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Abstract. Global measurements of atmospheric water
vapour isotopologues aid to better understand the hydrolog-
ical cycle and improve global circulation models. This pa-
per presents a new data set of vertical column densities of
H2O and HDO retrieved from short-wave infrared (2.3 µm)
reflectance measurements by the Tropospheric Monitoring
Instrument (TROPOMI) onboard the Sentinel-5 Precursor
satellite. TROPOMI features daily global coverage with a
spatial resolution of up to 7km× 7km. The retrieval utilises
a profile-scaling approach. The forward model neglects scat-
tering, and strict cloud filtering is therefore necessary. For
validation, recent ground-based water vapour isotopologue
measurements by the Total Carbon Column Observing Net-
work (TCCON) are employed. A comparison of TCCON
δD with ground-based measurements by the Multi-platform
remote Sensing of Isotopologues for investigating the Cy-
cle of Atmospheric water (MUSICA) project for data prior
to 2014 (where MUSICA data are available) shows a bias
in TCCON δD estimates. As TCCON HDO is currently
not validated, an overall correction of recent TCCON HDO
data is derived based on this finding. The agreement be-
tween the corrected TCCON measurements and co-located
TROPOMI observations is good with an average bias of
(−0.2± 3)× 1021 molec cm−2 ((1.1± 7.2)%) in H2O and
(−2±7)×1017 molec cm−2 ((−1.1±7.3)%) in HDO, which
corresponds to a mean bias of (−14± 17)‰ in a posteri-

ori δD. The bias is lower at low- and mid-latitude stations
and higher at high-latitude stations. The use of the data set
is demonstrated with a case study of a blocking anticyclone
in northwestern Europe in July 2018 using single-overpass
data.

1 Introduction

Atmospheric water vapour represents the strongest natural
greenhouse gas and transports a large amount of energy
via latent heat; thus, it plays a fundamental role in shaping
weather and climate (Kiehl and Trenberth, 1997; Harries,
1997). However, uncertainties in the quantification of the two
abovementioned effects are still large and represent one of
the key uncertainties in current climate prediction (Stevens
and Bony, 2013). Improvement upon current climate predic-
tion requires new observations on a global scale and with
a long-term perspective. To this end, satellite observations
from space are considered to be the most promising approach
(Rast et al., 2014).

Constraints for the hydrological cycle are offered by ob-
servations of isotopologues of water vapour. Different equi-
librium vapour pressures and diffusion constants of different
isotopologues lead to isotopic fractionation whenever a phase
change occurs. Isotopic fractionation occurs at the point of
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phase change, partitioning the heavier and lighter isotopo-
logues, depending on the thermodynamic conditions of the
environment. The relative abundance of a heavy isotopo-
logue with respect to the light isotopologue in an air par-
cel is therefore dependent on the source region’s temperature
and relative humidity, the source water’s isotopic composi-
tion as well as the entire transport history of the air parcel,
including all evaporation, condensation and mixing events
(e.g. Dansgaard, 1964; Craig and Gordon, 1965). This makes
measurements of water vapour isotopologues a unique di-
agnostic of the hydrological cycle (Dansgaard, 1964) and a
valuable benchmark for the evaluation and further develop-
ment of global and regional circulation models (e.g. Jous-
saume et al., 1984; Hoffmann et al., 1998; Yoshimura et al.,
2008; Risi et al., 2010; Pfahl et al., 2012).

The usual notation to describe the isotopological abun-
dance variations is the relative difference of the ratio of
the heavy and the light isotopologues, here HDO and H2O,
RD = cHDO/cH2O, to a standard abundance ratio RD,std,

δD=
RD−RD,std

RD,std
(1)

(Coplen, 2011). The commonly used standard ratio is Vienna
Standard Mean Ocean Water (VSMOW), RD,std = 3.1152×
10−4.

Measurements of atmospheric water vapour isotopologues
are not very common. In situ observations are performed
from aircrafts and balloons (e.g. Rinsland et al., 1984; Dy-
roff et al., 2010, 2015; Herman et al., 2014; Sodemann et al.,
2017) and on the ground (e.g. Wen et al., 2010; Aemiseg-
ger et al., 2012; Bastrikov et al., 2014) using laser spectrom-
eters or cryogenic trapping techniques. Remote sensing in-
struments exist on the ground and on space- or balloon-based
platforms. The former are usually Fourier transform infrared
(FTIR) spectrometers. Ground stations are often organised
in networks. The largest networks are the Total Carbon Col-
umn Observing Network (TCCON, Wunch et al., 2011) and
the Network for the Detection of Atmospheric Composi-
tion Change (NDACC, De Mazière et al., 2018). The data
product of the former includes H2O and HDO, whereas the
latter involves water vapour isotopologue measurements re-
trieved by the Multi-platform remote Sensing of Isotopo-
logues for investigating the Cycle of Atmospheric water
(MUSICA) project (Schneider et al., 2016). With respect to
satellites, H2O and HDO were first retrieved by Zakharov
et al. (2004) using thermal infrared measurements from the
Interferometric Monitor for Greenhouse gases (IMG) sensor
onboard the Advanced Earth Observing Satellite (ADEOS).
Later, this was followed by the Tropospheric Emission Spec-
trometer (TES) on the Earth Observing System (EOS) Aura
satellite (Worden et al., 2006), the Michelson Interferom-
eter for Passive Atmospheric Sounding (MIPAS) onboard
the European Space Agency (ESA)’s environmental satellite
(ENVISAT) (Steinwagner et al., 2007; Payne et al., 2007),
the SCanning Imaging Absorption spectroMeter for Atmo-

spheric CHartographY (SCIAMACHY) instrument on EN-
VISAT (Frankenberg et al., 2009; Scheepmaker et al., 2015;
Schneider et al., 2018), the Infrared Atmospheric Sounding
Interferometer (IASI) onboard the MetOP satellites (Herbin
et al., 2009; Schneider and Hase, 2011; Schneider et al.,
2016; Lacour et al., 2012), the Greenhouse Gases Observ-
ing Satellite (GOSAT) (Frankenberg et al., 2013; Boesch
et al., 2013) and the Atmospheric Infrared Sounder (AIRS)
onboard the NASA Aqua satellite (Worden et al., 2019).
The sensitivity of instruments observing in the thermal in-
frared (IMG, TES, MIPAS, IASI and AIRS) is very differ-
ent from that of instruments measuring in the short-wave in-
frared, such as SCIAMACHY and GOSAT. While the former
are mainly sensitive in the stratosphere and free troposphere,
the latter have good sensitivity in the lower troposphere, in-
cluding the boundary layer. On 13 October 2017, the Tro-
pospheric Monitoring Instrument (TROPOMI) onboard the
Sentinel-5 Precursor (S5P) satellite (Veefkind et al., 2012)
was launched. It has a short-wave infrared band in heritage
of SCIAMACHY with a spectral range of 2305–2385 nm and
a spectral resolution of 0.25 nm, although its signal-to-noise
ratio is much better than SCIAMACHY and it has an un-
precedented spatial resolution of 7km×7km (in the centre of
the swath). This work presents a new H2O and HDO column
data set from TROPOMI observations starting at first light
of the instrument on 9 November 2017. Section 2 introduces
the retrieval method. Section 3 presents a ground-based data
set to validate the satellite observations against, and the com-
parison between both data sets is shown in Sect. 4. Section 5
provides a first insight into the data set’s use with respect to
studying synoptic-scale variability in the atmospheric branch
of the water cycle. Finally, the summary of the results and
the conclusions are given in Sect. 6.

2 Retrieval method

The retrievals are performed with SICOR (short-wave in-
frared CO retrieval algorithm), which utilises a profile-
scaling approach and is described in detail by Scheepmaker
et al. (2016), Landgraf et al. (2016) and Borsdorff et al.
(2014). In the following, the most important features are
summarised and the specific setup is given.

Using the spectral window from 2354.0 to 2380.5 nm
(Scheepmaker et al., 2016), the algorithm fits the total
columns of H2O, HDO, CH4 and CO as well as a Lambertian
surface albedo in the form of a Legendre polynomial of order
1. The isotopologue H2

18O is included in the forward model
but not fitted. A priori profiles of water vapour are adapted
from the European Centre for Medium-Range Weather Fore-
casts (ECMWF) analysis product. As the ECMWF data prod-
uct does not distinguish between individual isotopologues,
H2O, HDO and H2

18O profiles are obtained from the wa-
ter vapour profile by scaling it with the respective average
relative natural abundances. That implicitly corresponds to a
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Figure 1. (a) Measured radiance (blue) with its precision (light blue shading) and the spectral fit (red) for ground pixel 149 129 in orbit 3969
located near Wollongong, Australia on 20 July 2018. (b) Corresponding residuals (defined as measured minus modelled radiances, in blue)
and its root mean square (rms, in cyan), precision of the radiance (in red) and its rms (in purple). (c) Simulated absorption by H2O (red),
HDO (green) and CH4 (yellow).

prior of δD of 0 ‰. A priori profiles of CH4 and CO are taken
from TM5 simulations (Krol et al., 2005). Scattering cross-
sections are taken from HITRAN 2016 (Gordon et al., 2017).
The forward model ignores scattering, so that strict filter-
ing for clear-sky scenes is necessary. To this end, co-located
measurements from the Visible Infrared Imaging Radiome-
ter Suite (VIIRS) instrument onboard the Suomi National
Polar-orbiting Partnership (S-NPP) satellite, which flies in
formation with S5P, are used (Siddans, 2016). The cloud
cover threshold is 1 % for both the inner field of view and the
outer field of view. Moreover, soundings with a high aerosol
load are filtered out by a two-band filter as introduced by
Scheepmaker et al. (2016) and Hu et al. (2018), which in
the present configuration requires that the ratio of retrieved
methane in bands with weak and strong absorption (2310–
2315 and 2363–2373 nm respectively) is between 0.94 and
1.06. Furthermore, scenes with a solar zenith angle greater
than 75◦ are discarded because they are prone to errors due
to more scattering and diffraction effects, which are not cov-

ered well by the forward model, and due to typically low
radiances, meaning low signal-to-noise ratios.

An exemplary spectral fit and the resulting residuals
(which are defined as measured minus modelled radiances)
are shown in Fig. 1. The root-mean-square (rms) residual
(cyan horizontal line in Fig. 1b) is in the order of the rms
uncertainty of the radiance (purple horizontal line in Fig. 1b).

The sensitivity of a retrieved column to changes in a given
altitudinal region is described by the column averaging ker-
nel (Rodgers, 2000). The ideal averaging kernel is unity at all
altitudes, but in practice the sensitivity changes with height.
Figure 2 depicts examples of column averaging kernels for
different solar zenith angles. The sensitivity for the two iso-
topologues are significantly different. For H2O, the highest
sensitivity is in the lowest layer (where most water vapour
typically resides) and decreases with increasing altitude. The
sensitivity in the stratosphere is small; however, the amount
of water vapour in this altitudinal region is very small and
contributes little to the total column. The sensitivity of HDO
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Figure 2. Examples of column averaging kernels for (a) H2O
and (b) HDO for different solar zenith angles in orbit 4924 on
25 September 2018.

does not deviate as much from unity as that of H2O. In the
lower troposphere it increases slightly with increasing al-
titude before reaching a maximum depending on the solar
zenith angle, above which it decreases. The differences in the
column averaging kernel are due to the different absorption
strengths of the two isotopologues and mean that a posteriori
δD is sensitive to the profile shapes, particularly of the main
isotopologue H2O; this is due to the fact that the averaging
kernel for H2O deviates considerably from unity at higher
altitudes.

3 Ground-based FTIR data sets

To validate the TROPOMI retrievals, ground-based Fourier
transform infrared (FTIR) measurements are used. HDO
is a product of NDACC-MUSICA (Barthlott et al., 2017)
and TCCON (Wunch et al., 2015). NDACC-MUSICA pro-
vides two products: type 1 is the direct retrieval output,
and type 2 contains a posteriori processed output that re-
ports the optimal estimation of (H2O, δD) pairs; here the
type 2 product is used because it is recommended for iso-
topologue analyses (Barthlott et al., 2017). Seven stations ex-
ist in both networks: Eureka (Barthlott et al., 2016; Strong
et al., 2019), Ny Ålesund (Barthlott et al., 2016; Notholt
et al., 2017), Bremen (Barthlott et al., 2016; Notholt et al.,
2014), Karlsruhe (Barthlott et al., 2016; Hase et al., 2015),
Izaña (Barthlott et al., 2016; Blumenstock et al., 2017), Wol-
longong (Barthlott et al., 2016; Griffith et al., 2014) and
Lauder (Barthlott et al., 2016; Sherlock et al., 2014; Pol-
lard et al., 2019). This allows for comparison of the TCCON
and NDACC-MUSICA (here type 2) data products, which
reveals a large difference in δD of 58 ‰ on average (which
corresponds to a mean relative difference of −30 %) when

Figure 3. Time series of daily averages of H2O (a), HDO (b) and
a posteriori δD (c) of the NDACC-MUSICA type 2 (blue crosses)
and TCCON (red pluses) data products at Wollongong, Australia.
The bias in δD without daily averaging is 65.8 ‰ (−47.4 %).

co-locating with a maximal time difference of 1 h. An exam-
ple for Wollongong is plotted in Fig. 3. A comparison be-
tween MUSICA and TCCON was also performed by Weaver
(2019), who compared the MUSICA type 1 product with TC-
CON and found a bias in δD of 40 ‰ on average.

MUSICA is explicitly created for isotopologue studies,
and δD profiles have been validated against aircraft measure-
ments in an altitudinal range between 2 and 7 km during a
dedicated campaign in summer 2013 (Schneider et al., 2015,
2016; Dyroff et al., 2015). However, data are only available
until 2014; thus, there is no temporal overlap with TROPOMI
which was launched in October 2017. TCCON H2O total
columns are calibrated with in situ measurements (mainly
radiosondes); a so-called aircraft correction factor of 1.0183
is applied to match the reference (Wunch et al., 2015). How-
ever, TCCON HDO is currently not verified; thus, no cor-
rection factor is applied to it. Therefore, it is assumed that
TCCON HDO has to be corrected.

In order to correct for the discrepancy, the idea is to scale
TCCON HDO to match MUSICA δD. Scaling HDO by a fac-
tor a, i.e. cHDO 7−→ a cHDO, is equivalent to the linear trans-
formation

δD 7−→ a δD+ a− 1 (2)

in δD. Figure 4a depicts a correlation histogram of TCCON
δD vs. MUSICA δD for the Wollongong station. Here, the re-
lation between MUSICA and TCCON is described to a large
degree by a simple scaling of the column. The result of a
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Table 1. List of TCCON stations used for the validation.

Station Latitude Longitude Altitude Data available from/to Reference

Eureka 80.1◦ N 86.4◦W 610 m 24 Jul 2010–15 Aug 2019 Strong et al. (2019)
Sodankylä 67.4◦ N 26.6◦ E 190 m 16 May 2009–24 Jun 2019 Kivi et al. (2014)
East Trout Lake 54.4◦ N 105.0◦W 500 m 7 Oct 2016–4 Jul 2019 Wunch et al. (2018)
Bialystok 53.2◦ N 23.0◦ E 190 m 1 Mar 2009–1 Oct 2018 Deutscher et al. (2015)
Bremen 53.1◦ N 8.9◦ E 30 m 22 Jan 2010–19 Oct 2018 Notholt et al. (2014)
Karlsruhe 49.1◦ N 8.4◦ E 110 m 19 Apr 2010–31 Jul 2019 Hase et al. (2015)
Paris 48.8◦ N 2.4◦ E 60 m 23 Sep 2014–25 Oct 2018 Té et al. (2014)
Orléans 48.0◦ N 2.1◦ E 130 m 29 Aug 2009–30 Oct 2018 Warneke et al. (2019)
Park Falls 45.9◦ N 90.3◦W 440 m 2 Jun 2004–4 Jul 2019 Wennberg et al. (2017)
Rikubetsu 43.5◦ N 143.8◦ E 380 m 16 Nov 2013–30 Oct 2018 Morino et al. (2018c)
Lamont 36.6◦ N 97.5◦W 320 m 6 Jul 2008–2 Jul 2019 Wennberg et al. (2016)
Tsukuba 36.0◦ N 140.1◦ E 30 m 4 Aug 2011–30 Oct 2018 Morino et al. (2018a)
Edwards 35.0◦ N 117.9◦W 700 m 20 Jul 2013–4 Jul 2019 Iraci et al. (2016)
JPL 34.2◦ N 118.2◦W 390 m 19 May 2011–14 May 2018 Wennberg et al. (2014)
Pasadena 34.1◦ N 118.1◦W 240 m 20 Sep 2012–3 Jul 2019 Wennberg et al. (2015)
Saga 33.2◦ N 130.3◦ E 10 m 28 Jul 2011–3 May 2019 Kawakami et al. (2014)
Burgos 18.5◦ N 120.7◦ E 40 m 03 Mar 2017–26 Oct 2018 Morino et al. (2018b)
Wollongong 34.4◦ S 150.9◦ E 30 m 25 Jun 2008–30 Oct 2018 Griffith et al. (2014)
Lauder 45.0◦ S 169.7◦ E 370 m 2 Feb 2010–3 May 2019 Sherlock et al. (2014); Pollard et al. (2019)

fit of Eq. (2) to the data is plotted as a blue line, giving the
scaling factor for the TCCON HDO column. To demonstrate
that this approach does not involve intercept issues, a linear
fit of slope and intercept (red line) as well as the confidence
interval computed using the bootstrap method (i.e. by fitting
a randomly reduced data set 10 000 times, shown using red
shading) has also been plotted in the figure. Both the slope
and the offset are similar to the approach using Eq. (2), and
the latter lies within the confidence band of the former. The
bar chart in Fig. 4c visualises fit results for all stations in
both networks. It shows that the correction factor does not
change much between stations. The large difference in fit er-
ror is mostly due to the large difference in the amount of
data (Fig. 4b). Thus, it is meaningful to scale HDO at all TC-
CON stations by the error-weighted average correction factor
a = 1.0778 in order to correct TCCON’s bias in HDO and,
in turn, δD.

4 Validation of TROPOMI retrievals

For validation, TROPOMI observations are co-located with
TCCON measurements with a radius of 30 km, a maximal
altitude difference of 500 m, a field of view of 45◦ in the
FTIR viewing direction and a maximal time difference of
2 h. Here, the TCCON HDO data are corrected according
to the approach presented in the previous section. Table 1
gives an overview of all stations used. Other stations have
too few (less than 5 d) co-located measurements and have
therefore not been included in the validation study. No alti-
tude correction is applied here. The mentioned co-location
criterion for altitude is used to ensure that no bias due to

the large height difference between the station and satellite
ground pixel is introduced (cf. Schneider et al., 2018). For
each station, daily averages are computed over all co-located
measurements. Figure 5 shows an exemplary time series for
Edwards station. The co-located observations of H2O and
HDO agree very well, and the agreement in δD is also good,
with more scatter and a small bias. Corresponding correlation
plots are depicted in Fig. 6. Figure 6a and b confirm the ex-
cellent agreement in H2O and HDO with Pearson correlation
coefficients of 0.98 and 0.99 respectively, and a correspond-
ing correlation coefficient of 0.96 for δD. The average dif-
ference between TROPOMI and TCCON defines the bias. In
δD, a small bias is plain in the correlation plot and amounts
to −22 ‰.

Figure 7 depicts the validation statistics for all TCCON
stations. The correlation in H2O and HDO is high for all
stations. In δD, the correlation is high except for a low
correlation of 0.37 at Saga station, where the amount of
data is very small, the variability in δD is small, but H2O
and HDO vary considerably. Figure 8 shows the biases. At
low- and mid-latitude (< 54◦) stations the bias is as low as
(−0.3± 3)× 1021 molec cm−2 (corresponding to a relative
bias of (0.6±5.7)%) in H2O and (−2±8)×1017 molec cm−2

((−0.6± 6.3)%) in HDO, which corresponds to (−9±
11)‰ (4.7± 6.8 %) in a posteriori δD. At these stations
the bias in δD ranges between about −30 ‰ and +15 ‰.
At high-latitude stations it can be as high as −45 ‰ to
−60 ‰. Possible reasons for these high biases are higher
relative biases in H2O and/or HDO at these relatively dry
locations. At high-latitude, retrievals are generally challeng-
ing due to high solar zenith angles and low albedos which
lead to low signal-to-noise ratios. The average bias over all
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Figure 4. (a) Exemplary correlation histogram of TCCON δD vs.
MUSICA δD for Wollongong, Australia. The blue line shows the
result of a fit of Eq. (2), giving the correction factor for TCCON
HDO. The red line shows a linear fit of slope and intercept, and
the red shading represents the confidence interval computed using
the bootstrap method. (b) Number of co-located measurements for
all stations in both networks. (c) Fit results of correction factors for
individual stations. The red line corresponds to the error-weighted
average over all stations, a = 1.0778.

stations is (−0.2± 3)× 1021 moleccm−2 or (1.1± 7.2)% in
H2O, (−2±7)×1017 moleccm−2 or (−1.1±7.3)% in HDO,
and (−14± 17)‰ or (5.6± 6.7)% in a posteriori δD. This
is good considering that δD is very sensitive to small errors
in H2O or HDO.

Figure 9 shows how differences in TROPOMI observa-
tions and corrected TCCON measurements depend on the
H2O column. For H2O and HDO there is no such depen-
dence, and the Pearson correlations are very low: 0.06 and
0.08 respectively. In a posteriori δD there is no dependence
for low- and mid-latitude stations (correlation coefficient of
0.28). At the high-latitude stations Eureka, Sodankylä and
East Trout Lake (marked using red in Fig. 9), a large range

Figure 5. Time series of daily averages of corrected TCCON mea-
surements (blue crosses) and co-located TROPOMI observations
(red pluses) at Edwards station (35.0◦ N, 117.9◦W, 700 m a.s.l.).
Shown are (a) the number of individual observations per day, (b) the
reduced χ2, (c) the H2O columns, (d) the HDO columns and (e) the
a posteriori δD.

of H2O columns show no dependence, but at H2O columns
below∼ 2×1021 molec cm−2 (i.e. in dry conditions), the dif-
ferences between TROPOMI and TCCON increase and do
depend on the H2O column. This is the main reason for the
high biases at these stations, as discussed in the previous
paragraph. As mentioned above, retrievals at low albedos and
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Figure 6. Correlation plot of corrected TCCON measurements and
co-located TROPOMI observations for Edwards station for daily
averages of H2O columns (a), HDO columns (b) and δD (c). The
dashed lines mark equality, and the solid lines give linear fits to the
data.

high solar zenith angles are generally challenging. Whether
the dependence of the difference in δD on the H2O column
in dry conditions at high latitudes is due to co-location errors
or due to the retrieval is still unclear and has to be examined
in future research.

Figure 7. Statistics of the validation for all TCCON stations.
(a) Number of days with co-located measurements. (b) Average
number of co-located TROPOMI observations per day and its stan-
dard deviation. (c) Pearson correlation coefficient for H2O (red),
HDO (green) and δD (yellow). (d) Average reduced χ2 and its stan-
dard error; the blue line visualises the average over all stations.

5 Demonstration of applications of the data set

An illustration of the TROPOMI retrievals on the global and
monthly scale is depicted in Fig. 10 for September 2018.
There are no data over the oceans because water is too dark in
the short-wave infrared and glint measurements are not taken
into account. The data gaps in tropical regions are due to per-
sistent clouds. The data quality in terms of noise is signifi-
cantly better than for a multiyear average of SCIAMACHY
observations (cf. Schneider et al., 2018, Fig. 7). In the spatial
distribution shown in Fig. 10 the major isotopic effects for-
mulated by Dansgaard (1964) can be recognised. The gen-
eral latitudinal gradient due to the temperature dependence
of the fractionation effects and progressive rain out of heavy
isotopologues, the so-called latitudinal effect, is clearly vis-
ible. The continental effect of depletion due to the rain out
of the heavy isotopologue is visible on all continents, includ-
ing Australia. The altitude effect, which describes depletion
above high ground due to lower temperature and increasing

www.atmos-meas-tech.net/13/85/2020/ Atmos. Meas. Tech., 13, 85–100, 2020
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Figure 8. Biases for all TCCON stations. (a) Bias in H2O and
its standard error. (b) Relative bias in H2O and its standard error.
(c) Bias in HDO and its standard error. (d) Relative bias in HDO
and its standard error. (e) Bias in a posteriori δD and its standard
error. (f) Relative bias in a posteriori δD and its standard error. The
horizontal line in all panels visualises the average over all stations.

rain out, can be seen, for example, over the Andes and the
Himalayas.

To demonstrate the quality and the possibilities of the
new data set of water vapour isotopologues from TROPOMI,
a case study using single-overpass results over Europe on

Figure 9. Dependence of the difference (TROPOMI – TCCON)
of H2O (a), HDO (b) and a posteriori δD (c) on the TROPOMI
H2O column. Data from the high-latitude stations Eureka (Eu), So-
dankylä (So) and East Trout Lake (ET) are marked using red, and
those from the other stations are marked using blue.

30 July 2018 is presented in Fig. 11. The summer 2018
was one of the hottest and driest in central and northern
Europe (Copernicus Climate Service, 2018; Gubler et al.,
2018) with forest fires in Scandinavia, dry fields and low
river stages all over the central and northern parts of the con-
tinent. The reason for this exceptionally hot and dry sum-
mer was the presence of a high-pressure system over north-
ern Europe that blocked the otherwise predominant westerly
moist flow from the North Atlantic. Synoptic-scale atmo-
spheric blocking situations can lead to hot temperature ex-
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Figure 10. Global plots of H2O (a) and δD (b) averaged over September 2018 on a 0.5◦×0.5◦ grid. The average of δD is weighted with the
H2O column for mass conservation purposes.

tremes due to adiabatic warming of the descending air in the
core of the anticyclone (Pfahl and Wernli, 2012). The de-
scending vertical motion favours clear-sky conditions and,
thus, further contributes to surface warming via radiative ef-
fects in the centre of the anticyclone (Trigo et al., 2004). In
particular, the end of July 2018 was characterised by a sta-
tionary blocking anticyclone extending over the entire tro-
posphere over northwestern Russia and Scandinavia. This
blocking led to large-scale descent and to a divergent flow
near the surface in its core, resulting in clear-sky conditions
over northwestern Russia and Finland (see Fig. 11c). The iso-

topic signature of the blocking anticyclone in Fig. 11b re-
flects this synoptic flow configuration with low δD signals of
between −250 ‰ and −200 ‰ in the centre of the anticy-
clone. The depleted total column vapour in this region is due
to the large-scale subsidence transporting depleted (Fig. 11b)
and dry (Fig. 11d) upper tropospheric air towards lower lev-
els. The near-surface divergent wind exports more enriched
freshly evaporated moisture that is taken up near the sur-
face towards the edges of the blocking. The anticyclone area
is characterised by clear skies (Fig. 11c) with low specific
humidity (1–3 g kg−1 at 700 hPa, Fig. 11d), low relative hu-

www.atmos-meas-tech.net/13/85/2020/ Atmos. Meas. Tech., 13, 85–100, 2020



94 A. Schneider et al.: H2O/HDO from TROPOMI

Figure 11. TROPOMI single-overpass results for H2O column (a) and δD (b) over Europe on 30 July 2018; VIIRS cloud fraction on the same
day (c); specific humidity (d), relative humidity (e), and potential temperature (f) at 700 hPa from the ECMWF analysis product over Europe
at 12:00 UTC on 30 July 2018. The 700 hPa level is chosen for the thermodynamic variables because it reflects the large-scale conditions
in the lower troposphere above the continental boundary layer. The overlaying contours in all panels show mean sea-level pressure from
ECMWF at 12:00 UTC with a contour line distance of 2 hPa.

midity (10 %–30 % at 700 hPa, Fig. 11e) and high potential
temperature associated with the dry subsiding (adiabatically
warming) air masses (Fig. 11f). The dry low-level outflow
encounters moister and warmer air at the edge of the surface
anticyclone, leading to a very strong horizontal gradient of
specific and relative humidity (Fig. 11d, e) in the lower tro-
posphere. As a consequence, the warm moist air is forced
to rise, localised instabilities occur, and isolated convective
cells develop leading to condensation and the formation of

a ring of clouds around the blocking anticyclone. A distinct
arc-like feature of enriched total column water vapour at the
edge of the anticyclone can be distinguished and is slightly
displaced from the first clouds in the northwest (Fig. 11b).
Turbulent mixing and convection that inject more enriched,
freshly evaporated moisture advected with the large-scale
flow from marine environments (Barents Sea, North Sea and
Black Sea) could be the reason for this interesting enriched
ring-like water vapour isotopologue pattern. A very depleted
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Figure 12. Two-dimensional histogram of all TROPOMI obser-
vations in the 50–70◦ N, 20–60◦ E area on 30 July 2018 (colour-
coded). The black contours show the 25 %, 50 % and 75 % lev-
els of the cumulative density. The dashed green curve represents
a Rayleigh fractionation process, and the solid green, blue and cyan
curves represent idealised mixing processes as specified by the leg-
end.

cloud-free area south of the Ob River with δD values be-
low −250 ‰ (Fig. 11b) might be connected to anomalously
strong subsidence of northerly continental air masses.

The large range of measured δD and H2O mixing ratios
during the northeastern European blocking on 30 July 2018
(Fig. 11a, b) becomes apparent in Fig. 12, where a two-
dimensional histogram and the cumulative density of the
TROPOMI data in the 50–70◦ N, 20–60◦ E region is shown
along with two different types of idealised air mass trans-
formation scenarios (coloured lines). These simple idealised
scenarios are frequently used in the literature to guide the
interpretation of stable isotope measurements in (H2O, δD)
diagrams (e.g. Rozanski and Sonntag, 1982; Worden et al.,
2007; Noone, 2012). The first scenario, illustrated by the
dashed green line in Fig. 12, is that an air parcel with a
humidity of 15 000 ppm and δD=−80 ‰ (typical for the
continental boundary layer in this northerly continental re-
gion, Bastrikov et al., 2014) experienced moist adiabatic as-
cent with condensation following a Rayleigh process (dashed
green line; Rayleigh, 1902; Dansgaard, 1964). The progres-
sive decrease of δD with a decreasing water vapour mix-
ing ratio would thus be due to preferential condensation of
HDO compared with H2O and the subsequent removal of
hydrometeors by precipitation. The dashed green Rayleigh
curve in Fig. 12 shows a behaviour that is different from the
TROPOMI data points. Given the clear-sky conditions and
the subsidising movement of the air masses within the block-

ing anticyclone, the assumptions needed for a Rayleigh dis-
tillation process are hardly fulfilled. The second scenario, il-
lustrated by the solid green, blue, and cyan lines in Fig. 12,
is that two air parcels with distinct humidity and δD are
mixed due to turbulent and convective mixing to yield differ-
ent blends that follow the so-called mixing lines in the (H2O,
δD) space. The highest density of observed blocking anticy-
clone points retrieved by TROPOMI is located in the region
spanned by the green and the cyan mixing lines in the (H2O,
δD) space. The 25 %, 50 % and 75 % contours of the cumu-
lative density of points are aligned with the blue mixing line.
This suggests that a two end-member mixing process de-
scribes the data much better than an idealised Rayleigh pro-
cess (dashed green line in Fig. 12). In this particular synoptic
situation, this corresponds to the moistening of a subsidising
air mass from the mid troposphere.

In future work, the nature and occurrence of these features
should be analysed in more detail, including a catalogue of
different continental blocking events with observations from
TROPOMI.

Apart from investigations on the water cycle dynamics as-
sociated with continental blockings, many other dynamically
interesting contexts exist where TROPOMI could present an
important added value for further investigations. These com-
prise, among others, the region of the heat low over the Sa-
hara (e.g. Schneider et al., 2015; González et al., 2016; La-
cour et al., 2017) or continental regions upstream of cold air
surges leading to events of strong ocean evaporation along
the warm ocean western boundary currents (Aemisegger and
Papritz, 2018; Aemisegger and Sjolte, 2018).

6 Summary and conclusions

This work presents a new data set of H2O and HDO columns
retrieved from TROPOMI short-wave infrared observations.
Scattering is ignored in the forward model so that a strict
cloud filtering is necessary, which is performed with co-
located VIIRS measurements. The data quality is such that
single overpasses yield meaningful results, which is a huge
step forward compared with previous missions like SCIA-
MACHY.

For validation of the TROPOMI data product, particular
attention must be paid to the reference data sets. At this stage,
there are two data products of ground-based observations of
the HDO total column available, provided by the TCCON
and NDACC-MUSICA networks. Comparing these two data
products for stations in both networks reveals a large bias
between the ground-based products of 58 ‰ on average in
δD. NDACC-MUSICA was decidedly developed for water
vapour isotopologue studies and is validated in δD with air-
craft measurements; however, data are only available until
2014. TCCON provides recent data with temporal overlap
with TROPOMI observations, and its H2O total column data
product is validated against in situ measurements; however,
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its HDO data product is not verified. In order to obtain a suit-
able validation data set, TCCON HDO columns are scaled by
a factor of 1.0778 to match the MUSICA δD over the com-
mon observation time period.

Using a co-location radius of 30 km, a maximal al-
titude difference of 500 m, a field of view of 45◦ and
a maximal time difference of 2 h, a good agreement is
found between corrected TCCON measurements and co-
located TROPOMI observations. The mean bias is (−0.2±
3)× 1021 molec cm−2 ((1.1± 7.2)%) for H2O, (−2± 7)×
1017 molec cm−2 ((−1.1± 7.3)%) for HDO and (−14±
17)‰ ((5.6± 6.7)%) for δD. At low- and mid-latitude sta-
tions the bias in δD ranges between about −30 ‰ and
+15 ‰, whereas at high-latitude stations it can be as high
as −45 ‰ to −60 ‰. Retrievals at high latitudes are chal-
lenging due to long light paths and low albedos.

The use of the new data set is demonstrated in a case study
of an atmospheric blocking event with a single TROPOMI
overpass over northeastern Europe on 30 July 2018. Depleted
air masses are found in the core of the anticyclone due to
subsidence transporting upper tropospheric air towards lower
levels. At the edge of the anticyclone a ring of enriched air
is observed. A climatological study on the water vapour iso-
topic signature of continental summer blocking events could
provide promising insights into the atmospheric water cy-
cling associated with such systems that frequently lead to
heat waves and hot temperature extremes. This case study
shows the quality of the new data set and the added value for
isotopologue studies, enabling studies on a day-by-day basis
with high spatial resolution over continental regions.

Due to the restrictive filter for clear-sky scenes, the data
coverage is limited. To improve on this, cloudy-sky retrievals
over low clouds will be considered in a future study by using
a forward model that accounts for scattering. Moreover, a cal-
ibration and validation of the TCCON HDO product is nec-
essary. Additionally, it would be beneficial if recent NDACC-
MUSICA data became available. Finally, an improvement in
the consistency between the networks would be very valu-
able.

Data availability. The TROPOMI HDO data set from this study
is available for download at ftp://ftp.sron.nl/open-access-data-2/
TROPOMI/tropomi/hdo/9_1/ (last access: 20 December 2019).
MUSICA data are available from ftp://ftp.cpc.ncep.noaa.gov/
ndacc/MUSICA/ (last access: 20 December 2019) and via
https://doi.org/10.5281/zenodo.48902 (Barthlott et al., 2016). TC-
CON data are available from the TCCON Data Archive as follows:

– https://doi.org/10.14291/tccon.ggg2014.izana01.r1 (Blumen-
stock et al., 2017);

– https://doi.org/10.14291/tccon.ggg2014.bialystok01.r1/1183984
(Deutscher et al., 2015);

– https://doi.org/10.14291/tccon.ggg2014.wollongong01.r0/1149291
(Griffith et al., 2014);

– https://doi.org/10.14291/tccon.ggg2014.karlsruhe01.r1/1182416
(Kawakami et al., 2014);

– https://doi.org/10.14291/tccon.ggg2014.sodankyla01.r0/1149280
(Kivi et al., 2014);

– https://doi.org/10.14291/tccon.ggg2014.tsukuba02.r2 (Morino
et al., 2018a);

– https://doi.org/10.14291/tccon.ggg2014.burgos01.r0 (Morino
et al., 2018b);

– https://doi.org/10.14291/tccon.ggg2014.rikubetsu01.r2
(Morino et al., 2018c);

– https://doi.org/10.14291/tccon.ggg2014.bremen01.r0/1149275
(Notholt et al., 2014);

– https://doi.org/10.14291/tccon.ggg2014.nyalesund01.r0/1149278
(Notholt et al., 2017);

– https://doi.org/10.14291/tccon.ggg2014.lauder03.r0 (Pollard
et al., 2019);

– https://doi.org/10.14291/tccon.ggg2014.lauder02.r0/1149298
(Sherlock et al., 2014);

– https://doi.org/10.14291/tccon.ggg2014.eureka01.r3 (Strong
et al., 2019);

– https://doi.org/10.14291/tccon.ggg2014.paris01.r0/1149279
(Té et al., 2014);

– https://doi.org/10.14291/tccon.ggg2014.orleans01.r0/1149276
(Warneke et al., 2019);

– https://doi.org/10.14291/tccon.ggg2014.jpl02.r1/1330096
(Wennberg et al., 2014);

– https://doi.org/10.14291/tccon.ggg2014.pasadena01.r1/1182415
(Wennberg et al., 2015);

– https://doi.org/10.14291/tccon.ggg2014.lamont01.r1/1255070
(Wennberg et al., 2016);

– https://doi.org/10.14291/tccon.ggg2014.parkfalls01.r1
(Wennberg et al., 2017); and

– https://doi.org/10.14291/tccon.ggg2014.easttroutlake01.r1
(Wunch et al., 2018).
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