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Abstract. The Orbiting Carbon Observatory (OCO-2) instru-
ment measures high-resolution spectra of the sun’s radiance
reflected at the earth’s surface or scattered in the atmosphere.
These spectra are used to estimate the column-averaged dry
air mole fraction of CO; (XCO,) and the surface pressure.
The official retrieval algorithm (NASA’s Atmospheric CO>
Observations from Space retrievals, ACOS) is a full-physics
algorithm and has been extensively evaluated. Here we pro-
pose an alternative approach based on an artificial neural net-
work (NN) technique. For training and evaluation, we use
as reference estimates (i) the surface pressures from a nu-
merical weather model and (ii) the XCO, derived from an
atmospheric transport simulation constrained by surface air-
sample measurements of CO,. The NN is trained here us-
ing real measurements acquired in nadir mode on cloud-free
scenes during even-numbered months and is then evaluated
against similar observations during odd-numbered months.
The evaluation indicates that the NN retrieves the surface
pressure with a root-mean-square error better than 3 hPa and
XCO; with a 1o precision of 0.8 ppm. The statistics indi-
cate that the NN trained with a representative set of data al-
lows excellent accuracy that is slightly better than that of the
full-physics algorithm. An evaluation against reference spec-
trophotometer XCO; retrievals indicates similar accuracy for
the NN and ACOS estimates, with a skill that varies among
the various stations. The NN-model differences show spa-
tiotemporal structures that indicate a potential for improving
our knowledge of CO, fluxes. We finally discuss the pros and
cons of using this NN approach for the processing of the data
from OCO-2 or other space missions.

1 Introduction

During the past decades, natural fluxes have absorbed about
half of the anthropogenic emissions of CO, (Knorr, 2009),
but there is large uncertainty about the spatial distribution of
this sink over time and therefore on the processes that control
it. A growing network of high-precision atmospheric CO;
measurements has been used together with meteorological
information to constrain the sources and sinks of CO; using
a technique known as atmospheric inversion (e.g., Peylin et
al., 2013), but the lack of data in large regions of the globe,
such as the tropics, does not allow the monitoring of these
fluxes with enough space—time resolution. Early attempts to
complement this network with satellite retrievals from sen-
sors that were not specifically designed for this purpose were
not successful (Chevallier et al., 2005), but a series of ded-
icated instruments were put into orbit when the Greenhouse
Gases Observing Satellite (GOSAT, Yokota et al., 2009) and
the second Orbiting Carbon Observatory (OCO-2 Eldering
et al., 2017) were launched in 2009 and 2014, respectively.
These were still operational at the time of writing. This new
and evolving constellation is directly supported by Japanese,
US, Chinese, and European space agencies (CEOS Atmo-
spheric Composition Virtual Constellation Greenhouse Gas
Team, 2018). All missions have adopted the same CO; ob-
servation principle that consists of measuring the solar irradi-
ance reflected at the earth’s surface in selected spectral bands.
Along the double atmospheric path (down-going and up-
going), the sunlight is absorbed by atmospheric molecules
at specific wavelengths. The resulting absorption lines on the
measured spectra make it possible to estimate the amount of
gas between the surface and the top of the atmosphere. CO,
shows many such absorption lines around 1.61 and 2.06 um
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that are used to estimate the CO; column. Similarly, the oxy-
gen lines around 0.76 um are used to estimate the surface
pressure and can also be used to infer the sunlight atmo-
spheric path, leading to the column-averaged dry air mole
fraction of CO,, referred to as XCO, (O’Brien and Rayner,
2002; Crisp et al., 2004).

One main difficulty in the retrieval of XCO, from the mea-
sured spectra results from the presence of atmospheric par-
ticles that scatter light and change its atmospheric path. Ac-
counting for aerosols, in particular, is challenging because
aerosols are highly variable in amount and in vertical dis-
tribution. Another major difficulty results from modeling er-
rors. The radiative transfer models that are used for the re-
trieval leave significant residuals between the measured and
modeled spectra, even after the XCO;, and aerosol amount
have been inverted for a best fit (Crisp et al., 2012; O’Dell et
al., 2018). As a consequence of the various uncertainties in
the retrieval process, raw XCO; retrievals show significant
biases against reference ground-based retrievals (Wunch et
al., 2011b, 2017). These biases, together with the comparison
against modeling results, led to the development of empirical
corrections to the retrieved XCO,. In the case of the OCO-2
V8r retrievals generated by NASA’s Atmospheric CO, Ob-
servations from Space (ACOS), these corrections amount to
roughly half that of the “signal”, i.e., of the difference be-
tween the prior and the retrieved XCO, (O’Dell et al., 2018).

The limitations in the full-physics retrieval method, de-
spite considerable effort and progress (e.g., O’Dell et al.,
2018; Reuter et al., 2017; and Wu et al., 2018 in the case of
0OCO-2), encourage developing alternative approaches. Here,
we want to re-evaluate the potential of an artificial neural
network technique (NN) to estimate XCO; from the mea-
sured spectra. A NN-based technique was already used by
Chédin et al. (2003) for a fast retrieval of midtropospheric
mean CO» concentrations from some meteorological satel-
lite radiometers. These authors trained their NNs on a large
ensemble of radiance simulations made using a reference ra-
diation model and assuming diverse atmospheric and surface
conditions. NN-based approaches are also commonly used
for the retrieval of other species from various high-spectral-
resolution satellite radiance measurements because of their
computational efficiency (e.g., Hadji-Lazaro et al., 1999).

A NN approach requires a large and representative train-
ing dataset. A standard method for problems similar to that
discussed here is to use a radiative transfer model and to
generate a large ensemble of pseudo-observations based on
assumed atmospheric and surface parameters. However, as
mentioned above, the radiative transfer models have deficien-
cies that are rather small, but nevertheless significant with
respect to the high-precision objective of the CO, measure-
ments. In addition, there may be some wrong assumptions
and unknown instrumental defects that are not accounted for
in the forward modeling. We thus prefer to avoid using such
radiative transfer models and rather base the training on a
fully empirical approach (see, e.g., Aires et al., 2005). We
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use real OCO-2 observations together with collocated esti-
mates of the surface pressure and XCO;. The retrievals from
the NN approach are evaluated against model estimates of
surface pressure and XCO;, as well as observations from the
Total Carbon Column Observing Network (TCCON, Wunch
et al., 2011a). In the following, Sect. 2 presents the approach
while Sect. 3 describes the results. Section 4 discusses the
results and the way forward.

2 Data and method

Our NN estimates XCO; and the surface pressure from nadir
spectra measured by the OCO-2 satellite over land. OCO-2
has eight cross-track footprints (e.g., Eldering et al., 2015),
but we only use footprint #4 in the following for simplicity.
If successful, the same approach can be applied to all foot-
prints. The focus on nadir measurements here is motivated
by the complication introduced by the Doppler effect in glint
mode, which is the other pointing mode for OCO-2 routine
science operations: the absorption lines affect pixel elements
that vary among the spectra. These variations of the position
of the absorption line may cause additional difficulty to the
NN training. The solar lines in the nadir spectra are also af-
fected by Doppler shifts due to the motion of the earth and
satellite relative to the sun, but this concerns a limited set of
spectral elements that are affected by the solar (Fraunhofer)
lines. The development of a glint-mode NN is therefore left
for a future study.

We use spectral samples in the three bands of the instru-
ment (around 0.76, 1.61 and 2.06 yum). They have footprints
of ~3km? on the ground. In principle, each band is de-
scribed by 1016 pixel elements, but some are marked as bad
either because some of the corresponding detectors have died
or because of known temporary or permanent issues. We
systematically remove 15 pixel elements that are flagged in
about 80 % of the spectra and 478 pixels in the band edges.
Conversely, we do not remove the spectra that are affected by
the deep solar lines and we let the NN handle these specific
features. Because the information in the spectrum is mostly
in the relative depth of the absorption lines, and not in their
overall amplitude, we normalize each spectrum by a radiance
that is representative of the offline values (i.e., the mean of
the 90 %-95 % range for each spectrum). This essentially re-
moves the impact of the variations in the surface albedo and
in the sun irradiance linked to the solar zenith angle. Other
input choices may be attempted in the future.

As input to the NN, we add the observation geometry
(sun zenith angle and relative azimuth). The sun zenith an-
gle drives the atmospheric pathlength and is then required
for the interpretation of the absorption line depth in terms of
atmospheric optical depth. The azimuth was not included in
our first attempts, but when later included it led to a signifi-
cant improvement in the results. Although the NN technique
does not allow for a clear physical interpretation, we assume
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that the information brought by the relative azimuth is linked
to the polarization of the molecular scattering contribution to
the measurements that varies with the azimuth.

The NN exploits these 2557 input variables to compute
two variables only: XCO; and the surface pressure. It is
structured as a multilayer perceptron (Rumelhart et al., 1988)
with one hidden layer of 500 neurons that use a sigmoid acti-
vation function. The number of hidden layers is somewhat ar-
bitrary and based on a limited sample of trials. Lower quality
estimates were obtained with 50 neurons whereas the train-
ing time increased markedly for 1000 neurons and more. The
weights of the input variables to the hidden neurons and the
weights of the hidden variables to the output variables are
adjusted iteratively with the standard Keras library (Keras
Team, 2015). Figure Al in the Appendix illustrates the con-
vergence process. The NN cost function (a.k.a. loss) becomes
fairly constant for a test dataset after about 100 iterations,
whereas it continues to decrease for the training dataset, in-
dicating an overfitting of the data. The iteration is stopped
when there is no decrease of the test loss for 50 iterations.
There is a factor of 3 to 4 between the loss of the training
dataset and that of the test, which confirms the overfitting of
the former.

Note that the NN estimate does not use any a priori in-
formation on surface pressure or the CO, profile after the
training is done. Also, no explicit information is provided on
the altitude, location, or time period of the observation. The
NN estimates are therefore only driven by the OCO-2 spec-
trum measurements, together with the observation geometry
(sun zenith and relative azimuth). The observation geometry
varies with the latitude and the season so that the NN may
infer some location information from this input. Conversely,
it is the same from one year to the next and, at a given date,
for all longitudes. Thus, there is no information on the lon-
gitude or the year of observation in the geometry parameters
that are provided to the network.

The NN training is based on OCO-2 radiance measure-
ments (V8r) acquired during even-numbered months be-
tween January 2015 and August 2018. The 4-year period al-
lows varying the global background CO; dry air mole frac-
tion by ~2 %, as much as typical XCO, seasonal varia-
tions in the northern extratropics (see, e.g., Fig. 1 of Agusti-
Panareda et al., 2019). Our evaluation dataset is based on ob-
servations during the odd-numbered months of the same pe-
riod. In both cases, we make use of XCO, estimates and the
quality control filters of the ACOS L2Lite VOr products: only
observations with xco2_quality_flag =0 are used. We also
consider the warn level, outcome flag and cloud_ flag_idp
that are provided in the V8r L2lite and L2Std files. For NN
training, we only use the best quality observations, i.e., those
with a warn level lower or equal to 2, a cloud_flag of 3 (very
clear) and an outcome flag of 1. This choice is based on the
evaluation of the surface pressure estimates described below
(Fig. 3). This distinction leads to about 131 000 observations
for the training. For the evaluation of the NN estimates, we
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use less restrictive criteria and accept observations with out-
come_flag of either 1 or 2, and cloud_flag of 2 or 3. These
choices are justified below. The spatial distribution of the ob-
servations that are used for the training is shown in Fig. A2
of the Appendix. The training dataset covers most regions of
the globe with the exception of South America. The under-
representation of this subcontinent stems from both the high
cloudiness and impact of cosmic rays that leads to missing
pixel elements (see below).

For the reference surface pressure (training and evalua-
tion), an obvious choice is the use of numerical weather anal-
yses corrected for the sounding altitude. Indeed, the typical
accuracy for surface pressure data is on the order of 1hPa
(Salstein et al., 2008). For convenience, we use the surface
pressure that is provided together with the OCO-2 data and
is derived from the Goddard Earth Observing System, Ver-
sion 5, Forward Processing for Instrument Teams (GEOS5-
FP-IT) created at the Goddard Space Flight Center Global
Modeling and Assimilation Office (Suarez et al., 2008; and
Lucchesi et al., 2013). There is no such obvious choice for
XCO; as there is no global-scale highly accurate dataset of
XCO; and we thus rely here on best estimates from a model-
ing approach. We use the CO, atmospheric inversion of the
Copernicus Atmosphere Monitoring Service (CAMS, http:
/latmosphere.copernicus.eu, last access: 28 January 2020,
Chevallier et al., 2010; version 18r2). This product was re-
leased in July 2019 and contributed, e.g., to the Global Car-
bon Budget 2019 of Friedlingstein et al. (2019). It results
from the assimilation of CO; surface air-sample measure-
ments in a global atmospheric transport model run at spatial
resolution 1.90° in latitude and 3.75° in longitude over the
period from 1979-2018 and using the adjoint of this trans-
port model. Neither satellite retrievals nor TCCON observa-
tions were used for this modeling. For each OCO-2 obser-
vation, XCO; is computed from the collocated concentration
vertical profile, through a simple integration weighted by the
pressure width of the model layers. Note that the model lay-
ers use “dry” pressure coordinates so that there is no need
for a water vapor correction in the vertical integration. The
GEOSS-FP-IT surface pressure and the XCO;, from CAMS
are used both for the training and the evaluation, although us-
ing independent datasets (odd- and even-numbered months).

Many measured spectra lack one or several spectral pixels.
This is particularly the case over South America, as a conse-
quence of the South Atlantic cosmic ray flux anomaly that
impacts the OCO-2 detector in this region. We therefore de-
vised a method to interpolate the spectra and to fill the miss-
ing pixels. Our method first sorts all spectral pixels as a func-
tion of the measured radiance in a large number of complete
measured spectra. The pixel ranks are averaged to generate
a rank representative of the full dataset. Then, when a pixel
element is missing in a spectrum, we look for its typical rank
and we average the radiances of the two pixel elements that
have the ranks just above and below. The procedure is applied
even when several pixel elements are missing in a spectrum,
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except when these are successive in the typical ranking. The
procedure described here fills the missing elements and the
NN can then be applied to the corrected spectrum to estimate
the surface pressure and XCO;.

3 Results

Figure 1 shows a density histogram of the GEOSS5 FP-IT sur-
face pressure analysis and of the NN estimate for the eval-
uation dataset (odd-numbered months). Clearly, there is an
excellent agreement between the two over a very wide range
of surface pressures. There is no significant bias and the stan-
dard deviation is 2.9 hPa. The equivalent ACOS V8r retrieval
shows a bias of 1.5 hPa and a standard deviation of 3.4 hPa,
slightly larger than that of the NN approach. Note that the
ACOS statistics are those of the ACOS retrieval-minus—prior
statistics (see Sect. 2). Interpreting them in terms of error is
counterintuitive because the Bayesian retrieval is supposed to
be better than the prior, but in practice radiation modeling er-
rors lead to a different interpretation (see, e.g., the discussion
in Sect. 4.3.4 of O’Dell et al., 2018).

Both NN and ACOS correlations with GEOS5 FP-IT are
very high (0.997 and 0.996) although the best fit shows a very
small deviation from the 1: 1 line. Interestingly, the best-fit
deviations from the 1 : 1 line are of opposite sign (slopes 0.99
and 1.01). The results of the NN are surprisingly good given
the simplicity of the approach and given that the NN estimate
does not use any a priori information or ancillary informa-
tion such as the surface altitude or temperature profile, con-
trarily to the ACOS estimate. The quality of the NN results
for the estimate of the surface pressure is a first demonstra-
tion of the potential of the approach. Note that the retrieval
accuracy holds over a very large range of surface pressures
(the relative variations of XCO, are much smaller), although
there is some indication of biases for the lowest pressures that
are underrepresented in the training dataset. These biases of
~ 5 hPa affect the observations over high-elevation surfaces
such as the Tibetan Plateau or the US Rocky Mountains.

Figure 2 is similar to Fig. 1 but for XCO;. There is no sig-
nificant bias between the NN estimate and the CAMS model,
while the standard deviation is 0.84 ppm. The bias-corrected
ACOS retrievals show a slight bias against the CAMS model
and the standard deviation (1.14 ppm) is larger than that of
the NN approach. Note that the statistics given here are af-
fected by CAMS modeling errors that may eventually be cor-
rected with the help of the satellite information. The best fit
slope deviations from the 1 : 1 line are larger than for the sur-
face pressure; the slopes are 0.93 for the NN and 0.87 for
ACOS.

Figures 1 and 2, together with the quantitative assessment
of the precision, are given for the observations that are clear
according to ACOS (cloud flag=2 or 3), that have a warn
level of 2 or less, that may include missing pixel elements,
and that have an outcome flag of 1 or 2. This choice is based

Atmos. Meas. Tech., 14, 117-132, 2021

on a prior performance analysis. We have analyzed how the
performance of the NN approach varies with the quality in-
dicators. For this objective, we have compared the retrieved
surface pressure against the value derived from the numer-
ical weather data, as in Fig. 1, and we have evaluated the
statistics of their difference as a function of the quality flags.
First (figure not shown), there is no significant difference be-
tween the cases when the measured spectra are complete and
those when one or several missing pixel elements have been
interpolated with the method described above. Conversely,
the statistics vary with the cloud flag and the warn level, as
shown in Fig. 3. We only use the spectra for which an ACOS
retrieval is available. Among those, and according to the flag
cloud_flag_idp, about 53 % are labeled as “very clear” while
43 % are “probably clear”. The statistics are slightly better
for the former than they are for the latter. Conversely, the
rather rare “definitely cloudy” and “probably cloudy” show
deviations that are significantly larger. This result was highly
expected since our NN did not learn how to handle clouds
in the spectra. Therefore, all “definitely cloudy” and “proba-
bly cloudy” soundings are outside the domain covered by the
training dataset. Note also that the observations used here
have all been classified as “clear” by ACOS preprocessing.
Thus, most OCO-2 observations are not used here and Fig. 3
should not be interpreted as the ability to retrieve the surface
pressure in cloudy conditions. Most (78 %) of the observa-
tions have a warn level of 0. The deviation statistics increase
with the warn level, both in terms of bias and standard de-
viation. In comparison, the difference in the statistics for an
outcome flag of 1 and 2 are small. Besides, more than half
of the ACOS retrievals have an outcome flag of 2, which en-
courages us not to reject those for further use. Based on this
analysis, we retain all spectra that are very clear (cloud flag
of 2 or 3) and that have a warn level of 2 or less.

We made a figure similar to Fig. 3 but based on the XCO,
estimates (not shown). Although the results are similar in
terms of sign (i.e., increase of the deviations with the warn
levels), the signal is not as obvious (there is less relative dif-
ference between one warn level and another, or for the vari-
ous cloud flags). Our interpretation is that the relative accu-
racy of the surface pressure used as a reference estimate is
much better than that of the NN retrieval, whereas the accu-
racy of the XCO; from CAMS is not much better than that
of the NN. As a consequence, variations in the accuracy of
the NN do not show up as clearly for XCO; than they do for
the surface pressure.

A standard method to evaluate an algorithm that estimates
XCO; from spaceborne observation is the comparison of its
products against estimates from TCCON retrievals. These es-
timates use ground-based solar absorption spectra recorded
by Fourier transform infrared spectroscopy and have been
tuned with airborne in situ profiles (Wunch et al., 2010). To
take advantage of the full potential of the TCCON retrievals
for the bias correction and validation of the XCO, estimates,
the OCO-2 platform can be oriented so that the instrument
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Figure 2. Same as Fig. 1 but for XCO,. In this case, the reference data are the CAMS v18r2 simulation.

field of view is close to the surface station. The ACOS full-
physics algorithm can handle these spectra that are acquired
in neither nadir nor glint geometries, but the NN was trained
solely on nadir spectra and cannot yet be applied to the ob-
servations acquired in target mode. We thus have to rely on
nadir measurements acquired in the vicinity of TCCON sites.
In the following, we use nadir measurements that are within
5° in longitude and 1.5° in latitude to the TCCON site. The
XCO; estimates (either from ACOS, the NN, or the model
sampled at the OCO-2 measurement location) are averaged
for a given overpass. Similarly, we average the TCCON es-
timates of XCO, within 30 min of the satellite overpass. No
attempt was made to correct for the different weighting func-
tions of the surface and spaceborne remote sensing estimates.
The comparisons are shown in Fig. 4 for each TCCON sta-
tion listed in Table 1.

Overall, the biases and standard deviations of the differ-
ences to TCCON observations are —0.34 = 1.40 ppm for the
NN, —0.47 & 1.49 ppm for ACOS and 0.04 £ 1.09 ppm for
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CAMS. The statistics per station are provided in Table 1.
Two stations, Paris and Pasadena, show a large negative bias
for both estimates, which may be interpreted as the impact
of the city on the atmosphere sampled by the TCCON mea-
surement, while the atmosphere sampled by the distant satel-
lite may be less affected. Conversely, there is no such neg-
ative bias for other stations that are located close to large
cities, such as Tsukuba, a suburb of the Tokyo Metropoli-
tan area. Zugspitze is rather specific due to its high altitude.
The comparison against TCCON indicates that the NN ap-
proach performs similarly to ACOS, if not better. The dis-
persion is larger for one approach versus the other for some
stations, while the opposite is true for other stations. Note
also that the CAMS model performs better than both satellite
retrievals for most stations. This observation provides further
justification to the use of this model for training the NN.
The evaluation of the algorithm performance is limited by
the distance between the satellite estimate and its surface val-
idation. This is inherent to the use of nadir-only observations
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that are seldom located close to the TCCON sites. A reduc-
tion of the distance results in less coincidences, which leads
to a validation dataset of poor representativeness. Note that
the CAMS model was sampled at the location of the satellite
observations, so that the higher performance of the model
versus the satellite products cannot be caused by a higher
proximity to the TCCON station.

We now investigate whether the model-minus—NN differ-
ences are purely random or contain some spatial or tempo-
ral structures. This question is important because if the dif-
ferences show a random structure there is little hope to use
these data to improve the surface fluxes used in the CAMS
product. Conversely, if the XCO, differences do show some
structures, they can be attributed to surface flux errors in
the CAMS product that may then be corrected through in-
verse atmospheric modeling. There is no certainty, however,
as a spatial structure in the NN-minus—CAMS difference can
also be interpreted as a bias in the satellite estimate.

We first show (Fig. 5) the difference between the NN esti-
mates of the surface pressure and the numerical weather anal-
yses. These are monthly maps of the NN-minus-CAMS dif-
ference for 3 years of the period at a 5° x 5° resolution. We
only present the odd-numbered months as the others were
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used for the training and therefore do not show any signifi-
cant differences. There are very clear spatial patterns of a few
hPa that are not expected and should be interpreted as a bias
in the NN approach. The biases over the high mountains and
plateaus have already been mentioned. In addition, positive
biases tend to occur in the high latitudes and negative biases
toward the tropics. The structures show additional spatial and
temporal patterns and are therefore more complex than just
a latitude function. The same figure but based on the ACOS
retrievals (Fig. A3) displays large-scale structures with dif-
ferent spatial patterns; the surface pressure bias is mostly
negative over northern latitudes and positive over low lati-
tudes. A histogram (Fig. 6) of the monthly differences, such
as those shown on Fig. 5, confirms that the amplitude of the
surface pressure biases is larger with ACOS than it is with the
NN. The NN or ACOS surface pressure bias is —0.33 hPa or
1.39 hPa, respectively, and the standard deviation is 2.12 or
2.79 hPa, respectively.

Figure 7 is similar to Fig. 5 but for XCO, differences be-
tween the NN estimate and the CAMS model. As for the
surface pressure, there are clear spatial patterns with ampli-
tudes of 1 to 2 ppm. The question is whether these are mostly
linked to monthly biases in the CAMS model or to the NN.
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Table 1. TCCON stations used in this paper (Fig. 4). The data were obtained from the http://tccondata.org website at during the summer of

2019 (last access: 1 August 2019).

Stations [lat; long]  Altitude Reference Biases SD

[m] NN/ACOS/CAM  NN/ACOS/CAM
Lauder [—45.04; 169.68] 370  Sherlock et al. (2017) —0.48/—0.25/0.076 0.43/1.51/0.16
Wollongong [—34.41; 150.88] 30  Griffith et al. (2017b) 0.60/—0.20/0.42 1.21/1.32/0.60
Reunion [—20.90; 55.49] 90 De Maziere et al. (2017) —0.08/—0.90/0.13 —/—/-
Darwin [—12.43; 130.89] 30  Griffith et al. (2017a) 0.19/—0.69/0.23 0.80/1.09/0.72
Manaus [-3.21; —60.6] 50  Dubey et al. (2017) —0.25/—0.05/0.34 0.43/1.04/0.26
Izana [28.3; —16.48] 2300 Blumenstock et al. (2017) —1.35/—1.14/—1.48 0.18/0.92/0.0
Hefei [31.90; 118.67] 30 Liuetal. (2018) —1.47/—1.58/—1.01 1.11/1.76/0.63
Saga [33.24; 130.29] 10 Shiomi et al. (2017) —1.36/—1.03/—1.15 0.57/1.22/0.59
Pasadena [34.14; —118.13] 240  Wennberg et al. (2017b) —2.12/—-1.87/-1.41 1.57/1.64/1.17
Edwards [34.96; —117.88] 700  Traci et al. (2017) 0.07/0.41/0.50 1.00/1.01/0.64
Tsukuba [36.05; 140.12] 30 Morino et al. (2017a) 0.42/1.43/1.05 2.13/2.53/1.61
Lamont [36.6; —97.49] 320 Wennberg et al. (2017¢) —0.03/-0.38/0.16 1.07/1.21/0.94
Rikubetsu [43.46; 1473.77] 390  Morino et al. (2017b) —0.57/—0.84/0.47 0.84/1.07/0.98
Parkfalls [45.94; —90.27] 440  Wennberg et al. (2017a) —0.41/-0.75/0.11 1.15/1.01/0.72
Zugspitze [47.42; 11.06] 2960  Sussmann and Rettinger (2017b)  —0.85/—1.14/—0.83 1.45/1.85/1.36
Garmisch [47.48; 11.06] 740  Sussmann and Rettinger (2017a) 0.40/0.28/0.43 0.98/1.29/0.62
Orleans [47.97;2.11] 130  Warneke et al. (2017) —0.35/0.13/0.66 1.06/1.38/0.67
Paris [48.85; 2.36] 60 Teetal. (2017) —1.29/—1.24/-0.62 1.30/1.66/1.23
Karlsruhe [49.1; 8.44] 110  Hase et al. (2017) 0.26/0.21/0.75 0.80/1.29/0.55
Bremen [53.10; 8.85] 7  Notholt et al. (2017) 0.30/—0.07/0.36 1.11/1.02/0.45
Bialystok [53.23;23.02] 180 Deutscher et al. (2017) —0.11/—-0.32/0.33 1.31/1.30/0.42
Sodankyla [67.37; 26.63] 190  Kivietal. (2017) 0.26/0.24/0.61 0.79/1.36/0.80
Eureka [80.05; —86.42] 600  Strong et al. (2017) —1.02/—1.50/-2.16 1.01/2.25/0.41

2015

2016

2017

APgy (NN - Met) [hPa]

Figure 5. Difference between the NN estimates of the surface pressure and the numerical weather analyses. The differences have been
averaged at monthly and spatial 5° x 5° resolutions. The results are shown for 3 years and only for the months that were not used for the

training.

The first hypothesis is of course more favorable as it would
indicate that the satellite data can bring new information to
constrain the surface fluxes. However, the analysis of the sur-
face pressure that shows biases of several hPa suggests that
the NN XCO, estimate may also show biases with spatially
coherent patterns. Interestingly, the patterns vary in time and
are not correlated with those of the surface pressure. Fur-
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ther analysis, in particular atmospheric flux inversion, is nec-
essary for a proper interpretation of the NN-CAMS differ-
ences.

The differences of ACOS estimates to the CAMS model
also show patterns of similar amplitude as those in Fig. 7
(Fig. A4). However, there is no clear correspondence be-
tween these patterns and those obtained using the NN prod-
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Figure 6. Histogram of the monthly mean differences at 5° resolu-
tion (such as those shown in Fig. 5) between the satellite retrievals
and the CAMS model: (a) is for XCO, while (b) is for the surface
pressure. The blue line is for the NN product while the orange line
is for ACOS.

uct. The differences between the satellite products and the
CAMS model are small, but these contain the information
that may be used to improve our knowledge on the surface
fluxes. The absence of a clear correlation between the spa-
tiotemporal pattern from the NN and ACOS approaches in-
dicate that their use would lead to very different corrections
on the surface fluxes if used as input of an atmospheric in-
version approach. Figure 6a shows the histogram of these
monthly mean differences. The histograms are very similar
for the two satellite products, although the standard devia-
tion of the difference to the CAMS model is slightly larger
for ACOS than it is for the NN approach (0.89 vs. 0.83 ppm).

4 Discussion and conclusion

The use of the same product for the NN training and its eval-
uation may be seen as a weakness of our analysis. One may
argue that the NN has learned from the model and generates
an estimate (either the surface pressure or XCO») that is not
based on the spectra but rather on some prior information.
Let us recall that the NN input does not contain any informa-
tion on the location or date of the observation. This is a strong
indication that the information is derived from the spectra as
the NN does not “know” the CAMS value that corresponds to
the observation location. Yet, the NN input also includes the
observation geometry (sun angle and azimuth) that is some-
what correlated with the latitude and day of the year. One
may then argue that the NN learns from this indirect infor-

Atmos. Meas. Tech., 14, 117-132, 2021

mation on the observation location and then generates an es-
timate based on the corresponding CAMS value. However,
since the observation geometry is exactly the same from one
year to the next, there is no information, direct or indirect,
on the observation year in the NN input. Thus, the XCO,
growth rate that is accurately retrieved by the NN method
(see Fig. 7) is necessarily derived from the spectra. A simi-
lar argument can be made on the spatial variation across the
longitudes.

To further demonstrate that the NN retrieves XCO, from
the spectra rather than from the prior, we performed an ad-
ditional experiment. The training is based only on even-
numbered months. As a consequence, the prior does not in-
clude any direct information on the odd-numbered months.
For these months, the best prior estimate is a linear interpo-
lation between the two adjacent even-numbered months. We
can then analyze how the NN estimate compares with the
CAMS product, which accounts for the true synoptic vari-
ability, and a degraded version of CAMS based on a linear
interpolation between the two adjacent months. This com-
parison is shown in Fig. 8. The center figure compares the
true CAMS value and that derived from the temporal inter-
polation. As expected, both are highly correlated (the sea-
sonal cycle and the growth rate are kept in the interpolated
values) but nevertheless show a difference standard devia-
tion of 0.89 ppm. This value can be interpreted as the syn-
optic variability of XCO; present in CAMS but not captured
in the interpolated product. The comparison of the NN esti-
mate against CAMS (right) and the interpolated CAMS (left)
shows significantly better agreement to the former. Thus, the
NN product reproduces some XCO; variability that is not
contained in the training prior. It provides further demonstra-
tion that the NN estimates relies on the spectra rather than on
the time/space variations of the training dataset.

The results shown above indicate that the NN approach
allows an estimate of surface pressure and XCO, with a pre-
cision that is similar or better than that of the operational
ACOS algorithm. The lack of independent “truth” data does
not allow a full quantification of the product precision and
accuracy. However, there are indications that the accuracy on
the surface pressure is better than 3 hPa rms, while the pre-
cision (standard deviation) of XCO; is better than 0.9 ppm.
The data used for the XCO; product evaluation has its own
error that is difficult to disentangle from that of the estimate
based on the satellite observation. It may also contain a bias
that is propagated to the NN through its training.

One obvious advantage of the NN approach is the speed of
the computation, which is several orders of magnitude higher
than that of the full-physics algorithm. This is significant
given the current reprocessing time of the OCO-2 dataset
despite the considerable computing power made available
for the mission. It also bears interesting prospects for future
XCO; imaging missions that will bring even higher data vol-
ume (e.g., Pinty et al., 2017).
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Figure 7. Same as Fig. 5 but for the difference between the XCO, estimated by the NN approach and that derived from the CAMS model.
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Figure 8. Scatterplots of XCO, estimated by the NN, the CAMS model, and the CAMS model that has been interpolated in time from
adjacent months (see text for details). Note that the number of points is less than in Fig. 2 because the edge months could not always be

interpolated.

Another advantage is that the NN approach described in
this paper does not require the extensive debias procedure
necessary for the ACOS product (O’Dell et al., 2018; Kiel et
al., 2019). Per construction, there is no bias between the NN
estimates and the dataset used for the NN training. The NN
approach therefore requires less effort and fewer resources.

There are, however, a number of drawbacks for the NN
approach described in this paper.

One obvious drawback is the use of a CO, model simula-
tion in the training while the main purpose of the satellite ob-
servation is to improve our current knowledge of atmospheric
CO3 and its surface fluxes. Our argument is that although the
CAMS simulation used here has high skill (as demonstrated
in Fig. 4), it may have positive or negative XCO, biases for
some months and some areas. These biases are independent
from the measured spectra so that the NN training will aim at
average values. As a consequence, the NN product could in
principle be of higher quality than the CAMS product, even
though the same model has been used as the reference esti-
mate for the training (see, e.g., Aires et al., 2005).

Another drawback of the NN approach is that it does not
directly provide its averaging kernel. The averaging kernel
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vector reports the sensitivity of the retrieved total column to
changes in the concentration profile (Connor et al., 1994).
It is a combination of physical information (about radiative
transfer) and statistical information (about the prior infor-
mation). It is needed for a proper comparison with 3D at-
mospheric models (e.g., Chevallier, 2015). When comparing
with model simulations, for instance for atmospheric inver-
sion, we may wish to neglect the NN implicit prior infor-
mation. This hypothesis leads to a homogeneous pressure
weighting over the vertical, as this is the product that the NN
was trained to simulate. Alternatively, we could decide to ne-
glect the difference in prior information between the NN and
the full-physics algorithm and use typical averaging kernels
of the latter. A third, more involved option would be to per-
form a detailed sensitivity study of the NN, based on radia-
tive transfer simulations.

Similarly, the current version of our neural network does
not provide a posterior uncertainty. A Monte Carlo approach
using various training datasets could be use in the future for
such an estimate.

Also, because of the CO, growth rate, the developed NN
cannot be safely used to process observations that are ac-
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quired later than a few weeks after the last data of the train-
ing dataset, as the observed CO, may then be outside of its
range. Therefore, the use of the neural network approach for
near real-time applications would require frequent updates of
the training phase.

We acknowledge the fact that the NN product evaluated
here is not fully independent from the ACOS product. In-
deed, we use the cloud flag and the quality diagnostic from
ACOS to select the spectra that are of sufficient quality. If
we aim for some kind of operational product, there is a need
to design a procedure to identify these good quality spec-
tra. One option would be to compare the surface pressure
retrieved by the NN to the numerical weather analysis es-
timate and to reject cases with significant deviations (e.g.,
differences larger than 3 hPa).

Despite these drawbacks, the results presented here show
that a neural network has a large potential for the estimate of
XCO; from satellite observations, such as those from OCO-
2, the forthcoming MicroCarb (Pascal et al., 2017), or the
CO,M constellation (Sierk et al., 2018), which aims to mea-
sure anthropogenic emissions. It is rather amazing that a first
attempt leads to trueness and precision numbers that are sim-
ilar or better than those of the full-physics algorithm. There
are several paths to improvement. One is to provide the NN
with some ancillary information such as the surface altitude
or a proxy of the atmospheric temperature. Another is to train
the NN with model estimates (such as those of CAMS used
here) but that have been better sampled for their assumed pre-
cision, for instance through a multimodel evaluation. Also,
one could train the NN with observations acquired during
a few days of each month, rather than the even-numbered
months as done here, so that the evaluation dataset would
provide a better evaluation of the seasonal cycle.

Atmos. Meas. Tech., 14, 117-132, 2021

Our next objective is to attempt a similar NN approach for
the measurements that were acquired in the glint mode. As
explained above, the glint observations may be more diffi-
cult to reproduce by the NN than those acquired in the nadir
mode. However, we were very much surprised by the per-
formance of the NN with the nadir data and cannot preclude
being surprised again. Finally, we shall analyze the spatial
structure of the NN retrievals in regions that are expected to
be homogeneous and in regions where structures of anthro-
pogenic origin are expected (e.g., Nassar et al., 2017; Reuter
etal., 2019).
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Appendix A

Best test Loss : 3.58e-02
Associated train Loss : 1.14e-02
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Figure Al. Illustration of the iterative convergence of the NN during its training. The loss is an indicator of the difference between the
NN estimate and the dataset. One dataset is used for the best estimate of the NN weights whereas another independent one is used for the
evaluation of the NN capability. The NN is stopped when there is no further reduction of the loss for the test dataset for 50 iterations. The
weights for the NN are those obtained for the lowest loss of the test dataset (iteration 167 on the figure).
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Figure A2. Spatial density of the observations that were used for the training (a) and validation (b) processes.
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Figure A3. Same as Fig. 5 but for the surface pressure retrieved by the ACOS algorithm. The mean bias over the full period (1) is removed
so that the differences are centered on zero.
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Figure A4. Same as Fig. 7 but for the XCO, retrieved by the ACOS algorithm. The mean bias over the full period (1) is removed so that the
differences are centered on zero.
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