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Abstract. A precipitation separation approach using a sup-
port vector machine method was developed and tested on
a C-band polarimetric weather radar located in Taiwan
(RCMK). Different from those methods requiring whole-
volume scan data, the proposed approach utilizes polari-
metric radar data from the lowest unblocked tilt to clas-
sify precipitation echoes into either stratiform or convec-
tive types. In this algorithm, inputs of radar reflectivity,
differential reflectivity, and the separation index are inte-
grated through a support vector machine. The weight vec-
tor and bias in the support vector machine were optimized
using well-classified data from two precipitation events.
The proposed approach was tested with three precipitation
events, including a widespread mixed stratiform and con-
vective event, a tropical typhoon precipitation event, and a
stratiform-precipitation event. Results from the multi-radar–
multi-sensor (MRMS) precipitation classification algorithm
were used as the ground truth in the performance evaluation.
The performance of the proposed approach was also com-
pared with the approach using the separation index only. It
was found that the proposed method can accurately classify
the convective and stratiform precipitation and produce bet-
ter results than the approach using the separation index only.

1 Introduction

Convective and stratiform precipitation exhibit a signifi-
cant difference in precipitation growth mechanisms, ther-
modynamic structures, and precipitation intensities (e.g.,
Houghton, 1968; Houze, 1993, 1997). For example, con-
vective precipitation is generally associated with strong but
small areal vertical air motion (> 5 m s−1), but stratiform
precipitation is associated with weak updrafts/downdrafts
(< 3 m s−1) (Penide et al., 2013). Convective precipitation
also produces a higher rainfall rate (R) than the stratiform
type (Anagnostou, 2004). Given the fact that the radar reflec-
tivity (Z) from stratiform precipitation generally is less than
40 dBZ (Steiner et al., 1995) (hereafter SHY95), the R esti-
mated from stratiform precipitation is less than 11 mm h−1

following the standard Marshall–Palmer relationship (Z =
200R1.6). In order to obtain accurate rainfall estimation, dif-
ferentR(Z) relationships according to the precipitation types
should be applied in quantitative precipitation estimation
(QPE) (Kirsch et al., 2019). Therefore, accurately classify-
ing precipitation into the either convective or the stratiform
type can promote our understandings of cloud physics and
thermodynamics and enhance QPE accuracy. For these pur-
poses, numerous methods using ground in situ measurements
or satellite observations were developed and applied during
the past 40 years (e.g., Leary and House, 1979; Adler and
Negri, 1988; Tokay and Short, 1996; Hong et al., 1999).

Ground-based weather radars, such as the Weather
Surveillance Radar, 1988, Doppler (WSR-88D), are cur-
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rently used in all aspects of weather diagnosis and analysis.
Precipitation classification algorithms using single- or dual-
polarization radars were developed during the past 3 decades.
For a single-polarization radar, developed algorithms mainly
rely on Z and its derived variables (e.g., Biggerstaff and Lis-
temaa, 2000; Anagnostou, 2004; Yang et al., 2013; Pow-
ell et al., 2016). For example, SHY95 proposed a separa-
tion approach that utilizes the texture features derived from
the radar reflectivity field. In this approach, a grid point is
identified as the convective center if its Z value is larger
than 40 dBZ or exceeds the average intensity taken over the
surrounding background. Those grid points surrounding the
convective centers are classified as convective area, and far
regions are classified as stratiform. Penide et al. (2013) found
that SHY95 may misclassify those isolated points embedded
within stratiform precipitation or associated with low cloud-
top height. Powell et al. (2016) modified SHY95’s approach,
and the new approach can identify shallow convection em-
bedded within large stratiform regions. A neural-network-
based convective–stratiform classification algorithm was de-
veloped by Anagnostou (2004). Six variables were used in
this approach as inputs, including storm height, reflectivity
at 2 km elevation, the vertical gradient of reflectivity, the dif-
ference in height, the standard deviation of reflectivity, and
the product of reflectivity and height. Similar variables were
also used in a fuzzy-logic-based classification approach pro-
posed by Yang et al. (2013).

Motivations of developing a new classification algorithm
are mainly based on two aspects. First, according to the U.S.
Radar Operations Center (ROC), the WSR-88D radars are
currently operated without updating a complete volume dur-
ing each volume scan, especially during precipitation events.
New radar scanning schemes are designed to update data
from low elevations at a high frequency and data from high
elevations at a low frequency. Such an alternative scanning
scheme enables the WSR-88D radars to promptly capture
the storm development and enhance the weather forecast
capability. These new schemes include the automated vol-
ume scan evaluation and termination (AVSET), supplemen-
tal adaptive intra-volume low-level scan (SAILS), the mul-
tiple elevation scan option for SAILS, and the mid-volume
rescan of low-level elevations (MRLEs). With these new
scanning schemes, the separation of stratiform/convective
becomes a challenge for those algorithms requiring a full-
volume scan of data. Therefore, a separation algorithm us-
ing only low tilt radar data is desired. The second reason is
to further explore the applications of the polarimetric vari-
ables. Polarimetric weather radars have been well applied in
radar QPE, severe weather detection, hydrometeor classifica-
tion, and cloud microphysics retrieval (Ryzhkov and Zrnic,
2019; Zhang, 2016). Extra information about hydrometeors’
size, shape, and orientation could be obtained through trans-
mitting and receiving electromagnetic waves along the hor-
izontal and vertical directions. Polarimetric measurements
may reveal more precipitation microphysical and dynamic

properties. Inspired by these features, a C-band polarimet-
ric radar precipitation separation approach was developed by
Bringi et al. (2009) (hereafter BAL), which classifies the pre-
cipitation into stratiform, convective, and transition regions
based on retrieved drop size distribution (DSD) character-
istics. However, it was found that strong stratiform echoes
might have similar DSDs to weak convective echoes and lead
to wrong classification results (Powell et al., 2016).

In this work, a support-vector-machine-(SVM)-based clas-
sification method was developed and tested on a C-band po-
larimetric radar located in Taiwan. Unlike some existing clas-
sification techniques that require a whole-volume scan of
data, this new approach only requires the lowest unblocked
tilt data in the separation. If the lowest tilt is partially or com-
pletely blocked, the next adjacent unblocked tilt is used in the
classification instead. This method’s major advantage is that
it can provide classification results even when the radar is op-
erated under AVSET, SAILS, and MRLE scanning schemes.
This paper is organized as follows: Sect. 2 introduces the pro-
posed method, including radar variables and data processing,
the SVM method, and the training process. The performance
evaluation is shown in Sect. 3, and the discussion and sum-
mary are given in Sect. 4.

2 Precipitation separation with a support vector
machine method

In the current work, the SVM precipitation separation ap-
proach was developed and validated on a C-band polari-
metric radar (RCMK) located at Makung, Taiwan (Fig. 1).
The Weather Wing of the Chinese Air Force deployed this
radar and has made the data available to the Central Weather
Bureau (CWB) of Taiwan since 2009. Together with three
single-polarization S-band WSR-88D (RCCG, RCKT, and
RCHL) and one dual-polarization S-band radar (RCWF),
these five radars provide real-time products to CWB to sup-
port missions of flood monitoring and prediction, landslide
forecasts, and water resource management. The wavelength
of RCMK is 5.291 cm, and its range and angular resolu-
tions are 500 m and 1◦, respectively. RCMK performs vol-
ume scans of 10 tilts (0.5, 1.4, 2.4, 3.4, 4.3, 6.0, 9.9, 14.6,
19.5, and 25◦) every 5 min. The Central Mountain Range
(CMR) of Taiwan is also shown in Fig. 1, which poses a
major challenge to radar products. Radars located in com-
plex terrain are prone to partial or total blockages, which
cause data from low elevation angles (EAs) to be unavail-
able or problematic. Blockage maps of RCMK are illustrated
in Fig. 2. Since there are severe blockages at 0.5◦ for RCMK,
data from the 1.4◦ EA are used in the algorithm development.
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Figure 1. The terrain of Taiwan, the location of a C-band polarimet-
ric radar RCMK (marked with a black square), JWDs (marked with
black stars), and four S-band single-polarization radars: RCCG,
RCKT, RCHL, and RCWF (marked with black circles). The con-
tinuous grayscale terrain map shows the central mountain range of
Taiwan.

2.1 Input polarimetric radar variables and
preprocesses

Three measured or derived radar variables are proposed as in-
puts to the SVM approach: Z, differential reflectivity fields
(ZDR), and separation index (i). Because convective precip-
itation generally shows higher reflectivity values, Z works
well as one of the inputs in most of the precipitation classi-
fication approaches. For example, a radar echo, with the re-
flectivity of 40 dBZ and above, is automatically classified as
a convective type in the approach developed by SHY95. Dif-
ferential reflectivity, which is highly related to a raindrop’s
mass-weighted mean diameter (Dm), is another good indi-
cator of precipitation type. It was found that the values of
Dm in stratiform and convective precipitation generally are
within 1–1.9 mm and above 1.9 mm, respectively (Chang
et al., 2009). Therefore, higher ZDR values are expected from
convective than from stratiform precipitation.

For short-wavelength radars such as C-band or X-band
radars, the Z and ZDR fields will be significantly attenuated
when the radar beam propagates through heavy-precipitation
regions. Both the Z and ZDR fields need to be corrected from
attenuation before applied in the precipitation classification
and QPE. Different attenuation correction methods were pro-
posed using the differential phase (φDP) measurement such
as the linear φDP approach, the standard ZPHI method, and
the iterative ZPHI method (e.g., Jameson, 1992; Carey et al.,
2000; Testud et al., 2000; Park et al., 2005). Because of its
simplicity and easy implementation in a real-time system, the

linear φDP method was applied in the current work.

Z(r)= Z′(r)+α (φDP(r)−φDP(0)) , (1a)
ZDR(r)= ZDR

′(r)+β (φDP(r)−φDP(0)) , (1b)

where Z′(r) (ZDR
′(r)) is the observed reflectivity (differen-

tial reflectivity) at range r; Z(r) (ZDR(r)) is the corrected
value; φDP(0) is the system value; φDP(r) is the smoothed (by
FIR filter) differential phase at range r . The attenuation cor-
rection coefficients α and β depend on DSD, drop size shape
relations (DSR), and temperature. The typical range of α (β)
is found to be 0.06∼ 0.15 (0.01∼ 0.03) dB per degree for
C-band radars (e.g., Carey et al., 2000; Vulpiani et al., 2012).
Following the work from Wang et al. (2014), optimal coeffi-
cients α and β in Taiwan are 0.088 and 0.02 dB per degree,
respectively. The Z and ZDR fields are further smoothed with
a 3×3 (along azimuthal angle and along range) moving win-
dow function after being corrected from attenuation.

Other quality control issues on Z and ZDR fields, includ-
ing calibration, vertical profiles of reflectivity (VPR) correc-
tion, and ground clutter removal, were also considered in this
work. First, since this radar is used for the real-time QPE pur-
pose, the calibration biases of Z and ZDR should be within 1
and 0.1 dB, respectively. The data quality of RCMK was ex-
amined through validating the QPE performance in different
works (e.g., Wang et al., 2013, 2014). Therefore, the calibra-
tion biases (Z and ZDR) of RCMK should be within reason-
able ranges. Second, a VPR correction is generally needed
on the reflectivity field to reduce the measurement biases
because of the melting layer (Zhang et al., 2011). The en-
hanced backscattering amplitudes of melting hydrometeors
within the melting layer (bright band) significantly enhance
radar reflectivity. The bright band feature is one of the ob-
vious indicators of stratiform precipitation and can normally
be observed from relatively high EAs (such as above 9.9◦).
Given the fact that data from the 1.4◦ elevation angle are used
within the maximum range of 150 km and the melting layer
is usually around 5 km in Taiwan, the radar data used in this
work are well below the melting layer. Therefore, no VPR
corrections are applied to the fields of Z and ZDR. Third,
since ground clutter is typically associated with a low corre-
lation coefficient (ρHV), a ρHV threshold of 0.85 is used in
the current work to remove radar echoes from ground clutter
(Park et al., 2009).

Another input variable is the separation index i, which was
initially proposed by BAL. The i was calculated under a nor-
malized gamma DSD assumption:

i = log10(N
est
W )− log10(N

sep
W ), (2)

log10(N
sep
W )=−1.6D0+ 6.3, (3)

whereNest
W is the estimatedNW (normalized number concen-

tration) from observed Z and ZDR and is calculated as

Nest
W = Z/0.056D7.319

0 . (4)
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Figure 2. Blockage maps of RCMK from the first two EAs (0.5 and 1.4◦). The grayscale indicates the blockage percentages.

In Eq. (4), D0 is the median volume diameter and can be
calculated as

D0 = 0.0203Z4
DR− 0.1488Z3

DR+ 0.2209Z2
DR

+ 0.5571ZDR+ 0.801; −0.5≤ ZDR < 1.25 (5a)

=−0.0355Z3
DR− 0.3021Z2

DR+ 1.0556ZDR

+ 0.6844; 1.25≤ ZDR < 5 . (5b)

The units of ZDR, Z, Nw, and D0 are dB, mm6 m−3,
mm−1 m−3, and mm, respectively. The positive and negative
values of index i indicate convective and stratiform rain, re-
spectively, and |i|< 0.1 indicates transition regions (Penide
et al., 2013). BAL pointed out that index i worked well in
most of the cases in their study; however, incorrect classi-
fication results are likely obtained for low-Z and high-ZDR
cases in some convective precipitation.

2.2 Drop size distribution and drop shape relation

It should be noted that the relations between i, Nw, and D0
were derived using the DSD data collected in Darwin, Aus-
tralia. Coefficients in Eqs. (2)–(5) need to be adjusted ac-
cording to the radar frequency and/or DSD and DSR features
from the specific location (Thompson et al., 2015). In the
current work, the separation index i is directly derived us-
ing Eqs. (2)–(2) without further adjustment. It was shown by
Wang et al. (2013) that DSD and DSR features in Taiwan are
very similar to those measured in Darwin, Australia. Simi-
lar R(KDP) relationships were obtained using data collected
from these two locations. Coefficients derived by BAL could
be directly used in Taiwan without further modification. To
verify this assumption, Nw and D0 were calculated using
DSD data collected from four impact-type Joss–Waldvogel
disdrometers (JWDs) located in Taiwan (Fig. 1). The mea-
surement range and temporal resolution of these JWDs are
0.359–5.373 mm and 1 min, respectively. A total of 4306 min
of data from 2011–2014 is used inNw andD0 calculation fol-

Figure 3. The distribution of log10(Nw) vs. D0. The DSD data
from stratiform and convective precipitation are presented with gray
circles and black stars, and the separator line is shown with a solid
line.

lowing the approach described in Bringi et al. (2003). Similar
to the work presented in BAL, the distribution of i along me-
dian volume diameter D0 is shown in Fig. 3. Sample pairs
(log10Nw, D0) from stratiform and convective types are rep-
resented with gray circles and black stars, respectively. Al-
though the relation described in Eq. (3) can separate most
stratiform from convective types, a large number of points are
still classified incorrectly. Therefore, the single separation in-
dex is not sufficient in the precipitation separation, and other
variables such as Z and ZDR may be used as supplements.
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2.3 Support vector machine (SVM) method

2.3.1 Introduction of SVM

Artificial intelligence (AI) algorithms using meteorologi-
cal radar data have been developed well during the past 2
decades. With the assistance of AI, weather radar’s capa-
bilities in severe weather prediction, rainfall rate estimation,
and lightning detection have apparently been improved (e.g.,
Capozzi et al., 2018; T. et al., 2019; Yen et al., 2019). In-
spired by these enhancements, a precipitation separation ap-
proach using an SVM was developed and tested in the current
work. Generally, an SVM can be viewed as a kernel-based
machine learning approach, which nonlinearly maps the data
from the low-dimension input space to a high-dimension fea-
ture space and then linearly maps to a binary output space
(Burges, 1998). Given a set of training samples, the SVM
constructs an optimal hyperplane, which maximizes the mar-
gin of separation between positive and negative examples
(Haykin, 2011). Specifically, given a set of training data
{(Xi,yi)}

N
i=1, the goal is to find the optimal weights vector

W and a bias b such that

yi(W
TXi + b)≥ 1 i = 1,2, . . .,N , (6)

where Xi ∈ Rm is the input vector, m is the variable dimen-
sion (m = 3 in this work), N is the number of training sam-
ples, and yi is the output with the value of+1 or−1 that rep-
resents convective or stratiform types, respectively. The par-
ticular data points (Xi,yi) are called support vector if Eq. (6)
is satisfied with the equality sign. The optimum-weight vec-
tor W and bias b can be obtained through solving the La-
grangian function with the minimum cost function (Haykin,
2011).

Since the SVM can be viewed as a kernel machine, finding
the optimal weight vector and bias in Eq. (6) can be alterna-
tively solved through the recursive least square estimations
of

Ns∑
i=1

αiyik(X,Xi)= 0 , (7)

whereNs is the number of support vectors, αi is the Lagrange
multipliers, and k(X,Xi) is the Mercer kernel defined as

k(X,Xi)=8
T (Xi)8(X)= exp

(
−

1
2σ 2 ||X−Xi ||

2
)
. (8)

With the solved {αi}Ni=1, the SVM calculates the classifi-
cation results with new input data Z ∈ Rm as

f (Z)= sign[

[
Ns∑
i=1

αiyi8
T (Xi)8(Z)

]
. (9)

When f (Z)= 1, the output is classified as convective; oth-
erwise it is stratiform.

2.3.2 Training of the SVM

In the SVM approach, the weight vector and bias in Eq. (6)
and the standard deviation vector in Eq. (8) need to be op-
timized through a recursive least square estimation using
training data. Since the training data play a critical role in
the SVM approach, Z, ZDR, and i from convective- and
stratiform-precipitation events were carefully examined in
three steps. Firstly, the training data were checked follow-
ing general classification principles. For example, training
data from convective precipitation are generally associated
with relatively large reflectivity and high vertically integrated
liquid (VIL). On the other hand, stratiform precipitation is
generally associated with prominent bright band signatures.
Secondly, the precipitation type is verified by ground obser-
vation, such as ground severe storm reports. Thirdly, the pre-
cipitation type is confirmed by the multi-radar–multi-sensor
(MRMS) precipitation classification algorithm implemented
in Taiwan (Zhang et al., 2011, 2016). In this MRMS classifi-
cation approach, a three-dimensional radar reflectivity field
is mosaicked from four S-band single-polarization radars
(Fig. 1). The composite reflectivity (CREF) and other mea-
surements, such as temperature and moisture fields, are then
used in the surface precipitation classification (Zhang et al.,
2016). The performance of MRMS has been thoroughly
evaluated for years in QPE, flash flood monitoring, severe
weather observation, and aviation weather surveillance (e.g.,
Gourley et al., 2016; Smith et al., 2016). It was found that
MRMS system can provide robust and accurate products, and
these products were used as benchmarks and/or ground truths
in many studies (e.g., Grecu et al., 2016; Skofronick-Jackson
et al., 2017). Moreover, since the MRMS classification is a
mosaicked product derived from four S-band radars, it can be
viewed as an independent reference. Therefore, the MRMS
precipitation classification is regarded as the appropriate ref-
erence in training and validation.

Convective-type training data are mainly from a precipi-
tation event on 23 July 2014. Apparent squall line features
could be identified from this thunderstorm, and MRMS clas-
sified this precipitation event as the convective type. Strong
downdrafts triggered by this storm caused an aircraft crash
at the airport of Makung at 11:06 UTC. Radar data collected
from 10:30 to 11:30 UTC were used as the convective-type
data, and data selection follows the criteria of Z > 20 dBZ
and ρHV > 0.9. Some samples from a mixed stratiform- and
convective-precipitation event on 30 August 2011 are also in-
cluded as convective-type data. The stratiform-type data are
from the precipitation event on 30 August 2011, and only
those data identified as a stratiform type by MRMS are used
in training. It should be noted that the ρHV threshold of 0.9
is used in the training data selection for both convective and
stratiform precipitation. As reported in Park et al. (2009), the
liquid phase precipitation (e.g., light to heavy rain) is asso-
ciated with relatively high ρHV (> 0.92). Other types of pre-
cipitation, such as the mixture of rain and hail, wet snow,
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and crystals, may produce low ρHV (< 0.85). Since the i is
derived based on the raindrop size distribution assumption,
the proposed SVM approach is only valid for liquid phase
precipitation classification. The classification of other types
of precipitation is beyond the scope of this work. Therefore,
0.9 is a reasonable ρHV threshold in the training data selec-
tion. The training data used in this work are from pure liquid
precipitation events, and the average ρHV is above 0.98. Sim-
ilar training results are expected if a higher ρHV threshold is
used in the training data selection.

A total of 17 281 data sets (15 144 sets of stratiform
data and 2137 sets of convective data) are used in the
training process. One data set is defined as the variables
from a gate in terms of range and azimuthal angle. To
be more specific, a set of training data means a vector of
[Z(a,r)ZDR(a,r)i(a,r)d(a,r)], where a and r indicate az-
imuthal angle and range, respectively. The variable d is the
ground truth (with 1/− 1 representing convective or strati-
form types), and acts as the desired response in the training
process. It should be noted that the size of training data is re-
garded as small, and the ratio between convective and strati-
form data is not well balanced. Much more data from various
precipitation events should be included in the training pro-
cess if the proposed algorithm is implemented in operation.

The number of support vectors is selected as 1000 in
the current work, and the training process is regarded as
completed when the root-mean-square error reaches a stable
value. In the SVM approach, the original three-dimensional
input space nonlinearly maps to a 1000-dimensional fea-
ture space and then linearly maps to a binary output space
(Burges, 1998). The higher-dimension feature space (the
number of support vector) potentially captures more input
variables features with higher computation cost. Generally,
after the number of support vector reaches a particular num-
ber, the enhancement of the SVM approach becomes slight.
There is a balance between accuracy and computation cost.
In the current work, the number of support vectors was tested
with a value of 500, 750, 1000, 2000, and 5000. Since 1000
support vectors can produce less than 5 % error with reason-
able computation time, they are used in the current work.

3 Performance evaluation

3.1 Description of the experiments

The performance of the proposed approach was validated
with three precipitation events from 2009 to 2011: one strati-
form precipitation, one intense tropical precipitation, and one
mixed convective and stratiform precipitation. In the valida-
tion, a ρHV threshold of 0.85 is first used to remove radar
echoes not associated with liquid phase precipitation such as
clutter and AP (Park et al., 2009). As discussed in Sect. 2.3.2,
some ice phased or mixed precipitation such as snow, the
mixture of hail and rain, and crystals may be associated with

low ρHV (< 0.85). However, this work proposes an approach
to classify liquid phase precipitation into either stratiform or
convective types. Classification of other meteorological tar-
gets is beyond the scope of this work. Two experiments based
on the BAL approach with different thresholds (i.e., BAL0

and BAL−0.5) were also validated with the same events. In
these two experiments, the separation index i from each radar
gate was first calculated using Eqs. (2)–(2), and thresholds of
T0 = 0 and −0.5 were then used to separate convective type
from stratiform type. A gate is classified as convective type if
the obtained i is larger than T0 and as stratiform type other-
wise. It was suggested that positive (negative) i is generally
associated with convective (stratiform) precipitation (Bringi
et al., 2009). Therefore, T0 = 0 was selected as one of the
thresholds. Another aggressive threshold of −0.5 was also
tested in the current work, which will classify many more
pixels as convective. Performances of those approaches re-
quiring multiple elevation angles as introduced in Sect. 1 are
not discussed in this work.

In the evaluation, three statistical scores of probability of
detection (POD), false alarm rate (FAR), and critical success
index (CSI) are used, and MRMS classification results are
used as the “ground truth” in the calculation.

POD=
hit

hit+miss
, (10)

FAR=
false

hit+ false
, (11)

CSI=
hit

hit+ false+miss
, (12)

where “hit,” “false,” and “miss” are, respectively, defined
as a radar gate classified as convective type by MRMS and
the evaluated approach simultaneously, by the evaluated ap-
proach only, and by MRMS only. Since these scores only par-
tially capture the performance due to the time gap between
MRMS and RCMK results (SVM and BAL), a new evalua-
tion score RCS (whole coverage convective ratio) is also used
as a supplement:

RCS
=

Ncon

Ncon+N str × 100% , (13)

whereNcon andN str are the total pixel numbers of convective
and stratiform types within the coverage, respectively. The
evaluation results are shown in the following sections.

3.2 Experiment results

3.2.1 Widespread mixed stratiform and convective
precipitation

The performance of the proposed approach was first vali-
dated with one widespread stratiform and convective mixed
precipitation event on 30 August 2011, and 24 h data (00:00–
24:00 UTC) were used in the evaluation. Classification re-
sults from the proposed SVM were calculated with the
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Figure 4. The time series plot of RCS (a), CSI (b), POD (c), and FAR (d) from 30 August 2011. 24 h data (00:00–24 00 UTC) are used in
each case. The results from BAL with the threshold T0 =−0.5, BAL with the threshold T0 = 0, SVM, and MRMS are presented by green,
blue, red, and black lines, respectively.

trained weight vector and biases, and results from the BAL
approach (BAL0 and BAL−0.5) were also calculated for the
comparison purpose. It should be noted that the threshold of
−0.5 is much lower than the value suggested by BAL, and
BAL−0.5 will classify more precipitation as the convective
type.

Figure 4 shows the time series of RCS (a), CSI (b),
FOD (c), and FAR (d) are calculated using Eqs. (10)–(13),
where results from MRMS, SVM, BAL0, and BAL−0.5 are
represented by black, red, blue, and green lines, respec-
tively. When the MRMS results are applied as the ground
truth, BAL0 obviously classifies more precipitation as strat-
iform type during this 24 h period. The time series of RCS

from BAL0 are much lower than the other three approaches.
BAL−0.5 classifies more pixels as convective than BAL0, as
expected, and the RCS scores are much higher than BAL0.
The proposed SVM shows the most similar RCS scores to
MRMS compared to BAL approaches. Since BAL−0.5 uses
a very low threshold, it classifies more pixels as convective
type, and the obtained RCS scores are higher than MRMS.
SVM and BAL−0.5 show similar results in terms of CSI,
POD, and FAR, but BAL0 shows apparently worse perfor-
mance.

To better understand the performance of each approach,
the classification results and radar variables (Z, ZDR, and
i) from two distinct moments are examined as shown in
Figs. 5–7. Figure 5 shows the classification results from

03:03 UTC, 30 August 2011, where BAL0, BAL−0.5, SVM,
and MRMS are shown in panels (a), (b), (c), and (d), respec-
tively. The time stamp for the MRMS result is 03:00 UTC
and about 3 min earlier than the other three approaches.
Three input variables of SVM at 03:03 UTC are shown in
Fig. 6, where Z, ZDR, and i are presented in panels (a), (b),
and (c). A circle is inserted in Figs. 5 and 6 to emphasize
a region where BAL and SVM show different performances.
Within this circle, BAL0 (BAL−0.5) classifies the least (most)
echoes as convective and SVM shows the most similar re-
sults to MRMS. The averages of Z and ZDR within this
region both show relatively large values (Z > 36 dBZ and
ZDR > 0.75 dB) as shown in Fig. 6. This is a clear indication
of convective-type precipitation. Both SVM and BAL−0.5

classify most of the area within the red circle as convective,
and this result is consistent with the MRMS result. Since
the separation indexes within the black circle are below or
slightly higher than 0, most of the area is classified as strati-
form type by BAL0. For this moment, the threshold of −0.5
shows better performance than 0. Similar reasons may be ap-
plied to other regions.

Figure 7 shows another example of classification re-
sults from 06:50 UTC. At this moment, although SVM and
BAL−0.5 produce similar CSI (0.30 vs. 0.25) and POD (0.48
vs. 0.52), the RCS from BAL−0.5 (32 %) is much higher than
RCS from MRMS (17 %) and SVM (13 %). These scores
could also be found in Fig. 4. In Fig. 7, It could be found
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Figure 5. The classification results from BAL0 (a), BAL−0.5 (b), SVM (c), and MRMS (d). The time stamp for BAL0, BAL−0.5, and SVM
is 03:03 UTC, 30 August 2011, and time stamp for MRMS is 03:00 UTC, 30 August 2011. The region inside the white circle is used in the
analysis.

Figure 6. Radar variables of reflectivity (a), differential reflectivity (b), and separation index (c). The radar data were collected by RCMK at
03:03 UTC, 30 August 2011. The region inside the red circle is used in the analysis.
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Figure 7. Similar to Fig. 5, results are from 06:50 UTC.

that the MRMS, SVM, and BAL−0.5 show similar classifi-
cation results between the azimuthal angle of 180 and 270◦.
However, BAL−0.5 misclassifies gates between 90 and 180◦

as convective type, which produces such high RCS. On the
other hand, MRMS and SVM show similar classification re-
sults in this region.

3.2.2 Tropical convective

Typhoon Morakot (6–10 August 2009) brought significant
rainfall to Taiwan. Over 700 people were reported dead in
the storm, and the property loss was more than USD 3.3 bil-
lion. For most of the time during its landfall in Taiwan, the
precipitation was classified as a mixture of tropical convec-
tive and tropical stratiform types. The performances of SVM,
BAL0, and BAL−0.5 were validated using 96 h data from 6 to
9 August 2009, where the results from 10 August 2009 were
not included in the evaluation because no significant precip-
itation was observed from that day. Figure 8 shows the time
series plots of RCS (a), CSI (b), POD (c) and FAR (d). It
could be found that scores of RCS, CSI, and POD from the
BAL-based approaches are evidently lower than the results
from SVM and MRMS, and the latter two show similar per-
formance during these 4 d.

Classification results from BAL0, BAL−0.5, SVM
(0402 UTC), and MRMS (04:00 UTC) from 9 August 2009
are shown in Fig. 9a–d, respectively. The classification
results within two regions, highlighted with two circles, are
convective (SVM and MRMS) and stratiform (BAL0 and

BAL−0.5). Radar variables from 04:02 UTC are shown in
Fig. 10 including the reflectivity (a), differential reflectiv-
ity (b), and separation index (c). Figure 10d is the zoom-in
reflectivity field inside the red rectangular box (a) for more
details. It was found that a heavy precipitation band is over
RCMK (Fig. 10d), and this may cause significant attenuation
in Z and ZDR fields. Although both Z and ZDR fields were
corrected using Eq. (1), deficient or excessive compensations
in Z and ZDR fields lead to increased uncertainty in the
separation index. It may be the primary reason for the small
values of the separation index. Other reasons such as wet
radome may also contribute to the Z and ZDR issues. In
Fig. 10c, the separation index i is equal to or less than −0.5
in the circled areas, and the BAL-based approaches classify
these regions as stratiform. On the other hand, these regions
clearly show the convective-precipitation features in the
fields of Z (Fig. 10a) and ZDR (Fig. 10b).

3.2.3 Stratiform-precipitation event

The performances of BAL0, BAL−0.5, and SVM were also
evaluated with a widespread stratiform-precipitation event
on 26 March 2011. This is a typical stratiform-precipitation
event, and there were no convective-type pixels identified by
MRMS. These three approaches showed consistent classifi-
cation results with the MRMS result during an 8 h period
evaluation. For all three approaches, the scores of POD, FAR,
CSI, and RCS are 1, 0, 1, and 0, respectively.
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Figure 8. The time series plot of RCS (a), CSI (b), POD (c), and FAR (d) from 6–9 August 2009; 96 h data are used in each case. The results
from BAL with the threshold T0 =−0.5, BAL with the threshold T0 = 0, SVM, and MRMS are indicated by green, blue, red, and black
lines, respectively.

Figure 9. The classification results from BAL0 (a), BAL−0.5 (b), SVM (c), and MRMS (d). The time stamp for BAL0, BAL−0.5, and SVM
is 04:02 UTC, 9 August 2009, and the time stamp for MRMS is 04:00 UTC, 9 August 2009.
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Figure 10. Radar variables of reflectivity (a), differential reflectivity (b), separation index (c), and (d) reflectivity within the red rectangular
in (a). The radar data were collected by RCMK at 04:02 UTC, 9 August 2009.

4 Conclusions

A novel precipitation classification approach using a sup-
port vector machine approach was developed and tested on
a C-band polarimetric radar located in Taiwan. Different
from other classification algorithms that use a complete vol-
ume scan data, the proposed method only utilizes the data
from the lowest unblocked tilt to separate precipitation into
convective or stratiform types. This feature makes this ap-
proach an optimal option in new scanning schemes such as
AVSET, SAILS, and MRLE. Three radar variables of reflec-
tivity, differential reflectivity, and the separation index de-
rived by Bringi et al. (2009) are utilized in the new proposed
approach. Both reflectivity and differential reflectivity need
to be corrected from attenuation and differential attenuation
before applied in this approach. Although the separation in-
dex alone can be used in the precipitation classification, there
are two potential limitations: thresholds and biases on re-
flectivity and/or differential reflectivity. A threshold of 0 was
suggested in separating convective type from stratiform type.
However, it was found that a single threshold may not be suf-
ficient for all cases. Other thresholds (such as −0.5 used in

the current work), sometimes can produce better results than
0. On the other hand, although both reflectivity and differen-
tial reflectivity should be corrected from attenuation before
used in the separation index calculation, the correction bi-
ases on either field may cause large uncertainty in the derived
separation index and further lead to a wrong decision.

This work attempts to propose a complementary method
to enhance the performance of using the separation index.
The proposed approach integrates input variables with a sup-
port vector machine method. The parameters used in the sup-
port vector machine were trained with typical stratiform-
and convective-precipitation events. It should be noted that
the proposed approach has a flexible framework, and some
other variables can be easily included. With newly added
variables, the weight vector and bias need to be retrained.
In the current work, the proposed approach was tested with
multiple precipitation events. Its performance was found to
be better than using the separation index only and similar to
a well-developed approach, MRMS, which utilizes multiple
tilt radar data in the classification. It should be noted that
although the proposed approach shows better scores (POD,
FAR, CSI, and RCS), this evaluation should be treated as a
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qualitative evaluation instead of a statistical analysis. In or-
der to obtained statistical evaluation results, more long-term
precipitation events are needed.

There are some issues that need to be noted before ap-
plying this approach for operation purposes. First, this ap-
proach is developed for fast scan and fast update purposes,
and data from the lowest unblocked tilt are used. If the radar
is located in a complex orography area, radar beams could
be partially or completely blocked in some regions. A pos-
sible solution for such a scenario is using data from differ-
ent tilts to form a hybrid scan, and the hybrid scan is then
used as the input. Given the fact that precipitation’s micro-
physics (such as drop size distribution) from different alti-
tudes may be significantly different, the performance of the
proposed approach may be worse than expected. Second, the
performance of the proposed approach depends highly on the
training data, which should be selected very carefully. In the
current work, a threshold of ρHV > 0.9 is used in the data
selection. Using a lower threshold may cause different per-
formance, and more investigations on this issue are needed.
Moreover, only very limited training data are used in the cur-
rent work. Much more data from various precipitation events
should be included in the training process if the proposed
algorithm is implemented in operation. Third, coefficients in
the separation index calculation depend on the local drop size
distribution and drop shape relation features. Therefore, new
relations need to be derived for optimal results. Moreover,
the separation index only validates liquid phase precipitation.
For ice phase precipitation, such as mixed hail and rain, its
performance is not well studied. Other hydrometeor classi-
fication schemes could be used for such a scenario. Fourth,
the mis-calibration may significantly affect the performance
of the proposed approach. The calibration biases for Z and
ZDR should be within 1 dBZ and 0.2 dB, respectively. More-
over, this work only presents a prototype algorithm. Given
the flexible framework, other variables (such as differential
phase) could be easily integrated into this algorithm, and the
performance could be further enhanced.
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