

Supplement of

Introducing the extended volatility range proton-transfer-reaction mass spectrometer (EVR PTR-MS)

Felix Piel et al.

Correspondence to: Armin Wisthaler (armin.wisthaler@kjemi.uio.no)

The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.

Table S1:	Table of investiga	ated analytes,	their molecular f	formula, phases	investigated, d	lrift tube tem	peratures used,	and supplier

Comment 1	Molecular	C	Dentiste	T	
Compound	Tormula	Gas	Particle		Manufacturer
4-Nitrocatechol	$C_6H_5NO_4$	Х		120	ALDRICH
1,6-Anhydro-beta-D-glucose (Levoglucosan)	$C_6H_{10}O_5$	Х	Х	80, 100, 120	ALDRICH
2,6-Dimethoxyphenol	$C_8H_{10}O_3$	Х		120	SIGMA-ALDRICH
2,7-Dihydroxynaphtalene	$C_{10}H_8O_2$	Х	Х	120	ALDRICH
2-Tridecanone	C13H26O	Х		40, 60, 80, 100, 120	SIGMA-ALDRICH
4-Nitroguaiacol	C7H7NO4	Х		120	SIGMA-ALDRICH
Adipic acid	$C_6H_{10}O_4$		Х	120	SIGMA
Ammonium nitrate	NH4NO3	Х	Х	60, 80, 100, 120	SIGMA-ALDRICH
Ammonium sulphate	(NH4)2SO4		Х	120	SIGMA
Arabitol	C5H12O5	Х		120	SIGMA
Azelaic acid	$C_9H_{16}O_4$	Х	Х	120	ALDRICH
Benzocaine	$C_9H_{11}NO_2$	Х		120	SIGMA
Cis-pinic acid	$C_9H_{14}O_4$		Х	120	
Cis-Pionic acid	$C_{10}H_{16}O_{3}$	Х		80, 100, 120	ALDRICH
D-(+)-Glucose	$C_6H_{12}O_6$	Х		120	SIGMA
Diglycolic acid	$C_4H_6O_5$	Х	Х	120	ALDRICH
Erythritol	$C_4H_{10}O_4$	Х		120	SIGMA
Fructose	$C_6H_{12}O_6$	Х		120	SIGMA
Glycolic acid	$C_2H_4O_3$	Х		120	SIGMA-ALDRICH
MBTCA (3-methyl-1,2,3-butanetricarboxylic acid)	$C_8H_{12}O_6$		Х	120	self-synthesized
Methyl-b-d-xylopyranoside	$C_6H_{12}O_5$		Х	120	SIGMA
Norpinonic acid	C9H14O3		Х	120	synthesized at TROPOS
Pentadecanoic acid	$C_{15}H_{30}O_2$	Х		120	SIGMA
Phenoxyacetic acid	C8H8O3	Х		120	FLUKA
Stearic acid	$C_{18}H_{36}O_2$	Х	Х	120	SIGMA
Tartaric acid	$C_4H_6O_6$		Х	120	
Vanillic acid	$C_8H_8O_4$	Х	Х	120	SIGMA-ALDRICH
Vanillin	C8H8O3	Х		80, 100, 120	SIGMA-ALDRICH
Xylitol	C5H12O5	Х		120	SIGMA

Table S2: Parameters of the double-exponential decay fit functions shown in Fig. 3

compound	A1	b1	A2	b2
2-tridecanone _(g)	1.08	-3.75	0.00	-1.27
<i>cis</i> -pinonic acid _(g)	0.78	-0.65	0.22	-0.04
4-nitrocatechol _(g)	0.72	-0.05	0.22	-0.01
nitrate _(p)	0.73	-0.38	0.28	-0.04
levoglucosan _(p)	0.70	-0.21	0.28	-0.02
$2,7-dihydroxynaphthalene_{(p)}$	0.73	-0.10	0.24	-0.01

Table S3: Parameters of the double-exponential decay fit functions shown in Fig. 5

compound	A1	b1	A2	b2
2-tridecanone(g) RT	0.50	-0.07	0.48	-0.03
2-tridecanone _(g) 60°C	0.89	-0.55	0.09	-0.03
$2\text{-tridecanone}_{(g)} 80^{\circ}\text{C}$	1.07	-1.93	0.05	-0.03
2-tridecanone _(g) 100°C	1.08	-3.75	0.00	-1.27
<i>cis</i> -pinonic acid _(g) 80°C	0.75	-0.22	0.25	-0.04
<i>cis</i> -pinonic acid _(g) 100°C	0.71	-0.39	0.27	-0.03
<i>cis</i> -pinonic acid _(g) 120°C	0.78	-0.65	0.22	-0.04

20

Figure S1: Scheme of the experimental set-up used for measuring $\tau_{1/e}$ of gaseous analytes (left side) and particle-phase analytes (right side)

Figure S2: Graph showing the decrease of $\tau_{1/e}$ with increasing log C⁰ for selected carboxylic acids (red), substituted phenols (cyan), saccharides (blue) and nitroaromatics (magenta). (*): measured at much lower concentration than for the other carboxylic acids.

Figure S3: Graph showing the increase in log C⁰ of 2-tridecanone and *cis*-pinonic acid with increasing temperature, as calculated using the SIMPOL.1 method

Figure S4: Normalized mass distribution as a function of the number of oxygen atoms (#O) that was observed when the CHARON EVR PTR-MS analyzer sampled SOA generated from the reaction of limonene with ozone. The color code indicates the number of carbon atoms (#C). Mass concentrations were derived from the assumption that all analytes form ammonium adducts at the collisional rate (Zaytsev et al., 2019). The collisional rate was determined as described in the Supplement of Müller et al. (2017).