-1-51, 2005.

Wang, H. and Feingold, G.: Modeling mesoscale cellular structures
and drizzle in marine stratocumulus. Part I: Impact of drizzle on
the formation and evolution of open cells, J. Atmos. Sci., 66,
3237–3256, https://doi.org/10.1175/2009JAS3022.1, 2009.

Wood, R.: Stratocumulus Clouds, Mon. Weather Rev., 140, 2373–
2423, https://doi.org/10.1175/MWR-D-11-00121.1, 2012.

Wood, R. and Bretherton, C. S.: On the relationship between strat-
iform low cloud cover and lower-tropospheric stability, J. Cli-
mate, 19, 6425–6432, https://doi.org/10.1175/JCLI3988.1, 2006.

Wood, R. and Hartmann, D. L.: Spatial variability of liquid water
path in marine low cloud: The importance of mesoscale cellular
convection, J. Climate, 19, 1748–1764, 2006.

Yuan, T.: Understanding Low Cloud Mesoscale Morphology with
an Information Maximizing Generative Adversarial Network,
EarthArXiv, https://doi.org/10.31223/osf.io/gvebt, 2019.

Yuan, T. and Oreopoulos, L.: On the global character of overlap
between low and high clouds, Geophys. Res. Lett., 40, 5320–
5326, https://doi.org/10.1002/grl.50871, 2013.

https://doi.org/10.5194/amt-13-6989-2020 Atmos. Meas. Tech., 13, 6989–6997, 2020

https://ladsweb.modaps.eosdis.nasa.gov/
https://ladsweb.modaps.eosdis.nasa.gov/
https://doi.org/10.1038/nature14539
https://doi.org/10.1002/2017JD027031
https://doi.org/10.5194/acp-14-6695-2014
https://doi.org/10.1109/TGRS.2016.2610522
https://arxiv.org/abs/1409.1556
https://doi.org/10.1175/BAMS-86-1-51
https://doi.org/10.1175/2009JAS3022.1
https://doi.org/10.1175/MWR-D-11-00121.1
https://doi.org/10.1175/JCLI3988.1
https://doi.org/10.31223/osf.io/gvebt
https://doi.org/10.1002/grl.50871

	Abstract
	Introduction
	Data and methods
	Data source
	Method

	Results
	Training performance
	An example granule
	Test run over the wintertime northwestern Atlantic
	Results over the southeastern Pacific region

	Discussions and future work
	Notable new insights
	Expanding the scale of test runs and further analysis
	Collocating with other satellite sensors and meteorology
	Further improvement of the model
	Increasing the number of types

	Conclusions
	Data availability
	Author contributions
	Competing interests
	Acknowledgements
	Financial support
	Review statement
	References

