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Abstract. Wind-tracking algorithms produce atmospheric
motion vectors (AMVs) by tracking clouds or water vapor
across spatial–temporal fields. Thorough error characteriza-
tion of wind-tracking algorithms is critical in properly as-
similating AMVs into weather forecast models and climate
reanalysis datasets. Uncertainty modeling should yield esti-
mates of two key quantities of interest: bias, the systematic
difference between a measurement and the true value, and
standard error, a measure of variability of the measurement.
The current process of specification of the errors in inverse
modeling is often cursory and commonly consists of a mix-
ture of model fidelity, expert knowledge, and need for expe-
diency. The method presented in this paper supplements ex-
isting approaches to error specification by providing an error
characterization module that is purely data-driven. Our pro-
posed error characterization method combines the flexibility
of machine learning (random forest) with the robust error es-
timates of unsupervised parametric clustering (using a Gaus-
sian mixture model). Traditional techniques for uncertainty
modeling through machine learning have focused on charac-
terizing bias but often struggle when estimating standard er-
ror. In contrast, model-based approaches such as k-means or
Gaussian mixture modeling can provide reasonable estimates
of both bias and standard error, but they are often limited
in complexity due to reliance on linear or Gaussian assump-
tions. In this paper, a methodology is developed and applied
to characterize error in tracked wind using a high-resolution
global model simulation, and it is shown to provide accurate
and useful error features of the tracked wind.
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1 Introduction

Reliable estimates of global winds are critical to science
and application areas, including global chemical transport
modeling and numerical weather prediction. One source of
wind measurements consists of feature-tracking-based atmo-
spheric motion vectors (AMVs), produced by tracking time
sequences of satellite-based measurements of clouds or spa-
tially distributed water vapor fields (Mueller et al., 2017; Pos-
selt et al., 2019). The importance of global measurements of
three-dimensional winds was highlighted as an urgent need
in the NASA Weather Research Community Workshop Re-
port (Zeng et al., 2016) and was identified as a priority in the
2007 National Academy of Sciences Earth Science and Ap-
plications from Space (ESAS 2007) decadal survey and again
in ESAS 2017. For instance, wind is used in the study of
global CO2 transport (Kawa et al., 2004), numerical weather
prediction (NWP; Cassola and Burlando, 2012), as inputs
into weather and climate reanalysis studies (Swail and Cox,
2000), and for estimating current and future wind-power out-
puts (Staffell and Pfenninger, 2016).

Thorough error characterization of wind-track algorithms
is critical in properly assimilating AMVs into forecast mod-
els. Prior literature has explored the impact of “poor” er-
ror characterization in Bayesian-based approaches to remote-
sensing applications. Nguyen et al. (2019) proved analyti-
cally that when the input bias is incorrect in Bayesian meth-
ods (specifically, optimal estimation retrievals), then the pos-
terior estimates would also be biased. Moreover, they proved
that when the input standard error is “correct” (that is, it is
as close to the unknown truth as possible), then the resulting
Bayesian estimate is “efficient”; that is, it has the smallest
error among all possible choices of prior standard error. Ad-
ditionally, multiple active and passive technologies are be-
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ing developed to measure 3D winds, such as Doppler wind
lidar (DWL), radar, and infrared or microwave sensors that
derive AMVs using feature tracking of consecutive images.
Therefore, an accurate and robust methodology for model-
ing uncertainty will allow for more accurate assessments of
mission impacts and the eventual propagation of data uncer-
tainties for these instruments.

Velden and Bedka (2009) and Salonen et al. (2015) have
shown that height assignment contributes a large component
of uncertainty in AMVs tracked from cloud movement and
from sequences of infrared satellite radiance images. How-
ever, with AMVs obtained from water vapor profiling instru-
ments (e.g., infrared and microwave sounders), height as-
signment error cannot be directly assessed purely through
analysis of the AMV extraction algorithm. Height assign-
ment is instead an uncertainty in the water vapor profile it-
self. Unfortunately, without the quantified uncertainties on
the water vapor profile necessary to pursue such a study, that
is well beyond the scope of this paper. As such, this study will
focus on errors in the AMV estimates at a given height. Pre-
vious work has demonstrated several different approaches for
characterizing AMV vector error. One common approach is
to employ quality indicator thresholds, as described by Hol-
mund et al. (2001), which compare changes in AMV esti-
mates between sequential time steps and neighboring pix-
els, as well as differences from model predictions, to pro-
duce a quality indicator to which a discrete uncertainty is as-
signed. The expected error approach, developed by Le Mar-
shal et al. (2004), builds a statistical model using linear re-
gression against AMV-radiosonde values to estimate the sta-
tistical characteristics of AMV observation error.

In this study, we outline a data-driven approach for build-
ing an AMV uncertainty model using observing system sim-
ulation experiment (OSSE) data. We build on the work by
Posselt et al. (2019), in which a water vapor feature-tracking
AMV algorithm was applied to a high-resolution numerical
simulation, thus providing a global set of AMV estimates
which can be compared to the reference winds produced by
the simulation. In this case, a synthetic “true” state is avail-
able with which AMVs can be compared and errors are quan-
tified, and it is shown that errors in AMV estimates are state
dependent. Our approach will use a conjunction of machine
learning (random forest) and unsupervised parametric clus-
tering (Gaussian mixture models) to build a model for the
uncertainty structures found by Posselt et al. (2019). The re-
alism and robustness of the resulting uncertainty estimates
depend on the realism and representativeness of the refer-
ence dataset. This work builds upon the work of Bormann
et al. (2014) and Hernandez-Carrascal and Bormann (2014),
who showed that wind tracking could be divided into dis-
tinct geophysical regimes by clustering based on cloud con-
ditions. This study supplements that approach with the addi-
tion of machine learning, which, compared with traditional
linear modeling approaches, should allow the model to cap-
ture more complex nonlinear processes in the error function.

Traditional techniques for modeling uncertainty through
machine learning have focused on characterizing bias but
often struggle when estimating standard error. By pairing a
random forest algorithm with unsupervised parametric clus-
tering, we propose a data-driven, cluster-based approach for
quantifying both bias and standard error from experimen-
tal data. According to the theory developed by Nguyen et
al. (2019), these improved error characterizations should then
lead to improved error characteristics (e.g., lower bias, more
accurate uncertainties) in subsequent analyses such as flux
inversion or data assimilation.

This paper does not purport that the specific algorithm de-
tailed here should supplant error characterization approaches
for all AMVs; indeed, most commonly assimilated AMVs
are based on tracking cloud features, not water vapor pro-
files. In addition, this algorithm is trained and developed for
a specific set of AMVs extracted from a water vapor field
associated with a particular range of flow features. As such,
application of our algorithm to modeled or observed AMVs
will be most appropriate in situations with similar dynam-
ics to our training set. However, we intend in this paper to
demonstrate that the methodology is successful in character-
izing errors for this set of water vapor AMVs and suggest that
this approach – that is, capturing state-dependent uncertain-
ties in feature-tracking algorithms through a combination of
clustering and random forest – could be implemented in other
feature-tracking AMV extraction methods and situations.

The rest of the paper is organized as follows: in Sect. 2, we
give an overview of the simulation which provides the train-
ing data for our machine learning approach. We then moti-
vate and define the specific uncertainties this study aims to
characterize. In Sect. 3, we describe the error characteriza-
tion approach with the specifics of our error characterization
model, including both the implementation of and motiva-
tions for employing the random forest and Gaussian mixture
model. In Sect. 4, we provide a validation of our methods,
attempting to assess the bias of our predictions. In Sect. 5,
we discuss the implications of our error characterization ap-
proach, both on AMV estimation and data assimilation, more
broadly.

2 Experimental setup

2.1 Simulation and feature-tracking algorithm

We trained our model on the simulated data used by Pos-
selt et al. (2019), which applied an AMV algorithm to out-
puts from the NASA Goddard Space Flight Center (GSFC)
Global Modeling and Assimilation Office (GMAO) GEOS-5
Nature Run (G5NR; Putman et al., 2014). The Nature Run is
a global dataset with ∼ 7 km horizontal grid spacing that in-
cludes, among other quantities, three-dimensional fields of
wind, water vapor concentration, clouds, and temperature.
Note that throughout the text we will use the term “Na-
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ture Run wind” to refer to reference winds in the simula-
tion dataset used to train the uncertainty model. The AMV
algorithm is applied on four pressure levels (300, 500, 700,
and 850 hPa) at 6-hourly intervals, using three consecutive
global water vapor fields spaced 1 h apart, and for a 60 d pe-
riod from 1 July to 30 August 2006. The water vapor fields
from GEOS5 were input to a local-area pattern matching al-
gorithm that approximates wind speed and direction from
movement of the matched patterns. The algorithm searches
a pre-set number of nearby pixels to minimize the sum of
absolute differences between aggregated water vapor values
across the pixels. Posselt et al. (2019) describe the sensitivity
of the tracking algorithm and the dependency of the tracked
winds on atmospheric states in detail. The coordinates of the
data are on a 5758× 2879× 240 spatiotemporal grid for the
longitude, latitude, and time dimension, respectively.

It is important to note that the AMV algorithm tracks wa-
ter vapor on fixed pressure levels. In practice, these would
be provided by satellite measurements, whereas in this pa-
per we use simulated water vapor from the GEOS-5 Nature
Run. In this simulation the height assignment of the AMVs
is assumed to be perfectly known. This assumption is far
from guaranteed in real world applications but, as previously
discussed, its implications are not pursued in this paper. As
such, we focus solely on observational AMV error and not
on height assignment error. We note that in practice, one ap-
proach to understanding the behavior and accuracy of the
wind-tracking algorithm is to apply it to modeled data (e.g.,
Posselt et al., 2019). Our approach seeks to complement this
approach by providing a machine-learning–clustering hybrid
approach that can further divide comparison domains into
“regimes” which may provide further insights into the be-
havior of the errors and/or feedback into the wind-tracking
algorithm.

A snapshot of the dataset at 700 hPa is given in Fig. 1,
where we display the water vapor from Nature Run (Fig. 1a),
the wind speed from Nature Run (Fig. 1b), the tracked wind
from the AMV-tracking algorithm (Fig. 1d), and the differ-
ence between the Nature Run and tracked wind (Fig. 1c).
Note that the wind-tracking algorithm tends to have trouble
in regions where the Nature Run water vapor content is close
to 0. It is clear that while the wind-tracking algorithm tends to
perform well in most regions (we can classify these regions
as areas where the algorithm is skilled), in some regions the
algorithm is unable to reliably make a reasonable estimate
of the wind speed (unskilled). We will examine these skilled
and unskilled regimes (and their corresponding contributing
factors) in Sect. 3.

2.2 Importance of uncertainty representation in data
assimilation

Proper error characterization for any measurement, includ-
ing AMVs, is important in data assimilation. Data assimila-
tion often uses a regularized matrix inverse method based on

Bayes’ theorem, which, when all probability distributions in
Bayes’ relationship are assumed to be Gaussian, reduces to
minimizing a least-squares (quadratic) cost function Eq. (1):

J=(x− xb)B−1 (x− xb)+
((

ŷ− a
)
−H [x]

)T
R−1 ((ŷ− a

)
−H [x]

)
, (1)

where x represents the analysis value, xb represents the back-
ground field (first guess), B represents the background error
covariance, y represents the observation, and H represents
the forward operator that translates model space into obser-
vation space. This translation may consist of spatial and/or
temporal interpolation if x and y are the same variable (e.g.,
if the observation of temperature comes from a radiosonde)
or may be far more complicated (e.g., a radiative transfer
model in the case of satellite observations). R represents the
observation error covariance and a represents the accuracy,
or bias, in the observations. The right-hand side of Eq. (1)
can be interpreted as a sum of the contribution of informa-
tion from the data (y−H[x] − a) and the contribution from
the prior (x−xb), which are weighted by their respective co-
variance matrices. In our analysis, the AMVs obtained from
the wind-tracking algorithm are used as “data” in subsequent
analysis. That is, the tracked wind data ŷ is a biased and
noisy estimator of the true wind y and might be assumed
to follow the model Eq. (2):

ŷ = y+ ε, (2)

where ε is an error term, commonly assumed to be Gaussian
with mean a and covariance matrix R (i.e., ε ∼N(a,R)),
which are the same two terms that appear in Eq. (1). As such,
for data assimilation to function, it is essential to correctly
specify the bias vector a and the standard error matrix R. In-
correct characterizations of either of these components could
have adverse consequences for the resulting data assimila-
tion analyses with respect to bias and/or the standard error
(Nguyen et al., 2019).

3 Methodology

3.1 Generalized error characterization model

An overview of our approach is outlined in Fig. 2. Given a set
of training predictors X, training responses Ŷ , and simulated
true response Y , our approach begins with two independent
steps. In one step, a Gaussian mixture model is trained on the
set of X, Ŷ , and Y . This clustering algorithm identifies geo-
physical regimes where the nonlinear relationships between
the three variables differ. In the other step, a random forest
is used to model Y based on X and Ŷ . This step produces an
estimate of the true response (we call this Ỹ ) using only the
training predictors and response. We then employ the Gaus-
sian mixture model to estimate the clusters which the set of
X, Ŷ , and Ỹ pertain to. Subsequently, we compute the error
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Figure 1. Map of Nature Run at one time step at 700 hPa. (a) Water vapor; (b) Nature Run wind speed; (c) difference between Nature Run
wind speed and AMV estimate; (d) AMV estimate.

characteristics of each cluster of X, Ŷ , and Ỹ in the training
dataset. Thereafter, given a new point consisting solely of X
and Ŷ , we can assign it to a specific cluster and ascribe to it
a set of error characteristics.

In this paper, we are primarily interested in the distribu-
tion of a retrieved quantity versus the truth. That is, given
a retrieved value Ŷi , we are interested in the first and sec-
ond moments (i.e., E(Ŷi−Y ) and var(Ŷi−Y )), respectively.
We note that there is a large body of existing work on un-
certainty modeling in the machine learning literature (e.g.,
Coulston et al., 2016; Tripathy and Bilionis, 2018; Tran et
al., 2019; Kwon et al., 2020), although these approaches pri-
marily define the uncertainty of a prediction as var(Ŷi) or
quantify how sensitive that prediction is to tiny changes in the
models or inputs. Our approach, on the other hand, charac-
terizes the error as var(Ŷi−Y ), which describes how accurate
a prediction is relative to the true value. For this reason, our
methodology is more stringent in that it requires the knowl-
edge of the true field (which comes naturally within OSSE
framework) or some proxies such as independent validation
data or reanalysis data. In return, the error estimates from our
methodology fit naturally within the data assimilation frame-
work (that is, it constitutes the parameter R in Eq. 1).

What follows in this paper is an implementation of the er-
ror characterization model obtained for a subsample of the
GEOS-5 Nature Run at a fixed height of 700 hPa. In partic-
ular, we trained the error characterization on a random sub-

sample from the first 1.5 months of the Nature Run and show
the results obtained when applying it to a test subsample
drawn from the subsequent 0.5 months of the Nature Run.

3.2 Error regime

When examining the relationship between AMVs and Na-
ture Run winds in Fig. 3, it is clear that there are two dis-
tinct “error regimes” present in the dataset. The majority
of AMV estimates can be categorized as “skilled”, whereby
their estimate lies clearly along a one-to-one line with the Na-
ture Run wind. However, there is also clearly an “unskilled”
regime, for which the AMV estimate is very close to 0 when
there are actually moderate or large Nature Run wind val-
ues present. Our goal is to provide unique error characteri-
zations for each error regime because the error dynamics are
different within each regime. Furthermore, when we analyze
this error and its relationship to water vapor, we see that the
unskilled regime correlates highly with areas of low water
vapor in Fig. 4. This matches the error patterns discussed
in Posselt et al. (2019). We note that the division between
skilled and unskilled regimes does not need to be binary. For
instance, in some regions the wind-tracking algorithm might
be unbiased with high correlation with the true winds and in
other regions the algorithm might still be unbiased relative to
the true winds but with higher errors. The second situation
is clearly less skilled than the first, although it might still be
considered skilled, and this separation of the wind-tracking
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Figure 2. Diagram of training approach and diagram of implementation steps.

Figure 3. Scatterplot of the simulated Nature Run wind vs. AMV
estimates for u and v wind in the training dataset.

estimates into various “grades” of skill forms the basis of our
error model.

3.3 Gaussian mixture model

These distinct regimes present an opportunity to employ
machine learning. Bormann et al. (2014) and Hernandez-
Carrascal and Bormann (2014) demonstrated that cluster
(also called regime) analysis is a successful approach for
wind-tracking error characterization, and so we aim to train a

Figure 4. Simulated water vapor vs. the absolute value of the differ-
ence between Nature Run and tracked winds in the training dataset.

clustering algorithm that will cluster a given individual AMV
estimate to various grades of skill. In particular, we use a
clustering algorithm that can take advantage of the underly-
ing geophysical dynamics. To this end, we employ a Gaus-
sian mixture model, an unsupervised clustering algorithm
based on estimating a training set as a mixture of multiple
Gaussian distributions. A mathematical overview follows:
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1. Define each location containing Nature Run winds, wa-
ter vapor, and AMV estimates as a random variable xi

2. Define θ as the population that consists of all xi in the
training dataset

3. Model the distribution of the population P(θ) as

P(θ)=
∑K

j
πjN

(
µj ,6j

)
, (3)

where N(µj ,6j ) is the normal distribution with mean
µj and covariance 6j of the j th cluster, K is the num-
ber of clusters, and πj is the mixture proportion.

4. Determine πjµj6j for K clusters using the
Expectation–Maximization Algorithm

5. From 3. and 4., estimate the probability of a given xi
belonging to the j th cluster as P(xi ∈ kj )= pij

6. Assign point xi to the cluster with the maximum proba-
bility pij

The mixture model clustering is based on the R package
“Mclust” developed by Fraley et al. (2012), which builds
upon the theoretical work of Fraley and Raftery (2002) for
model-based clustering and density estimation. The process
uses an Expectation-Maximization algorithm to cluster the
dataset, estimating a variable number of distinct multivariate
Gaussian distributions from a sample dataset. Training the
Gaussian mixture model on this dataset provides a clustering
function which outputs a unique cluster for any data point
with the same number of variables.

In one dimension, a Gaussian mixture model looks like
the distributions depicted in Fig. 5: instead of modeling a
population as a single distribution (Gaussian or otherwise),
the Gaussian mixture model (GMM) algorithm fits multiple
Gaussian distributions to a population. One key aspect of this
algorithm is the capability of assigning a new point to the
most likely distribution. For example, in the 1-D figure, a
normalized AMV estimate with a value of 10 would be more
likely to originate from the broad cluster “2” than the narrow
cluster “4”. In this case, we model the population as a Gaus-
sian mixture model in five-dimensional space, which consists
of two Nature Run wind vector components (u and v), two
AMV estimates of these wind components (û and v̂), and the
simulated water vapor values, all of which have been stan-
dardized to have mean 0 and standard deviation of 1. Each
cluster has a 5-dimensional mean vector for the center and
a 5× 5 covariance matrix defining their multivariate Gaus-
sian shape. The estimation of a covariance matrix allows for
the characterization of the relationships between the differ-
ent dimensions within each cluster, and as such the Gaussian
mixture model approach provides greater potential for un-
derstanding the geophysical basis of error regimes than other
unsupervised clustering approaches.

Figure 5. Example of Gaussian mixture model in one dimension.
Density figures for the u direction AMV estimate dimension of fit-
ted Gaussian mixture.

We note that the choice of inputs to the clustering method-
ology is limited and that a more successful clustering may
be achieved by including additional meteorological or geo-
graphic information. However, the intention of this paper is
to study the ability of a purely data-driven approach, where
no additional information or assumptions are passed to the
machine learning model outside of the inputs and outputs
to the AMV algorithm itself. Posselt et al. (2019) showed
that state-dependent uncertainties are a major source of er-
ror in water vapor AMVs; introducing further information
may cloud our ability to discern these specific uncertainties.
While scaling this methodology to other applications may
incentivize tailoring to specific conditions, this paper aims to
demonstrate that modifications are encouraged for improve-
ment, but not necessary for success.

Having trained the Gaussian mixture model on the 1.5-
month training dataset, we applied the clustering algorithm to
a testing dataset sampled from the subsequent 0.5 months of
the nature run. By re-analyzing the AMV estimate in relation
to the Nature Run winds within each cluster (Fig. 6), we find
that the clustering approach successfully separates the AMV
estimates according to their “skillfullness”. Essentially, we
repeat Fig. 3 but divide the AMV estimates by cluster. We see
that, for example, clusters 4, 5, and 7 clearly represent cases
in which the feature-tracking algorithm provides an accurate
estimate of the Nature Run winds, with very low variance
around the one-to-one line (i.e., low estimation errors). Clus-
ters 1, 2, 3, and 9 are somewhat noisier than the low-variance
clusters, with error characteristics similar to those of the en-
tirety of the dataset. That is, they are considered less skilled,
but their estimates still lie on a one-to-one line with respect to
the true wind. Clusters 6 and 8, on the other hand, are clearly
unskilled in different ways. Cluster 6 is a noisy regime, which
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Figure 6. Scatterplot of simulated Nature Run wind vs. AMV estimates, each sub-panel corresponding to the specific Gaussian mixture
component to which each point in the testing set has been assigned. (a) u-direction wind; (b) v-direction wind.

Figure 7. Scatterplot of water vapor vs. absolute tracked wind error, each sub-panel corresponding to the specific Gaussian mixture compo-
nent to which each point in the testing set has been assigned. (a) u-direction wind; (b) v-direction wind.

captures much of the more extreme differences between the
AMV estimates and the Nature Run winds. Cluster 8, on the
other hand, represents the low AMV estimate, high Nature
Run wind regime. This cluster returns AMVs with values of
0 where the Nature Run wind is clearly non-zero because of
the very low water vapor present. We further see the strat-
ification of the regimes when analyzing the absolute AMV
error in relation to the water vapor content (Fig. 7). We see
that clusters that have similar behaviors in the error pattern
(such as 1, 2, and 3) represent different regimes of water va-
por content.

We specified nine individual clusters due to a combina-
tion of quantitative and qualitative reasons. Quantitatively,
the “Mclust” package uses the Bayesian information crite-
rion (BIC), a model selection criterion based on the likeli-
hood function which attempts to penalize overfitting, to se-
lect the optimal number of clusters given an input range. Us-
ing an input range of one through nine, the BIC indicated
the highest number of clusters would be optimal. More im-
portantly, however, the nine clusters can be physically distin-
guished and interpreted. Plots of the geophysical variables
in the testing set associated with each of the clusters are
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Figure 8. Histogram of Nature Run water vapor for each cluster
identified by the Gaussian mixture model, applied to the testing set.
Each sub-panel represents the cluster each point was assigned to.

shown in Figs. 8–11. Specifically, Fig. 8 plots the distribu-
tion of water vapor for each cluster, while Fig. 9 plots the
mean wind magnitude in each direction by cluster. Figure 10
plots the correlation matrix for each cluster, and Fig. 11
show the geographic distribution of each cluster. In looking
at these in combination, we see discernable and discrete clus-
ters with unique characteristics. For example, cluster 1 cap-
tures the very dry, high-wind regime in the Southern Hemi-
sphere visible in Fig. 2. Cluster 7 encompasses the tropics,
while cluster 3 captures midlatitude storm systems. Clus-
ters 6, 8, and 9 are all characterized by a much worse per-
formance of the AMV tracking algorithm, exhibited both in
Figs. 7 and 8, but all encompass different geographic and
geophysical regimes. We see that the clustering algorithm
succeeds in capturing physically interpretable clusters with-
out having any knowledge of the underlying physical dynam-
ics. We note that in other applications, the optimal number of
clusters will change and the researcher will need to explore
various choices of this parameter in their modeling, although
this tuning process should be greatly simplified by the in-
clusion of an information criterion (e.g., BIC) in the GMM
algorithm.

3.4 Random forest

The clustering algorithm requires the Nature Run wind vec-
tor component values (u and v) in order to classify the AMV
error. When applying the algorithm in practice to tracked
AMV wind from real observations, the true winds are un-
known. To represent the fact that we will not know the true

Figure 9. Mean tracked winds and Nature Run winds, in each di-
rection, for each cluster applied to the test set. Each sub-panel rep-
resents the cluster each point was assigned to.

Figure 10. Correlation matrix between each clustered element for
each identified cluster in the original training dataset. Each sub-
panel refers to a specific cluster.

winds in practice, we develop a proxy for the Nature Run
winds using only the AMV estimates and the simulated wa-
ter vapor itself. This is an instance in which the applica-
tion of machine learning is desirable, since machine learn-
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Figure 11. Geographic distribution by cluster of AMV retrieval lo-
cations in the testing dataset. Each sub-panel represents one cluster.

ing excels at learning high-dimensional nonlinear relation-
ships from large training datasets. In this case, we specifi-
cally use random forest to create an algorithm which predicts
the Nature Run wind values as a function of the tracked wind
values and water vapor.

Random forest is a machine learning regression algorithm
which, as detailed by Breiman (2001), employs an ensemble
of decision trees to model a nonlinear relationship between
a response and a set of predictors from a training dataset.
Here, we chose random forest specifically because it pos-
sesses certain robustness properties that are more appropri-
ate for our applications than other machine learning meth-
ods. For instance, random forest will not predict values that
are outside the minimum and maximum range of the input
dataset, whereas other methods such as neural networks can
exceed the training range, sometimes considerably so. Ran-
dom forest, due to the sampling procedure employed during
training, also tends to be robust to overtraining in addition to
requiring fewer tuning parameters compared with methods
such as neural networks.

We trained a random forest with 50 trees on a separate set
of tracked winds and water vapor values to predict Nature
Run winds using the “randomForest” package in the R pro-
gramming language. While the random forest estimate as a
whole does not perform much better than the AMV values in
estimating the Nature Run wind (2.89 RMSE for random for-
est vs. 2.91 RMSE for AMVs), as shown in Fig. 12, it does
not display the same discrete regimentation as the AMV es-
timates in Fig. 3. As such, the random forest estimates can
act as a proxy for Nature Run wind values in our clustering

Figure 12. Scatterplot of Nature Run wind estimate vs. random for-
est produced estimate. (a) u direction; (b) v direction.

algorithm – they remove the regimentation which is a critical
distinction between the AMV estimates and the Nature Run
wind values.

3.5 Finalized error characterization model

The foundation of the error characterization approach is to
combine the random forest and clustering algorithm. We ap-
ply the Gaussian mixture model, as trained on the Nature Run
winds (in addition to the AMVs and water vapor), to each
point of water vapor, AMV estimate, and associated random
forest estimate. This produces a set of clusters which, when
implemented, require no direct knowledge of the actual Na-
ture Run state (Fig. 13).

Naturally, the clustering algorithm performs better when
applied to the dataset with the Nature Run winds, as opposed
to winds generated from the random forest algorithm. The
former is created with direct knowledge of the Nature Run
winds, and any approximation will lead to increased uncer-
tainties. In practice, the performance of the cluster analysis
can be improved by enhancing the performance of the ran-
dom forest itself. As with any machine learning algorithm,
the random forest contains hyperparameters that can be op-
timized for specific applications. In addition, performance
could be improved by including additional predictor vari-
ables. Our intent is not to use the random forest as a wind-
tracking algorithm; rather, the random forest is presented in
this paper as a proof of concept.

Nonetheless, we see in Figs. 13 and 14 that the error char-
acterization still discretizes the testing dataset into meaning-
ful error regimes. The algorithm manages to separate the
AMV estimates into appropriate error clusters. Once again,
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Figure 13. Scatterplot of Nature Run wind vs. AMV estimates, each sub-panel corresponding to the specific Gaussian mixture component
to which each point in the testing set has been assigned when the Nature Run wind value has been substituted by the random estimate.
(a) u-direction wind; (b) v-direction wind.

Figure 14. Water vapor vs. absolute tracked wind error, each sub-panel corresponding to the specific Gaussian mixture component to which
each point in the testing set has been assigned when the Nature Run wind value has been substituted by the random estimate. (a) u-direction
wind; (b) v-direction wind.

clusters 6 and 8 manage to capture unskilled regimes, and
cluster 7, and to a lesser extent clusters 4 and 5, remain skill-
ful. By taking the mean and standard deviation of the dif-
ference between AMV estimates and Nature Run winds in
each cluster, we develop error characteristics for each cluster
(Fig. 15); these quantities are precisely the bias and uncer-
tainty that we require for the cost function J in Eq. (1). We
see that the unskilled clusters have very high standard errors,
and they correspond roughly to the areas of unskilled regimes

in Fig. 3. Similarly, skilled clusters 5, 4, and 7 have standard
errors below that of the entire dataset. Since each cluster now
has associated error characteristics (e.g., bias and standard
deviation), it is then straightforward to assign the bias and
uncertainty for any new tracked wind observation by com-
puting which regime it is likely to belong to.
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Figure 15. (a) Bias (left panel) and standard error (right panel) for each Gaussian mixture cluster in Fig. 6, u direction. (b) Same as panel (a)
for v direction.

3.6 Experimental setup

In this section we will describe our experimental setup for
training our model on the GEOS-5 Nature Run data and test-
ing its performance on a withheld dataset. We divide the
dataset into two parts: a training set consisting of the first
1.5 months of the GEOS-5 Nature Run and a testing set con-
sisting of the last 0.5 month of the Nature Run. Our training
or testing procedure for the simulation data and tracked wind
is as follows:

1. Divide the simulation data and tracked wind into two
sets: training set of 1 000 000 points from the first
1.5 months of the Nature Run and a testing set of
1 000 000 points from the final 0.5 months of the Na-
ture Run.

2. We train a Gaussian mixture model on a normalized ran-
dom sample of observations from the training dataset of
Nature Run winds (u and v direction), tracked winds (u
and v direction), and water vapor with n= 9 clusters.

3. We train two separate random forests on a different ran-
dom sample of 750 000 observations from the training
dataset. We use tracked wind (u and v direction) and
water vapor to model Nature Run winds, separately, in
both the u and v directions.

4. We apply the random forests to the dataset used for the
Gaussian mixture model. This provides a random forest
estimate for each point, which is used as a substitute for
Nature Run wind values in the next step.

5. We predict the Gaussian mixture component assignment
for each point of water vapor, tracked winds, and ran-

dom forest estimate using the GMM parameters esti-
mated in Step 2.

6. We compute the mean and standard deviation of the dif-
ference between the tracked winds and the Nature Run
winds, per direction, for each Gaussian mixture model
cluster assignment. This provides a set of error charac-
teristics that are specific to each cluster.

7. We can apply the random forest, and then the cluster es-
timation, to any set of water vapor and tracked AMV
estimates. Thusly, any set of tracked AMV estimates
and water vapor can be mapped to a specific cluster and
therefore its associated error characteristics.

4 Results and validation

In this section, we compare our clustering method against
a simple alternative, and we quantitatively demonstrate im-
provements that result from our error characterization. Re-
call that in Sect. 3, we divided the wind-tracking outputs into
nine regimes, which range from very skilled to unskilled. For
the ith regime, we can quantify the predicted uncertainty es-
timate as a Gaussian distribution with mean mi and standard
deviation σi , which has a well-defined cumulative distribu-
tion function which we denote as Fi . To test the performance
of our uncertainty forecast, we divide the dataset described
in Sect. 2 into a training dataset (first 1.5 months) and a
testing dataset (last 0.5 month). Having trained our model
using the training dataset, we apply the methodology to the
testing dataset, and we compare the performance of the pre-
dicted probability distributions against the actual wind error
(tracked winds – Nature Run winds). This is a type of prob-
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abilistic forecast assessment, and we assess the quality of
the prediction using a scoring rule called continuous ranked
probability score (CRPS), which is defined as a function of
a cumulative distribution function F and an observation x as
follows:

CRPS(F,x)=

∞∫
−∞

(F (x)− 1(y− x))2dy, (4)

where 1() is the Heaviside step function and denotes a step
function along the real line that is equal to 1 if the argument
is positive or 0, and it is equal to 0 if the argument is negative
(Gneiting and Katzfuss, 2014) . The continuous rank proba-
bility score here is strictly proper, which means that the func-
tion CRPS(F,x) attains the minimum if the data x are drawn
from the same probability distribution as the one implied by
F . That is, if the data x are drawn from the probability dis-
tribution given by F , then CRPS(F,x) < CRPS(G,x) for all
G 6= F .

The alternative error characterization method that we test
against is a simple marginal mean and marginal standard
deviation of the entire tracked subtract Nature Run wind
dataset. This is essentially equivalent to an error character-
ization scheme that utilizes one regime, where m and σ are
given as the marginal mean and the marginal standard devi-
ation of the residuals (i.e., tracked wind minus Nature Run
winds). Here, we use a negatively oriented version of the
CRPS (i.e., Eq. 4 without the minus sign), which implies
that lower is better. A histogram evaluating the performance
of our methodology against the naive error characterization
method is given in Fig. 16.

The relative behavior of the CRPS is consistent between
u and v winds. The CRPS tends to have to wider distri-
bution when applied to the regime-based error character-
ization. Compared to the alternative error characterization
scheme, our methodology produces a cluster of highly accu-
rate predictions (low CRPS scores), in addition to some clus-
ters of very uninformative predictions (high CRPS scores).
These clusters correspond to the highly skilled cluster (e.g.,
Cluster 3) and the unskilled clusters (Cluster 6 and 8), re-
spectively. Overall, the mean of the CRPS is lower for our
methodology than it is for the alternative method, indicating
that as a whole our method produces a more accurate proba-
bilistic forecast.

Thus far we have shown that our method produces more
accurate error characterization than an alternative method
based on marginal means and variance. Now, we assess
whether our methodology provides valid probabilistic pre-
diction; that is, we test whether the uncertainty estimates pro-
vided are consistent with the empirical distribution of the val-
idation data. To assess this, we construct a metric in which
we normalize the difference between the Nature Run wind
and the tracked wind by the predicted variance. That is, for
the ith observation, we compute the normalized values for ui
and vi using the following equations:

Figure 16. CRPS applied to different error approaches. (a) Cluster
errors for u winds; (b) total errors for u winds; (c) cluster errors for
v winds; (d) total errors for v winds.

zu,i =
ui − ûi

σu,i
,

zv,i =
vi − v̂i

σv,i
, (5)

where ui is the ith Nature Run u wind from the Nature Run
data, ûi is the tracked wind, and σu,i is the error as assessed
by our model (recall that it is a function of the regime index
to which ûi has been assigned). The values for the v wind
are defined similarly. The residuals in Eq. (5) can be consid-
ered as a variant of the z score, and it is straightforward to
see that if our error estimates are valid (i.e., accurate), then
the normalized residuals in Eq. (5) should have a standard
deviation of 1. If our uncertainty estimates σu,i and σv,i are
too large, then the standard deviation of zu,i and zv,i should
be less than 1; similarly, if our uncertainty estimates are too
small, then the standard deviation of zu,i and zv,i should be
larger than 1. In Fig. 17, we display the histogram of the nor-
malized residuals zu and zv . It is clear that for both types of
wind, the standard deviations of zu,i and zv,i are 1.003 and
1.009, respectively, indicating that our error characterization
model is highly accurate when forecasting uncertainties.

A further validation of our methods encompasses an anal-
ysis of the statistical significance of the uncertainty in our
model. To this end, we constructed confidence intervals for
the bias and standard deviation within each regime using the
bootstrap (Tibshirani and Efron, 1993). The procedure of our
bootstrap is as follows:
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Figure 17.U and v winds normalized using the error characteristics
developed by our methodology.

1. Subset the data to retain only observations with regime
index j . Let us assume that we have Nj observation
within this data subset.

2. Sample with replacement Nj observations from this
subset. This forms a bootstrap sample.

3. From 2., compute an estimate of the bias and standard
deviation.

4. Repeat steps 2–3 1000 times, giving us 1000 estimates
of the bias and 1000 estimates of the standard deviation
within regime j .

5. Compute 95 % confidence intervals from the 1000 esti-
mates of bias and standard deviation from 4.

The results for the confidence intervals are represented in
graphical form in Fig. 18. We note that the figure indicates
that for many of the biases, they can be considered unbiased
since their confidence interval includes 0 (e.g., regimes 2–
8 for u wind). However, the plot also clearly indicates that
two regimes are statistically different from 0 (regime 1 and
9). We also note that for the standard deviation maps, the
confidence intervals (CIs) indicate that they are fairly stable
(small narrow range) and that most of the regimes have sta-
tistically different standard deviations (denoted here visually
as CIs that do not overlap one another). We also note that
u and v wind direction tend to have very similar patterns,
indicating that our regime classification is persistent across
u and v. To summarize, the CI plot above indicates that the
differences in standard deviation between different regimes
are highly statistically significant (as evidenced by the small
confidence intervals and their spacing). For the biases, three

of the regimes are statistically significantly different from the
rest (i.e., regimes 1, 6, and 9), while the rest are likely rela-
tively unbiased (i.e., bias= 0).

5 Conclusion and discussion

Error characterization is an important component of data val-
idation and scientific analysis. For wind-tracking algorithms,
whose outputs (tracked u and v) are often used as obser-
vations in data assimilation analyses, it is necessary to ac-
curately characterize the bias and standard error (e.g., see
Sect. 2.2). Nguyen et al. (2019) illustrated that the incorrect
specification of these uncertainties (a and R in Eq. 1) can ad-
versely affect the assimilation results – mis-characterization
of bias will systematically offset a tracked wind, while an er-
roneous standard error could incorrectly weigh the cost func-
tion.

In this paper we demonstrate the application of a machine
learning uncertainty modeling framework to AMVs derived
from water vapor profiles intended to mimic hyper-spectral
sounder retrievals. The methodology, based on a combina-
tion of Gaussian mixture model clustering and random forest,
identified distinct geophysical regimes and provided uncer-
tainties specific to each regime. This was achieved in a purely
data-driven framework; nothing was known to the model ex-
cept the specific inputs and outputs of the AMV algorithm,
deducing the relationship between regime and uncertainty
from the underlying multivariate distribution of water vapor,
Nature Run wind, and tracked wind. Our algorithm does re-
quire one major tuning parameter in the number of clusters
for the GMM algorithm, although the search for the “opti-
mal” number of clusters can be aided by the inclusion of an
information criterion (e.g., the BIC) in the GMM model. This
implementation is not intended as a “ready-to-go” algorithm
for general use. Instead, we lay the foundation of an uncer-
tainty modeling approach which we plan to implement at a
larger scale in subsequent work Nonetheless this bare bones
implementation is sufficient to produce improved error esti-
mates of state-dependent uncertainties as detailed in Posselt
et al. (2019).

We introduce this framework in an environment that is
limited and well-behaved, but which nonetheless we believe
provides insight into how such an approach would perform
at a larger scale. Of course, there are issues when moving
from the controlled environment of the simulation study to
large-scale applications. We understand these to be (1) the
existence of uncertainty on the tracked humidity values and
(2) the ability of the training dataset to adequately capture
both the range of conditions of water vapor and wind speed
and their inherent relationship.

The simulation used for introducing this framework was
a “perfect-observation” environment; that is, the water va-
por was assumed to be perfectly known to the wind-tracking
algorithm. In real world scenarios, this is obviously not the
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Figure 18. (a, b) Bias and SD confidence intervals for u wind; (c, d) bias and SD confidence intervals for v winds. The interval represents a
95 % confidence interval.

case. However, we believe that this is mitigated by two fac-
tors. Firstly, Posselt et al. (2019) also conducted a study
where measurement noise was added to the water vapor mea-
surement. This was not shown to have an effect on the un-
certainty in the AMV estimate, except where there was the
presence of strong vertical wind shear, a situation which can
be identified on a larger-scale application. Secondly, given
quantified uncertainties in the water vapor retrievals them-
selves (the scope of which is decidedly outside the work of
this paper), these could be assimilated into the uncertainty
modeling framework in a straightforward manner by adding
them as a prediction variable in both the regime classifica-
tion and emulator. This would allow for the model to itself
ascertain the relationship between water vapor uncertainty
and AMV estimate uncertainty, without breaking the foun-
dational aspect of being data-driven.

The reliability of the training dataset is the fundamental
assumption of any machine learning approach. To reiterate,
we present a methodology which aims to characterize the un-
certainty in the difference between a measurement X̂ and its
true target X (that is, var(X̂−X)). As such, we require some
proxy for the truth in the development of our model (call
this X∗). To expand further, we are modeling the relation-
ship between X̂ and X as a function of water vapor Y , with
f (Y )= X̂ and g(Y )=X, where f represents the AMV al-
gorithm and g the true relationship between wind speed and
water vapor. Thus, we additionally require a proxy function
g∗, which is the relationship implied by the training data out-
put of water vapor and reference winds. In the implementa-
tion presented in this paper, g∗ is represented by the under-
lying physical models that model the motion of water vapor
and wind speed in the GEOS-5 Nature Run.
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The fidelity of our framework relies upon the assumption
X∗ ∼X and g∗ ∼ g. In the simulation study, X∗ is the first
1.5 months of a Nature Run simulation, which is used as a
proxy for an X which consists of the last 0.5 months of a na-
ture run simulation. We have given the algorithm a training
dataset with what we believe is a plausible range of condi-
tions which could occur in X. To the extent that errors may
be seasonally and regionally dependent, it will be more effec-
tive to train the error estimation algorithm on data that are ex-
pected to represent the specific flow regimes and water vapor
features valid for a particular forecast or assimilation period.
A range of model data encompassing enough seasonal vari-
ability should be a reasonable proxy for the possible range of
true X. This would significantly increase the computational
demands of training the model (∼ 1 d on a single processor,
per pressure level to train the current implementation of the
algorithm and an average of 3 d per pressure level, on a non-
optimized cluster network to run the AMV extraction on the
nature run), although such concerns could be mitigated by
strategic subsampling approaches.

On the other hand, in this implementation g∗ is a perfectly
known representation of g, which is the GEOS-5 model that
runs the simulation. This is where the simulation approach
might create the largest source of uncertainty and unreliabil-
ity in the model. The true process g can only ever be ap-
proximated, and different attempts to do so will involve dif-
ferent tradeoffs when implementing this framework. Users
could, for example, use high-quality validation data such as
matchups with radiosondes. In theory, this provides the best
possible approximation of the true process g, but it could in-
volve a sparsity of data such that the range of X∗ supplied is
too narrow for a useful model (indeed, the data might be so
sparse as to – from a pure machine learning aspect – reduce
the overall fidelity of the model itself). On the other hand,
model or reanalysis data can provide dense and diverse train-
ing datasets but rely on the assumption that the underlying
physical models in those simulations are an adequate repre-
sentation of the true process. At the core of atmospheric mod-
els such as GOES-5 are the laws of fluid dynamics and ther-
modynamics. In this context, water vapor is advected by the
mean wind and as such the wind and water vapor are intrin-
sically related in these models. This has been the case since
the first atmospheric weather prediction models have been
developed. There are of course uncertainties associated with
the discretization of the fluid dynamics equations and some-
times also with parameterizations depending on the physical
constraints. But these uncertainties are likely small for the
water vapor structures that are selected for the wind-tracking
algorithm.

In both these cases, the model could likely be improved
by the inclusion of additional variables in the clustering al-
gorithm. These could include a variety of parameters to ad-
dress different potential problem areas in the model. As men-
tioned previously, including quantified values of uncertainty
in water vapor estimates would algorithmically link the un-

certainty in the humidity retrieval with the uncertainty in the
AMV tracking. Similarly, including parameters that correlate
with geophysical phenomena where the AMV algorithm is
known to perform poorly (such as a marker for vertical wind
shear or frontal features) would enable domain knowledge
to inform the clustering algorithm and emulator. Finally, it
is likely that the several parameters used in formulating both
the quality indicator (Holmlund, 1998) and expected error
(Le Marshall et al., 2004) approaches would be informative
in enhancing the algorithm. One critical aspect for users to
consider is that these variables must be continuous parame-
terizations rather than discrete markers (which are often used
in quality control); discrete variables cannot be easily incor-
porated into a Gaussian mixture model, or indeed most clus-
tering algorithms. Furthermore, we would recommend that
users implement parameters that are readily available at the
same measurement location and time as the AMV estimate
itself. Part of the motivation for the purely state-dependent
approach in this framework is ease of implementation; colo-
cation and interpolation could add further uncertainty to the
model.

We note that in real applications, using a proxyX∗ instead
of the true X will result in our algorithm estimating the vari-
ability var(X̂−X∗) instead of var(X̂−X). Therefore, the de-
gree to which var(X̂−X∗) approximates var(X̂−X) relies
on the accuracy of the proxy data relative to the true uncer-
tainty. Ultimately, implementing this methodology at scale
requires confidence in the training dataset employed by the
user. As with most machine learning approaches, a thorough
understanding of the relative strengths and weaknesses of the
training dataset is the most critical consideration for users.
This means not only ensuring that the training data are vari-
able and diverse enough to encapsulate the entirety of the
true domain but possessing some understanding of how and
where portions of the training dataset might be less repre-
sentative of reality. There are a few practical ways in which
users could attempt to address this issue. Given adequate re-
sources and time, users could train the uncertainty model un-
der various training datasets. While this would not necessar-
ily give a greater understanding of the training data’s rela-
tionship with the truth, the differences between the produced
models would provide some quantification of the effect of
the training data on the estimated uncertainties. Similarly, if
users have some quantified understanding of areas wherein
the training dataset might be less useful (e.g., collocation
errors), they could leverage this to inform the uncertainty
model. In this case, it is likely such decisions would man-
ifest themselves in the final uncertainty product. Nonethe-
less, as much as users should try to mitigate the potential
for problems, there is always an underlying leap of faith that
they have chosen a training dataset that adequately represents
the truth in their application. Like any modeling approach,
this methodology relies on a set of assumptions; this is one
such assumption. This is why domain knowledge is critical
in developing a similar uncertainty model. Thoughtful and
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careful implementations by users, keeping in mind the pre-
scriptions and concepts detailed above, should mitigate the
training-data-dependent uncertainty.

Future users would also be wise to consider improvements
in the random forest step of the framework. The capability of
this implementation in discerning accurate error regimes de-
grades substantially with the introduction of the random for-
est wind estimates. This work focused on the ability to cap-
ture regime-dependent error, and as such the random forest
was not studied in depth. An improved emulator would cer-
tainly increase the accuracy of the uncertainty estimates pro-
duced by this framework. There are a wide variety of ways
to improve the emulator; ultimately, and even more so than
the regime classification, these will be specific to the AMV
extraction algorithm being used. Certainly, many of the ad-
ditional variables suggested above could be useful towards
improving the random forest. Users could also investigate
replacing the random forest altogether with a different em-
ulator, such as a neural net or a Gaussian process. Indeed, at
its most general, our methodology consists of two parts: an
emulator and a clustering algorithm. In this implementation,
random forest and Gaussian mixture modeling are the ap-
proaches; in theory, these two steps could be accomplished
using other algorithms belonging to the appropriate class.

Thorough domain knowledge, both of the AMV extraction
algorithm and the context in which it will be applied, is crit-
ical in developing methods to improve it. As discussed pre-
viously, the bare bones implementation of our methodology
in this paper is intended as a structural presentation of the
conceptual framework, not necessarily as a finalized model.
However, it is also the case that the investigation by Posselt
et al. (2019) showed that the variables used in this imple-
mentation of the model are those most strongly related with
AMV uncertainty in this particular application. The state-
dependent errors identified by Posselt et al. (2019) are also
expected to apply to other water vapor AMVs. This is be-
cause, in general, AMV algorithms have difficulty tracking
fields with very small gradients and will produce system-
atic errors in situations for which isolines in the tracked field
(e.g., contours of constant water vapor mixing ratio) lie par-
allel to the flow. To the extent that our algorithm represents a
general class of errors, the results may be applicable to other
geophysical scenarios and other AMV tracking methodolo-
gies. As mentioned in the introduction, robust estimates of
uncertainty are important for data assimilation, and we ex-
pect that our methodology could be used to provide more ac-
curate uncertainties for AMVs used in data assimilation for
weather forecasting and reanalysis.
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