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Abstract. A new technique, named “HailPixel”, is intro-
duced for measuring the maximum dimension and inter-
mediate dimension of hailstones from aerial imagery. The
photogrammetry procedure applies a convolutional neural
network for robust detection of hailstones against complex
backgrounds and an edge detection method for measuring
the shape of identified hailstones. This semi-automated tech-
nique is capable of measuring many thousands of hailstones
within a single survey, which is several orders of magnitude
larger (e.g. 10000 or more hailstones) than population sizes
from existing sensors (e.g. a hail pad). Comparison with a
co-located hail pad for an Argentinian hailstorm event dur-
ing the RELAMPAGO project demonstrates the larger popu-
lation size of the HailPixel survey significantly improves the
shape and tails of the observed hail size distribution. When
hail fall is sparse, such as during large and giant hail events,
the large survey area of this technique is especially advanta-
geous for resolving the hail size distribution.

1 Introduction

Measurements of the hail size distribution (HSD) are chal-
lenging to collect owing to the infrequent and hostile nature
of hailstorms. Because of these constraints, HSD measure-
ments are uncommon, especially for larger hail (> 25 mm).
Such observations are necessary to constrain hail micro-
physics parameterization schemes used in weather and cli-
mate models and for hail detection and sizing algorithms

from weather radar. Improvements to hail retrievals and mod-
elling are an important step towards mitigating the increas-
ingly significant hail-related losses to agriculture, motor ve-
hicles and buildings (Sánchez et al., 1996; Changnon et al.,
1997; Hohl et al., 2002).

Ground sensors for measuring the size distribution of large
hail can be separated into those that provide time recording
(e.g. hail disdrometer) and those that provide time-integrated
measurements (e.g. hail pad). Time-recording instruments
such as impact or optical disdrometers provide valuable in-
formation on the temporal variability of the HSD within a
given storm but are often expensive to fabricate and main-
tain and difficult to deploy. Thus, such instruments typi-
cally are only deployed as smaller networks or for field
campaigns (e.g. Federer and Waldvogel, 1975; Löffler-Mang
et al., 2011; Brown et al., 2014). In contrast, time-integrated
instruments often are cheaper to fabricate, maintain and de-
ploy, making them attractive options for longer-term moni-
toring of hail fall. The most commonly used time-integrated
instrument for measuring HSDs is a hail pad, consisting of
a foil-covered styrofoam pad that preserves dents of hail im-
pact (Long et al., 1979). This sensor is cost-effective and has
seen extensive use by previous and ongoing campaigns in
the US and Europe over the last 50 years (Cheng and En-
glish, 1983; Fraile et al., 1992; Cifelli et al., 2005; Kalina
et al., 2014). Both hail pads and hail disdrometers provide
reasonable estimates of hail size but are subject to significant
limitations even with careful calibration (e.g. Palencia et al.,
2011). Further, both time-recording and time-integrated in-
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struments for measuring the HSD utilize a small sample area
on the order of 0.1 to 0.3 m2. Towery et al. (1976) suggest
this small sample area is likely to under-represent the HSD,
particularly for larger hail, and recommend deployment of
multiple sensors to minimize this effect.

The concentration of large hail, and particularly giant hail
(> 100 mm), can be very sparse (Witt et al., 2018), severely
limiting the effectiveness of these small ground sensors even
with multiple units. To overcome these sampling limitations,
we describe a new time-integrated technique for measur-
ing the HSD by combining aerial imagery captured from a
small unmanned aircraft with deep learning and computer
vision feature extraction. Methods involving deep learning
have seen increased utilization in the atmospheric sciences
community, including for the application of severe weather
(e.g. McGovern et al., 2017; Gagne et al., 2019); however,
there has been limited usage of such methods in targeted
field observation datasets and in situ data. Over the last 2
decades, convolutional neural networks (CNNs) have be-
come a rapidly developing deep-learning research tool that
excels at image feature recognition (e.g. Razavian et al.,
2014; Krizhevsky et al., 2012). This is achieved by develop-
ing complex feature recognition filters independent of prior
knowledge, inspired by processes within the animal visual
cortex (Hubel and Wiesel, 1968).

The new technique described here, named “HailPixel”, en-
ables the capture of very large areas (> 1500 m2, equivalent
area to several thousand hail pads) immediately following a
hailstorm. This paper describes the methods of imagery cap-
ture and semi-automated extraction of the HSD using a com-
bination of CNNs and computer vision techniques. Results
from a HailPixel survey of a hailstorm on 26 November 2018
in San Rafael (Argentina) are discussed in the context of ex-
isting studies and potential improvements for future surveys.

2 Data and approach

To effectively extract the HSD from aerial imagery, the
hailstone size must be significantly larger than the effec-
tive ground resolution of the sensor, and the concentration
of hailstones must be sufficiently low so that overlapping
stones are minimized. Aerial-imagery surveys of hail cover-
age were conducted in the Mendoza Province of Argentina
after hailstorms on 25 and 26 November 2018 during the
RELAMPAGO field campaign (Nesbitt et al., 2018). Only
the 26 November event produced non-accumulating hail of
sufficiently large diameters (> 20 mm), and imagery from
this event will be used throughout the paper. The hail swath
observed from the 26 November event was produced by a
marginally supercellular storm that developed in an environ-
ment of moderate instability and deep-layer shear. The storm
started in the Andes and tracked approximately 120 km east-
northeast towards the city of San Rafael before observations
were made. A single hail pad (300 mm × 400 mm × 30 mm

polystyrene foam block covered in aluminium foil) was also
deployed 2 km southwest of the aerial-survey site for the San
Rafael hailstorm (34.6533◦ S, 68.5030◦W), providing a sec-
ondary measure of the HSD. To estimate hail size from hail
pad indentations, the major- and minor-axis lengths of indi-
vidual dents were measured with digital calipers and trans-
formed into hail major- and minor-axis size using a relation-
ship developed by the Community Collaborative Rain, Hail
and Snow Network (Nolan Doesken, personal communica-
tion, 17 April 2019).

2.1 Imagery

A DJI Phantom 4 Pro V2 aircraft and Pix4Dcapture flight-
control software were used for image acquisition. The inte-
grated, gimbal-mounted aircraft camera uses a 13.2 mm ×
8.8 mm active-pixel sensor which provides 20M effective
pixels, automatic exposure, and an autofocus lens with a
focal length of 8.8–24 mm and maximum field of view of
84◦. For the 26 November event, the aircraft was flown at
an altitude of 10 m (relative to the take-off location) over a
rectangular survey area of 1290 m2 centred on 34.6459◦ S,
68.4814◦W, providing a∼ 2.7 mm ground sampling distance
(Fig. 1a). Near-surface wind speed at the time of capture was
noted by the authors to be a gentle breeze (3.5–5.5 ms−1),
reducing the likelihood of wind-induced motion blur. Im-
ages were captured with a 70% overlap laterally and medi-
ally at a flight speed of 1 m s−1 over a surface consisting of
sparse grasses, small shrubs, gravel and dirt. A large image
overlap and slow flight speed were selected to increase the
number of quality matching points during orthomosaic con-
struction and reduce motion blur (Bemis et al., 2014). The
survey was initialized immediately once hail fall concluded
and required approximately 4 min to complete. The location
of images was measured using the integrated GPS receiver,
which has an accuracy of ±1.5 m. Precise location measure-
ments (e.g. real-time kinematic positioning) are not essential
for improving the pixel size accuracy during photogramme-
try processing (Küng, 2012).

The Pix4Dmapper software package was used to generate
orthomosaic imagery and a digital elevation model (DEM)
from the survey photos (Küng, 2012) with a ground sampling
distance of 2.7 mm. The software is based on the structure-
from-motion photogrammetry technique and uses the follow-
ing automated steps:

1. Tie points between the survey images are identified.
Each tie point must be matched in at least three images.

2. Tie points are combined with positioning and orienta-
tion information from the aircraft autopilot to recon-
struct the camera perspective and position for each sur-
vey image. This information is used to verify the quality
of matching points and calculate the 3-D coordinates of
tie points.
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Figure 1. Workflow of (a) data collection, (b) tiling of orthomosaic, (c) hail detection using the Mask R-CNN technique and (d) hail size
measurement using radial transects.

3. The sparse point cloud of 3-D coordinates is interpo-
lated to obtain a gridded DEM.

4. The DEM is used to project every image pixel and to
calculate an orthomosaic.

An average of 181 081 matched tie points were found per cu-
bic metre with a mean geolocation error of less than 1 mm.
Analysis of the DEM indicates a gradual slope was present
across the survey area with a total change in elevation of ap-
proximately 2.3 m (not shown). Two scale markers consist-
ing of 300 mm × 300 mm black and white vinyl tiles were
also placed into the aerial-survey area to provide a secondary
check of pixel size within the orthomosaic.

2.2 Hail detection

To efficiently identify the many thousands of hailstones cap-
tured in the aerial imagery after the San Rafael hailstorm,
automated feature detection techniques were explored. Sim-
ple thresholding of pixel luminosity for detecting hailstones
performed poorly owing to similar luminosity from sparse
grasses, light dirt patches, pale-coloured rocks and leaf de-
bris and to instances when hailstones were in contact. Despite
the low contrast, hailstones were easily identifiable in the
imagery by human observers, motivating the application of
the state-of-the-art Mask regional CNN (R-CNN) model (He
et al., 2017). This technique combines the optimized selec-
tion and parallel processing of proposed feature regions (Fast
R-CNN) with semantic segmentation, whereby each pixel

is classified. Mask R-CCN architecture and implementation
methods used are described in detail by He et al. (2017).

To reduce memory requirements, the 489 MP aerial-survey
orthomosaic was divided into 1961 tiles of size 600 pixels ×
600 pixels, including a 50-pixel overlap along edges with
neighbouring tiles to avoid cropped hailstones (Figs. 1b, 2a,
b). To provide a sufficiently large sample of hailstones for
training the Mask R-CNN model, 12 tiles were manually
selected that in total contained more than 1000 stones and
were annotated using the VGG Image Annotator (VIA) tool
(Dutta and Zisserman, 2019). These tiles were also selected
to sample the varying background types across the orthomo-
saic. Nine tiles were randomly selected for training (contain-
ing 729 annotated hailstones) and the remaining three for
validation (Fig. 1c). The Mask R-CNN training was initial-
ized with the pre-trained weights from the Microsoft COCO
dataset (set of > 2× 105 labelled images; Lin et al., 2014),
which capture many features in natural images. Utilizing
these weights greatly reduces the training time required to
recognize hail. The default learning and weighting configu-
ration described by He et al. (2017) was applied, and training
was performed on eight GPUs with one image per GPU for
3000 iterations (∼ 43 min of computation time). The trained
model detected more than 94% of the hailstones in each val-
idation tile with a false-alarm rate of < 1%. When applied to
all tiles, the trained Mask R-CNN model detected a total of
46871 hailstones.
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Figure 2. Demonstration of hail size extraction from the 26 November 2018 survey orthomosaic (a) from a single tile (b: blue bounding box)
for a single hailstone (c: black circle in b). Radial transects for extracting imagery lightness are shown in (c) as black lines radiating from
hailstone centroid (blue marker), and hailstone edge pixels along transects are numbered. The subplot in panel (d) shows the normalized
pixel lightness along the 12 transects shown in (c) with the corresponding edge pixels marked.

Figure 3. Orthomosaic RGB imagery from the 26 November 2018
survey overlaid with the outlines of tiles used for the extraction of
hail size distribution statistics.

2.3 Hail size measurement

The segmentation mask generated by the Mask R-CNN
model was initially tested for hail size measurement but was
found to contain small errors that rendered it unsuitable. To
provide the pixel-level accuracy required for measuring hail-
stones, an edge detection algorithm was developed to find
the steep lightness gradient1 at the hailstone edge that oc-
curs radially from the hailstone centroid (Fig. 1d). The HSL
colour space is an alternative to the red–green–blue model
(RGB; developed for colour displays) that is commonly used
in computer vision applications for reducing the correlation
between colours (Cheng et al., 2001). The hailstone centroids
required to initialize the edge detection technique are derived
from the segmentation mask. Two additional quality control
steps are also applied to the centroids and image tiles:

1Lightness here is from the hue–saturation–lightness (HSL)
colour space with a range 0–255.

Atmos. Meas. Tech., 13, 747–754, 2020 www.atmos-meas-tech.net/13/747/2020/



J. S. Soderholm et al.: Application of drone aerial photogrammetry 751

Figure 4. Distribution of hail major-axis length, minor-axis ratio, and scatter plot of axis ratio and major-axis length from the (a) photogram-
metry and (b) pad hail size retrievals for the 26 November 2018 survey. A fitted gamma distribution probability density function for the
photogrammetry major-axis size distribution is shown (black line). Photogrammetry scatter plot observations are binned using 5 mm bin
sizes and error bars represent ±1 standard deviation.

1. Tiles where hail was obscured (e.g. under long grass or
shrubs) or water had accumulated were removed, leav-
ing 188 clean image tiles containing 15983 hailstones
over a total area of 342.6 m2 for hail size measurement.

2. Hail centroids for the 188 clean image tiles were man-
ually assessed and amended if required using the VIA
annotation tool.

The clean image tiles are next transformed into the HSL
colour space and the hailstone size is measured for every
centroid using the following procedure. First, coordinates of
12 equally spaced radials of length 20 pixels from the cen-
troid (p0) are calculated (Fig. 2c), denoted as pk

i , where i

is the pixel index (i = 1, . . .20) and k is the radial index
(k = 1, . . .,12). For all points along a radial, the lightness
values L(pk

i ) are extracted. Then, the gradient of lightness
values L′(pk

i ) along each radial are calculated. Starting from
the centroid of each radial, the edge point is found at coordi-
nate pk

i when the following criteria are met:

L′(pk
i ) < 0.75×L′(pk

i−1) (1)

and

L(p0)−L(pk
i ) > 50. (2)

The required minimum lightness difference between the hail-
stone centroid and background (50) was found to perform
well across all background types, including light-coloured

soils. Once all edge points are found along the radials
(Fig. 2d), the median distance d̃ from the centroid is calcu-
lated for each edge point. If an edge point falls outside the
range [d̃×0.5 to d̃×1.5], it is replaced by d̃ . Finally, to mea-
sure the major- and minor-axis length of the hailstone, the
minimum bounding box (allowing for rotation) is calculated
for the set of edge points.

3 Results and discussion

The resulting distribution of major-axis length and axis ratio
for the San Rafael hailstorm is shown in Fig. 4, along with the
distributions obtained from the hail pad (total of 17 impacts).
A comparison of the major-axis length distribution from the
HailPixel and hail pad techniques clearly demonstrates the
value of aerial photogrammetry: the large population size
(n= 15983) of the aerial survey provides a defined distri-
bution shape and tails (Fig. 4). The HailPixel distribution
peak is 2.5 mm lower than the hail pad peak, possibly due
to melting of hail on the ground before it was photographed
or uncertainty in hail size retrievals. The distribution shape is
well approximated by a gamma probability distribution func-
tion (PDF) with a mostly absent lower quartile and long up-
per tail. The gamma PDF was also found to be most suited
to major-axis length in a number of other case studies, in-
cluding Ziegler et al. (1983) for Oklahoma (US), Wong et al.
(1988) for Alberta (Canada) and Fraile et al. (1992) for León
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(Spain). Impact concentration observed by the hail pad was
141 m−2, significantly higher than the mean hail concentra-
tion observed by the aerial survey (47 m−2). This difference
is speculated to be the product of longer hail fall duration
at the hail pad location (2 km southwest) and possible sec-
ondary impacts on the hail pad from bouncing stones.

The distribution of axis ratios from the HailPixel survey is
well approximated by an exponentially increasing function
(not shown); however, a local maximum at 0.8–0.85 suggests
a more complex underlying distribution. Note that oblate
hailstones are most likely to rest on the surface with their mi-
nor axis orientated vertically; thus, the HailPixel technique
would not measure the true minor-axis length in this sce-
nario but rather provide estimates of the intermediate-axis ra-
tio (assuming ellipsoidal geometry for hailstones). This lim-
itation is likely to also affect hail pad measurements when
tumbling motions of oblate hailstones are not too extreme.
Comparing the HailPixel intermediate- and major-axis distri-
bution with Giammanco et al. (2014) major- and minor-axis
distributions demonstrates the expected skew towards higher
axis ratios in the HailPixel dataset.

Both HailPixel and hail pad data demonstrate a decreasing
axis ratio with increasing hail size. This shape of the relation-
ship becomes apparent when the highly variable HailPixel
data are binned into 5 mm intervals. For the 20–30 mm hail
size range, the axis ratio remains constant and close to
0.9. For sizes > 30 mm, the axis ratio decreases by 0.4–
0.5 % mm−1. Despite the potential bias in axis ratio measure-
ments, the shape of this trend is comparable to observations
by Knight (1986) for an Alberta (Canada) hailstorm. Another
study using a 3-year database of hailstones collected from the
Great Plains by Giammanco et al. (2014) demonstrates a less
significant decreasing trend between hail size and axis ratio
and less spherical stones for smaller sizes. It is likely that this
relationship is also highly variable between hailstorm cases
and within hailstorms (Federer and Waldvogel, 1975; Ziegler
et al., 1983; Knight, 1986).

It is also important to highlight the optimal conditions and
configuration for future HailPixel surveys. We recommend
avoiding inhomogeneous background surfaces if possible,
with cut or grazed turf grasses being most ideal. A uniform
and contrasting background will likely permit the use of less
complex hail detection and sizing techniques. Large survey
areas (> 1000 m2) are only necessary when very sparse gi-
ant (> 100 mm) hailstones are present. Assuming a normally
distributed sample mean, a sample size of 2088 hailstones is
required to represent the population mean (from 15983 hail-
stones) within a 2% confidence level at the 95% significance
level. This sample size equates to a sample area of 40.1 m2

for the 26 November survey; however, an area of at least
∼ 250 m2 is recommended to adequately resolve the tails of
the distribution. For the DJI Phantom 4 Pro V2 aircraft flown
at a 10 m altitude, the authors recommend a minimum hail
diameter of 20 mm (major-axis length) and less than 30% to-
tal ground coverage. The minimum size limit is particularly

critical when separating multiple stones in contact. Higher-
resolution imagery would allow for small (< 20 mm) hail-
stones to be measured, but the increased susceptibility to mo-
tion blur would likely require the aircraft to remain stationary
during image capture. Further, 10 m winds exceeding a mod-
erate breeze (> 8 ms1) would increase the likelihood of mo-
tion blur. To quantify the measurement uncertainty from the
HailPixel technique, we recommend that hail within a 1 m2

area of the aerial survey is manually measured for three or-
thogonal axes immediately following aerial capture. Finally,
minimizing the melting of hailstones is critical. Where pos-
sible, avoid aerial surveys of areas where water may flow or
accumulate, and conduct surveys immediately after hail fall
ceases.

4 Summary

This paper describes the novel HailPixel aerial photogram-
metry technique for measuring time-integrated HSDs af-
ter the cessation of hail fall. The workflow for collect-
ing imagery, detecting hailstones and measuring hail size
is described, including the use of the state-of-the-art Mask
R-CNN image segmentation algorithm. Results from a
HailPixel survey after the 26 November 2018 San Rafael
(Argentina) hailstorm are compared with observations from
a co-located hail pad. Despite a potential bias in axis ratio
measurements, the HSD and relationships observed for the
San Rafael hailstorm are comparable to previous studies. In
contrast to hail impact sensors, the use of aerial imagery pro-
vided a sample area that is several orders of magnitude larger
(341.6 m2). As a result, the hailstone population size from
the 26 November 2018 imagery was substantially larger than
previous studies (15 983 hailstones), providing a more robust
analysis of the HSD. Ongoing work to relate HailPixel re-
sults with mobile polarimetric radar observations from the
26 November 2018 San Rafael hailstorm will explore the sig-
natures of hail size and swath extent for this event. Future
HailPixel surveys are encouraged to quantify the variability
of these distributions, particularly for hailstorms producing
sparse giant hail.

Data availability. All imagery and hail pad and hail retrieval
data used for this work are publicly available: Soderholm (2019)
(https://doi.org/10.5281/zenodo.3383227).
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