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Abstract. Studies of emission factors from biomass burn-
ing using aircraft data complement the results of lab stud-
ies and extend them to conditions of immense hot confla-
grations. A new theoretical development of plume theory for
multiple tracers is developed after examining aircraft sam-
ples. We illustrate and discuss emissions relationships for
422 individual samples from many forest fire plumes in the
Western USA. Samples are from two NASA investigations:
ARCTAS (Arctic Research of the Composition of the Tro-
posphere from Aircraft and Satellites) and SEAC4RS (Stud-
ies of Emissions and Atmospheric Composition, Clouds and
Climate Coupling by Regional Surveys). This work provides
sample-by-sample enhancement ratios (EnRs) for 23 gases
and particulate properties. Many EnRs provide candidates for
emission ratios (ERs, corresponding to the EnR at the source)
when the origin and degree of transformation is understood.
From these, emission factors (EFs) can be estimated, pro-
vided the fuel dry mass consumed is known or can be esti-
mated using the carbon mass budget approach. This analysis
requires understanding the interplay of mixing of the plume
with surrounding air. Some initial examples emphasize that
measured Ctot = CO2+CO in a fire plume does not neces-
sarily describe the emissions of the total carbon liberated in
the flames, Cburn. Rather, it represents Ctot = Cburn+Cbkgd,
which includes possibly varying background concentrations
for entrained air. Consequently, we present a simple theo-
retical description for plume entrainment for multiple trac-
ers from the flame tops to hundreds of kilometers down-
wind and illustrate some intrinsic linear behaviors. The anal-
ysis suggests a mixed-effects regression emission technique

(MERET), which can eliminate occasional strong biases as-
sociated with the commonly used normalized excess mixing
ratio (NEMR) method. MERET splits Ctot to reveal Cburn by
exploiting the fact that Cburn and all tracers respond linearly
to dilution, while each tracer has consistent EnR behavior
(slope of tracer concentration with respect to Cburn). The two
effects are separable. Two or three or preferably more emis-
sion indicators are required as a minimum; here we used
eight. In summary, MERET allows a fine spatial resolution
(EnRs for individual observations) and comparison of simi-
lar plumes that are distant in time and space. Alkene ratios
provide us with an approximate photochemical timescale.
This allows discrimination and definition, by fire situation,
of ERs, allowing us to estimate emission factors.

1 Introduction

1.1 Importance and previous work

Biomass burning has a large influence on the atmospheric
burden of ozone and aerosols and consequently also af-
fects climate (Crutzen et al., 1979; Crutzen and Andreae;
1990; Jaffe and Wigder, 2012; Andreae, 2019; Galanter et
al., 2000). Biomass-burning emission factors that are use-
ful for driving photochemical models are most often esti-
mated by one of two sampling techniques (Crutzen et al.,
1979; Crutzen and Andreae; 1990; Koppmann et al., 1997;
Galanter et al., 2000; Jaffe and Wigder, 2012; Akagi et al.,
2013; Andreae, 2019). In the first approach, measurements
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on the ground close to an open fire or on laboratory fires that
are controlled to approximate natural conditions can provide
the most detailed information on sources. The burning con-
ditions can be readily assessed and fit into parameterizations
of the emissions process, provided the correct mix of burn
types typical of large fires can be estimated. It can, however,
be difficult to mimic and safely sample truly intense flam-
ing conflagrations. In the second approach, measurements
made from aircraft provide a much wider sample of differ-
ent fires and emissions from different regions of a single fire.
However, the estimates can be difficult to classify as sim-
ply “flaming” or “smoldering” or even as defined mixtures
of just two types. Adjoining areas with fires in various stages
of combustion can merge into the same plume or remain rel-
atively distinct. These questions of classifications related to
the originating fires will be addressed statistically in a suc-
ceeding paper (Chatfield and Andreae, 2020).

This work presents a rationale for more mathematically
thorough attention in the estimation of emissions relation-
ships and emission factors in contrasting case studies and
uses such studies to develop an entraining-plume theory for
emissions relationships. Illustrations show that this theory
gives intuitively reasonable results in some more complex
situations. This theory suggests a statistical regression tech-
nique; a second methodology section then gives details of
implementation given the complexities of atmospheric sam-
pling. The result, a key “equivalent-background” estimate,
is then applied to quantify the atmospheric signal of fuel
burned, approximately the sum CO2+CO; this allows quan-
tification of emission factors.

Let us introduce our view of enhancement ratios, emis-
sion ratios, and emission factors. Under appropriately de-
fined circumstances, the amount of fuel carbon burned that
is liberated to the atmosphere is the sum of carbon added to
the ambient air in the form of all fire-originated gases and
particles as a result of combustion: in deriving emission fac-
tors, i.e., how much of a species is emitted per kilogram of
biomass burned, it is usual to obtain the amount of carbon
burned by taking the difference in the sum of excess mix-
ing ratios, CO2+CO+ other carbon-containing emissions,
including aerosol particles. To an accuracy of within 1.5 %
(totals from the datasets we analyzed) to 3 % (Andreae and
Merlet, 2001), carbon burned or Cburn is approximated by the
excess (CO2+CO), as measured above a background con-
centration, Cbkgd (Andreae et al., 1988):

CBurn =1CTot =1CO2+1CO+1CH4

+1(particulate carbon)+1(O)VOCs,
approximated here as
CBurn =1CTot ≈1CO2+1CO,

and for graphics and theory,

CTot = x, CBurn = x− x
0
= CTot−CBkgd, (1)

where 1 refers to the enhancement relative to preburn air
and (O)VOCs refer to the carbon content of volatile organic
species, possibly oxygenated (O). In measurement situations
where frequent, accurate measurements of CH4 and particu-
late C are also available, their inclusion could add< 1 % pre-
cision to the estimates. Analysis proceeds similarly including
these terms. This work uses some algebra and graphics, so we
introduce x = CTot and x0CBkgd.

An enhancement ratio (EnR) for a species or property j
with mixing ratio yj is then EnRj =1yj/1CBurn. We will
use this term enhancement ratio, EnR, in this paper. When
EnRs are sampled prior to substantial atmospheric transfor-
mation (e.g., chemistry or particulate processes), they de-
scribe emission ratios (ERs). More on the relationships of
EnRs, ERs, and emission factors (EFs) is found in the Sup-
plement, “Note on EnRs and ERs”. ER estimation constitutes
the analysis of atmospheric samples that contribute to EFs.
Emission factors are defined relative to the amount of fuel
burned and are derived from emission ratios by accounting
for the concentration of carbon in the biomass burned and
adjustment of units (Andreae and Merlet, 2001). Separate
methods of land analysis are employed. EFs can be derived
from ERs by

EFj = ERj ×
MWj

MWc
×CBM, (2)

where ERj is the emission ratio of species j ; MWj and MWc
are the molecular weight of species j and the atomic weight
of carbon, respectively; and CBM is the carbon content of
the dry biomass. We focus on improving methods of finding
EnRs and ERs, which enable EF estimation.

One part of EF estimation concerns the amount of fuel
consumed in fires, its carbon content, and the fraction lib-
erated to the atmosphere (i.e., excluding char remaining on
the ground); here we will focus on the other part of the ques-
tion, which concerns the relationship of emitted compounds
to the C liberated to the atmosphere. Many of the EnRs we
calculate appear to be good candidates for EF estimates. One
remaining task, making specific links of particular EFs to ap-
propriate fire conditions to which they apply, requires indi-
vidualized trajectories and fuel characterizations. This task,
relating atmospheric signals of fuel burned to the details of
the surface burning of carbon, is beyond reasonable treatment
in this publication, which focuses on improving the under-
standing of airborne samples. It seems likely to us that un-
certainties in the relation of area and fuel burned contribute
more error to emissions estimates than those contributions of
minor C-containing species in the plume that were described
above.

There are other uses for EnRs that arise in understanding
fire plumes, which revolve around the evolution of relatively
fresh smoke plumes, e.g., the enhancement of ozone, per-
oxy acetyl nitrate, or other bound (not NO or NO2) nitro-
gen species (Alvarado and Prinn, 2009; Akagi et al., 2012;
Baylon et al., 2015; Alvarado et al., 2009, 2010; Jaffe and
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Widger, 2012). These also should have a direct relation to
the fuel carbon burned and other properties such as burning
conditions, fuel moisture, and fuel N content.

A complication arises from the fact that preburn or non-
burned air may have various compositions, especially when
we consider various sources for low-level inflow air and es-
pecially air that is entrained in the smoke plume by the time
of sampling. This is an important topic, which has been dis-
cussed in detail by Guyon et al. (2005) and Yokelson et
al. (2013) and which we will focus on below.

Two special intensive-sampling missions utilizing NASA’s
fully instrumented DC-8 aircraft allowed us to investigate
forest-burning emissions. In June 2008, the aircraft sampled
a variety of fire plumes around California (Jacob et al., 2010;
Singh et al., 2010, 2012; Hornbrook et al., 2011) during the
California ARCTAS (Arctic Research of the Composition
of the Troposphere from Aircraft and Satellites) intensive
period. In a later part of the campaign, the DC-8 sampled
plumes in Northern Canada (Simpson et al., 2011); we ex-
cluded these plumes as representing different, more boreal,
forest burn conditions. In 2013, the DC-8 made several sam-
plings of forest fires in California and the Rocky Mountain
West during SEAC4RS (Studies of Emissions and Atmo-
spheric Composition, Clouds and Climate Coupling by Re-
gional Surveys; Toon et al., 2016). We analyzed all of these
fire plumes but excluded samples east of 102◦W, which were
mostly from agricultural fires. Our aim was to understand a
variety of plumes but limit variation to a single general cat-
egory (temperate forest fires) as used for three-dimensional
simulation models and geographical summaries.

Flight tracks for the period and locations of major fires
during these periods are shown in Fig. 1. Analysis of the
vertical variation in fire tracers suggested that plumes be-
low 5 km a.s.l. included recent and informative fires in our
study. We saw no unequivocal variation in composition with
height, possibly due to limitations on aircraft maneuvers low
and near the fires. Consequently, the aircraft samples likely
cannot adequately represent ground-hugging smoke flows.

1.2 Development of EF estimation to date

EnRs and EFs for biomass-burning plumes have largely been
based on measurements of the CO2 or CO concentrations
in the plumes. Typical analyses begin with measurements of
Ctot and the concentrations of several tracers we may call yj :
j = 1, . . .,NTracers. Multiple instances, i = 1, . . .,NInstances,
are observed, e.g., every few seconds or few minutes within
a plume. An affine dependence (linear polynomial relation-
ship including an intercept) is observed between each of the
tracers and Ctot with a y intercept that depends most signifi-
cantly on the local out-of-plume background values of CO2,
CO, and each tracer individually.

Ctot = Cbkgd+Cburn (3)

The following analysis suggests several complexities that
must be addressed in order to understand these affine rela-
tionships. Several aspects of slopes, intercepts, and devia-
tions from linearity of the relationship of tracer yj to Ctot
plots must be examined, and so we transition to graphic ter-
minology with x representing Ctot. Later we will describe
measurements of Ctot and tracers j at a given instance i, xi
and yij . For a simple plume within a homogeneous mixed
layer characterized by an x concentration x0 and y concen-
tration yE, we write

x = x0
+

(
x− x0

)
(4)

and(
yj − y

E
j

)
= aj

(
x− x0

)
, (5)

with an enhancement ratio, aj , that can yield EnRs directly.
Early estimations (e.g., Greenberg et al., 1984; Andreae et
al., 1988) used plots and regressions against CO2 to estimate
EnRs and EFs. These earliest techniques assumed fire was
the main origin of CO2. Very early it was recognized that
other effects, e.g., variation in photosynthesis, respiration,
and mixing, required a more sophisticated approach (e.g.,
Guyon et al., 2005). Alternatively (e.g., Andreae et al., 1988;
Hobbs et al., 2003; Lefer et al., 1994), EnRs were derived
with respect to CO. Symbolically,

EnR estimate= Estimate
(
δyJ

δCO

)
·Estimate

(
δCO

δCO2+ δCO

)
= (Regression slope of yi on CO)
· (Regression slope of CO on (CO2+CO)).

Here we use the symbol δ to indicate that these differences
are evaluated from sequential samples or a regression of such
a sequence. The second factor is based on the modified com-
bustion efficiency (MCE),

MCE= δCO2/(δCO2+ δCO)

= 1− δCO/(δCO2+ δCO)
= 1−EnRCO, (6)

with an attempt to estimate the domain of points for which a
constant MCE could be assumed. The form of the difference
symbol is written so as to emphasize that the differences are
typically taken from a contiguously sampled time series of
observations.

The method has become known as the normalized excess
mixing ratio (NEMR) method (Akagi et al., 2011). Yokel-
son et al. (2013) described the care required to make sure
that the MCE was well defined; otherwise, severe difficul-
ties ensue. They describe a situation in which x0 and yE

CO in
a diluting plume took on two distinct values, a mixed-layer
value and a free-troposphere value, during plume rise and
transport. More than two values may be relevant, emphasiz-
ing their call for a more thorough sampling of prefire air and
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Figure 1. ARCTAS and SEAC4RS flights analyzed in this work. Each flight is identified by the flight number of that series. Flights 5 and 6
were in the Western USA but not included.

its dilution environment. We describe below new methods to
resolve many of the difficulties with x0 and to indicate un-
wanted effects of yE

CO variability. These methods could pro-
vide EnRs for many species with reasonable precision under
more conditions.

This need for caution was very evident in the ARC-
TAS and SEAC4RS observational situations. Some West-
ern USA data we analyzed showed variations in background
Ctot = CO2+CO (away from direct recent effects of respi-
ration and photosynthesis) of 15 ppm (interquartile range of
4 ppm), while other Western USA regions showed variations
of ∼ 8 ppm (according to the analyses in this paper that we
present later in Fig. 4). The contributions from fires were of-
ten comparable to this variation,∼ 2–40 ppm, mean∼ 6 ppm.
Air flowed from the west into forest fires at low altitudes
or later diluted the smoke plume at intermediate levels. We
could expect background air with a variety of histories of
influence by photosynthesis (lower resultant CO2) or respi-
ration (higher CO2), or we could expect urban-influenced air
(higher CO2). Low-level inflow air could have been mostly
affected by local forests, farming, etc. Some of the most
problematic situations tend to be associated with plumes
sampled early in the day, when air from a nocturnal bound-
ary layer – strongly enriched with respiration CO2 – is mixed
into the smoke plumes (Guyon et al., 2005). There could also

have been substantial variations in Ctot due to intercontinen-
tal transport, the composition reflecting long-term previous
modification due to these same processes and to latitudinal
gradients. Yates et al. (2011) reported and more fully refer-
enced atmospheric sampling of western air showing varia-
tions in CO2 and also in CH4 and O3. On the east side of
the Pacific anticyclone, the common pattern was for descent
and horizontal-shearing displacements, producing substan-
tial Ctot variations in both horizontal and vertical directions
(Barry and Chorley, 1998).

Previous analyses have been made for the ARCTAS data,
by Simpson et al. (2011) for the large Canadian fires sampled
and by Hornbook et al. (2011) for all fires. The Hornbook ar-
ticle usefully complements this paper by describing features
and origins of the plumes sampled. Both groups described
novel methods but followed the traditional CO emissions ra-
tio or NEMR methodology (Andreae et al., 1988; Hobbs et
al., 2003; Akagi et al., 2011). Pfister et al. (2011) considered
the emissions and transport of CO in the California ARCTAS
samples. Analyses of the SEAC4RS fires have also been re-
ported (Liu, 2017).

The following sections provide motivation for and under-
standing of an alternate approach to the description of EnRs
and EFs, the mixed-effects regression emission technique,
MERET; in some cases, MERET and the NEMR method
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may form complementary supporting views of plume emis-
sions. Whereas the NEMR approach depends on multiple
measurements in the same plume in an understood envi-
ronment, MERET is typically applicable to individual mea-
surements of similar EnR-determining fire conditions across
many different plumes. It instead requires several informa-
tive fire tracer species, not simply CO2 or CO, be measured
simultaneously, as well as the tracer whose EnR is desired.
It can also be used for good candidate EFs when the envi-
ronmental history of the plume is not well characterized. It
is applicable to any plumes encountered, without need for
extensive measurement of that plume history.

MERET attempts to use the simultaneous variability, sam-
ple by sample, of a large set of fire tracer compounds and
aerosol descriptors to find a single quantification, Cburn, of
fire emissions, which it splits from Cbkgd such that the sum
is Ctot. To do so, it must also ascribe a set of EnRs to the
fire tracers and recognize that these EnRs may vary from
sample to sample in a limited way. The interplay of these
estimates contributing to Cburn and EnRs for each observa-
tion appears daunting. Section 3 will graphically illustrate
how strongly effects beyond fire emissions describe varia-
tions in Ctot and also how similar and informative various
tracers are as graphed against Ctot. Section 4 will describe a
theory of multiple fire emissions co-emitted from a fire based
on familiar plume concepts and give examples. The examples
show the linearity of the theory that such simple approaches
with a limited number of parameter estimates yield a rea-
sonable approximation to more complex behavior. Sections 5
and 6 describe a mixed-effects regression algorithm based on
plume theory. Section 7 provides a limited number of EnR
estimates and describes graphically how flight segments de-
scribing similar emissions conditions can be identified.

2 Methodology – defining an indicator dataset

An initial task is the identification of tracers that are informa-
tive about burning and sampling rates. The technique we de-
scribe requires the measurement ofCtot ≈ CO2+CO and sev-
eral concentrations of emitted species or similar, extensive,
properties of emissions (e.g., dried-airstream scattering coef-
ficients, bscat), which we will call emission indicator species
or tracers. A set of indicator species was chosen for this pub-
lication to enable deriving relevant EnRs and to support our
initial classification (e.g., flaming, smoldering, high-N fuel).
It is important to have as many differently behaving emission
indicator species as possible, as different indicators may re-
spond differently to different fuels and fire intensities (“fire
chemistries”), and such variations are usually not known be-
fore analysis. We favored indicator species with rapid sam-
pling rates, so as to define Cburn for the maximum number of
instances, but certain variables like CO, CH4, and bscat had
special claims, as they can be maximally expressed in impor-
tant types of fires. For our samples, methane and methanol

showed significant idiosyncracies. Their cumulative proba-
bility distribution differed from all other tracers, with promi-
nently very high concentrations and much higher positive
skewness. We surmise that this behavior resulted from other
prominent sources, e.g. cattle raising, or that very long dis-
tance transport and long lifetimes caused very great nonfire
sources, like CO2. It was convenient to use these same fre-
quently measured indicator variables to define Cburn and also
for classification of fire chemistries. For classification, we
added intensive variables, essentially ratios that should be
physically independent of Cburn.

The emission indicator species that satisfied these require-
ments for both missions are shown in Table 1, along with ref-
erences to the measurement techniques and observers. Only
extensive quantities (proportional to Cburn) are used in this
paper. CO2 was measured by Stephanie Vay (ARCTAS) and
Andreas Beyersdorff (SEAC4RS) using the AVOCET in-
strument (Vay et al., 2011). In examining EnRs for vari-
ous species, we also use the organic aerosol (OA) measure-
ments (Wagner et al., 2015). ARCTAS and SEAC4RS data
sites give full information, as instrumentation characteristics
naturally vary somewhat between missions (https://www-air.
larc.nasa.gov/cgi-bin/ArcView/arctas, last access: 12 Au-
gust 2020; https://www-air.larc.nasa.gov/cgi-bin/ArcView/
seac4rs?DC8=1, last access: 12 August 2020).

Our techniques use algorithms that currently allow few
missing observations among the variables. The sampling
rates for emission indicators measured by PTRMS (proton-
transfer ionization mass spectrometry) differed between the
two aircraft missions. The SEAC4RS mission acquired suit-
ably complete PTRMS-derived datasets at a 1 min−1 rate,
and this defined the data interval used for both datasets. Ad-
ditionally, in SEAC4RS CO was measured only by (less fre-
quent) can samples for the first flights prior to the Rim Fire
of 26 August 2013, and CH4 was sampled only by cans for
all flights. These are important species: CO is the most com-
monly used tracer for fire plumes because of its favorable
plume-to-background concentration ratio and readily avail-
able measurement instrumentation. It is also used to define
the MCE in much of the biomass-burning literature (Yokel-
son et al., 1996; Jaffe and Widger, 2011). Consequently,
SEAC4RS imposed additional difficulties and processing.
However, we judged it important to include SEAC4RS in a
combined analysis to broaden the fire chemistries analyzed,
as the Rim Fire was exceptionally large, hot, and well sam-
pled.

The selection of fire plumes required some care. While
CH3CN is a highly specific tracer of fires (Singh et al., 2012),
detailed analysis suggests that it is not the best quantitative
tracer. (Further analysis suggested that CH3CN has variable
EFs, so it signals fires well but does not quantify Cburn ad-
equately.) Plumes were characterized by levels of CH3CN
above 0.225 ppb, over 4 times the assumed background of
0.054 ppb. Since some plumes are known to be quite low in
gas-phase emissions, a few samples with lower CH3CN mix-
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Table 1. Indicator variables.

Concentration or prop-
erty

Abbreviation Technique Group Reference

Extensive quantities Proportional to total burned material, as measured by Cburn

Toluene C6H5CH3 PTRMS Wisthaler Wisthaler et al. (2014)

Benzene C6H6 PTRMS Wisthaler Wisthaler et al. (2014)

Formaldehyde HCHO LAS Fried Fried et al. (2008)

Acetonitrile CH3CN PTRMS Wisthaler Wisthaler et al. (2014)

Absorption coefficient
dry, total, 532 nm

babs, Abs_5 Nephelometry Anderson Wagner et al. (2015)

Scattering coefficient,
dry, submicron 550 nm

bscat, Scat_5 Nephelometry Anderson Wagner et al. (2015)

Carbon monoxide CO LAS, GC Diskin, Blake Pfister et al. (2011)

Acetaldehyde CH3CHO PTRMS Wisthaler Wisthaler et al. (2014)

Intensive quantities Not proportional to carbon burned

Single-scattering
albedo

SSA Nephelometry Anderson Wagner et al. (2015)

Ångström exponent,
scattering

ÅE Nephelometry Anderson Wagner et al. (2015)

Other variables used O3, NOx=NO
+NO2, NOy

Chemiluminescence,
UV

Weinheimer (ARC-
TAS),
Ryerson (SEAC4RS)

Weinheimer et al. (1994),
Ryerson et al. (2000)

Methane CH4 LAS, GC Diskin, Blake Pfister et al. (2011)

Methanol CH3OH PTRMS Wisthaler Wisthaler et al. (2014)

Notes: PTRMS – proton transfer mass spectrometry; LAS – laser absorption spectrometry; 1−$ is the single-scatter co-albedo; likewise, CO is linked to 1 (modified
combustion efficiency) so that all values extend upwards from 0. For CO2 measurements, see text.

ing ratios but with bscat > 2× 10−2 were allowed in. Plots
of CH3CN vs. bscat suggested that a linear combination of
the two minimal conditions clearly separated a population of
forest fire plumes from other high-particulate situations.

There were forest fire plumes for which urban sources
of CO and other fire tracers made attribution and quantifi-
cation problematic, and so a further test based on CO was
applied to exclude urban samples, using CO vs. CO2 plots
for the years 2008 and 2013 separately (Fig. 2). We used
a 1CO/1CO2 ratio of < 33 ppb ppm−1 to exclude plumes
with excessive urban contamination. The figure suggests
that some plumes with modest levels of urban influence re-
mained and a few genuinely uncertain situations were ex-
cluded where fire might still have been dominant.

Species with sources other than biomass burning and with
lifetimes sufficiently long to allow regional mixing can pose
difficulties somewhat similar to CO2 variability, with solu-
tions suggested in Sect. 8.2. We noted some localized ob-
servations of perplexing, consistently negative 1CH4/1Ctot
relationships in the ARCTAS data (but not other species)

and removed these observation instances. Such relationships
were found close to seaports or oil-producing regions.

3 Observed behavior of Ctot in fire plumes – properties
of tracers

This section provides some examples of Ctot and fire trac-
ers. It illustrates the limitations of changes in Ctot along a
sampling path as an indicator of fire influence, Cburn, for
emissions estimation and the much greater similarities of the
variations in tracers that possess shorter transformation time-
scales. These define our approach to EnRs and EFs. The re-
lation of fire emissions to observed Ctot to Cburn can be ap-
parently simple or complex, depending on how the history
of nonfire CO and CO2 entrained into fire plume air parcels
affects Ctot. We show this commonality of relationships to
motivate the theory of expanding plumes in Sect. 4. The the-
ory suggests a regression relationship in Sects. 5 and 6, which
applied, yields results in Sect. 7 that define relatively precise
estimates of Cbkgd, Cburn, and thus EnRs.
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Figure 2. Urban and forest fire plumes are separable by the ratio of
CO to CO2. Colors indicate a relative measure of CH3CN above the
background, from blue (lowest, ∼ 0.1 ppb) to red (highest, ∼ 6 ppb)
values. The straight gray line indicates our selected discrimination
between nonurban and urban.

Figure 3 describes two flights in which plume encoun-
ters show how the interpretation of Ctot = Cburn+Cbkgd can
be simple or complex. Figure 3a shows the locations of the
plume samples observed during SEAC4RS Flight 10 over
Montana between 2 and 4.5 km a.m.s.l. Local topography
ranged from 1 to 2 km elevation. This dataset included sam-
ples from the very intense plume of the Rim Fire (discussed
later), collected far downwind. Figure 3b shows ARCTAS
Flight 14, which was over the coastal mountains of Northern
California at 0.5 to 1.5 km altitude, with topography from 0
to 1 km.

Figure 4a (whose sampling path is mapped in Fig. 3a)
gives the time series of fire indicators from Flight 10. The
fire tracers CO and bscat appear generally well correlated with
Ctot. This correlation is seen in Fig. 4b–c. Colors from blue
to red give a key to sampling times. The large orange dots in
Fig. 4a and d distinguish the plume points selected (based on
our plume tracers) from adjacent nonplume measurements
made in the flight. The lines connecting the adjacent plume
samples suggest two or perhaps three linear patterns pointing
back to a no-fire background of Ctot ∼ 392.5 and 394.5 ppm.
Separately, a few points near the horizontal axis seem to sug-
gest a low EnR. These points occur in the middle of sam-
pling, just after 11:00 LT. Patterns of variation related to bscat
(550 nm, Fig. 4c) are very similar to those of CO (Fig. 4b).
Most plumes encountered suggest very similar slopes.

Whereas the SEAC4RS data in Fig. 4a–c suggest mostly
expected behavior, the ARCTAS Flight 14 measurements
(Fig. 4d–f) show that Ctot variations, likely due to Cbkgd
variability, can greatly complicate the attempt to estimate
EnRs. The very first samples plotted and those after about
13:35 LT have very clean tracer levels. (Those between 13:03
and 13:15 LT did not quite qualify as plume points, but the
tracers do indicate some fire influence.) In this case, the trace
of Ctot does not reflect fire influence well at all. Both fire
tracers shown in Fig. 4d–f show wildly varying relationships
to Ctot but are remarkably similar to each other in those rela-
tionships.

To conclude this section, we emphasize that variations in
Cbkgd do occur unexpectedly in many apparently homoge-
neous datasets. The lines composed of small black bars in
both Fig. 4a and d use our results of Sect. 7; they are es-
timates of Cbkgd for the selected fire plume cases. The pat-
terns in Fig. 4 are given as plausible descriptions; the aim of
this work is to support these with a uniform theory. For ex-
ample, Ctot sampled by the airplane increases due to higher
nonfire Cbkgd from just before 13:00 to 13:15 LT and then de-
creases gradually until about 13:28 LT. At one sample around
13:21 LT and several at 13:20–13:30 LT, the background is
particularly low, 382–383 ppm. This is a plausible descrip-
tion of the mixing of air masses with original concentrations
of Ctot of ∼ 382 and ∼ 388 ppm. Wisps of less-mixed air oc-
casionally interrupt a relatively continuing trend. A close ex-
amination of the CO and bscat increments compared to Ctot
increments in Fig. 4d–f agrees with this description sug-
gested by the black dashes. The simpler case of SEAC4RS
Flight 10 shows a similar example. At 11:08 LST, early in
the flight, there is a brief excursion upwards of Ctot without
any excursion in the tracers. The small black bars show this
as a plausible excursion of Cbkgd. Figure 4b and c show this
as the two to three exceptional points, colored green, near the
horizontal axis.

The plausibility of these examples highlights ideas of fun-
damental similarities in the way plumes of different tracers
behave with entrainment even as Cbkgd varies in response to
distant, unrelated processes, as seen in Fig. 4a. This leads us
to a mathematical description of our observations in Sect. 4.

4 Theory – expanding plume for several species

4.1 A general relationship

Figure 5 gives a general description of the dilution process,
showing by the size of cubes how a mole of near-flame air is
diluted by nonfire material as entrainment occurs. (The boxes
shown suggest volumes, but lofting adiabatically changes
volume. Discussion in terms of moles simplifies the discus-
sion of mixing ratios and EnRs.) The figure is based on ob-
servations of plume size and plume dilution during rising fol-
lowed by largely horizontal dilution downwind (Lareau and
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Figure 3. Flight paths and locations of plumes for two fire samples. (a) Sampling over Montana during SEAC4RS Flight 10. (b) Sampling
in a cross-mountain transect along the Northern California coast. The size of the spheres indicates the relative amount of biomass-burning
contribution. Numerical values of the contribution are in a later figure, Fig. 10. Some of the information was converted from © Google Maps
using the R programming language.

Clements, 2017; Hanna et al., 1982), which are consistent
with mixing ratios measured in this dataset and near-fire CO2
concentrations of 1–2.5×104 ppm. The sizes are meant to be
suggestive, but we found that they give a valuable frame of
discussion for all lofted forest fire plumes. Some details are
in the Supplement, “Note on Volumes”.

Using Fig. 5 as a guide, consider a parcel originating at
a time t1 containing ν = ν1 moles that expands with an ex-
ponential relative rate rν = ν−1(dν/dt). (For our illustrative
examples and to rationalize the MERET method, we need
not start at the flame. We suggest a reasonable starting point
described below.) This rate of expansion rν(t) of the molar
volume varies considerably over time, and fires are expected
to have different magnitudes. Then molar mixing ratios will
evolve with a law:

dx
dt
=−

1
ν

dν
dt

(
x− xE) , (7a)

dyj
dt
=−

1
ν

dν
dt

(
yj − y

E
j

)
, (7b)

where xE is the mixing ratio of entraining Ctot and yE
j is the

entraining background mixing ratio of fire tracer species or
property j . (The term xE here is later called x0 with a more
general significance for possibly varying entrainment behav-
ior.) The effect of volume addition is captured by ν(t) which
varies with time and expansion. The use of the relative rate
ν(t) does not require that the dilution is exactly exponential
but does make the algebra somewhat simpler.

What happens when there are variable values of xE(t)

from fire to sampling point, for example in the boundary
layer and free troposphere? Using τ to describe the integra-
tion through time of an expanding parcel,

yj
(
tSample

)
=

tSample∫
0

−ν (τ)
(
yj (τ )− y

E
j (τ )

)
dτ

+ yj (t = 0), (8)

with a similar equation for Ctot, which can be called
x(tSample). It involves x(τ) and xE(τ ), where x(t = 0) and
yj (t = 0). These are determined by the Cburn from the fuel
consumed and the tracer compounds released at the same
time, as well as by background concentration,Cbkgd, and pre-
flame backgrounds of the tracer yE

j . We leave aside as a sep-
arate problem for a fire-burning model the complexities of
the actual flame and its incorporation of additional air. Our
point t = 0 is when entrainment of nonburning air becomes
dominant.

Given the realities of atmospheric sampling, we must
avoid describing the complete history of ν(τ) and any com-
plex variation in xE(τ ) and yE

j (τ ). This would require a com-
plete description of air along the parcel trajectory and the
turbulent physics of entrainment. Rather, we provide simple
illustrations showing how generally the entrainment process
affects both x(τ) and all the yj (τ ) values in the same propor-
tions. This is a single-parcel description ignoring complexi-
ties of the rest of the plume. For convenience of discussion,
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Figure 4. (a) Timeline of sampling, for the period shown in Fig. 3a, Montana, of CO2+CO (blue, left axis) and the fire tracers CO and
bscat (red and green points, right axis). Orange-filled points were identified as clear plume points. Unfilled points were not identified as such
but might have some fire influence, especially near plume points. (b) Scatter diagram of CO vs. CO2+CO with arrows showing the time
progression of aircraft sampling of identified plume points. Colors provide a key to times shown in panel (a). Light gray numerals give
observation times in minutes. (c) A similar diagram of bscat vs. CO2+CO. Similar shapes of figures are noted in the text. (d) Timeline of
sampling for the period shown in Fig. 3b, coastal transect. (e) Scatter diagram of CO vs. CO2+CO during the transect, like in panel (b).
(f) A similar diagram of bscat vs. CO2+CO for the coastal transect. The black bars graphed in panels (a) and (d) are estimates of nonfire-
influenced Cbkgd; see text. They and the nonplume points suggest air mass changes in CO2+CO.
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Figure 5. Inflow of air into an expanding fire plume; a likely near-fire aircraft sampling location would be near the cube on the upper right.
Cubes are shown with 3-D sizes proportional to the number of moles of entrained air. These may be considered volumes of air adjusted
downwards to compensate for the adiabatic expansion that rising plumes undergo. The smallest cube is taken to be near the flames, at
roughly the point where fire emissions transition from mixing to entraining background air. Exact placement of this cube is not important to
the analysis of entrainment, expansion, and tracer mixing ratio. Successively larger cubes have volumes roughly in the ratio of 1, 40 (partially
raised), and 140 (near-neutral buoyancy level); sizes are consistent with a buoyant fire plume (Lareau and Clements, 2017). The rightmost
cube has a ratio to the first of 400, consistent with horizontal Gaussian dispersion during travel downwind. See text for more details.

we will describe cases in which the environmental air en-
trained has one or two values each of xE(τ ) and yE

j (τ ) that
are constant over long periods. For example, the background
concentration of xE

= Ctot often has one value in the mixed
layer and a different value above the mixed layer, potentially
taking on several values in several layers. The same is true for
the fire tracers yE. Conceptually there may be several regions
which contribute; the exact history is lost. Our idea is that re-
gression analysis allows us to infer a characteristic sum of
effects which is described by a single quantity. The analysis
can only be as complex as the number of our measured quan-
tities allows. See also Supplement, “Note on Initial Point”.

Returning to the differential-equation view of the simple
expanding plume model, we see a method for estimating the
most important parameters. Solving each of the equations for
the expansion rate and equating the expressions, we obtain a
form that eliminates the details of entrainment and empha-
sizes proportionality. We recommend the reader to refer to
Table 2 during the discussion of theory and then the discus-
sion of estimation details.

1(
yj − y

E
j

) dyj
dt
=−

1
ν

dν
dt
=

1(
x− xE

) dx
dt

(9)

Since dyE
j /dt = 0= dxE/dt , we get

ln
(
yj − y

E
j

)
= ln

(
x− xE)

+Cj , (10)(
yj − y

E
j

)
= aj

(
x− xE)aj = exp(Cj ). (11)

Note that by our definitions, the reasonable interpretation of
Cj is the EnR aj for species j .

Consider two observations of the same plume, each made
at differing degrees of dilution ν. For convenience, these are
labeled β and α, mnemonically “before” and “after.” Tempo-
rally they could be nearly coincident or β could come after α.(
yαj − yβj

)
−

(
yEα
j − y

Eβ
j

)
=

aj
(
xβ − xα

)
− aj

(
xEα
− xEβ) , (12)

for periods of expansion in which the entrained concentra-
tions are constant. See also Supplement, “Note on Varying
Entrainment”.

This formula is the basis for the NEMR technique men-
tioned above, with j = CO playing a particularly important
role. The inequality restrictions should be evaluated for an
EnR to be a candidate for an ER and then an EF. In some
cases, the background values, xEa and yEa

j , might be esti-
mated from measurements made outside the plume. It can be
somewhat more difficult to estimate xEb and yEb

j upwind of
the source, especially for air entraining into the fire plume at
its source. A plume may also entrain air from various back-
grounds and at various times during lofting and spread. That
is, the history of entrainment may well be more complex than
two conditions, “a” and “b”, and the number of situations
where we may estimate EnRs and then EFs is greatly lim-
ited. This important realization was described by Yokelson
et al. (2013). The NEMR method can deal with most differ-
ences in xEb but not in yEb

j for most tracers, and the quantity
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Table 2. Table of symbols.

Symbol Definition Observed,
estimated, or
hypothetical

Ctot CO2+CO (+ other carbon, ignored here), parts per million. O

Cburn CO2+CO (+ other carbon, ignored) emitted from fire, present downwind, in plume sample, to be
estimated as

(
xi − x

0
i

)
.

E

Cbkgd CO2+CO not emitted from fire, present downwind in plume sample, thought of as a mixture of Ctot
entrained at various stages in plume expansion and rise. The background may be assumed for illustration
or computed from the estimated x0

i
. This is not necessarily air surrounding the plume sample.

E H∗

C
Approx
bkgd , νi Early approximate Cburn; a rough rescaling from the unitless burn-normalizing variable νi to parts per

million, often a convenient guide and check.
E

Cj A constant of integration, replaced by aj = exp(Cj ). H

i Sample sequence number, organized for convenience by time of the sample. O

j Tracer number for regression, in this work 1 to 8 or “CO” or “bScat”, etc. After regression estima-
tion is completed, j may be used similarly to specify any fire emission concentration or response,
e.g., “propene” or “O3”.

O

a or b Location at beginning or end of a period of idealized plume development and entrainment. H∗

x Ctot = CO2+CO considered as a continuous variable. H

yj Tracer concentration of fine tracer variable j , e.g., toluene, bScat, considered as a continuous variable. H

xi Vector components of Ctot = CO2+CO describing a plume sample location and time i, used in alge-
braic development, shown on x axis.

E H∗

yij Array components of Ctot = CO2+CO describing tracer concentration of fire tracer variable, j ,
e.g., toluene, bScat, at plume location and time i.

O H∗

xEa or xEb Environmental air “background” Ctot concentrations existing at location a, i.e., the beginning of our
integration of the plume expansion equation. b signifies condition at the end of calculation.

H∗

yE
j

or yEα
j

Background concentration of tracer j . Typically estimated as a minimum value from observed proba-
bility density function for samples in a particular flight mission, especially nonplume samples without
signals of stratospheric air.

E

aj Slope relationship of yij to xi for species j , typically species j under burning conditions for a “fire
type” that is common for all species at instance (time) i. These slopes then transform to EnRs and ERs.

E

cj Intercept relationship of yij to xi . E

y0
ij

y intercept implied by xi , yij , and the estimated slopes aj for j.

x̂0
ij

One of several (10) estimates of x0
i

based on tracer j and fire type assigned by clustering for observation
instance i.

E

x̂0
i

The median of the x̂0
ij

over all the tracers j . E(
xi − x

0
i

)
The estimate of Cburn for instance i in theoretical development and then from regression. Regression
results are properly

(
xi − x̂

0
i

)
.

E

∗ Note that symbols may transition from hypothetical to estimated as the discussion develops.
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yEb
CO for carbon monoxide must be well sampled and well un-

derstood.

4.2 Examples showing robustness of computations of
idealized Ctot

We used this approach to produce the following concrete ex-
amples of increasing complexity. They illustrate the origin of
the features seen in Fig. 6 in terms of this simple plume di-
lution model. They helped motivate our solution techniques
and indicate methods of analysis of individual plumes. These
examples indicate possible limitations, but they also indi-
cate a comforting averaging behavior of the linear differential
equations as they describe our solutions. These uniformities
and deviations also showed up in the analyses that we de-
velop below. The examples also give some quantitative feel
for the effects of deviations from the simplest hypothesis;
e.g., xE and yE

j remain constant through time. Fig. 6 shows
calculations describing behaviors of x and yj in several plau-
sible situations. Each graph represents the development of
plume mixing ratios for a period of plume doubling, similar
to the analysis time chosen in Poppe et al. (1998), following
their equations, Eqs. (7) and (8). The dots show equal in-
crements of plume expansion. Most parameters defining the
equations may be read from the graphs themselves. Each ini-
tial concentration is shown by the points to the upper right
of the line, i.e., the points with maximum x = Cburn and
yj = tracer concentration for each case considered.

Figure 6a illustrates a plume history for xE
= 380 ppm and

EnRs with respect to airborne Ctot of 95×10−3, 12×10−6,
and 25×10−6 ppm ppm−1, which are reasonable values for
carbon monoxide (in ppb), benzene, and ethylene (in ppt).
In the figures, focus attention on the relative behavior of the
tracers. It is assumed that there are no consequential produc-
tion or destruction reactions and also that there is a constant
background tracer concentration, which has been subtracted.
The individual plots show situations of increasing complex-
ity. Figure 6a shows the dilution behavior of the three species.
A constant dilution rate is plotted; note that a varying dilu-
tion rate changes the spacing of the dots but not the linear
pattern. Larger dots highlight an equivalent dilution of tracer
and x = Ctot as would be observed in hypothesized discrete
airplane samples. Figure 6b illustrates the dilution of CO
in environments with differing entrained xE. In Fig. 6a the
larger dots align vertically; in Fig. 6b, they align horizon-
tally. Figure 6c illustrates the situation where both EnRs and
backgrounds vary; the thin lines emphasize independent as-
pects of EnR and xE. The points on the x axis where (excess)
tracer is zero are important to our estimation technique, more
important than xE. Estimation of xE utilizes data on the ver-
tical lines, while EnRs utilize information from both the ver-
tical and the horizontal lines. Statistically speaking, the prob-
lem of estimation of both backgrounds and EnRs illustrates
simultaneous effects that are “separable”. The reader may
wish to extend the analysis to a large sequence of changes

in entrained concentrations and note the essential linearity
of this aspect of the formulation and that the solution ex-
presses an appropriate averaging effect. We remark that the
near uniqueness of the solutions obtained below (making
small allowances for measurement error) will underline the
robustness of the solutions.

However, the effect of uniform variations in background
tracer concentrations yE

j is not completely solved in this
work. yE

j can be estimated by examining the lowest values
of yE

j in nonplume air; it is best to exclude values that ap-
pear to have contributions of exotic air (e.g., stratospheric
air) or possible measurement problems at very low mixing
ratios (e.g., negative values). Some comments follow as we
move towards the topic of estimating individual values from
a large set of xi values and yij values in a practical situation
where we analyze instrumental data. Restricting attention to
larger values of xi and yij greatly ameliorates problems aris-
ing from yE

j .

5 Theory – a regression relationship for EnRs

Let us consider more broadly the equations that provide a
basis for statistical estimation. For current purposes of expla-
nation, we make the seemingly large assumption that points
from different plumes have similar properties at the same de-
gree of dilution and may be compared. That is, the aj values
are consistent for all plumes. Effects of varying xE and yE

j be-
tween the plumes may be largely taken out by regression; that
is our current concern. Later, we will describe our approach
to address possible variations in the EnR relationships aj for
parcels in the same or different plumes.

The basis of MERET utilizes the concept of the unmea-
sured extreme where yaj = 0. To begin with, we consider the
situation where (i) the emissions relationships aj are constant
for all observations and (ii) background values of the trac-
ers are small enough in a relative sense; i.e.,

∣∣∣yEa
j − y

Eb
j

∣∣∣�∣∣yaj − ybj ∣∣. That condition is common for many species that
have loss timescales of less than a month and/or have small
nonfire sources. Each of these restrictions can eventually be
relaxed. In this case

ya = aj

(
xa −

{
xb− x

Eb
+ xEa

})
+ yEa

j − y
Eb
j , (13a)

ya = aj

(
xa −

{
xb− x

Eb
+ xEa

})
,

for
∣∣∣yEa
j − y

Eb
j

∣∣∣� ∣∣yaj − ybj ∣∣ . (13b)

Notice that terms within braces can be estimated by regres-
sion as sums, varying by the situation b. What if the values of
these terms change discretely in time, for example as a plume
leaves a daytime mixed layer or distinct upper-air plumes are
encountered? Simple algebra with linear formulas suggests
that estimates of the terms in braces change discretely. Grad-
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Figure 6. (a) Simulated dilution of three different fire tracers’ EnRs as shown, and with environmental xE of 380 ppm. These are nominally
CO, benzene, and ethylene. Background concentrations of the tracers have been subtracted. Cburn is measured from the y axis, where Ctot
has the value of 380 ppm. Larger dots highlight equivalent degrees of dilution. (b) Simulated dilution of one tracer, nominally CO above
background, with different background xE. Backgrounds are illustrated by the x intercepts. (c) Simulation of three tracers, varying EnRs
and varying backgrounds (deducible from the x intercepts). Thin lines emphasize similar constant y values with different backgrounds and
constant x0 values with varying EnRs. (d) Simulations like in panel (a) but with a change in the xE entrained x0

= Cburn background from
395 to 375 ppm at the time of the eighth dilution step. A single applicable background value of ∼ 378 ppm is a linear interpolation between
395 and 375 ppm. (e) Simulation where background xE remains constant but background CO changes by 1.5 ppb during the same time (CO
drawn at twice the height for visibility).

ual changes in entrained mixing ratios of course imply a con-
tinuity condition on these terms.

We return to the illustrative dilution behaviors described in
Fig. 6. Figure 6d describes a sudden change in background
xE by 20 ppm, xEb to xEa , midway in the expansion and dilu-
tion; at this stage of plume evolution, 20 ppm is about 4 times
larger than typical fire contributions to Ctot. Estimates of x0

i

from a few samples along these lines (without knowledge
of the time of change) would be intermediate. Equation (13)
suggests that the EnR estimate need not be affected. Some
similar calculations make it clear that the estimates average
satisfactorily under varied assumptions. Figure 6e shows a
very contrasting behavior, when there is a sudden change in
concentration of entraining tracer (CO) during plume dilu-
tion, a change of 1.5 ppm. In comparison, the addition of CO
by burning at the start of the interval is ∼ 3.5 ppm. We may
distinguish this as x̂0

ij , where the j = CO and the hat indi-
cates an estimate. This graph also suggests that if there are
more than three tracers (we use eight), then the median of

all the estimates, median (x̂0
ij ), is robust against errors re-

sulting if a tracer j has a variable or poorly described back-
ground, resulting in x̂0

ij at falling being distinctly higher or
lower than the others. We must be concerned about this since
tracers can have occasionally important nonfire sources. A
small change in background of a tracer compared to observed
change due to fire is critical in determining a useful estimate
of the background x0 as well as in determining the quality
of the EnR of a tracer. Methane in particular has a long at-
mospheric lifetime and several sources of similar strength; in
California, livestock and fossil-fuel extraction significantly
influence mixed-layer concentrations flowing into a fire up-
draft. Consequently, it can exhibit variations that are more
than 10 % of the fire emission contribution for well-dispersed
plumes.

The preceding discussion suggests that we may use the
specialized least-squares technique,

yij = aj

(
xi − x

0
i

)
+ eij , (14)
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Figure 7. Multiple tracers allow a solution for an equivalent-background x0 value, illustrated by an idealized example largely replicating the
conditions of fire plume sampling above an Amazonian mixed layer as described by Yokelson et al. (2013). The dashed colored lines indicate
the theoretical response of tracer to the Ctot when Cbkgd takes on various values indicated by black squares. There are several lines showing
the ideas expressed in Fig. 6a. The fact that the various colored lines associated with each x value meet at the value with x coordinate x0 and
y coordinate 0 represents the estimation that precisely solves Eq. (5) above. If we had included error in observations or variation in EnRs,
there would be variations in the positions of x0 and the slopes. As Sect. 6.1 describes, regression of tracer vs. Ctot is required and gives a
spread of y intercepts. Nevertheless, these can be mapped back to x intercepts using slopes and the concept of similar triangles. The nested
gray triangles illustrate this idea for each of two values of x0.

where the xi and the yij are observations of Ctot at an in-
stance i and for the set of variables j at that instance i. Here
x0
i expresses several terms of Eq. (13) and any other cor-

rections not proportional to aj . We may call x0
i an “effective

background”. However, it is not a specific background but ac-
tually summarizes the whole effect of changes in Cbkgd and
also the degree of dilution. This means that the regression can
synthesize information from not just one well-characterized
plume but also different plumes provided we expected them
to have similar aj behavior. Figure 7 illustrates the use of
regression employing the ideas developed in Fig. 6. Using
the same formulas as above, we depict observations of CO,
C6H6, and C2H2 made at three instances (times). The three
tracers determine a value x0, and given that information, the
three tracer enhancements and therefore tracer EnRs are de-
terminable. The nested gray triangles, similar triangles, illus-
trate this idea for each of the two values of x0 correspond-
ing to two observation instances when it is assumed that x0

has changed. MERET uses the idea that the slopes must be
equal. This simulation assumes no error in the measurements
of CO2+CO or the tracers and assumes no variation in the
EnRs, so values are determined perfectly.

How well are these situations with multiple observation
instances and multiple tracers determined? In the case of
two samples and two tracers, i.e., NInstance = 2 samples and
NTracer = 2 slopes (EnRs), we need to estimate x1, x2, a1, a2,
and x0 using only y11, y12, y21, and y22; there are not enough

measured variables to determine a unique solution: NTracer+

NInstance+1>NTracer·NInstance; viz., 5> 4. However, if there
are three tracers,NTracer·NInstance >NTracer+NInstance+1 and
we get a solution. In this case, any measurement error, or in-
deed lack of perfect similarity in response slopes, can give
somewhat conflicting solutions.

6 Methodology

6.1 Finding the CO2 + CO background

The use of tracers with backgrounds removed and then scaled
to a common mean establishes a well-conditioned matrix
problem and easier analysis of sensitivity effects. We have
identified forest fire plume samples andNTracer tracers whose
background values can be reasonably estimated. Let us pro-
ceed with the regression and begin to address some compli-
cations that arise. The mathematical problem we must solve
is Eq. (14), which we will rewrite to emphasize that we are
starting in native units.

ymeasured
ij − yE

j = aj

(
xi − x

0
i

)
+ eij

In the following development in this section, we will work
with yij above the background; i.e., set yprenormalized

ij ←

(ymeasured
ij − yE

j ).
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We must attempt to fit yprenormalized
ij for each species j

(1 to Nj ) and for each measurement instance i (1 to Nj ).
The term eij describes the error. Besides removing back-
grounds, we wish each tracer j to contribute equally to the
sum of squares that determines a regression, independent of
the tracer’s mean value. Consequently, we should normalize
the tracers so that their mean is 1:

yij = y
prenormalized
ij /mean

i

(
y

prenormalized
ij

)
.

We will use normalized values of the tracers for the following
development until Eq. (20). It is not necessary to normalize
xi , but it will be useful to subtract a baseline. This suggests
that the basic regression equation might be the following:

yij = aj

(
xi − x

0
i

)
+ eij . (15)

Equation (15) also summarizes just why the determination of
ERs is difficult: the equation is nonlinear in the multiple re-
gression sense; i.e., we must include the mixed i and j term
ajx

0
i as a regression term. The problem is a mixed-effects

model: we must estimate the statistics of two separately vary-
ing processes affecting x0

i and aj .
A complication arises concerning the use of regression.

The fire tracer variable yij values must “point back” to a zero
point, where no C was added by the burn, Cburn ≡ xi − x

0
i =

0, but each instance i may have a different zero point. A re-
gression formula should solve this in some way. Commonly,
regression fits provide a y intercept, i.e., the value at x = 0.
Here we have an x intercept to estimate, i.e., the concentra-
tion of the reference species at zero-added fire emissions, and
so the problem becomes nonlinear in the regression sense. In
summary, we have a nonlinear random-effects model (Pin-
heiro and Bates, 2000; Gajoux and Seoighe, 2010; Bates et
al., 2014; Gajoux, 2014), which requires specialized tech-
niques.

One feature of Eq. (15) is emphasized: the formulation
does not require any relationship of xi or yij in time; in-
stances must only represent a sufficiently coherent class of
fires. One would expect more accuracy and discernment of
features in similar forest fires but not in forest fires and grass
fires. For the latter case, the assumption of consistent aj be-
comes problematic.

Why not simply reverse the problem and seek x as a func-
tion of y?

xi = αjyij − x
0
i + eij , (16)

where x0
i values are estimated with a regression model

(specifically a fixed-effects model). The difficulty is that the
trivial solution xi =−x0

i fits perfectly and was hard for us to
avoid even when we attempted to restrict the solution with a
nonlinear solver. Is it not easier to convert y intercepts into
x intercepts? This appears more productive and should ap-
peal to those not familiar with using a nonlinear solver in

this particular mode of nonlinearity. In place of Eq. (15), we
may write a regression equation with an intercept:

Regress yij = ajxi + c0
i + eij , (17)

where the y intercepts, c0
i values, are estimated for each in-

stance and the eij values are minimized by least squares. The
R expression used to solve this problem was main.lmer
= lmer( y ∼ x + ( x - 1 | species.type )
+ ( 1 | id ) + 1), where id indicates the sequen-
tial observation number for the tracer species. The term
species.type indicates the species description j . The
word type signals a generalization described in the next
section. (This expression is written in a commonly used
Wilkinson–Rogers symbolic form: the symbol ∼ describes
our intention to make a regression estimate; Wilkinson
and Rogers, 1973. The vertical lines indicate how fac-
tors are involved with variables; 1 indicates an intercept
is to be described by a random effect; and (x - 1 |

species.type) indicates that a slope that multiplies x is
to be estimated, indexed by species.type. “No intercept
estimated” is signaled by −1.) The regression results gener-
ate a set of fitted y values which we may call ŷij and a set of
fitted âj values. Together, the values of xi , ŷij , and âj imply a
y intercept y0

ij when xi = 0 as shown in Fig. 7. One evaluates
the fit for xi = 0. Then one may use the slope estimate âj of
aj by regression to find the several estimates of x̂0

ij provided
by

x̂0
ij =

(
ŷij − y

0
ij

)
/âj . (18)

This is where we use the similar-triangles concept of Fig. 7.
The use of a single âj value for all observation instances of
the same species (more precisely, species.type) is a strong
constraint on the resulting estimate. This is how for âj and
x̂0
ij we use the concept of the similar triangles described in

Fig. 7 of Sect. 5.
We then take

x̂0
i =median

j
x̂0
ij . (19)

The estimation of x̂0
i now allows estimates of the incremen-

tal carbon liberated to the atmosphere, Cburn =
(
xi − x̂

0
i

)
. We

will drop the hat from x̂0
i below, writing x0

i and Cburn =(
xi − x

0
i

)
except when we wish to emphasize their nature

as estimates. Emission factors for individual-tracer species
may be obtained directly by adding fixed and random effects
on slopes for each species and each observation, âj . An en-
hancement ratio for any concentration or property yj with a
background, measured at time i in the aircraft sampling, can
be obtained using the carbon-burned estimate:

EnR for yij =

(
ymeasured
ij − yE

j

)
(
xi − x

0
i

)
≡

(
yij − y

E
j

)
/(Cburn)i . (20)
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To repeat, the variable yij now stands for any property for
which we seek an EnR, for example ozone, which is not
one of the eight indicator variables. yE

j describes a non-fire-
dependent background value. This ratio estimate is available
for all tracers and is preferred over a similar slope variable
âj used to estimate x0

i in the in Eq. (18) above.
Formulas for the statistics of ratio quantities with uncer-

tainties in the numerator and denominator can be theoreti-
cally complex, so we simply computed error estimates by
simulation using computed Bernoulli trials. For both the nu-
merator and the denominator, 1000 samples of normal distri-
butions were calculated, using their uncertainties as 1σ val-
ues. Then the ratios of the first numerator and first denomi-
nator normal deviate sample, the second, . . ., the 1000th nor-
mal deviate sample for the numerator divided by the 1000th
normal deviate sample were calculated, and the distribution
of ratios was summarized. For the numerator, the measured
value and the suggested standard deviation (typically a per-
centage ratio) provided the parameters for the normal dis-
tribution. For the denominator, the mean was the Cburn es-
timate, and the standard deviation was a value of 0.25 ppm,
documented as the measurement error (precision + bias) of
CO2 (see Table 1). Uncertainties in the calculation of x̂0

i were
considered small and did not add to the dispersion of the de-
nominator, especially since it is clear that any additive biases
contributing to the quoted uncertainty in (CO2+CO) cancel
out. Sample calculations in the Supplement (“Note on Sen-
sitivity to Number of Tracers Used”) suggest errors typically
of a magnitude of 0.03 ppm due to variations in technique
and usually of < 0.1 ppm. Additive errors should also cancel
out for the numerator, since a background is subtracted. In-
deed, some tracers like ethene appeared to have a negative
background as determined from plots and simple regression
calculations of yij on (Cburn)i . This is not unexpected, since
these compounds are sampled into cans, where a small but
self-limiting coating of the measured species on the can sur-
faces might cause such a negative offset, and yet the integrity
of the can sample at larger values might be little affected.

6.2 Practicalities – variable EnRs

Equations (17)–(19) provide the basis of MERET. There are
however some details that increase its relevance and accu-
racy. First there is normalization. Common practice is to nor-
malize all the tracer species j with respect to the mean of all
observations of species j , after subtracting a baseline. This
allows each tracer to influence yij equally. Assigning weights
accomplishes the same purpose, but scaling allows better di-
agnostic graphs. In fact, the literature referenced above em-
phasizes how informative j = CO is, despite its relatively
small variation in EnR or slope. Consequently, we give CO
twice the weight of all the other species.

Secondly, we allow for a certain amount of true variation
in the EnRs, expecting this to make Eq. (18) perform better.
This is done by imagining that virtual species can be asso-

ciated with “fire types”, for example “flaming CO”, “smol-
dering CO”, or “high-nitrogen-fuel CH3CN”. A fire type is
a value for each observation that applies to all tracer species
at that instance. It expresses commonalities between differ-
ent mixes of burning emissions, commonalities that may be
more frequently or less frequently expressed in any given
plume, e.g., smoldering-CO fire type. We might speculate on
the nature of the fire type, e.g., smoldering or derived from
nitrogen-rich fuel. However, we let the statistical technique
define these types and so apply basic clustering techniques.
We used nonnegative matrix factorization (NMF), but Ma-
halanobis clustering or other techniques seem to do equally
well. NMF and k-means clustering are shown to be equiva-
lent in cases corresponding to our work (Ding et al., 2005).
A larger number of cluster classes will allow more ability to
follow the EnR actually characteristic of the observation but
at the cost of parsimony and sensitivity to instrumental error
for the species or property. We used the R routine nmf() with
k = 6 components and the Lee estimation technique with
singular-value initialization (Lee and Seung, 2001; Boutsidis
and Gallopoulos, 2008). Use of the singular-value option for
initialization proved satisfactory; it agreed well with the de-
fault method.

Since all fire tracers are correlated, such clustering charac-
terizations are much better defined if based on a rough nor-
malization to the fuel burned. We used a consensus variable,
composed from all the defining tracers, to act as an agent for
constructing ratios:

νi =mean
j

(
yij
)
. (21)

This ratioing variable plays a role logically played by
Cburn =

(
xi − x

0
i

)
. Exact quantitative calibration of Cburn in

parts per million is not required, just a relative scale is. We
found it could be intuitively helpful to conceive of the ra-
tioing variable in parts per million of carbon, just as with our
later estimate ofCburn. To assign parts-per-million values, see
the Supplement, “Note on an Early Approximate Cburn”.

We end this section on methodology describing a sep-
arate strand of analysis. We sought timescales that could
be inferred from the data, which could distinguish the rel-
ative age of burning emissions. At greater distances from the
fire, there is both aerosol transformation and photochemical
loss and production of species. Photochemical processing ap-
peared easier to diagnose. We followed the ideas of Roberts
et al. (1984), McKeen and Liu (1993), Parrish et al. (2007),
and Warneke et al. (2013). The Parrish et al. (2007) presen-
tation was most directly relevant. For considerations of these
plume samples, a single origin strongly controlling mixing
ratios made analysis simpler. Following Eq. (3) of Parrish et
al. (2007) and using the symbols E and Y for the mixing ra-
tios of ethEne, and ethYne, respectively,

τage (OH)=−
1

kE− kY

(
ln
yY

yE
− ln

ERY

ERE

)
. (22)
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In view of this we constructed estimates for each instance i
of log10 ((yY)i/(yE)i) – constant. The constant can be esti-
mated with similar results (a) so that the shortest times are
about +15 min or (b) from the highest observed values of
log10 ((yY)i/(yE)i). The values of longer times are deter-
mined by the assumed value of [OH]. The references cited
describe the fact that most τage(OH) observations have a con-
tribution from mixing as well as photochemistry, but this has
little effect on the relative ages. In view of the uncertainty
in the history of [OH] during transport, we simply graph the
log of the ratios. Data analysis suggested that the assumed
background mixing ratios of the species of ethyne and ethene
were small. The Supplement provides some more details and
one estimate of the associated times (“Note on Sensitivity to
Number of Tracers Used”).

6.3 Summary of the MERET algorithm and notes

A summary of the MERET method as we currently propose
it is shown in Fig. 8. It contains many steps, due to the need
to disentangle background (Cburn)i effects from aj effects
related to instance-by-instance EnRs and the variation in âj
by fire type.

1. Select a dataset of likeliest forest fire emission
plumes, where CH3CN> 0.125 ppt (clear biomass-
burning signal) and excluding urban influence(
CO−COEnv)/(CO2−CO2

Backg)> 33×10−3.

2. Select NTracer> 3 fire tracers with estimable environ-
mental background values of yE

j and subtract from
plume instances. Nearby values sufficiently distant from
plumes provide a good guide unless the tracer has very
strong nonfire sources (e.g., CH4 in California valleys).
y

prenormalized
ij ←

(
ymeasured
ij − yE

j

)
.

3. Normalize the tracers above backgrounds: yij =

y
prenormalized
ij /mean

i

(
y

prenormalized
ij

)
.

4. Create values ratioed to a general fire-influence pa-
rameter: νi =mean

j
(yij ). Create yij/νi . Preliminary(

C
Approx
burn

)
i

may be estimated based on νi , for reference.

5. Roughly cluster plumes into NTypes clusters using ra-
tioed values of yij/νi to estimate fire types correspond-
ing to varying EnRs common to species j . The value of
NTypes was observed to make little difference. We used
NTypes = 6. Allow j to signify tracers within clusters.

6. Use mixed-effects regression to make estimates of inter-
cepts and slopes ŷ0

ij and âj using a mixed-effects regres-
sion like main.lmer, allowing random effects corre-
sponding to species (or species and type of fire) and by
instance. Regress yij = ajxi+c0

i +eij , and estimate the
fitted values of ŷij .

7. Prepare to estimate x̂0
ij . For numerical reasons, select

an offset to apply to plumes that follows lower plume
values, approximately 2 ppm less. Better discrimination
makes for tighter estimates of x̂0

ij in the next step.

8. Calculate x̂0
ij =

(
ŷij − y

0
ij

)
/âj from the fitted ŷij val-

ues: take x̂0
i =median

j
x̂0
ij . Medians are little affected by

exact choices in item 7, but spreads of estimates are af-
fected.

9. Estimate (Cburn)i =
(
xi − x̂

0
i

)
. The results for

equivalent-background x̂0
i and Cburn are shown in

Fig. 9 and are discussed more in Sect. 7. EnRs may now
be calculated using Eq. (20). One may also use (Cburn)i
recursively, returning to steps 4–9 until convergence.
However, for our dataset this made an inconsequential
difference.

10. Use
(
xi − x̂

0
ij

)
to estimate EnRs for any fire emis-

sion including tracers, using EnR for each i and j =(
ymeasured
ij − yE

j

)
/
(
xi − x

0
i

)
; evaluate EnR to estimate

ER and EF, considering possible transformation from
the emission to measurement point.

More technical observations are these:

a. For the use of an offset in calculations, we subtracted a
baseline, Cbaseline, a value determined as a constant for
contiguous intervals, shown later in Sect. 7 and Fig. 9,
and yielding a ∼ 2 ppm offset. We found that this min-
imized skewness and variance in the x̂0

ij estimates for
each observation instance i. It is comforting that the ef-
fect of differing offsets on the values of the median, x0

i ,
is small,< 1 ppm. (Add the offset back into the Cbaseline
when reporting x0

i .)

b. Note that sharp positive and negative excursions of x0
i

are seen near dramatic spikes in xi . However,
(
xi − x

0
i

)
and consequently the EnRs are little affected. We can
only speculate that small differences in the time aver-
aging of CO2 and the tracers due to the instruments
may explain these. Note also that the number of param-
eters NTracer ·NTypes+NInstance for the mixed-effects re-
gression remains�NTracer ·NInstance so that the mixed-
effects regression is very strongly determined.

c. The number of classes allowed in step 5 matters little
over two or three. Adding additional classes (clusters)
tends to add only minor variations in the slopes âj . We
are aware that overfitting effects can occur with many
regression terms with positive and negative terms which
mainly allow fitting of special cases. Here, harmful ef-
fects seen in overfitting of regression models are largely
avoided by a requirement that the âj values be positive.
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Figure 8. Summary of the MERET algorithm. See text for further detail.

d. As noted, it is possible to use this method recursively,
making presumably better classifications of fire types.
In our experience, while it is possible to make conver-
gent, recursive characterizations of the Cburn quantity,
tighter clustering, and more precise mixed-model lmer()
estimates, the quantities x0

i and
(
xi − x

0
i

)
were just sig-

nificant enough to warrant such care. If we had fewer
than eight tracers available, such recursion might be im-
portant. We will incrementally update documentation of
the code (Chatfield, 2020). New applications of the code
will suggest improvements.

Here we outline a check on the consistency of Cburn esti-
mation. The results for Cburn and tracer EnRs suggested to
us that one likely source of uncertainty is that Cburn, x̂0

i , and
the tracers may change very rapidly in comparison to our
1 min sampling intervals. Looking into this, we found that
many of the Cburn estimates are of small magnitude; 12 of
the 422 samples yielded Cburn< 1.5 ppm. Even large jumps
from sample to sample in estimated x̂0

i were not particularly
associated with anomalous estimates of Cburn. The remain-
ing, appealing possibility is occasional imprecise time align-
ment of all measurements, particularly of the CO2 measure-
ments. Such imprecise alignment could happen at any stage,
from sampling line delays to interpolation to 1 min time in-
tervals. Such variations in CO2 would affect the x̂0

ij found for
all tracers in a coordinated way, just as was observed. Note
that estimates of Cburn were little affected, since significant
x̂0
ij excursions were associated with large CO2+CO values.

See Supplement, “Note on Examples of Enhancement Ra-
tios”.

6.4 Number of independent samples

A natural broader question is, how well do these mean EnRs
for a species represent the EnRs that might be measured in
a large suite of significant forest fires in the Western USA?
Clearly, this question can only be asked in the context of the
sample provided by the two campaigns. Instances when the
aircraft continued to sample smoke for many minutes could
contain several types of plumes, as we will see illustrated
for the Rim Fire plume of August 2013. The use of 10 s av-
erages (if available) would not provide 6 times as much in-
formation about fire plumes as 60 s averages over the same
measurement run. We tried a simple, approximate quantifi-
cation of “independent instances” available to us using a fre-
quently used formulation by Trenberth (1984). This can also
be seen as providing one answer to the question, how many
effectively independent samples of Cburn are there contribut-
ing to a mean, standard deviation, etc., of Cburn or the emis-
sions factors for species, e.g., the CO tracer? That could be
useful if instruments appeared to give imprecise measure-
ments that required averaging. Trenberth assessed the cor-
relation of successive observations by estimating an autore-
gressive AR(1) (i.e., Markov chain) model for a random vari-
able ξi with parameter φ and random error εi , i.e., estimate
of ξi+1 = φ ξi+εi . We applied this for ξi = xi−x0 (= Cburn)
and several fire tracers yij , like toluene. Most contiguous
sampling periods suggested around 0.6; this suggested Tren-
berth’s “effective time between independent observations” as
≈ (1+φ)/(1−φ), about 4 min. For the DC-8, 4 min corre-
sponds to about 15 km at lower-tropospheric airspeeds. The
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Figure 9. (b) Estimates of the 422 background x̂0
i
= CO2+CO concentrations implied based on the eight fire tracers indicated in the legend.

Contributing individual estimates x̂0
ij

are shown by overlapping colored points, with the median estimate x̂0
i

indicated by a black bar. Usually

the colored points overlap closely; this indicates strong agreement. (a) Estimates of Cburn = xi − x̂
0
i

indicators of fuel carbon burned, in the
thick green line. The preliminary estimate ofCburn based on the consensus of tracer deviations (without variable EnR estimates) is also shown
in a thin line. A scale factor, maximizing overlap with the thick line, was necessarily estimated by regression. Flight days are indicated by
the days marked on the top axes, and individual plumes, separated by nonplume concentrations of longer than 10 min, are shown as vertical
separator lines. A set of horizontal lines at ∼ 400 ppm indicate selected intervals for optimizing numerics (see text, Sect. 6.3, item 7).

effect of this on the formal standard errors as described by a
normal distribution was to increase them by a factor of ∼ 2.
Roughly similar effects are expected for the empirical de-
scriptions of EnR variability described below. Undoubtedly,
for plumes within minutes of the source, the number of de-
grees of freedom corresponds more closely to the number of
1 min observations, but the number of such samples is low.

Not surprisingly, residuals in regressions of CO against
Cburn are very little correlated. We surmise that such low cor-
relation gives confidence in the mathematical determination
of the mean regression slope. However, it does not provide

help in answering the larger question, that of relevance in
new situations. The sequential samples of plumes may have
features like nonstationarity and selection bias; we hope that
these ideas suggest more sophisticated analyses of relevance,
left to future work.

7 Results – estimation of x0
i

and Cburn

The important results of the mixed model are the background
x̂0
i and even more importantly the incremental carbon liber-

ated to the atmosphere, Cburn = xi − x̂
0
i . The background es-
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timates of x̂0
i for all samples and the contributing individual

estimates x̂0
ij are shown in Fig. 9. The median x̂0

i is shown
as a thin black line. The colored circles in the legend identify
how the tracer species j contribute an individual x̂0

ij value,
determining the median x̂0

ij .
What are the uncertainties in the estimates we have made

of x̂0
i and Cburn? The uncertainty in estimated carbon burned(

xi − x̂
0
i

)
plays an important role in the ultimate estimates,

the emission factors. In this section, we will confine our ex-
position to this uncertainty for now. The graphs of x̂0

i and(
xi − x̂

0
i

)
shown in Fig. 9 provide a practical understanding

of the uncertainty. Note the continuity in x̂0
i ; this important

observation is described below. Traditional estimation of un-
certainties for

(
xi − x̂

0
i

)
is complex due to the several steps

involved and the use of median estimates. The advisability of
using the median estimator and its statistical properties have
long been recognized (Laplace, 1774; Lawrence, 2013). This
variety of uncertainty estimation may be useful as MERET
is refined. However, we expect that the study of uncertainty
depends more on evaluating sources of true variability in the
EnRs and also on the conservation of tracer concentrations
from the flames to the sampling point than on the math-
ematics of median estimation. Consequently, the following
paragraphs explore these questions related to the number and
choice of tracers. We suggest that the typical strong overlap
of the individual-tracer values may reflect the high precision
of the observer’s techniques!

How does the number of tracers affect results? What are
the effects of using alternate or simpler sets of tracers? How
many tracers are required for stable estimates? We began to
address these questions by examining estimates made with
fewer tracers in the intercept-determining set: the selection
of the set of j values. The Supplement gives two examples of
subsets (“Note on Sensitivity to Number of Tracers Used”).
Here is a summary of that material. The two sets chosen are
those that are the most unambiguous indicators of x̂0

ij based
on their mutual agreement with x̂0

i from the full set of 10
tracers. They are Set 1 (CO, Scat_5, and HCHO) and Set 2
(CO, Scat_5, HCHO, acetaldehyde, and toluene). These are
indicated by an examination of Fig. S2 in the Supplement.
(Abs_5 contributed x̂0

ij , which is the most deviating esti-
mate from x̂0

ij .) Set 2 gave variations around of 0.02 ppm; the
smaller set, Set 1, gave very similar variations except for the
flights of 22 and 25 June, where many observation instances
varied by around 0.1 ppm but with 11 points out of 422 differ-
ing by 0.3 ppm. This level of agreement surprised us. More
significantly for our aims, the relative error in Cburn was only
about 2 %. When sets containing the less correlated tracers
were used, deviations ranged up to 0.2–0.4 ppm, which still
appeared remarkably small.

Observation-to-observation consistency in x̂0
i estimates,

seen for most plumes observed in Fig. 9, is the strongest argu-
ment for the precision of the Cburn estimates. Recall that our
theory does not use sequential time information; thus, suc-

cessive estimates are essentially independent of each other.
There is of course the dependency due to each observation’s
contribution to the estimate as one component of the en-
tire dataset. This continuity is maintained even though the
magnitudes of CO2+CO and estimated Cburn can change
dramatically as the sampling aircraft enters and leaves each
plume. Smooth excursions seen early in the flight marked
8.27 are explicable in terms of large changes in sampling al-
titude and location around the Rim Fire on that day. There
are variations in x̂0

i from plume to plume and from day to
day.

In contrast to this typical continuity of x̂0
i estimates, there

are 15 to 20 brief and large excursions which deserve some
attention. Of course, these may be disregarded in obtaining a
general picture of EnRs. All the tracers suggest these excur-
sions of the median, although there is a larger variation be-
tween the individual-tracer-based estimates x̂0

ij . These excur-
sions are always associated with large changes in CO2+CO
and Cburn, but often they occur 1 min later. We examined
these excursions in detail. They do not seem to relate to
changes in the EnRs’ âj (as qualified by fire type) estimated
simultaneously. The observations yij and the fitted ŷij agree
well, as do the nonexcursion points. Note however, that we
may only use a single set of fire types, independent of j , to
construct a set of âj values and ŷij to make the x̂0

ij estimates.
The results for Cburn and tracer EnRs suggested to us that

one likely source of uncertainty is that Cburn, x̂0
i , and the

tracers may change very rapidly in comparison to our 1 min
sampling intervals. This would seem to be a concern since
some Cburn estimates are of a small magnitude: 12 of the
422 samples yielded Cburn< 1.5 ppm. However, large jumps
from sample to sample in estimated x̂0

i were not particularly
associated with anomalous estimates of Cburn. The remain-
ing, appealing possibility is occasional imprecise time align-
ment of all measurements, particularly of the CO2 measure-
ments. Such imprecise alignment could happen at any stage,
from sampling line delays to interpolation to 1 min time in-
tervals. Such variations in CO2 would affect the x̂0

ij found for
all tracers in a coordinated way, just as was observed. Note
that estimates of Cburn were little affected, since significant
x̂0
ij excursions were associated with large CO2+CO values.

MERET should work better with more tracers, since more
fire types may be revealed. However, additional classes (clus-
ters) tend to add only minor variations in the slopes âj . Fur-
thermore, harmful effects often seen in the overfitting of re-
gression models should be minimized by a requirement that
the âj values be positive. (Positive and negative regression
coefficients that allow the fitting of just a few points cannot
be added.)
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Figure 10. Analyzed relation of tracers to carbon burned using MERET for portions of SEAC4RS Flight 10 and ARCTAS Flight 14.
Compare panels (a) through (d) with Fig. 4b, c, e, and f. Colors key the observations to times shown in the timelines in Fig. 4a and c. Light
gray numerals give observation times in minutes.

8 Estimates of emission ratios – two MERET examples

8.1 MERET results for our two examples

The usefulness of our estimates of x̂0
i and Cburn = xi − x̂

0
i is

seen in the MERET analysis (Fig. 10) of the two case stud-
ies analyzed above using the NEMR approach, with portions
of flights 10 and 14 shown in Fig. 4. The tracers CO and
bscat appear much better correlated with the Cburn estimated
from MERET, especially in Flight 14. The plots for both CO
and scattering imply linear relationships with an implied in-
tercept near 0; i.e., background values of yi have been satis-
factorily removed. Difficulties with a variable Cbkgd appear
to be resolved. However, the slopes of all the lines do not
all agree. The Montana scatterplots (Fig. 4a) and (Fig. 4b)
appear to suggest two slightly different linear features. The
California transect scatterplots (Fig. 4c) and (Fig. 4d) show
more separated linear features, though the slopes are parallel.
We expect that these might correspond to varying fire types
and perhaps varying MCEs, to be discussed in Chatfield and
Andreae (2020), or to variations in background values of y0

j ,

which are much harder to detect with either MERET or the
NEMR approach. A combined approach, using MERET to
locate regions of similar MCE, might be useful here. Also,
note that the variation in slope is more evident for bscat than
CO, emphasizing the special role of CO as the single best fire
tracer, closely followed by bscat.

8.2 Table of several significant emissions

Table 3 provides a summary of the EnR relationships for
some of the most significant gaseous emissions and partic-
ulate properties. In many cases, these EnRs can be converted
to ERs and emission factors when the relationship of airborne
Cburn to surface fuel consumed can be established. For the
most highly reactive species, these EnRs will tend to be un-
derestimates. An interpretive paper (Chatfield and Andreae,
2020) will give additional information on the photochemi-
cal age of the observation in many cases. Ozone and per-
oxy acetyl nitrate (PAN) are not emissions but produced in
the plumes. Their relationships to fuel burned and their vari-
ations are nevertheless interesting. Descriptions of variation
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Table 3. EnR estimates for fire emissions considered.

Fire EnR Percentile Percentile Unit Conversion
emission estimate 16 84 factor to EF

CO 74 62 85 ppb ppm−1 1.17
CH4 8.6 2.3 13.0 ppb ppm−1 0.67
Ethyne 0.26 0.205 0.31 ppb ppm−1 1.08
Ethene 0.88 0.65 1.07 ppb ppm−1 1.17
Ethane 0.70 0.57 0.80 ppb ppm−1 1.25
Propene 0.056 0.005 0.100 ppb ppm−1 1.75
Propane 0.16 0.12 0.19 ppb ppm−1 1.83
n-Butane 0.028 0.019 0.037 ppb ppm−1 2.17
Benzene 0.094 0.073 0.134 ppb ppm−1 3.25
Toluene 0.054 0.023 0.067 ppb ppm−1 3.88

Methanol 2.1 1.7 3.1 ppb ppm−1 1.33
HCHO 1.15 0.81 1.62 ppb ppm−1 1.25
Acetaldehyde 0.56 0.24 0.71 ppb ppm−1 1.83
Acetone 0.74 0.54 1.14 ppb ppm−1 2.42
CH3CN 0.13 0.11 0.16 ppb ppm−1 1.25
NOx (as N) 0.051 0.024 0.131 ppb ppm−1 0.63
O3 14.8 8.5 25.1 ppb ppm−1 (2.0)
PAN 0.26 0.17 0.38 ppb ppm−1 (3.17)
Scat_5, bScat 79 50 100 m−1 ppm−1 0.042
Abs_5, bAbs 3.2 2.2 4.4 m−1 ppm−1 0.042
Ammonium 0.32 0.19 0.47 µg m−3 ppm−1 0.032
Nitrate 0.28 0.11 0.60 µg m−3 ppm−1 0.107
Sulfate 0.156 0.063 0.290 µg m−3 ppm−1 0.164

Notes: conversions assume a C to dry biomass ratio of 0.5. Conversions to micrograms per cubic meter assume a
temperature of 25 ◦C and atmospheric pressure of 1013 hPa. O3 and PAN are not directly produced by fires.
HCHO is produced but often decreases rapidly. Under appropriate conditions indicated in Chatfield and
Andreae (2020), the EnR estimates can be used as ERs. For tracers that are rapidly removed or transformed, these
tend to be the higher values. Parentheses in the last column indicate that the entry is an emission relationship, not
EF, as O3 and PAN are not directly emitted.

are given as the 16th and 84th percentiles of all the estimates.
These are similar to error estimates if nothing more is known
about the origin and age of the particular samples, a matter
more fully discussed in Chatfield and Andreae (2020). EnRs
as they varied in time and in relationship to measures of pho-
tochemical processing are shown in the Supplement, “Note
on Examples of Enhancement Ratios”.

9 Conclusions

A major problem with the estimation of fire enhancement ra-
tios and emission factors is inherent in their character: flames
promote mixing in their plumes. Total carbon liberated to
the atmosphere (approximately Cburn = CO2+CO) is mixed
with background air at different points in the plume’s evo-
lution, and removal of that mixing effect has been a dif-
ficulty. The NEMR technique often uses CO as a unique
tracer, but the EnR of CO is variable, adding uncertainty to
the estimation of the EFs. Given the variability of CO due
to combustion efficiency (MCE) and environmental variabil-

ity, it has been emphasized that the NEMR technique can
only be confidently applied in situations in which conditions
affecting the ratio of CO to (CO2+CO) can be well de-
termined, ideally from source to sampling (Yokelson et al.,
2013). The method also tends to emphasize the use of sam-
ples of CO and tracer collected over many minutes so that the
regression method for EnRs of tracer relative to CO, defining
aCO←(fire-addedCburn), becomes stable and a conversion to fuel
carbon burned becomes possible.

We sought to decompose Ctot into Cbkgd and Cburn. How-
ever, meteorology and mixing allow significant variations in
Cbkgd due to other powerful processes, e.g., CO2 from res-
piration and photosynthesis in mixed-layer air. Once lofted,
Cbkgd varies little unless the plume enters layers of free tro-
pospheric air from long-range transport with different Cbkgd
values, which further dilute the plume (Yokelson et al.,
2013). We noted such problems using the NEMR method in
analyzing a significant number of plumes for enhancement
ratios studied in the Western USA during two campaigns,
ARCTAS California and SEAC4RS, with 1 min samples to-
talling 422 in all.
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The problem of deriving an accurate Cbkgd is solved by
noticing that there are two different kinds of information
provided by multiple observational instances of a tracer and
multiple tracers at a single instance. Information about the
various EnRs and Cbkgd values is mixed but not inextrica-
bly. There is a solution based on mixed-effects (also called
random-effects) regression modeling. We propose a mixed-
effects regression emission technique (MERET) to replace
or at least to check on the NEMR approach, for which we
used the R routine lmer().

MERET is related to traditional entraining-plume mod-
els for parcels. We presented a synthesis describing multiple
tracers from fire to sampling location. Sample calculations
with the model suggest that it deals linearly with several var-
ied histories for plume mixing. This motivates a regression
equation for an equivalent-background x0

i value for each ob-
servation that is related to entraining concentrations xE(t)

along the trajectory and shows coherent agreement for each
tracer species (Fig. 9). The theory then allows this x0

i to be
used to define Cburn and thus to define the EnR for any ap-
propriate fire-derived variable. This technique should allow
EnRs in more variable, difficult situations and allows esti-
mates of EnRs for individual samples.

EnRs are useful for the estimation of emission factors
when the plume age is short compared to the transforma-
tion timescale of the measured fire tracer, and we provide
an approximate diagnostic for this age for most samples.
Formaldehyde, acetaldehyde, the alkenes, benzene, NOx ,
bScat, and bAbs particularly require such attention.

Carbon monoxide is usually the best single tracer that cor-
relates with fire emissions (Cburn), supporting the use of the
NEMR technique. Our analysis suggests other tracers had
EnR variations that collectively helped to distinguish Cburn
from CO in regression. The NEMR methodology depends
on a full analysis of the history of CO influences on a sam-
ple to obtain a reliable MCE. MERET allows estimates of
MCE as well as of Cburn for each sample. Thus it demarcates
sampling periods with nearly homogeneous MCE. However,
possible large variations in the entraining background of CO
should still be considered carefully in dilute plumes with
Cburn< 2 ppm.

Questions for future research

We conclude with some questions for future research; these
also review the suggested conclusions of this paper and ac-
knowledge the limitations of a single publication.

1. How well can the use of one or a few tracers, e.g.,
CO, bscat, and HCHO, actually constrain EnRs and EFs
when only a few instruments may be used? How many
variables need to be measured or how fresh should the
plumes be to allow CO to be used both as a fire tracer
and to allow useful estimates of MCE?

2. Can MERET be used to identify time periods of rela-
tively homogeneous MCE, and can that MCE value be
used with the NEMR to create suitable EnRs? Since the
NEMR uses differences sample by sample (in time), no
minimum value of another tracer needs to be estimated.
(Consider that MERET does allow some evaluation of
the minimum value estimate to be assessed and a better
minimum assigned.)

3. Can MERET, the NEMR, and better near-fire nonplume
sampling help us to prevent misattribution of fire emis-
sions? These would include observations for fire in-
take air, air likely to be entrained in ascent, and air
surrounding a plume and likely to be entrained as a
plume spreads downwind. Can simulations of entrain-
ing plumes aid this effort?

4. What do fire types represent, and which species or prop-
erties tend to correlate in their EnRs (Chatfield and An-
dreae, 2020)?
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