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Abstract. Continuous advancements in pulsed wind lidar
technology have enabled compelling wind turbulence mea-
surements within the atmospheric boundary layer with probe
lengths shorter than 20 m and sampling frequency on the or-
der of 10 Hz. However, estimates of the radial velocity from
the back-scattered lidar signal are inevitably affected by an
averaging process within each probe volume, generally mod-
eled as a convolution between the true velocity projected
along the lidar line-of-sight and an unknown weighting func-
tion representing the energy distribution of the laser pulse
along the probe length. As a result, the spectral energy of
the turbulent velocity fluctuations is damped within the iner-
tial subrange, thus not allowing one to take advantage of the
achieved spatio-temporal resolution of the lidar technology.
We propose to correct the turbulent energy damping on the
lidar measurements by reversing the effect of a low-pass fil-
ter, which can be estimated directly from the power spectral
density of the along-beam velocity component. Lidar data
acquired from three different field campaigns are analyzed to
describe the proposed technique, investigate the variability
of the filter parameters and, for one dataset, assess the cor-
rected velocity variance against sonic anemometer data. It is
found that the order of the low-pass filter used for modeling
the energy damping on the lidar velocity measurements has
negligible effects on the correction of the second-order statis-
tics of the wind velocity. In contrast, the cutoff wavenum-
ber plays a significant role in spectral correction encompass-
ing the smoothing effects connected with the lidar probe
length. Furthermore, the variability of the spatial averaging
on wind lidar measurements is investigated for different wind
speed, turbulence intensity, and sampling height. The results
confirm that the effects of spatial averaging are enhanced

with decreasing wind speed, smaller integral length scale
and, thus, for smaller sampling height. The method proposed
for the correction of the second-order turbulent statistics of
wind-velocity lidar data is a compelling alternative to exist-
ing methods because it does not require any input related to
the technical specifications of the used lidar system, such as
the energy distribution over the laser pulse and lidar probe
length. On the other hand, the proposed method assumes that
surface-layer similarity holds.

1 Introduction

Over the last decades, wind Doppler light detection and rang-
ing (lidar) technology has provided compelling features to
perform wind turbulence measurements within the atmo-
spheric boundary layer (ABL) for different scientific and in-
dustrial pursuits, such as air quality, meteorology (Spuler and
Mayor, 2005; Emeis et al., 2007; Bodini et al., 2017), aero-
nautic transportation, and wind energy (Frehlich and Kelley,
2008; Zhan et al., 2020a, b). In the context of ABL turbu-
lence, scanning Doppler wind lidars were assessed against
other measurement techniques, such as sonic anemometers
and scanning Doppler wind radars, during the eXperimen-
tal Planetary boundary layer Instrumentation Assessment
(XPIA) campaign (Lundquist et al., 2017; Debnath et al.,
2017a, b; Choukulkar et al., 2017; Debnath, 2018).

Different scanning strategies can be designed to character-
ize different properties of the ABL velocity field through li-
dar measurements (Sathe and Mann, 2013), while the highest
spectral resolution is achievable by maximizing the sampling
frequency and measuring over a fixed line of sight (LOS).
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Provided the use of a probe length, l, sufficiently small to per-
form wind measurements within the inertial sublayer, e.g., at
a height from the ground, z, with l < 2πz (Banerjee et al.,
2015), turbulence statistics of the wind velocity field can be
retrieved through fixed scans while providing a spectral char-
acterization of the inertial sublayer (Iungo et al., 2013). 3D
fixed-point measurements can be performed by retrieving the
radial velocity measured simultaneously by three or more li-
dars intersecting at a fixed position (Mikkelsen et al., 2008;
Carbajo et al., 2014). In Mann et al. (2009), auto- and cross-
spectral densities for the three velocity components were es-
timated through multiple scanning lidar measurements.

Besides the easier deployment compared to the installa-
tion of classical meteorological towers, wind lidars tailored
to investigations on atmospheric turbulence currently provide
probe volumes smaller than 20 m along the direction of the
laser beam and sampling frequency higher than 1 Hz, which
are welcomed features for studies on ABL turbulence.

A Doppler wind lidar allows probing the atmospheric wind
field utilizing a laser beam whose light is back-scattered in
the atmosphere due to the presence of particulates suspended
in the ABL. The velocity component along the laser-beam
direction, denoted as radial or LOS velocity, is evaluated
from the Doppler shift of the back-scattered signal. A pulsed
Doppler wind lidar, like those used for the present work,
emits laser pulses to perform quasi-simultaneous wind mea-
surements at multiple distances from the lidar as the pulses
travel in the atmosphere. The wind measurements performed
over each probe volume can be considered as the convolution
of the actual wind velocity field projected along the laser-
beam direction with a weighting function representing the
radial distribution of the energy associated with each laser
pulse. Therefore, lidar measurements can be considered the
result of low-pass filtering of the actual velocity field, where
the characteristics of the low-pass filter are functions of the
energy distribution of the laser pulse over the probe volume,
probe length, and accumulation time (Frehlich et al., 1998;
Sjöholm et al., 2009; Held and Mann, 2018).

A reduced variance of the wind velocity is generally mea-
sured with a Doppler wind lidar compared with that mea-
sured through a sonic anemometer due to the laser-pulse av-
eraging and different size of the measurement volume. For
single-point measurements performed with a Windcube 200S
lidar and azimuth angle of the laser beam set equal to the
mean wind direction, a variance reduction of 8 % was pre-
dicted for a gate length of 25 m, while it was increased up to
20 % for a gate length of 100 m (Cheynet et al., 2017).

Attenuation of the measured turbulent kinetic energy due
to the averaging over each probe volume can be corrected
through a spectral transfer function introduced in Mann et al.
(2009). For fixed scans, by leveraging the Taylor’s frozen-
turbulence hypothesis (Taylor, 1938; Panofsky and Dutton,
1984), the velocity energy spectrum is recovered through the
deconvolution of the radial velocity with the weighting func-
tion representing the energy of the laser pulse. The critical

part of this correction method consists of the empirical defi-
nition of the weighting function and its representative length
scale (Banakh and Werner, 2005; Lindelöw, 2008; Mann et
al., 2009). As will be shown in this paper, corrections per-
formed through this deconvolution procedure often do not
provide a satisfactory accuracy for wind turbulence measure-
ments.

Another method for spatial-averaging correction of wind
lidar measurements was proposed in Brugger et al. (2016).
By assuming a linear averaging over each range gate and
a Gaussian shape of the energy along the laser pulse, this
method estimates the corrected velocity variance and the
outer scale of turbulence by leveraging the von Kármán
model of the second-order structure function for the stream-
wise velocity (Von Kármán, 1948). The spatial averaging is
included directly in the calculation of the structure function,
following the work by Frehlich et al. (1998). In Brugger et
al. (2016), compelling results were achieved comparing cor-
rected lidar data with simultaneous and colocated data col-
lected with an ultrasonic anemometer. However, these au-
thors noticed residual systematic errors in the lidar corrected
data, which might be related to the assumptions of the laser-
pulse shape, the linear averaging process, or the von Kármán
model of the structure function, which was originally formu-
lated for isotropic neutrally stratified turbulence (Von Kár-
mán, 1948).

In this work, a semiempirical procedure is proposed to
correct the damping of turbulent kinetic energy associated
with wavelengths comparable to the lidar probe length for
turbulent velocity measurements collected within the atmo-
spheric surface layer (ASL), which is defined as the lower
portion of the ABL where momentum and thermal fluxes are
assumed to be constant (Stull, 1988). The ASL height can be
quantified through the analysis of the turbulent fluxes or the
variance of the streamwise velocity as a function of height
(Gryning et al., 2016). In contrast to the above-mentioned
methods for the correction of the streamwise velocity vari-
ance for lidar spatial averaging (Mann et al., 2009; Sjöholm
et al., 2009; Brugger et al., 2016), the correction method pro-
posed in this paper does not require any a priori information
about the technical specifications of the used lidar systems,
such as probe length or shape of the laser pulse. The proposed
method allows one to correct the second-order statistics of
the streamwise velocity from spatial averaging by inverting
the effects of a low-pass filter, whose characteristics are di-
rectly determined from the power spectral density (PSD) of
the lidar measurements. It is noteworthy that this method
leverages surface layer similarity (Stull, 1988); thus it can
only be applied for wind lidar measurements collected within
the ASL.

The remainder of this paper is organized as follows: the
theoretical aspects of the correction procedure are discussed
in Sect. 2, while in Sect. 3 the experimental campaigns per-
formed to collect the various lidar datasets are described.
In Sect. 4, an assessment of the proposed correction proce-
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dure is performed against sonic anemometry, while in Sect. 5
the correction procedure is tested for various lidar datasets.
In Sect. 6, the spatial-averaging effects are investigated by
varying the friction velocity, aerodynamic roughness length,
and sampling height, thus for different mean wind speed and
standard deviation. Finally, concluding remarks are reported
in Sect. 7.

2 Correction procedure for the lidar velocity spectra

Surface-layer scaling is typically used for spectral models
of the wind speed assuming that the velocity integral length
scale is proportional to the height from the ground, z, and
the Reynolds stresses can be normalized with the square of
the friction velocity, uτ . A classical approach to model the
power spectral density of the streamwise velocity, Su, is the
following:

f Su(f )

u2
τ φε

=
A n

(1+B n)5/3
, (1)

where f is frequency, n= f z/U is the reduced frequency,
U is the mean advection velocity, and A and B are param-
eters estimated through best-fitting the premultiplied energy
spectra of the lidar velocity signals with Eq. (1). The term φε
(≥ 1) represents a dimensionless dissipation for non-neutral
atmospheric stability regimes, with φε equal to 1 for neutrally
stratified surface-layer flows (Kaimal et al., 1972). For this
work, we only consider near-neutral atmospheric conditions
and slight variations connected with atmospheric stability are
embedded in the coefficient A.

The spectral model of Eq. (1) is typically referred to as the
blunt model (Olesen et al., 1984) or Kaimal model (Kaimal
et al., 1972; IEC, 2007; Worsnop et al., 2017; Risan et al.,
2018), and the parameter A is typically assumed equal to
105 (Kaimal et al., 1972), later revised to 102 (Kaimal and
Finnigan, 1994), and B equal to 33. It is noteworthy that
within the inertial sublayer, the premultiplied spectra scale
as n−2/3, while the maximum value occurs for a reduced fre-
quency equal to 1.5/B, which corresponds to the wavenum-
ber kp = 3π/(B z).

Considering the Cartesian reference frame (x1,x2,x3),
where the coordinates are aligned with streamwise, trans-
verse, and vertical directions, respectively, the wind speed
measured by a pulsed Doppler wind lidar can be modeled
as the convolution between the projection of the wind ve-
locity u= (u1,u2,u3) along the laser-beam direction, n=
(n1,n2,n3), with a weighting function, φ, representing the
energy distribution of the laser pulse within a probe vol-
ume (Sjöholm et al., 2009; Mann et al., 2009; Cheynet et
al., 2017):

vr(x)=

l/2∫
−l/2

φ(s) u(s+ x) ·n ds, (2)

where vr is the radial or LOS velocity measured along the
laser-beam direction, n, at a radial distance x from the lidar.
The probe length is l, while s is the radial position within
the considered probe volume. The weighting function, φ, is
normalized to unit integral. If the Doppler frequency is deter-
mined as the first moment of the signal PSD with the back-
ground subtracted appropriately, then the weighting function
can be expressed as (Banakh and Werner, 2005; Mann et al.,
2009; Cheynet et al., 2017)

φ1(s)=
l− |s|

l2
. (3)

For the lidar Windcube 200S, the following weighting func-
tion can also be used (Lindelöw, 2008; Mann et al., 2009):

φ2(s)=
3(l− |s|)2

2l3
. (4)

In the spectral domain, the Fourier transform of Eq. (3) is

ϕ1 =
sin2(0.5kl)
(0.5kl)2

, (5)

while for Eq. (4) it is

ϕ2 =
6

(kl)2
·

[
1−

sin(kl)
kl

]
, (6)

where k = 2πf/U is the wavenumber evaluated through
the Taylor’s frozen-turbulence hypothesis (Taylor, 1938). As
shown in Mann et al. (2009), the measured velocity spec-
trum, SL, can be modeled as

SL(k1)= ninj

+∞∫
−∞

+∞∫
−∞

|ϕ(k ·n)|28ij (k)dk2dk3, (7)

where k= (k1,k2,k3) is the wavenumber vector and sum-
mation over repeated indices is assumed. In Eq. (7), 8ij (k)
is the spectral tensor obtained from the Fourier transform of
the Reynolds stress tensor and ϕ(k ·n) is the Fourier trans-
form of the convolution function. When the laser beam stares
along the mean wind direction with a relatively low elevation
angle, namely with n≈ (1,0,0), the PSD of the radial veloc-
ity, SL, is equal to the product between the spectrum of the
actual radial velocity, ŜL(k1), and the square of the Fourier
transform of the weighting function, ϕ(k1):

SL(k1)=

+∞∫
−∞

+∞∫
−∞

|ϕ(k1)|
28ij (k)dk2dk3 = |ϕ(k1)|

2ŜL(k1). (8)

Equation (8) shows that the spectrum of the measured radial
velocity, SL, is equal to the true velocity spectrum, ŜL, low-
pass filtered with a certain transfer function. In this work, the
latter is modeled as

˜|ϕ|2(k)=

[
1+

(
k

kTh

)α]−1

, (9)
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where α and kTh represent the order and cutoff wavenumber,
respectively, of a low-pass filter (Ogata, 2010). The symbol
·̃ is used to differentiate the analytical model of the low-pass
filter from its empirical estimate through the ratio between
the fitted Kaimal spectrum and the PSD of the lidar velocity,
ϕ2
∗ . These features of the low-pass filter and, thus, of the lidar

measuring process, are functions of the lidar probe length,
the elevation angle of the laser beam, the relative angle be-
tween wind direction and azimuth angle of the laser beam,
accumulation time, and characteristics of the laser pulse.
Therefore, it is highly challenging to predict these parame-
ters a priori, while it is advisable to estimate α and kTh di-
rectly from the specific lidar data under analysis. To this aim,
we propose the following iterative procedure to correct the
effects of the spatial averaging on wind lidar measurements,
which is summarized in the flow chart of Fig. 1.

First, the premultiplied spectrum of the radial velocity pro-
jected in the horizontal mean wind direction is fitted with
the spectral model of Eq. (1) only for wavenumbers smaller
than kTh,0 = 2π/l. Indeed, we expect to observe significant
spatial-averaging effects for turbulent length scales smaller
than the probe length, l. For wavenumbers higher than the se-
lected cutoff value, the ratio between the fitted Kaimal spec-
trum and the PSD of the lidar velocity, ϕ2

∗ , is calculated to
quantify the effect of the energy damping due to the lidar
measuring process. Subsequently, the lidar-to-Kaimal ratio,
ϕ2
∗ , is fitted with Eq. (9) through a least-square algorithm

to estimate the filter order, α, and provide an updated value
for the cutoff wavenumber, kTh. This process is iterated un-
til convergence on the parameter kTh is achieved (for this
work, the convergence condition imposed is a variation of
kTh smaller than 1 % of the previous value). If, during the it-
erative process, kTh achieves a value equal to or smaller than
that corresponding to the spectral peak, kp, then the proce-
dure is arrested and a warning is dispatched indicating that
the correction procedure was not successful. This warning
condition never occurred for all the data analyzed in this
work. Furthermore, it should be considered that when kTh
achieves values close to kp, the part of the velocity spectrum,
Su, used for the fitting procedure with Eq. (1) can be so lim-
ited to jeopardize the accuracy of the fitting procedure. Once
convergence in kTh is achieved, the corrected velocity spec-
trum, S̃L(k), is calculated as

S̃L(k)=
SL(k)

ϕ̃2(k)
. (10)

It is noteworthy that in contrast to existing models using pre-
defined functions to correct the energy damping of the ve-
locity fluctuations (see, e.g., Eqs. 5 and 6) (Sjöholm et al.,
2009; Brugger et al., 2016; Cheynet et al., 2017), which re-
quire information about the lidar probe length and the energy
distribution over a pulse, the proposed procedure calculates
the characteristics of the damping on the lidar velocity sig-
nals directly from the experimental data, which leads, as will
be shown in the following, to enhanced accuracy in the cor-

rection of the lidar velocity spectra. On the other hand, the
proposed procedure leverages the surface-layer similarity for
the Kaimal spectral model for the streamwise velocity and,
thus, it can only be applied for wind lidar measurements col-
lected within the ASL.

3 Experimental Setup and selected lidar datasets

The present study is based on wind lidar measurements col-
lected from three different experimental campaigns. The first
dataset was acquired during the period from 9–24 June 2018
at the Surface Layer Turbulence and Environmental Science
Test (SLTEST), which is part of the U.S. Dugway Prov-
ing Ground facility in Utah (GPS location: 40◦08′07′′ N,
113◦27′04′′W, UTC offset −6 h). Characterized by an ele-
vation variability of 1 m every 13 km (Kunkel and Marusic,
2006; Metzger and Klewicki, 2001), this facility is located in
the southwest of the Great Salt Lake and extends for 240 and
48 km along north–south and east–west directions, respec-
tively. An aerial view of the SLTEST facility is reported in
Fig. 2a. During the experiment, the prevailing wind direction
was from the north-northeast.

The second field campaign was carried out at a test site
in Celina, TX (GPS location: 33◦17′35.3′′ N, 96◦49′17.5′′W,
UTC offset−5 h), which is a relatively flat terrain with a cer-
tain variability in land cover (Fig. 2b). For these two field
campaigns, wind velocity measurements were performed
with a Streamline XR scanning Doppler pulsed wind lidar
manufactured by Halo Photonics, whose technical details are
reported in Table 1. Lidar fixed scans were performed with
an elevation angle between 1.98 and 10◦, while the azimuth
angle was set equal to the mean wind direction. The latter
was monitored through vertical azimuth display (VAD) scans
with an elevation of 25◦ and a sampling period of about 90 s,
or through Doppler beam swinging (DBS) scans. DBS or
VAD scans were executed hourly to monitor variations in the
mean wind direction, while the azimuth angle for the fixed
scans was updated automatically at the end of each DBS or
VAD scan through the feedback scan mode embedded in the
lidar software and using the wind direction measured at the
height of 53 m. To investigate possible variations of the av-
eraging process related to the accumulation time, the sam-
pling frequency of the fixed scans was varied between 0.5
and 3.3 Hz, while the range gate was always set equal to
18 m.

The third campaign considered in this study is the XPIA,
performed during the period from 2 March–31 May 2015 at
the Boulder Atmospheric Observatory (BAO) research facil-
ity in Erie, Colorado. For the XPIA campaign, 12 Campbell
CSAT3 3D sonic anemometers were mounted on the BAO
meteorological tower at heights of 50, 100, 150, 200, 250,
and 300 m above the ground. Each height was monitored
with two sonic anemometers pointing towards the north-
west and southeast, respectively. Three velocity components
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Figure 1. Flowchart for the iterative correction procedure of the lidar velocity measurements.

Figure 2. Aerial views of the test sites: (a) SLTEST facility; (b) Celina site; and (c) XPIA campaign at the Boulder Atmospheric Observatory.
Source © Google Earth. Black crosses represent the instrument locations. In (c), each lidar is labeled with its respective name.

Table 1. Technical specifications of the pulsed scanning Doppler
wind lidars used for this work, namely a Streamline XR by Halo
Photonics and a Windcube 200S by Leosphere.

Parameter Value

Lidar Streamline XR Windcube 200S

Wavelength [µm] 1.5 1.54
Repetition rate [kHz] 10 10
Velocity resolution [m s−1] ±0.0764 < 0.5
Velocity bandwidth [m s−1] ±38 ±30
Number of FFT points 1024 1024
Measurement range 45 m to 12 km 50 m to 6 km
Lidar gate length 18 to 120 m 25 to 100 m
Number of gates 200 200
Sampling rate 0.5 to 4 Hz 0.1 to 2 Hz

and the temperature were recorded with a sampling rate of
20 Hz. For a complete description of the scanning strategies
and the instruments utilized during the XPIA experiment see
Lundquist et al. (2017). Figure 2c shows the locations of the
lidars used.

In the present study, from the XPIA experiment we focus
on tests performed during the period from 21–24 March 2015
with a Windcube 200S scanning Doppler pulsed wind lidar
manufactured by Leosphere. Technical specifications of the
Windcube 200S wind lidar are reported in Table 1. The li-
dar performed measurements by staring towards one of the
sonic anemometers for a period of 14.5 min. A sequential
scan at four different heights was done for every hour dur-
ing each day; details of these tests are available in Debnath
(2018). Simultaneous measurements performed with a scan-
ning Doppler wind lidar and sonic anemometers are analyzed
to assess the proposed spectral correction procedure of lidar
measurements.
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For the Celina and SLTEST field campaigns, the regime
of the atmospheric stability was monitored through sonic
anemometers mounted at a height of 3 m in the proximity
of the lidar location. The sampling frequency of the sonic
anemometer data was 20 Hz, while atmospheric stability was
characterized through the Obukhov length calculated as fol-
lows (Monin and Obukhov, 1954):

L=−
θvu

3
τ,S

κgw′θ ′v
, (11)

where κ = 0.41 is the von Kármán constant, g is the gravi-
tational acceleration, w′θ ′v is the sensible heat flux, θv is the
average virtual potential temperature (in Kelvin), and uτ,S is
the friction velocity calculated from sonic anemometer data
as (Stull, 1988):

uτ,S =
(
u′w′

2
+ v′w′

2
)1/4

. (12)

To avoid effects of thermal stratification and buoyancy on
our analysis, only datasets acquired under near-neutral con-
ditions are considered, which are selected by imposing the
threshold |z/L| ≤ 0.05 (Kunkel and Marusic, 2006; Liu et
al., 2017).

The lidar velocity signals undergo a quality control pro-
cess to ensure statistical significance and accuracy of the
measurements. Only datasets with a variability of the 10 min
averaged wind direction within the range ±20◦ have been
considered to avoid significant offset between the lidar az-
imuth angle and the instantaneous wind direction (Hutchins
et al., 2012).

The quality of the lidar signals is then checked based on
the intensity of the back-scattered signal. For the Windcube
200S lidar, the samples with a carrier-to-noise ratio (CNR)
higher than −25 dB are selected, while for the Streamline
XR lidar data are analyzed only if the intensity of the back-
scattered signal is higher than 1.01.

The statistical steadiness of the lidar signals is estimated
for both first- and second-order statistics. For the mean ve-
locity, the absolute percentage error is calculated as follows:

εM =

1
N

∑N
j=1|Uj −Utot|

Utot
, (13)

where Uj is the mean wind velocity as a function of height,
z, calculated for the j th subperiod of the velocity signal with
a duration of 5 min, Utot is the mean wind velocity as a func-
tion of height for the entire velocity signal, while N is the
total number of subperiods generated without overlapping. A
similar parameter εσ is calculated for the second-order statis-
tics (Foken and Wichura, 1996):

εσ =

1
N

∑N
j=1

(
CVj −CVtot

)
CVtot

, (14)

where CVj is the variance of the j th subperiod with a dura-
tion of 5 min, while CVtot is the variance of the signal over

the entire period. For Celina and SLTEST campaigns, the pa-
rameters εM and εσ were calculated for 1 h periods, while
for the XPIA deployment the whole 14.5 min record was an-
alyzed. For quality control purposes, signals with εM ≥ 15 %
or εσ ≥ 40 % are usually rejected (Foken and Wichura, 1996;
Foken et al., 2004). The parameters εM and εσ are calculated
for each range gate and their maximum values for the se-
lected datasets are reported in Table 2.

Subsequently, a gradient-based procedure is used to re-
move outliers from the lidar radial velocity signals. Specif-
ically, the partial derivative in time of the radial velocity is
calculated through a second-order central finite-difference
scheme, and velocity samples with absolute partial deriva-
tive larger than 15 times the respective median value cal-
culated over the entire signal are marked as outliers and re-
placed through the inpaint-nans function available in Matlab
(D’Errico, 2004). The used threshold value is selected based
on a sensitivity analysis. Based on the above-mentioned
quality-control procedure, five datasets were selected, whose
details are reported in Table 2.

The radial velocity, Vr, measured by a Doppler wind lidar,
as explained in Sect. 2, is expressed as

Vr = Vh cos(θ − θw)cos8+W sin8, (15)

where θ and 8 are the lidar azimuth and elevation angles,
respectively, θw is the wind direction, and Vh and W are the
horizontal and vertical wind velocities, respectively. As pre-
viously mentioned, for the SLTEST and Celina field cam-
paigns, lidar measurements were carried out with the azimuth
angle equal to the mean wind direction and very low eleva-
tion angles (Table 2). Therefore, we can calculate an approx-
imation of the horizontal wind speed as

Ueq = Vr/cos8, (16)

which is referred to as horizontal equivalent velocity. In the
following, Ueq is considered to calculate the streamwise ve-
locity spectrum. Furthermore, the variance of the radial ve-
locity is the first-order approximation of the streamwise-
velocity variance given the above-mentioned setup con-
straints (Eberhard et al., 1989; Sathe and Mann, 2013).

4 Assessment of the lidar spectral correction against
sonic anemometry

In this section, the procedure proposed in Sect. 2 to correct
the energy damping in the lidar velocity measurements due
to the energy pulse distribution over the probe volume is as-
sessed against sonic anemometry by leveraging the XPIA
dataset, whose characteristics are summarized in Table 2. Li-
dar fixed scans were performed with an elevation angle of 5◦

to have one range gate in the proximity of a sonic anemome-
ter installed on the BAO tower at a height of 100 m. The li-
dar probe length used for that experiment was equal to 50 m,
while the sampling rate was set equal to 2 Hz.
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Table 2. Description of the selected datasets: 8 is the lidar elevation angle, fS is the sampling frequency, l is the probe length, εM is the
absolute percentage error on the mean velocity, εσ is the percentage error on the velocity variance, uτ is the friction velocity, and z0 is the
aerodynamic roughness length. The last column reports the symbol used for each dataset.

Date Dataset Lidar UTC Time 8 fS l εM εσ uτ z0 Symbol
[◦] [Hz] [m] [%] [%] [m s−1] [mm]

23 March 2015 XPIA Windcube 14:15–14:29 5.00 2 50 9.6 19.1 0.179 – –
10 June 2018 SLTEST 10:00–13:00 3.50 1 18 6.6 24.6 0.414 2.1× 10−2

26 May 2017 Celina1 23:35–00:35 10.00 3.3 18 4.8 24.1 0.479 15
2 October 2017 Celina2 Streamline 22:10–01:10 5.00 0.5 18 11.5 37.7 0.526 87
26 January 2018 Celina3 20:30–23:30 1.98 1 18 11.7 39.7 0.404 17

Based on the instantaneous wind direction measured by
the sonic anemometer and neglecting the vertical velocity
due to the very low elevation angle of the lidar laser beam, the
horizontal equivalent velocity, Ueq, is calculated from the li-
dar radial velocity through Eq. (15) and it is reported in Fig. 3
with a blue line. The lidar equivalent velocity, Ueq, is then
high-pass filtered to remove low-frequency non-turbulent ve-
locity fluctuations, using the following spectral transfer func-
tion:

G(k;β,kco)=
1+ tanh

[
β · log

(
k
kco

)]
2

, (17)

where kco is the cutoff wavenumber, which should be smaller
than kp to avoid effects on the spectral peak. The parameter β
is set equal to 100 to generate a sufficiently sharp filter across
the cutoff wavenumber, kco (Hu et al., 2020). The PSD of the
velocity signal high-pass filtered with a cutoff wavenumber
kco = 1.26×10−3 m−1 is reported in Fig. 4a with a gray line.

In case significant noise in the velocity spectra is observed
in the proximity of the Nyquist wavenumber (see, e.g., Deb-
nath (2018)), as for this velocity signal, a denoising proce-
dure is then applied to remove possible noise effects on the
velocity signals. Following the wavelet-transform-based pro-
cedure proposed by To et al. (2009), the velocity signal is
decomposed in a 10-level orthogonal wavelet basis. For each
level, a soft-threshold selection is applied to the wavelet coef-
ficients to remove those related to noise. The estimated noise-
free wavelet coefficients, djk , are calculated as

djk =
{

sgn(wjk)(|wjk| − Tj ) if |wjk|> Tj
0 otherwise , (18)

where j = 1, . . .,10 is the number of levels in the wavelet
basis; k = 1, . . .,2j , and wjk are the coefficients of the dis-
crete wavelet transform of the original signal. Tj represents
a noise-based threshold for the j th level that for this work is
set to (To et al., 2009)

Tj =
med(|wjk|)

0.67
·

√
2log2j , (19)

where med(·) stands for the median value. Finally, the de-
noised signal is reconstructed in time through the modified

wavelet coefficients djk . The spectrum of the denoised lidar
velocity signal is reported in Fig. 4a with a light-blue line.

For modeling purposes, the velocity spectra are then
smoothed in the wavenumber domain following the
Savitzky–Golay filter (Savitzky and Golay, 1964) by using
a second-order polynomial function and windows with the
width equal to int[10(160k)0.5], where k is in m−1 and int
is rounded to the closest integer number (Balasubramaniam,
2005). The result is an increased level of smoothness moving
towards the Nyquist wavenumber. The lidar velocity spec-
trum resulting from the denoising and smoothing procedures
is reported in Fig. 4a with a blue line. The PSD of the lidar
velocity is then fitted through the spectral model (Eq. 1) pro-
ducing the following fitting parameters: A= 23.3, B = 24.7.
The resulting Kaimal spectrum is plotted in Fig. 4a with a
black line.

A deviation of the lidar velocity spectrum from the −5/3
scaling of the inertial subrange is observed due to the lidar
measuring process over the probe volume. The ratio between
the fitted Kaimal spectrum and the lidar velocity spectrum,
|ϕ∗|

2 in Fig. 4b, is then fitted with Eq. 9 to estimate the low-
pass filter of order α and cutoff wavenumber, kTh. For this li-
dar velocity signal, α is equal to 0.774 and kThl/(2π)≈ 0.8,
with an R2 value of 0.702, which confirms the proposed
model is a good approximation for the damping of the ve-
locity fluctuations over the lidar probe volume. In Fig. 4b,
the weighting functions of Eqs. (5) and (6) are also reported
for a probe length l = 50 m.

To assess the accuracy of the estimated low-pass filter in
representing the lidar averaging process over a probe vol-
ume, first we apply the estimated low-pass filter to the si-
multaneous and colocated sonic anemometer velocity signal.
The horizontal velocity retrieved from the sonic anemome-
ter is first down-sampled with the sampling frequency of the
lidar measurements, namely 2 Hz, using the Matlab function
“decimate” with a finite-impulse response (FIR) low-pass fil-
ter with order equal to 10 (Weinstein, 1979). The resulting
down-sampled velocity signal is reported with a red line in
Fig. 3 and the respective PSD in Fig. 5a. Subsequently, the
down-sampled sonic-anemometer signal is low-pass filtered
with the filter of Eq. (9) modeled only using the lidar data
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Figure 3. Subset of the horizontal velocity measured with a lidar and sonic anemometer from the XPIA dataset. The gray dots represent the
original 20 Hz sampled sonic-anemometer data, the red line is the sonic anemometer signal downsampled at 2 Hz, the yellow line is the sonic
anemometer signal after the convolution of Eq. (9), and the blue line is the lidar signal before the spectral correction.

Figure 4. Correction of the lidar velocity spectrum from the XPIA dataset: (a) velocity spectra of the raw lidar data (gray), lidar data after
application of the denoising procedure (To et al., 2009) (light blue), lidar data after smoothing procedure (dark blue), Kaimal spectrum
(black), and −5/3 slope (black dashed); (b) |ϕ∗|2 (blue), |ϕ∗|2 fitted with Eq. (9) (black); predictions from Eq. (5) (bright green) and Eq. (6)
(dark green) are reported as well.

(yellow line in Figs. 3 and 5a). The comparison in Fig. 3 of
the sonic anemometer signal down-sampled and low-pass fil-
tered with the lidar raw signal already highlights a very good
agreement, which suggests that the energy damping carried
out by the lidar pulse over the probe volume is well rep-
resented through the proposed low-pass filter. This feature
is further corroborated by the respective spectra reported in
Fig. 5a. Specifically, the spectrum of the LOS velocity has the
same slope in the inertial subrange of the sonic-anemometer
signal down-sampled and low-pass filtered, while some dif-
ferences are observed for lower frequencies, which are most
probably due to the different size of the measurement volume

of the two instruments, namely 50 m for the lidar and 0.3 m
for the sonic anemometer.

The comparison between lidar and sonic anemometer data
is now presented through a linear regression analysis, which
is reported in Fig. 6. The lidar horizontal equivalent velocity,
Ueq, is analyzed against the horizontal wind speed measured
by the sonic anemometer before (Fig. 6a) and after (Fig. 6b)
the low-pass filtering. All the linear regression parameters
improve for the low-pass filtered sonic anemometer data: the
slope increases from 0.878 to 0.962, the R-square value in-
creases from 0.88 to 0.904, and the correlation coefficient, ρ,
increases from 0.88 to 0.904.
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Figure 5. Comparison of lidar velocity data against sonic anemometry data for the XPIA dataset: (a) raw sonic anemometer data (gray), down-
sampled and smoothed sonic anemometer (red), Kaimal model (black) tuned on the lidar velocity spectrum (blue), and sonic anemometer
signal down-sampled and low-pass filtered (yellow); (b) lidar velocity spectrum (blue), down-sampled and smoothed sonic anemometer
spectrum (red), and lidar spectrum corrected with Eqs. (9), (5), and (6) (black, bright green, and dark green lines, respectively).

Figure 6. Linear regression between lidar horizontal equivalent velocity, Ueq, and sonic anemometer horizontal velocity from the XPIA
dataset: (a) raw data from the sonic anemometer and (b) sonic anemometer data down-sampled and low-pass filtered.

We now aim to correct the lidar velocity signal from the
energy damping due to the laser pulse distribution over the
probe volume. First, the lidar velocity spectrum is corrected
by using the existing models of Eqs. (5) and (6) with l =
50 m, i.e., the used lidar probe length. As shown in Figs. 4b
and 5b, these correction methods largely over-estimate the
turbulent energy for wavenumbers larger than kTh or, in other
words, the characteristic length scale should be smaller than
the lidar probe length to provide reasonable spectral correc-
tions. A possible explanation for the poor performance of
these deconvolution models could be the presence of resid-
ual noise in the data, which is not accounted for in the mod-

els of Eqs. (5) and (6). Other factors, like the different probe
length used for the XPIA campaign (l = 50 m) in contrast
to l = 30 m used in the original study of this deconvolution
model (Mann et al., 2009), are thought to have marginal ef-
fects on the estimation of the energy spectrum at higher fre-
quencies.

According to the correction technique proposed in this pa-
per, the lidar velocity spectrum can now be corrected for the
averaging process by reversing the effect of the estimated
low-pass filter through Eq. (10). The corrected velocity spec-
trum is reported in Fig. 5b with a black line. The velocity
spectrum of the corrected lidar velocity signal clearly shows
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that the expected slope of −5/3 in the inertial subrange is
recovered, while the spectral energy for lower wavenumbers
is practically unchanged.

5 Variability of the low-pass filter parameters

For the SLTEST and Celina field campaigns, lidar velocity
measurements were collected for periods between 2 and 3 h
(see Table 2). The procedure used to obtain the streamwise
velocity spectra is the following: for each lidar velocity sig-
nal, the high-pass filter of Eq. (17) is applied with a cutoff
wavenumber kco = 0.001 m−1 to remove low-frequency ve-
locity fluctuations connected with atmospheric mesoscales.
The PSD of each velocity signal is then calculated with the
pwelch function implemented in Matlab (Welch, 1967) with-
out window overlapping and window width corresponding to
kco. Subsequently, smoothing of the velocity spectra is car-
ried out through the Savitzky–Golay filter, as detailed in the
previous section (Savitzky and Golay, 1964; Balasubrama-
niam, 2005).

The mean values and variance of the lidar equivalent ve-
locity are plotted in Fig. 7a and b, respectively. For the mean
velocity field in Fig. 7a, while a logarithmic region is gener-
ally observed at the lower heights, a noticeable difference in
terms of terrain roughness between the SLTEST and Celina
sites results in different vertical intercepts and respective
aerodynamic roughness length. The latter is estimated to be
equal to 0.021 mm for SLTEST and, on average, 37 mm for
the Celina site.

The vertical profiles of streamwise velocity variance are
reported in Fig. 7b as a function of height. For the datasets
collected at the Celina site, a general increase of the veloc-
ity variance is observed with increasing height. Specifically,
for the dataset Celina1, after achieving a maximum value at
height z ≥ 40 m, a quasi-logarithmic reduction of the veloc-
ity variance is observed with increasing height, which is in
agreement with previous laboratory and numerical studies of
canonical boundary layer flows (Kunkel and Marusic, 2006;
Meneveau and Marusic, 2013). A logarithmic reduction of
the velocity variance with increasing height is also observed
for the SLTEST dataset throughout the entire height range.

For the SLTEST dataset, the PSD of the lidar velocity sig-
nals acquired at the different gates from 10 up to 60 m with
a vertical spacing of 1 m are plotted in Fig. 8. A departure
from the expected −5/3 slope in the inertial subrange is ob-
served for wavenumbers larger than 0.07 m−1. The Kaimal
spectra, which are obtained by fitting the measured lidar ve-
locity spectra only for wavenumbers lower than the respec-
tive kTh for each height, are reported in Fig. 9a for the low-
est and highest range gates. The ratio between the lidar and
Kaimal spectra, |ϕ∗|2, is then calculated and fitted through
Eq. (9) to estimate the order and cutoff wavenumber of the
respective low-pass filter (Fig. 9b). For the lowest gate at a
height of 10 m, the fitting procedure estimated α = 5.08 and

kTh = 0.065 m−1, while for the highest range gate at a height
of 60 m, α = 4.16 and kTh = 0.066 m−1.

Since the correction procedure is based on two consecutive
best-fit operations, the robustness of the model is assessed
for each lidar gate through the R-square value of the respec-
tive fitting procedure. All the datasets generally show a very
good agreement between experimental data and the spec-
tral model, i.e., 0.82≤ R2

≤ 0.98, with the SLTEST dataset
showing the highest level of agreement (R2

≥ 0.96). Accu-
racy in modeling the actual energy damping due to the lidar
measuring process through the low-pass filter of Eq. (9) is
quantified through theR-square value of the fitting procedure
of the experimental energy damping, ϕ2

∗ , with the analytical
model of Eq. (9). The resulting R-square values are always
larger than 88 %, corroborating the good approximation for
the proposed model.

The proposed spectral correction of the lidar measure-
ments is now applied to all the datasets collected at the Celina
and SLTEST sites (see Table 2). As explained in Sect. 2, the
first step of the proposed procedure consists of fitting each
velocity spectrum with the spectral model of Eq. (1). In the
right column of Fig. 10, the results of this operation are re-
ported for all the datasets of the SLTEST and Celina field
campaigns. The spectral model (depicted with a red line) has
been fitted on the uncorrected lidar spectrum (blue lines) us-
ing a cutoff wavenumber, kTh, estimated for each velocity
signal using the iterative procedure illustrated in Fig. 1. In the
figures, line colors become darker with increasing height. For
the sake of clarity, the fitted Kaimal spectrum is only shown
for the highest lidar range gate.

The second step of the correction procedure consists of ap-
proximating the lidar-to-Kaimal spectral ratio with the low-
pass filter of Eq. (9). Firstly, the energy ratio is quantified
for each lidar range gate, as reported in the left column of
Fig. 10. We can observe that the ratio always settles about
the unit at the lowest range of the spectral domain, while it
monotonically reduces from the cutoff wavenumber towards
the Nyquist wavenumber, which is an effect of the lidar mea-
suring process. By plotting |ϕ∗|2 as a function of (k/kTh)

α ,
all the estimated transfer functions practically collapse on the
same curve for measurements collected at different heights.
The latter is then compared with the sanalogues of Eqs. (5)
and (6).

As the last step, to retrieve the corrected lidar velocity
spectra, the original spectrum is divided by the modeled cor-
rection function, |ϕ̃|2 (Eq. 10). These corrected lidar velocity
spectra are reported in the right column of Fig. 10, where we
can observe that the−5/3 slope of the inertial subrange is al-
ways recovered. The lidar spectra corrected with the models
of Eqs. (5) and (6) are also reported to highlight the improved
accuracy achieved through the proposed method. In particu-
lar, it is observed that the existing models of Eqs. (5) and (6)
always underestimate the spectral energy attenuation; thus,
for the actual choices of gate length and sampling rates, a
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Figure 7. First- and second-order statistics of the equivalent velocity, Ueq, as a function of height for the various datasets: (a) mean value
and (b) variance.

Figure 8. Velocity spectra for the SLTEST dataset at different heights: (a) spectra as a function of the reduced frequency, n, and (b) spectra
as a function of the wavenumber, k. Line color is darker with increasing height. The black dashed line represents the −5/3 slope. In (b), the
shaded area covers the noisy part of the velocity spectra.

data-driven approach is preferred to correct the lidar smooth-
ing effect.

The corrected variance of the lidar velocity signals is com-
pared with the respective quantity calculated for the raw lidar
data in Fig. 11a. As expected, the wall-normal profile of the
variance calculated as the integral of the deconvoluted spec-
trum is considerably larger than the respective value obtained
from the convoluted spectrum, indicating that the underesti-
mation related to the spatial averaging is significant. To quan-
tify the effects of the spectral correction on the lidar data, the
relative percentage increment of variance is calculated from
the smallest frequency up to the noise-free high-frequency
content as in Cheynet et al. (2017):

ε% =
σ 2

C− σ
2
U

σ 2
C
· 100, (20)

where σ 2
C and σ 2

U are the corrected and uncorrected, respec-
tively, streamwise velocity variance. The parameter ε% is
reported as a function of height in Fig. 11b. The under-
estimation in the velocity variance through the lidar mea-
surements seems to change with the wall-normal location
for the SLTEST dataset and the highest portion of Celina1
(z > 30 m); for the remaining datasets, the percentage error
does not change with height. To clarify this aspect, in the
next section we will investigate the variability of the effects
of the lidar spatial averaging for different mean wind speed,
standard deviation, and sampling height.

For the SLTEST dataset (see Table 2), the correction of
the velocity variance obtained with the proposed method (red
marker in Fig. 12a) is compared with those obtained from
Eq. (5) (dark green symbols), Eq. (6) (light green marker),
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Figure 9. Lidar velocity signals from the SLTEST dataset acquired at z= 10 m (first gate, dark and light blue lines) and z= 60 m (last gate,
red and yellow lines): (a) correction of the lidar spectra and (b) ratio between lidar and Kaimal spectra, ϕ2

∗ , and low-pass filter fitted with
Eq. (9).

Figure 10. Correction of the lidar spectra. Left column: the black lines are ϕ2
∗ and the red line is the fitted low-pass filters of Eq. (9) for the

highest range gate. Dark and light green lines represent the transfer function predicted by Eqs. (5) and (6). Right column: the blue lines are
raw lidar spectra, the dark and light green lines are lidar spectra corrected with Eqs. (5) and (6), respectively, the red line is the fitted Kaimal
spectrum for the highest range gate, and the black lines are the lidar spectra corrected with the proposed procedure of Fig. 1. Line colors
become darker with increasing height.
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Figure 11. Correction of the second-order statistics: (a) variance before (black) and after (red) the lidar spectral correction and (b) percentage
increment of the velocity variance(ε%) achieved with the lidar spectral correction.

and the method of Brugger et al. (2016) (blue marker). For
the latter, a probe length of 18 m and a full-width half-
maximum (FWHM) of the laser pulse for the Streamline XR
Doppler lidar equal to 35 m are used (Risan et al., 2018).
Consistently with the spectra of Fig. 10, the correction meth-
ods of Eqs. (5) and (6) underestimate the effects of spatial av-
eraging of the streamwise velocity variance and they do not
allow the complete recovery of the −5/3 slope of the iner-
tial subrange. The correction based on the structure function
proposed by Brugger et al. (2016) leads to a variance distri-
bution larger than what is estimated by the new method based
on the Kaimal spectral model, yet with percentage correction
in the same order of magnitude (Fig. 12b).

We now focus on the variability of the parameters of the
low-pass filter of Eq. (9) among the various datasets. Me-
dian and interquartile (IQ) range calculated over the height
for the various datasets are reported in Table 3 for both or-
der, α, and cutoff wavenumber, kTh, of the low-pass filter of
Eq. (9). First, the order of the low-pass filter, α, is found to be
roughly constant over the height for the Celina1 and Celina3
datasets, while it decreases with height for the SLTEST and
Celina2 datasets. Among the various datasets analyzed, the
filter order, α, has values from 2.2 up to 4.9, a variation
entailing limited effects in the correction of the spatial av-
eraging on the lidar measurements (not shown here for the
sake of brevity). The mean IQ range of α among the various
datasets is 0.399. The cutoff wavenumber of the low-pass fil-
ter, kTh, is practically constant with height (mean IQ range of
0.022) and has a mean value among the various datasets of:
kThl/(2π)=0.163.

Table 3. Median and interquartile (IQ) values of the estimated order,
α, and cutoff wavenumber, kTh, of the low-pass filter modeling the
lidar spatial averaging for each dataset.

α kThl/(2π)

Median IQ range Median IQ range

SLTEST 4.898 0.358 0.176 0.008
Celina1 2.198 0.163 0.144 0.021
Celina2 4.455 0.653 0.163 0.027
Celina3 2.579 0.422 0.152 0.030

6 Variability in spatial filtering with mean wind speed,
turbulence intensity, and sampling height

To investigate the effects of the spatial averaging on wind li-
dar measurements for different mean wind speed, turbulence
intensity, and sampling height of the velocity signals, syn-
thetic turbulent velocity spectra are generated using the spec-
tral model of Eq. (1), while the energy damping connected
with the lidar measuring process is estimated through Eq. (9)
by using a filter order α = 3 and (kThl)= 0.95, in analogy to
the respective experimental values reported in Table 3.

Within the inertial sublayer, namely for heights smaller
than about 30 % of the surface layer height (Marusic et al.,
2013), the mean streamwise velocity for near-neutral stabil-
ity conditions can be modeled through the following loga-
rithmic law (Monin and Obukhov, 1954; Stull, 1988):

U =
uτ

κ
log

(
z

z0

)
, (21)

where κ = 0.41 is the von Kármán constant. Furthermore, we
should expect a logarithmic decrease in the velocity variance
with increasing wall-normal distance (Townsend, 1976), as
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Figure 12. Correction of the streamwise velocity variance with different methods for the SLTEST dataset: (a) streamwise velocity variance
and (b) percentage correction of the velocity variance, ε%. The marker colors are black for the raw lidar data, red for the proposed method,
light green for Eq. (6), dark green for Eq. (5), and blue for the method proposed by Brugger et al. (2016).

follows:

σ 2

u2
τ

=H1−G1 log
(z
δ

)
, (22)

where δ is the outer scale of turbulence, namely the bound-
ary layer height, G1 = 0.98 is the Townsend–Perry constant
(Baars and Marusic, 2020), while H1 might be dependent
on the characteristics of the specific boundary layer flow
under investigation. Previous field campaigns performed at
the SLTEST site have quantified H1 = 2.14 (Marusic et al.,
2013).

According to the spectral model of Eq. (1), the velocity
variance can be obtained by integrating Su in the spectral do-
main, which leads to

σ 2

u2
τ

=

∞∫
0

A

(1+Bn)5/3
dn=

3
2
A

B
, (23)

where A and B vary with the sampling height.
The first analysis is performed by varying the friction

velocity, uτ , within the range between 0.1 and 0.7 m s−1

with a step of 0.05 m s−1, while keeping fixed the sam-
pling height z/δ = 0.3 (B = 33 (Kaimal et al., 1972)) and
z0 = 10−4 m. This study aims to investigate variations in li-
dar spatial averaging for mean wind speed within the range
U ∈ [3,23]m s−1, while keeping unchanged the turbulence
intensity (TI = σ/U = 6.29 % at z/δ = 0.3). The velocity
standard deviation varies linearly with uτ within the range
σ = [0.19,1.35]m s−1 (Eq. 22), and the respective values
of the parameter A are calculated from Eq. (23). The probe
length, l, is varied from 10 up to 100 m with a step of 10 m.

The parameter ε%, which is defined in Eq. (20), is used to
quantify the effects of the lidar spatial averaging on the vari-
ance of the wind velocity. In Fig. 13a, it is observed that, as

expected, ε% increases with increasing probe length, which
indicates that the probe length is the main root cause of spa-
tial averaging. Furthermore, it is noteworthy that for a given
value of l, ε% decreases with increasing uτ and, thus, mean
wind speed, U . Indeed, by fixing the probe length, the cut-
off wavenumber, kTh, representing the spatial averaging is, in
turn, fixed while the reduction of ε% with increasingU can be
explained in the perspective of the Taylor frozen-turbulence
hypothesis (Taylor, 1938). In other terms, with increasing U ,
a turbulent spectrum will shift towards lower wavenumbers
(denominator in Eq. 1) and, thus, reduce the percentage of
the spectral energy that is filtered for wavenumbers larger
than kTh.

The second test case, whose results are reported in
Fig. 13b, is performed by varying the aerodynamic rough-
ness length within the range: z0 = [10−5,10]m, while keep-
ing fixed uτ= 0.5 m s−1, and sampling height z/δ = 0.3 (B =
33). In this case, variations of z0 affect directly the mean ve-
locity (Eq. 21), while the velocity standard deviation is un-
changed (Eq. 22). Therefore, this study can be considered a
test to investigate the effects on the lidar spatial averaging
due to the variation of the wind turbulence intensity, which
might be connected to different site terrain roughness, vari-
ations of wind direction, and atmospheric stability regime.
Specifically, for a fixed probe length, an increase of aero-
dynamic roughness length leads to a reduction of the mean
velocity for a given height and friction velocity, and a shift
of the turbulent spectrum towards higher wavenumbers and,
in turn, enhanced effects of the spatial averaging on the lidar
measurements.

The last case study is performed for a given wind con-
dition, namely with uτ = 0.5 m s−1 and z0 = 10−4 m, and
by varying the measurement height within the range z/δ =
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Figure 13. Variation of the percentage variance damping, ε%, connected with the lidar spatial averaging for different probe lengths and wind
conditions: (a) variability with the friction velocity, uτ , (b) variability with the aerodynamic roughness length, z0, and (c) variability with
sampling height, z. The side panel of (c) reports the vertical profile of the parameter kp estimated for the SLTEST dataset.

[0.1,0.6]. The vertical variability of the parameter B =
[65, 228] has been selected equal to that measured for the
SLTEST dataset, and the respective values of the wavenum-
ber of the spectral peak, kp, are reported in the side panel
of Fig. 13c. For each height, the velocity variance is calcu-
lated via Eq. (22) and the corresponding value of A is ob-
tained through Eq. (23). The resulting percentage reduction
of variance is plotted in Fig. 13c. For a fixed probe length, it
is observed that ε% generally decreases with height in a way
similar to what has been observed experimentally in Fig. 11b,
and the variations of ε% are strongly dependent on the vari-
ations of the parameter kp. In other words, with increasing
height, the general reduction of kp leads to a smaller percent-
age of the spectral energy of the velocity signal present for
wavenumbers larger than kTh, which is fixed once the lidar
probe length is selected. Therefore, smaller effects of the li-
dar spatial averaging occur with increasing height for a given
wind condition and probe length.

7 Conclusions

Pulsed Doppler wind lidar technology is gradually achieving
compelling technical specifications, such as probe lengths
smaller than 20 m and sampling frequencies higher than
1 Hz, which are instrumental to investigating atmospheric
turbulence with length scales typical of the inertial subrange.
However, the emission of a laser pulse over the probe volume
to measure the radial velocity entails a spatial smoothing pro-
cess leading to damping on the measured variance of the ve-
locity fluctuations. Existing methods propose correcting the
effects of spatial averaging on lidar measurements using as
input technical specifications of the lidar systems used, such
as probe length and pulse energy distribution, which might
not be available and, thus, often approximated with analytical
functions. According to previous works, and also confirmed
through this study, existing methods have limited accuracy in
correcting the lidar velocity fluctuations.

In this work, we have proposed to correct the measured
lidar velocity signals by inverting the effects of a low-pass
filter representing the energy damping on the velocity fluctu-
ations due to the lidar measuring process. The filter charac-
teristics, namely order and cutoff wavenumber, are directly
estimated from the spectrum of the LOS velocity under in-
vestigation. Specifically, the spectrum of the lidar velocity
signal is fitted through the Kaimal spectral model for stream-
wise turbulence only for wavenumbers lower than a cutoff
value for which the slope of the lidar velocity spectrum is
observed to deviate from the expected −5/3 slope typical
of the inertial subrange. The ratio between the lidar and the
Kaimal spectra is then fitted with the analytical expression of
a low-pass filter to estimate the order and cutoff wavenumber.
An iterative procedure is proposed to estimate order and cut-
off wavenumber of the low-pass filter. The modeled low-pass
filter is then reverted on the lidar data to correct the lidar mea-
surements and produce more accurate second-order statistics
and spectra of the streamwise wind velocity. It is noteworthy
that the Kaimal spectral model leverages surface layer simi-
larity and, thus, the proposed method can only be used for li-
dar measurements collected within the ASL. Specifically for
this work, we performed fixed scans with low elevation an-
gle (less than 10◦) and azimuth angle equal to the mean wind
direction to achieve good accuracy in the measurements of
the streamwise velocity component, high vertical resolution
(≈ 1 m), measurements up to the ASL height, and high sam-
pling frequency (between 1 and 3.3 Hz).

For this study, the proposed method for correction of the
lidar data has been applied to datasets collected during three
different field campaigns and for one dataset the procedure
has been assessed against simultaneous and colocated sonic
anemometer data. For this case, it has been shown that the
proposed procedure allows us to correct the second-order
statistics of the lidar data to estimate a velocity variance com-
parable to that measured by a sonic anemometer. The com-
pelling results obtained for the correction of the second-order
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statistics of lidar data corroborate the advantage of applying
the proposed method, which does not require as input any in-
formation of the lidar system used, such as probe length and
energy distribution over the laser pulse. In contrast to exist-
ing methods for the correction of lidar spatial averaging, all
the method parameters are directly estimated from the col-
lected lidar data. However, the proposed method can only be
applied for lidar data collected within the ASL.

To better understand the role of the cutoff wavenumber
and order of the low-pass filter representing the lidar energy
damping, further analysis has been conducted on synthetic
turbulent velocity spectra. This analysis has been performed
by varying mean wind speed, turbulence intensity, and sam-
pling height. This analysis has shown that the main parame-
ter for efficiently correcting the lidar energy damping is the
cutoff wavenumber of the low-pass filter, which is mainly
affected by the probe length, while the velocity statistics
are weakly affected by the filter order. Furthermore, the re-
sults have confirmed that for a given probe length, effects of
spatial averaging are enhanced with decreasing wind speed,
smaller integral length scale and, thus, for a lower sampling
height.

Code availability. The Matlab code for the spectral correc-
tion of lidar velocity signals is available for free down-
load at https://github.com/UTD-WindFluX/Spectral-Correction-of-
LiDAR-Fixed-Measurements (Puccioni and Iungo, 2020).
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