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Abstract. The aim of this paper is to present the Monte Carlo
code McRALI that provides simulations under multiple-
scattering regimes of polarized high-spectral-resolution
(HSR) lidar and Doppler radar observations for a three-
dimensional (3D) cloudy atmosphere. The effects of nonuni-
form beam filling (NUBF) on HSR lidar and Doppler radar
signals related to the EarthCARE mission are investigated
with the help of an academic 3D box cloud characterized
by a single isolated jump in cloud optical depth, assum-
ing vertically constant wind velocity. Regarding Doppler
radar signals, it is confirmed that NUBF induces a severe
bias in velocity estimates. The correlation of the NUBF
bias of Doppler velocity with the horizontal gradient of
reflectivity shows a correlation coefficient value around
0.15 m s−1 (dBZ km−1)−1, close to that given in the scien-
tific literature. Regarding HSR lidar signals, we confirm that
multiple-scattering processes are not negligible. We show
that NUBF effects on molecular, particulate, and total atten-
uated backscatter are mainly due to unresolved variability of
cloud inside the receiver field of view and, to a lesser extent,
to the horizontal photon transport. This finding gives some
insight into the reliability of lidar signal modeling using in-
dependent column approximation (ICA).

1 Introduction

Spaceborne atmospheric lidar (light detection and ranging)
and radar (radio detection and ranging) are suitable tools to
investigate vertical properties of clouds on a global scale.
Over the last decade, the Cloud–Aerosol Lidar and Infrared
Pathfinder Satellite Observations (CALIPSO) (Winker et al.,
2010) and the Cloud Satellite (CloudSat) (Stephens et al.,
2008) have improved our understanding of the spatial dis-
tribution of microphysical and optical properties of clouds
and aerosols (Stephens et al., 2018). However, clouds re-
main the largest source of uncertainty in climate projec-
tions (Boucher et al., 2014; Dufresnes and Bony, 2008). Like
clouds, aerosols are another large source of uncertainty in cli-
mate models (both direct and indirect radiative forcing) (see,
e.g., Hilsenrath and Ward, 2017, and references therein).
Future missions are planned to pursue those observations.
For example, the Earth Clouds, Aerosol and Radiation Ex-
plorer (EarthCARE) (Illingworth et al., 2015) is scheduled
for 2022, which will deploy the combination of a high-
resolution-spectral (HSR) lidar and a Doppler radar for the
first time in space. More recently, following the Atmospheric
Dynamics Mission ADM-Aeolus (ESA report, 2016) by the
European Space Agency (ESA), an atmospheric dynamics
observation satellite was placed in orbit in August 2018,
which deployed the first space Doppler lidar. The Atmo-
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spheric LAser Doppler INstrument (ALADIN) of the ADM-
Aeolus provides spectrally resolved data. Indeed, the Mie
receiver is a Fizeau spectrometer combined with a charge-
coupled detector that measures the spectrum of the return
around the emitted laser wavelength using 16 different fre-
quency bins (Reitebuch et al., 2018; Stoffelen et al., 2005).
The ATmospheric LIDar (ATLID) signals of the EarthCARE
mission will be optically filtered in such a way that the atmo-
spheric Mie and Rayleigh scattering contributions are sepa-
rated and independently measured (Pereira do Carmo et al.,
2019). The radar echoes of the Cloud Profiling Radar (CPR)
of the EarthCARE mission will be input to autocovariance
analysis by means of the pulse-pair processing technique for
the estimation of the Doppler properties (Kollias et al., 2014,
2018; Zrnić, 1977). Note, however, that ATLID and CPR
will not provide spectrally resolved data. The CPR will pro-
vide information on convective motions, wind profiles, and
fall speeds (Illingworth et al., 2015). The ATLID will per-
form measurements of the extinction coefficient and lidar ra-
tio (ESA, 2016; Illingworth et al., 2015).

Lidar and/or radar simulators are steadily advancing,
hence allowing us to explore direct and inverse problems in
a cost-effective way. In this Introduction, published works
restricted to the case when multiple scattering was taken
into account are briefly discussed. Fruitful findings, mostly
on lidar returns from clouds, were obtained by the MUS-
CLE (MUltiple SCattering in Lidar Experiments) commu-
nity in the 1990s. A review of the participating models
can be found in the work by Bissonnette et al. (1995). A
Monte Carlo (MC) model was used by Miller and Stephens
(1999) to study the specific roles of cloud optical proper-
ties and instrument geometries in determining the magni-
tude of lidar pulse stretching. Several models, which take
into consideration Stokes parameters, were developed in the
2000s (Hu et al., 2001; Noel et al., 2002; Ishimoto and Ma-
suda, 2002; Battaglia et al., 2006). Fast approximate lidar
and radar multiple-scattering models (Chaikovskaya, 2008;
Hogan, 2008; Hogan and Battaglia, 2008; Sato et al., 2019)
provide the possibility, for example, to explain certain im-
portant characteristics of dual-wavelength reflectivity pro-
files (Battaglia et al., 2015), although the codes are inher-
ently one-dimensional. In addition, a comprehensive review
of multiple scattering in radar systems can be found in the
work by Battaglia et al. (2010). The basic principles of Monte
Carlo models, which consider the Doppler effect and spectral
properties of received signals, were developed in the 1990s
for the needs of laser Doppler flowmetry (see, e.g., de Mul et
al., 1995, and references therein). As for lidar and radar mea-
surements, we can refer to the EarthCARE simulator (EC-
SIM) that is a modular multi-sensor simulation framework,
wherein a fully 3D Monte Carlo forward model can calculate
the spectral polarization state of ATLID lidar signals (Dono-
van et al., 2008; Donovan et al., 2015). A radar Doppler
multiple-scattering (DOMUS) simulator can be run in a full
3D configuration and allows a comprehensive treatment of

nonuniform beam-filling (NUBF) scenarios (Battaglia and
Tanelli, 2011). Note that DOMUS is not a part of ECSIM.

The McRALI simulators (Monte Carlo modeling of
RAdar and LIdar signals) developed at the Laboratoire de
Météorologie Physique (LaMP) are based on 3DMcPOLID
(3D Monte Carlo simulator of POLarized LIDar signals), an
MC code dedicated to simulating polarized active sensor sig-
nals from atmospheric compounds in single- and/or multiple-
scattering conditions (Alkasem et al., 2017). As their core
they use the three-dimensional polarized Monte Carlo atmo-
spheric radiative transfer model (3DMCPOL; Cornet et al.,
2010). Like 3DMCPOL, they use the local estimate method
(Marchuk et al., 1980; Evans and Marshak, 2005) to re-
duce the noise level and take into account the polarization
state of light. Photons are followed step by step through the
cloudy atmosphere. At each interaction, the contribution to
the detector is computed according to the scattering matrix
and the field of view (FOV) of the detector. Variance reduc-
tion techniques proposed by Buras and Mayer (2011) can
be employed for the purpose of reducing noise due to the
strong forward scattering peak and consequently increasing
the computational efficiency. All simulations in this work
were done without application of the variance reduction tech-
niques.

The objective of this work is to describe the latest evolu-
tion of McRALI, which provides the means to simulate high-
spectral-resolution (HSR) lidar and Doppler radar signals.
The organization of this paper is as follows. In Sect. 2, we
explain in detail the methodology used in McRALI to model
spectral properties of lidar or radar data. Two illustrative ap-
plications (i.e., ATLID lidar and CPR radar of the Earth-
CARE mission) of the developed simulator are presented. In
Sect. 3 we briefly investigate errors induced by NUBF to the
EarthCARE lidar and radar measurements with the help of
the academic 3D box cloud. This work is unique in that the
results can be obtained only if the simulator is a fully 3D
Monte Carlo forward model. Conclusions and discussions
are presented in Sect. 4.

2 Modeling of HSR lidar and Doppler radar signals
with McRALI

2.1 General principles for the computation of
frequency-resolved signal

A basic lidar or radar equation can be written as (Weitkamp,
2005; Battaglia et al., 2010)

p(r)=
K (r)

r2 β (r) exp

−2

r∫
0

σext
(
r ′
)

dr ′

 , (1)

where p is the power on the detector from range r , K is the
instrument function, σext (in m−1) is the extinction, and β (in
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m−1 sr−1) is the backscattering coefficient defined as

β = P (π)σs, (2)

where P (π) (in sr−1) is the scattering phase function in the
backward direction and σs (in m−1) is the scattering coeffi-
cient. Whereas the lidar community uses the backscattering
coefficient β, the radar community prefers to use the reflec-
tivity Z related to β as

Z =
4
|Kw|

2

(
λ

π

)4

β, (3)

where |Kw|
2 is a dielectric factor usually assumed for liq-

uid water and λ is the wavelength. Due to its large dy-
namic range, the radar reflectivity factor (usually expressed
in mm6 m−3) is more commonly expressed in decibels rela-
tive to Z (dBZ) and 10log10(Z) is used. Note that the reflec-
tivity given in Eq. (3) is the radar non-attenuated reflectivity.

If the extinction value of the medium tends to zero,
the measured backscatter β̂ (or in the case of radar,
the measured reflectivity Ẑ) is equal to the “true”
backscatter of the medium β (or Z) (Hogan, 2008).
Under single-scattering regimes, in an optically thicker
medium, β̂ (r)= β (r)exp

[
−2
∫ r

0 σext
(
r ′
)

dr ′
]
, and Ẑ (r)=

4λ4β̂ (r)/π4|Kw|
2. β̂ (r) is then also called the attenuated

backscattering coefficient, hereafter also denoted as ATB.
Ẑ (r) is then the attenuated reflectivity. Under multiple-
scattering regimes, there is no rigorous analytical solution
of β̂ (or Ẑ). The common feature of the McRALI codes is
that they provide range-resolved profiles of Stokes parame-
ters S(r)= [I (r) ,Q(r) ,U (r) ,V (r)] and account for emit-
ter and receiver patterns of the lidar (or radar) system.

Generally speaking, high-spectral-resolution lidars of any
type and Doppler radars share the basic principle that use-
ful retrieved data are based on the spectral dependence of
the recorded signals. Consequently, the Monte Carlo forward
simulator has to account for an additional parameter, namely
the frequency shift when a photon interacts with a particle
or the molecular atmosphere. The photon frequency has to
be tracked through all scattering events until the photon is
recorded by a receiver. Of course, it is computationally ex-
pensive to store the frequency value of all received photons.
A solution developed for the needs of laser Doppler flowme-
try (see, e.g., de Mul et al., 1995) was used by Battaglia
and Tanelli (2011) in their DOMUS simulator. It consists
of creating a discrete frequency distribution, which repre-
sents the number of photons with a Doppler shift in a cer-
tain frequency range. We follow that approach in the latest
version of McRALI as our simulators provide Stokes pa-
rameters, S(r,f )=

[
I (r,f ),Q(r,f ),U(r,f ),V (r,f )

]
, tab-

ulated by range r and frequency f at the same time. S(r,f ) is
hereinafter referred to as “idealized polarized backscattered
power spectrum profiles” or simply “power spectra”. In other
words, the result of simulations is a two-dimensional matrix

for each of the computed Stokes parameters, without consid-
ering the Doppler spectrum folding depending on the mea-
surement technology (step 2 in Fig. 1). The generic name
McRALI-FR will be used for our frequency-resolved simu-
lators.

The simulation conditions (step 1 in Fig. 1) consists of set-
ting the 3D optical and dynamical properties of the cloudy
atmosphere, the surface, and main characteristics of the in-
strument (currently monostatic high-spectral-resolution lidar
or a Doppler radar), which are its spatial position, its veloc-
ity, the viewing direction, the frequency and the polarization
state of the emitted radiation, and the shape of the emitter
and the receiver. If at least one of those parameters varies,
the simulation has to be carried out once more even when 3D
cloudy atmosphere properties remain unchanged. Computa-
tions are carried out and profiles of S(r,f ) are stored in out-
put files (step 2 in Fig. 1). Separate software uses the saved
files to account for spectral and polarization characteristics
of receivers and computes profiles of corresponding HSR li-
dar or Doppler radar signals (step 3 in Fig. 1), such as the
particulate and molecular backscattering coefficient profiles
for HSR lidar or reflectivity and Doppler velocity profiles for
Doppler radar.

The next five subsections describe in detail how McRALI-
FR accounts for the Doppler effect, the modeling of transmit-
ter and receiver patterns, and the Lambertian ground surface
and present two examples of the McRALI-FR configuration
in order to simulate the HSR ATLID lidar and the Doppler
CPR radar of the EarthCARE mission.

2.2 Modeling of idealized backscattered power
spectrum profiles

McRALI-FR accounts for phenomena that lead to the fre-
quency shift of the received photon. This is the Doppler ef-
fect, which is due to the motion of gas (negligible for radar
application), aerosol (negligible for radar application), and
cloud particles. We use the term “cloud particles” for precip-
itating hydrometeors as well.

When both the source and the receiver are moving, the
Doppler effect can be expressed in a ground-based frame of
reference as follows (see, e.g., Tipler and Mosca, 2008):

fr = fs

(
1− 1

c
vr · k̂s,r

1− 1
c
vs · k̂s,r

)
, (4)

where fs and fr denote the frequencies; vs and vr are the
velocity vectors; the source and receiver parameters are iden-
tified by the subscripts s and r , respectively; k̂s,r is the unit
vector directed from the source to the receiver; c is the speed
of electromagnetic waves; and a · b denotes the scalar prod-
uct. If the absolute values |vs | and |vr | of the velocities are
both small compared to the speed c, the series expansion of
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Figure 1. Schematic presentation of the McRALI-FR simulator. Once the simulation conditions are defined (step 1), McRALI calculates the
idealized backscatter spectrum (step 2). In the last step (step 3), using dedicated software, the desired quantity profiles are calculated. Note
that cloud extinction between 9 and 10 km of altitude is set to 3 km−1 for both the lidar and radar simulation.

Eq. (4) takes the form

fr = fs

[
1−

1
c
(vr − vs) · k̂s,r

]
, (5)

where the terms of the second order or higher than 1/c are
neglected.

In multiple-scattering conditions, Eq. (5) can be rewritten
for the scattering order i as follows:

fi+1 = fi

[
1−

1
c
(vi+1− vi) · k̂i,i+1

]
, i = 0, 1, . . ., n, (6)

where n is the total number of scattering orders. The fre-
quency f0 of an emitted photon and the vector v0 = vn+1 =

vsat of the satellite velocity belong to the set of input param-
eters for McRALI-FR.

In general, if a photon was scattered by particles n times,
its frequency at the lidar–radar receiver is expressed as fol-
lows:

fn = f0

[
1−

1
c

n∑
i=0

(vi+1− vi) · k̂i,i+1

]
. (7)

All terms of the second order or higher than 1/c are neglected
as above. The unit vector k̂0,1 is directed from the satellite to
the first scatterer; k̂n,n+1 is directed from the last scatterer to
the satellite. It should be noted that Eq. (7) is in agreement
with Eq. (5) of the work by Battaglia and Tanelli (2011),
wherein, at the scattering order i, the frequency shift 1fi
can also be given by

1fi =
f0

c
vi
(
ki−1,i − ki,i+1

)
=
f0

c
vi (ki−1− ki) , (8)

where ki is the unit director vector defined between the scat-
terer i and i+ 1.

Figure 2 shows a schematic diagram of the frequency
shift consideration at each interaction by using the local esti-
mate method. A photon path of two scattering events within
the lidar–radar FOV is represented in red. The velocity of
the first and the second scatterer is v1 and v2, respectively.
At the first and second scattering, the frequency shift is
1f1 =

f0
c

v1 · (k0− k1) and 1f2 =
f0
c

v2 (k1− k2), respec-
tively. At each scattering event, McRALI-FR uses the local
estimate method to compute the contribution to the detec-
tor. For example, at the second scattering event, the total fre-
quency shift is computed as1f2;total =1f1+1f

′
2+1f

′
sat,

where 1f ′2 =
f0
c
v2
(
k1− k′

2
)
, with k′

2 being the direction
from the second scattering event to the detector (dotted blue
line), which works with the local estimate method, and where
1f ′sat =−

f0
c

vsat
(
k0− k′

2
)
, with vsat being the satellite ve-

locity. The frequency shift due to satellite motion is deliber-
ately ignored to simplify the scheme, but it is present in the
codes. Computation of the McRALI-FR power spectrum can
also be performed following the convention of the “Gaussian
approach” proposed by Battaglia and Tanelli (2011).

Note that in the current version of McRALI-FR codes, the
wind velocity can be set by the user or provided by large eddy
simulation models at their grid scale. Sub-grid turbulence
wind velocity is assumed to be homogeneous and isotropic;
the turbulence velocity vector vturb is distributed according to
a Gaussian probability density function (PDF) (see Wilczek
et al., 2011, and references therein). The single-point veloc-
ity PDF has zero mean and the standard deviation σturb for

Atmos. Meas. Tech., 14, 199–221, 2021 https://doi.org/10.5194/amt-14-199-2021



F. Szczap et al.: McRALI: a Monte Carlo high-spectral-resolution simulator 203

Figure 2. Schematic diagram of the frequency shift consideration
along the propagation of photons in scattering medium in the frame-
work of the locate estimate method.

all three coordinates of vturb. The multivariate normal distri-
bution is generated using the Box–Muller method (see, e.g.,
Tong, 1990).

2.3 Modeling of transmitter and receiver pattern

The current version of the McRALI-FR codes only allows
the monostatic configuration of transmitters and receivers of
lidar or radar systems. Lidar–radar systems can be positioned
at any altitude, allowing for ground-based, spaceborne, and
airborne configurations with any viewing direction. The li-
dar transmitter is assumed to be a Gaussian laser beam with
1/e angular half-width θlaser. For instance, a Gaussian laser
beam pattern with 1/e angular half-width θlaser is described
by (Hogan, 2008)

g1 (θ)= exp

[
−

(
θ2

θ2
laser

)]
. (9)

The lidar receiver is assumed to be a top-hat telescope with
a half-angle field of view θFOV, and its pattern can be de-
scribed by (Hogan and Battaglia, 2008)

g2 (θ)=

{
1 ; θ ≤ θFOV
0 ; θ > θFOV.

(10)

Radar transmitters and receivers are assumed to be Gaussian
antennas with a 3 dB half-width θFOV. For instance, a Gaus-
sian antenna pattern with 3 dB half-width θFOV is described
by (Battaglia et al., 2010)

g3 (θ)= exp

[
−ln2

(
θ2

θ2
FOV

)]
. (11)

The lidar and radar transmitter and receiver pointing di-
rection is defined by the zenith 20 and azimuthal φ0 angles.
Direction cosines (u0,v0, w0) of the initial photon leaving

the transmitter, calculated in the same way as Battaglia et
al. (2006), are given by

u0 = a1 cos20 cosφ0− a2 sinφ0+ a3 sin20 cosφ0, (12.1)
v0 = a1 cos20 sinφ0+ a2 cosφ0+ a3 sin20 sinφ0, (12.2)
w0 =−a1 sin20+ a3 cos20, (12.3)

where a1 = x1
(
1+ x2

1 + x
2
2
)1/2, a2 = x2/

(
1+ x2

1 + x
2
2
)1/2,

and a3 = 1/
(
1+ x2

1 + x
2
2
)1/2 with x1 = tanη and x2 = tanξ .

To reproduce the Gaussian pattern of Eqs. (9) and (11), η and
ξ are Gaussian-distributed random numbers with zero mean
and standard deviation equal to θlaser/

√
2 and θFOV/

√
2ln2,

respectively. The multivariate normal distribution is gener-
ated using the Box–Muller method (see, e.g., Tong, 1990).

2.4 Modeling of a Lambertian surface

The current version of the McRALI-FR code uses the Lam-
bertian surface model. The probability that a photon is scat-
tered by the surface is defined by the albedo3. When3= 0,
i.e., the black surface model, it is assumed that all photons are
absorbed by the surface. Otherwise, i.e., 0<3≤ 1, the pho-
ton weight is multiplied by 3. All photons scattered by the
Lambertian surface are depolarized, i.e., have Stokes param-
eters of the form S = [I,0,0,0]. The interaction of a photon
with the surface is treated in the same way as scattering by
a cloud or aerosol particle or the Rayleigh scattering (Cornet
et al., 2010).

First, the new direction of a photon scattered by the surface
is random and it is simulated according to the well-known
algorithm (see, e.g., Mayer, 2009). The azimuth angle ϕ is
chosen randomly between 0 and 2π .

ϕ = 2πq1 (13)

As for the zenith angle θ , its cosine µ= cos(θ) is randomly
drawn using the expression

µ=−
√
q2, (14)

where q1 and q2 are uniform random numbers between 0
and 1.

Secondly, the local estimate technique (Marchuk et al.,
1980) is implemented to calculate at each scattering point
the contribution of the photon in the direction of the sensor.

Figure 3 shows as an example of the two lidar signals as a
function of the distance from the lidar position for two view-
ing directions (nadir and inclined at 24.7◦, chosen so that
the distance to the ground is 11 km). The lidar altitude is
10 km, the laser divergence is 0.0007, and the field of view
of the receiver is 0.005 rad. An aerosol layer between alti-
tudes of 2 and 3 km has an optical thickness of 0.15. The
single-scattering albedo of 0.91888 and the phase function
were computed with the refractive index and microphysical
parameters of the coarse mode of desert dust, assuming that
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Figure 3. Profiles of the attenuated backscatter (ATB) coefficient
(black – nadir-looking, red – inclined at 24.7◦) as a function of the
distance from the lidar position. The lidar altitude is 10 km.

particles are spheroids with a distribution of the aspect ratio
(Dubovik et al., 2006). The albedo of the Lambertian surface
is set to 1.

For the nadir direction example, the layer at distances be-
tween 7 and 8 km that exhibits large values of the backscat-
ter coefficient corresponds to the aerosol layer between 2 and
3 km in altitude. At a distance of 10 km, the very large value
of the backscatter coefficient corresponds to the echo from
the surface. Then, for distances larger than 10 km, the lidar
signal drastically decreases. But for the distances from 12
to 13 km, another layer can be observed. That layer corre-
sponds to a third and higher order of scattering. In this partic-
ular case, the triple scattering is of the type “surface–aerosol
layer–surface”. It is also called the mirror image and refers
to reflectivities measured by airborne or spaceborne radars at
ranges beyond the range of the surface reflection (see, e.g.,
Battaglia et al., 2010). It should be underscored that the mir-
ror image disappears when, during a simulation, one photon
can undergo no more than two scatterings. The same behav-
ior is observed for the case of the inclined viewing direc-
tion. The position of the aerosol layer, the surface echo, and
the mirror image shifts in agreement with corresponding dis-
tances from the lidar.

The signal-to-noise ratio (SNR) of lidars is generally much
lower than the SNR of radars. Thus, in practice it is im-
possible to observe a mirror image with a spaceborne lidar,
contrary to a spaceborne radar. Results presented in Fig. 3
should be considered a numerical and theoretical exercise
that demonstrates the McRALI capacities. The simulations
were performed with a very high number of photon trajec-
tories so that the numerical noise of the McRALI simulator
is very low. Under these idealized simulation conditions, we
show that McRALI is able to simulate lidar–radar systems

with inclined sighting by taking into account the properties
of the Lambertian surface, but also the mirror images (as it
is seen in certain radar observations). It should be noted that
to make the mirror image appear in this simulation, we have
imposed a maximum surface albedo equal to 1.

2.5 Doppler radar CPR/EarthCARE configuration

2.5.1 Modeling gas absorption

At 94 GHz (3.2 mm, W band), the attenuation by atmospheric
gas is mainly due to absorption of water vapor and oxygen
(Liebe, 1985; Lenoble, 1993; Liou, 2002). The attenuation A
(in dB km−1) by water vapor and oxygen in McRALI codes
is computed from Liebe (1985) tabulations. Absorption coef-
ficient σabs (in km−1) is given by σabs = 0.2303A. Absorp-
tion and scattering are treated separately in McRALI codes,
as is done in 3DMCPOL (Fauchez et al., 2014), whereby ab-
sorption is considered by a photon weight wabs according
to the Lambert–Beer law (Partain et al., 2000; Emde et al.,
2011):

wabs = e
−
∫ s

0 σabs(s′)ds′ , (15)

where ds′ is a path element of the photon path.

2.5.2 Doppler spectrum and its relation to reflectivity,
Doppler velocity, and spectral width

The Doppler radar community uses the Doppler spectrum
S(r,v), a power-weighted distribution of the radial velocities
v in the velocity range dv of the scatterers (Doviak and Zrnić,
1984). McRALI-FR codes dedicated to Doppler radar simu-
lations compute S(r,v) by using the first Stokes parameter
I (r,f ) and the Doppler formula v = cf/2f0. We follow the
convention that the Doppler velocity is positive for motion
away from the radar. The backscattering coefficient profile
β (r) is then given by

β(r)=

+∞∫
−∞

I (r,v)dv. (16)

The reflectivity Z(r) profile is computed using Eq. (3) and
β (r). The Doppler velocity profile VDop (r) is defined as

VDop (r)=

∫
+∞

−∞
vI (r,v)dv∫

+∞

−∞
I (r,v)dv

, (17)

and the Doppler velocity spectral width profile σDop (r) is
obtained from

σ 2
Dop (r)=

∫
+∞

−∞

[
v−VDop (r)

]2
I (r,v)dv∫

+∞

−∞
I (r,v)dv

. (18)

Figure 4 shows, as an example, a simulation of the
Doppler power spectrum, the Doppler velocity, the Doppler
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velocity spectral width, and the reflectivity profiles for a
CPR/EarthCARE-like radar for a homogenous iced cloud
layer with fixed 6 m s−1 downdraft at all altitudes (see de-
tails of the conditions of the simulation in Table 1) with
(σturb = 0.5 ms−1) and without (σturb = 0 ms−1) sub-grid tur-
bulent wind. In a first step, McRALI-FR codes dedicated
to Doppler radar simulations compute the idealized Doppler
power spectrum density S(rv). The first Stokes parameter
I (r,v) of the Doppler spectrums (with and without sub-grid
turbulent wind) are shown in Fig. 4a and b, respectively.
Then, in a second step, software computes the reflectivity,
the Doppler velocity, and the Doppler velocity spectral width
profiles with Eqs. (16), (17), and (18), respectively. Multiple-
scattering (MS) and single-scattering (SS) Doppler velocity
profiles are superimposed on the MS Doppler spectrum. MS
and SS Doppler velocity values are constant within the cloud
layer (between 9 and 10 km of altitude) and are equal to the
“true” 6 ms−1 vertical velocity, whatever the wind turbulence
value is. Due to multiple-scattering processes, the apparent
Doppler velocity of 6 ms−1 can be observed between the
cloud-base altitude and the ground, contrary to the SS appar-
ent Doppler velocity, which appears only in the cloud layer.

In Fig. 4c the MS and SS Doppler velocity spectral width
profiles are drawn. Under the SS approximation, the Doppler
velocity spectral width σDop is given by (Kobayashi et al.,
2003; Battaglia et al., 2013) σ 2

Dop = σ
2
hydro+ σ

2
shear+ σ

2
turb+

σ 2
motion, where σhydro is due to the spread of the terminal

fall velocities of hydrometeors of different size, σshear is the
broadening due to the vertical shear of vertical wind, σturb is
the broadening of the vertical wind due to turbulent motions
in the atmosphere, and σmotion is the spread caused by the
coupling between the platform motion and the vertical wind
shears of the horizontal winds. For a Gaussian circular an-
tenna pattern, assuming zero fall velocities of hydrometeors
and no wind shear, σDop is given by (Tanelli et al., 2002)

σ 2
Dop = σ

2
turb+

(
θFOVvsat

2
√

ln(2)

)2

, (19)

where vsat is the satellite velocity relative to the ground and
θFOV is the Gaussian (3 dB) FOV half-angle.

Simulated SS Doppler velocity spectral widths with-
out turbulence and with turbulence are close to 3.58 and
3.62 m s−1, respectively. Both computed values are very
close to theory-predicted values. On the other hand, MS pro-
cesses together with sub-grid turbulent wind are a source
of broadening. For example, at 2 km under the cloud base,
σDop = 3.75 m s−1, which is larger than the SS value.

Vertical profiles of MS and SS reflectivity are shown in
Fig. 4d. These profiles are not sensitive to the wind turbu-
lence. MS processes are a source of enhancement of the re-
flectivity compared to the SS reflectivity and the apparent
reflectivity that can be observed under the cloud layer.

Figure 4. Estimated Doppler spectrum moments for a Doppler
CPR/EarthCARE-like radar. (a) Doppler spectrum without wind
turbulence. Doppler velocity profiles are superimposed (MS: dot-
ted line, SS: cross). (b) Same as (a), but with wind turbulence.
(c) Vertical profiles of MS (full lines) and SS (crosses) Doppler
spectrum width with wind turbulence (red) and without wind turbu-
lence (blue). (d) Vertical profiles of MS (full lines) and SS (crosses)
reflectivity with wind turbulence (red) and without wind turbulence
(blue). The altitude of the base of the iced homogeneous cloud layer
(optical depth of 3) is 9 km. Its geometrical thickness is 1 km.

2.6 High-spectral-resolution (HSR) lidar
ATLID/EarthCARE configuration

2.6.1 Modeling of the emitted laser energy spectrum

The laser transmitter of the ATLID instrument has spec-
tral requirements with a spectral line width below 50 MHz
(Hélière et al., 2017). In McRALI-FR codes, the frequency of
the emitted radiation is drawn randomly according to a Gaus-
sian law of average f0 with a 1/e half-width σf0 = 50 MHz.

2.6.2 Modeling of thermal molecular velocity
distribution

The current version of McRALI-FR codes assumes that each
component of molecular velocity is distributed according to
the Maxwell–Boltzmann density function with null mean and
standard deviation a given by

a =

√
kT

m
, (20)

where k is the Boltzmann’s constant, T is the temperature,
and m is the molecular mass of gas. The multivariate nor-
mal distribution is generated using the Box–Muller method.
As a next step, we plan to take into account spontaneous
Rayleigh–Brillouin scattering.
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2.6.3 Relation of the HSR spectrum to molecular and
particulate backscattering coefficient: modeling
of a Fabry–Pérot interferometer

One of the important features of HSR lidars is the possibility
to retrieve profiles of particle extinction and the backscatter-
ing coefficient without the need for additional information on
the lidar ratio (Shipley et al., 1983; Ansmann et al., 2007, and
references therein). HSR technology relies on the principle
of measuring the Doppler frequency shift resulting from the
scattering of photons by molecules (referred to as molecular
scattering or Rayleigh scattering) and by particles (referred
to as particulate scattering or Mie scattering). The character-
istic shape of the HSR spectrum depends on both these two
scattering processes: a broad spectrum of low intensity for
molecule scattering and a narrow peak of large intensity for
particle scattering.

The spectral width of the particle peak will be determined
by the spectral width of the laser pulse itself along with
any turbulence present in the sampling volume. The spec-
tral width of the ATLID laser will be on the order of 50
MHz so that the laser line width will be the dominant factor.
Thus, the molecular backscatter will be much broader than
the particulate-scattering return. This is due to the fact that
atmospheric molecules have a large thermal velocity. Assum-
ing a Gaussian molecular thermal velocity distribution with
a half-width at 1/e of the maximum, molecular broadening
γm can be written (Bruneau and Pelon, 2003) as

γm =
2
λ0

√
2kT
m
. (21)

If T = 230 K, then γm is of the order of 2 GHz, which is
about 40 times larger than the laser line width. Thus, using
interferometers (such as the Fabry–Pérot (FP) interferometer
equipping the ATLID/EarthCARE lidar) and appropriate sig-
nal processing (Hélière et al., 2017), the molecular and par-
ticulate contributions of the lidar backscattered signal can be
separated. Then particulate and molecular backscattering co-
efficient profiles (attenuated or apparent attenuated backscat-
tering coefficient or simply attenuated backscatter, also de-
noted as ATB) can be separately determined. In this study,
we suppose that the FP interferometer has the following pa-
rameters. The free spectral range is 7.5 GHz, the finesse is
10, and the FP is centered at the wavelength 355 nm. The
cross-talk effects were taken into account according to the
work by Shipley et al. (1983). The coefficients of the cross-
talk correction were computed using an Airy function (see,
e.g., Vallée and Soares, 2004), which describes the FP trans-
mission spectrum, assuming a Gaussian molecular thermal
velocity distribution with a half-width at 1/e of the maxi-
mum γm (Eq. 21). This method determines four calibration
coefficients corresponding to the fraction of cloud–aerosol
backscatter in the molecular and particulate channels (Cam
and Caa, respectively), as well as the fraction of molecular
backscatter in the molecular and particulate channels (Cmm

and Cma, respectively). The calculation method of these co-
efficients is described in detail in Shipley et al. (1983). As an
indication, for the present study in the ATLID/EarthCARE
lidar configuration, these coefficients have the following val-
ues: Cmm = 0.543, Cma = 0.457, Caa = 0.998, and Cam =

0.002. Note that the cross-talk coefficients used in this pa-
per assume ideal behavior of the ATLID FP interferometer.
In practice, the Airy function will be “blurred” due to the
effects of nonideal collimation of the beam, frequency jit-
ter, surface roughness, and so on. All these factors combine
to decrease the peak transmission and lower the full-width
at half-maximum (see the Fig. 9 in Pereira do Carmo et al.,
2019). It is important to keep in mind that all the calculations
shown in this paper are merely “EarthCARE-like” but with
an idealized modeled FP interferometer.

Figure 5 shows particulate and molecular ATB profiles for
an ATLID/EarthCARE-like lidar. We consider in this exam-
ple an ice cloud corresponding to a homogenous layer with
an optical depth 3 between 9 and 10 km in altitude (see de-
tails of the simulation conditions in Sect. 3.1). In the first
step, McRALI-FR codes, dedicated to HSR lidar simula-
tions, compute the HSR spectrum S(rf ). The first Stokes pa-
rameter I (r,f ) of the MS HSR spectrum is shown in Fig. 5a.
The peak of intensity (in red) centered at 0 GHz between
9 and 10 km of altitude corresponds to the position of the
cloud. It is the contribution of the cloud particles (the so-
called “Mie contribution”). This spectrum is also character-
ized by the molecular contribution (Rayleigh contribution).
The intensity of the spectrum below the cloud is lower than
the intensity of the spectrum above the cloud due to particu-
late extinction. In Fig. 5b, the MS (computed with McRALI-
FR) and SS (computed from SS theory) vertical profiles of
spectral width are represented. We note very good agreement
between the SS theoretical and MS simulated values at both
the cloudy and molecular levels. This suggests that MS ef-
fects have very little impact on spectral width. Then, in a sec-
ond step, a simulated FP interferometer separates the partic-
ulate contribution from the molecular contribution and pro-
vides the vertical profiles of particulate and molecular ATB
as shown in Fig. 5c. The total ATB calculated directly from
the spectrum, SS molecular, and SS particulate backscatter
profiles is also represented. Above the cloud, particulate ATB
is not strictly zero and molecular ATB is not strictly equal to
total ATB because of the FP remaining cross-talk effects (see
above). In the cloudy part between 9 and 10 km of altitude,
the molecular and particulate ATB logically decrease expo-
nentially with depth. The SS backscatter profiles decrease
faster with depth than the MS backscatter profiles, revealing
that MS effects on ATB are not negligible. Under the cloud,
molecular ATB is almost equal to total ATB. It is likely worth
pointing out the quasi-exponential decay of the below-cloud
molecular return towards single-scattering levels. This result
is consistent with the cases shown by Donovan (2016). Par-
ticulate ATB is almost zero. Some nonzero values exist due
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Figure 5. (a) Vertical profile of MS HSR spectrum for an ATLID-
like lidar. (b) Spectral width profiles. SS and MS spectral width
profiles computed by McRALI (circle) are in green and red, respec-
tively. Theoretical SS molecular and SS particulate width profiles
(full line) are in black and blue, respectively. (c) Vertical profiles of
the MS (line) and SS (circle) backscattered coefficient (ATB). To-
tal, molecular, and particulate signals are in black, green, and red,
respectively. The altitude of the base of the iced homogeneous cloud
layer (optical depth of 3) is 9 km. Its geometrical depth is 1 km.

to FP cross-talk effects but also due to Monte Carlo noise and
MS processes.

3 Assessment of errors induced by NUBF on lidar and
radar data

The objectives of this section are to investigate the effects of
a cloudy atmosphere having 3D spatial heterogeneities un-
der a multiple-scattering regime on HSR lidar and Doppler
data by using McRALI-FR simulators. One of the simplest
shapes of heterogeneous cloud to study this kind of effects is
the idealized “step” cloud defined in the international Inter-
comparison of 3D Radiation Codes (I3RC) phase 1 (Cahalan
et al., 2005). The main interest is to model behavior in the
vicinity of the single isolated jump in optical depth. With
this in mind, we prefer to use an even more simplistic cloud
model, the box cloud, described in the following paragraph.
A detailed statistical analysis at different averaging scales of
representative fine-structure 3D cloud field effects on lidar
and radar observables is beyond the scope of this paper and
will be investigated in a future work.

3.1 Conditions of simulation and definition of the box
cloud

The box-cloud base altitude is 9 km, its geometrical thick-
ness is 1 km, and its x-horizontal and y-horizontal extension
is 2 km and infinite, respectively. Temperature and pressure
vertical profiles assume 1976 US standard atmosphere mod-
els. Optical cloud properties are characterized by the extinc-
tion coefficient set to 0.1, 1.0, and 3 km−1.

Figure 6 shows a representation of two specific positions
of a spaceborne lidar–radar system relative to the idealized
box cloud. Cloud optical properties are spatially homoge-

Figure 6. Schematic representation of two specific positions of a
spaceborne lidar–radar system relative to the idealized box cloud.
The box-cloud base altitude is 9 km, its geometrical thickness is
1 km, and its x-horizontal and y-horizontal extension is 2 km and in-
finite, respectively. The cloud vertical extinction profile is constant.
In the two positions, single- and multiple-scattering photon path ex-
amples are represented by green and red arrows, respectively.

neous within the box cloud. When the lidar–radar system is
just above the cloud edge, the NUBF effect can be signifi-
cant, whereas it is null when the system is completely over
the cloud. Table 1 summarizes the conditions of McRALI-FR
simulations for data from the HSR ATLID lidar and Doppler
CPR radar of the EarthCARE mission when the heteroge-
neous box cloud is considered.

At a wavelength of 355 nm (lidar configuration), gas scat-
tering properties are based on Hansen and Travis (1974).
Gas Doppler broadening is computed assuming a Maxwell–
Boltzmann distribution as presented in Sect. 2.4.1. The scat-
tering matrix was computed for a gamma size distribu-
tion of ice crystals having an effective diameter of 50 µm
and the aspect ratio of 0.2. The refractive index value was
1.3243+ i× 3.6595× 10−9; the surface of particles was as-
sumed to be rough (Yang and Liou, 1996). Optical charac-
teristics were computed using the improved geometric optics
method (IGOM) (Yang and Liou, 1996). The asymmetry pa-
rameter is g = 0.73, which is in agreement with experimen-
tal data for cirrus clouds (Gayet, 2004; Shcherbakov et al.,
2006). Single-scattering albedo is set to 1.0.

At 94 Ghz (radar configuration), we assumed a Henyey–
Greenstein phase function with an asymmetry parameter g =
0.6. Single-scattering albedo is set to 0.98. These last two
values are taken from Battaglia and Tanelli (2011) for a sce-
nario involving a deep convective core with graupel. Wind
vertical velocity (downdraft) is set to 6 ms−1. We assume
no wind turbulence nor particle sedimentation velocity. For
a cloud layer at an altitude of around 9 km, the pressure,
temperature, and relative humidity can be set to 308 hPa,
229.7 K, and 100 %, respectively (1976 US standard atmo-
sphere); then gas absorption σabs ≈ 2× 10−5 km−1. We as-
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sumed that this value is small enough to neglect the gas ab-
sorption for the simulations carried out in this work.

Spacecraft velocity and altitude are set to vsat =

7.2 km s−1 and 393 km, respectively. The lidar–radar system
pointing angle is set to 0◦. The lidar transmitter is assumed
to be a Gaussian laser beam with 1/e angular half-width
θ = 22.5 µrad. The lidar receiver is assumed to be a top-hat
telescope with a half-angle field of view θFOV = 32.5 µrad,
which represents a ground beam footprint of around 30 m.
Radar transmitters and receivers are assumed to be Gaussian
antennas with a 3 dB half-width θ = θFOV = 0.0475◦, which
represents a ground beam footprint of around 660 m.

McRALI-FR code simulates the multiple-scattering and
single-scattering idealized HSR and Doppler spectrum for li-
dar and radar configurations, respectively. Lidar spectra are
computed for five positions (x-horizontal ground-projected
distance) relative to the box-cloud edge. Lidar position val-
ues are x =−8.6,−4.0,0,4.0, and 8.6 m. Indeed, the ratio
(we also talk about cloud coverage) of the cloudy part in-
side the ATLID lidar FOV divided by the full lidar footprint
area at the altitude of 10 km is 10 %, 30 %, 50 %, 70 %, and
90 %, respectively. Then, software computes apparent molec-
ular and particulate backscattering coefficient profiles, as-
suming that the ATLID/EarthCARE lidar is equipped with
FP interferometers (see Sect. 2.5.3). For the radar config-
uration, simulations are carried out every 100 m; Doppler
spectra are computed for position values fixed at x =−500,
−250, 0, 250, and 500 m. Then, software computes reflectiv-
ity, Doppler velocity, and Doppler velocity spectrum width
profiles with the help of Eqs. (16), (17), and (18).

3.2 CPR/EarthCARE configuration

3.2.1 NUBF effects on Doppler radar data: Doppler
spectrum and reflectivities

Figure 7a–e show vertical profiles of MS radar Doppler
spectra density in the CPR/EarthCARE configuration corre-
sponding to the five positions of the satellite relative to the
edge of the box cloud with optical depth set to 3. Regard-
less of the satellite position, Doppler spectra correspond to
negative Doppler velocity values. This is consistent with the
convention that the Doppler velocity is positive for motion
away from the radar. As the satellite approaches the edge
of the cloud and carries on, the NUBF effect decreases. In-
deed, the Doppler spectrum becomes more and more sym-
metrical. The asymmetric shape of the Doppler spectrum is
due to zero values beyond a critical value of Doppler veloc-
ity vcrit. As an example, vcrit ≈−3.4 ms−1 in Fig. 7a. The
explanation of the vcrit value is purely geometric. Doppler
broadening is dominated by Doppler fading due to satellite
motion. Under the SS approximation, neglecting wind ve-
locity, the Doppler shift is given by1v = 1/2vsat

(
k0− k′

1
)
,

with k0 =−k′1. Assuming vsat with an x-horizontal positive
component, k0, in the (z–x) vertical plan and with kx as the

x-horizontal component, then 1v =−vsatkx . Assuming that
satellite is at the x-horizontal d distance to the box-cloud
edge and at the z-vertical D distance above the cloud, with
a vertical (downdraft) wind velocity vwind fixed at 6 ms−1,
then vcrit =−vsatd/

(
d2
+D2)1/2

+vwind. For x =−500, x =
−250, x = 0, x = 250, and x = 500 m, vcrit =−3.4, vcrit =

−1.3, vcrit = 6, vcrit = 10.7, and vcrit = 15.4 m s−1, respec-
tively. These values are very close to those estimated from
the five respective power spectra in Fig. 7.

Figure 7f also shows the five reflectivity profiles corre-
sponding to the five positions of the satellite relative to the
edge of the box cloud. MS reflectivity profiles are larger than
SS reflectivity profiles because MS processes logically in-
crease the reflectivity value. We can also see MS effects on
the apparent reflectivity that is non-null under the cloud layer,
contrary to the SS apparent reflectivity. At the same time,
as the satellite approaches the edge of the cloud and keeps
moving forward, SS and MS apparent reflectivity profile val-
ues increase due to the fact that the NUBF effect decreases.
Many studies have focused on the NUBF effect on rain fields
retrieved by radar from space (Amayenc et al., 1993; Testud
et al., 1996; Durden et al., 1998; Iguchi et al., 2009). Iguchi et
al. (2000) showed that the NUBF effect could be accounted
for by a factor determined from horizontal variation of the at-
tenuation coefficient. Our simulations are coherent with the
literature. A detailed investigation of the NUBF effect on re-
flectivity profiles for spaceborne cloud radar will be carried
out in a later work.

3.2.2 NUBF effects on Doppler velocity and Doppler
spectrum width

Figure 7 shows the SS and MS vertical profiles of Doppler
velocity superimposed on the five power spectra for the five
positions of the satellite relative to the box-cloud edge: x =
−500, −250, 0, 250, and 500 m. Since each power spectrum
has no value beyond the vcrit velocity, which is due to the
NUBF effect, it is obvious that the profile of the apparent
Doppler velocity is different from the profile of the vertical
wind velocity fixed at 6 ms−1. Figure 8 shows the MS and
SS apparent Doppler velocity and Doppler spectrum width
computed every 100 m along the horizontal axis. These quan-
tities are estimated at different altitudes (cloud top, middle,
and base) and are plotted as a function of the satellite dis-
tance to the box-cloud left edge. Differences between appar-
ent Doppler velocities are in general small (around 1 m s−1)

whatever the altitude is, and differences between MS and SS
Doppler velocities are also small, no larger than 1 m s−1 at
the bottom of the cloud. The same conclusions can be drawn
for the Doppler spectrum width at which differences are no
larger than 0.3 m s−1. This implies that MS processes do
not play an important role in the estimation of the apparent
Doppler velocity or in the estimation of apparent spectrum
width (for the specific conditions of simulation with the box
cloud) compared to the NUBF effect. The NUBF Doppler
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Table 1. Description of the simulation conditions presented in this work. This table summarizes the characteristics of the ATLID/EarthCARE-
type lidar and the CPR/EarthCARE-type radar as well as properties of a cloudy atmosphere and quantities computed by McRALI-FR codes.

ATLID/EarthCARE-type lidar CPR/EarthCARE-type radar

Characteristics of lidar and radar systems

Spacecraft altitude 393 km 393 km
Projected spacecraft velocity 7.2 kms−1 7.2 kms−1

Wavelength or frequency 355 nm 94 GHz
Pointing angle 0◦ 0◦

Emitter model and beam half-width Gaussian (1/e), 22.5 µrad Gaussian (3 dB), 0.0475◦

Receiver model and FOV half-angle Top hat, 32.5 µrada Gaussian (3 dB), 0.0475◦

Beam footprint ∼ 26 m ∼ 650 m

Characteristics of a cloudy atmosphere

Temperature and pressure vertical profiles US standard atmosphere model (1976) No gasd

Gas optical properties vertical profile Hansen and Travis (1974) No gasd

Gas Doppler broadening Maxwell–Boltzmann distribution –
Geometry of box-cloud model x wide = 2 km, y depth = 100 km, z thickness= 1 km
Cloud-top and cloud-base altitude 9–10 km
Cloud geometrical depth 1 km
Cloud extinction 0.1, 1.0, 3 km−1

Single-scattering albedo 1.0 0.98

Cloud phase function Reff = 25 µm (Yang and Liou, 1996) Henyey–Greenstein
Rough ice crystals

Asymmetry parameter 0.73 0.6
Interferometer Fabry–Pérot –
Vertical wind velocity 0 ms−1 6 ms−1 (downdraft)e

Wind turbulence (standard deviation σturb
of Gaussian isotropic model)

0 ms−1 0 ms−1

Particle sedimentation velocity 0 ms−1 0 ms−1

Simulated quantities from idealized range- and frequency-resolved Stokes parametersb

Relative horizontal position of the lidar–
radar system to the cloud edge

x = −8.6, −4.0, 0, 4.6 and 8.6 m x = −500, −250, 0, 250 and 500 mf

Power spectrum profiles High-spectral-resolution spectrum Doppler spectrum

Vertical profiles Backscatter, depolarization ratio Width, reflectivity
Molecular, particle, and total Doppler velocity, Doppler spectral

Vertical resolutionc 100 m 100 m
Power spectrum interval resolution 0.01 Hz 1 ms−1

a Other simulations are performed with an FOV half-angle of 325 µrad. b Idealized means that receiver noise, along-track integration, and Nyquist folding are
ignored. c ATLID and CPR vertical resolution is 100 m from −1 to 20 km in height. d Gas absorption (Liebe, 1985) can be taken into account. e A specific case with
a two-layer cloud with 6 and −6 ms−1 vertical wind velocity in the top layer and bottom layer, respectively, is also studied. f For radar configurations, simulations
are also carried out every 100 m according to the horizontal distance.

velocity bias between apparent Doppler velocity and “true”
vertical wind velocity fixed at 6 m s−1 is around −10, −5,
−3, −2, and −1 ms−1 at x =−500, −250, 0, 250, 500 m,
respectively.

In general the NUBF bias of Doppler velocity can be
expressed as a function of the distribution of the radar re-
flectivity (Tanelli et al., 2002). An estimate of the NUBF
bias of Doppler velocity can be obtained by considering
the difference between the Doppler velocity computed with

a satellite velocity (i.e., vsat = 7.2 kms−1) and the Doppler
velocity computed with a satellite velocity set to 0 m s−1

(Battaglia et al., 2018). Sy et al. (2014) showed that the
NUBF bias of Doppler velocity is correlated with the hori-
zontal gradient of reflectivity and demonstrated that the the-
oretical proportional coefficient α value is bounded between
0.165 and 0.219 m s−1 (dBZ km−1)−1. Kollias et al. (2014)
estimated this proportional coefficient value close to α =

0.23 m s−1 (dBZ km−1)−1 for along-track horizontal integra-
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Figure 7. Vertical profiles of MS radar Doppler spectra (logarithm of the spectral density; in m−1 sr−1 (m s−1)−1) in the CPR/EarthCARE
configuration corresponding to the five positions x =−500 m (a), x =−250 m (b), x = 0 m (c), x =+250 m (d), and x =+500 m (e) of the
satellite relative to the edge of the box cloud. SS (black line) and MS (black dotted line) vertical profiles of Doppler velocity are superimposed.
The vertical wind velocity profile (downdraft) fixed at wwind = 6 m s−1 during our simulation is also drawn (black dotted line). (e) The five
reflectivity (in dBZ) profiles (MS: full lines, SS: dotted lines) corresponding to the five positions (x =−500 in blue, x =−250 in red,
x = 0 m in brown, x = 250 m in green, and x = 500 m in magenta) relative to the edge of the box cloud. Cloud optical depth is 3.

Figure 8. MS (full lines) and SS (dotted line) apparent Doppler
velocity and Doppler spectrum width as a function of the distance of
the satellite relative to the box-cloud left edge. Values are computed
at cloud top (10 km of altitude, in red), middle (9.5 km of altitude,
in blue), and base (9 km of altitude, in green). Optical thickness of
the box cloud is 3. Simulations are done every 100 m.

tion of 500 m (i.e., Doppler CPR/EarthCARE resolution) and
for all their available simulations performed with a cirrus
cloud and a precipitation system. Figure 9 shows the Doppler
velocity NUBF bias as a function of the horizontal reflec-
tivity gradient for a horizontal integration of 500 m at four
positions relative to the box-cloud edge (−200, 100, 0, and
100 m). Computations are carried out for different optical

depths of the box cloud of 0.1, 1, and 3. We note that the
α value is between 0.14 and 0.16 m s−1 (dBZ km−1)−1 and
is almost independent of the position of the satellite relative
to the box-cloud edge. If the satellite position is just above
the cloud edge, the proportional coefficient value is close to
0.15 m s−1 (dBZ km−1)−1, a value close to that obtained by
Sy et al. (2014).

3.2.3 Effects of vertically heterogeneous wind velocity
on Doppler velocity

A first study of the effects of multiple scattering on the
Doppler velocity vertical profile in the case of vertically het-
erogeneous wind velocity is carried out for a very specific
case in the CPR/EarthCARE configuration. Indeed, for a ho-
mogeneous cloud layer with a base altitude of 9 km and
with a geometrical thickness of 1 km, the vertical velocity
is set to 6 m s−1 (downdraft) and −6 m s−1 (updraft) in the
upper and lower part of the cloud layer, respectively. Fig-
ure 10 shows vertical profiles of the MS radar Doppler spec-
trum and the MS and SS Doppler velocity profiles computed
with McRALI-FR. The measured Doppler velocity under the
SS regime (black dotted line in Fig. 10) is equal to 6 m s−1

(−6 m s−1) in the upper (lower) part of the cloud, and the
SS Doppler velocity can be used as the reference of the true
velocity. In the upper part of the cloud, the measured MS
Doppler velocity is 6 m s−1, which equals the true velocity.
In the lower part of the cloud, the measured MS Doppler ve-
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Figure 9. NUBF velocity bias as a function of the horizontal re-
flectivity gradient for a horizontal integration of 500 m, estimated
for four positions relative to the box-cloud edge: −200 m (red),
−100 m (blue), 0 m (green), and +100 m (brown). Optical depths
of the box cloud are 0.1, 1, and 3. Vertical (downdraft) veloc-
ity is set to 6 m s−1. The proportional coefficient value α (in
m s−1 (dBZ km−1)−1) between NUBF velocity bias and horizon-
tal reflectivity gradient is also given.

locity is biased by multiple-scattering processes with a value
not smaller than −3 m s−1, contrary to the true velocity of
−6 m s−1 in this cloudy part. For altitudes lower than 7 km,
we can also note that multiple-scattering processes can lead
to a Doppler velocity lower than −6 m s−1.

3.3 ATLID/EarthCARE configuration

3.3.1 NUBF effects on the HSR lidar data

In order to investigate the NUBF effects on HSR lidar ob-
servables under MS regimes we firstly compare simulation
results carried out with the box cloud (full 3D simulation)
and an optical depth equal to 3 (hereafter called 3D cloud) to
simulations performed with the plane-parallel and homoge-
neous cloud model (hereafter called PP cloud) as well as with
the independent column approximation (or independent pixel
approximation) cloud model (hereafter called ICA cloud).
PP theory and the ICA assumption are commonly used to
assess the radiative effects of inhomogeneous cloud when
cloud unresolved variability and net horizontal fluxes, re-
spectively, are ignored (Marshak and Davis, 2005). For the
specific case of the satellite position relative to the box-cloud
edge x =−4.0 m (see Fig. 11a), and the cloud coverage α in-
side the lidar receiver FOV is 30 % (see Sect. 3.1). As cloud
optical depth (COD) is set to 3, this implies that mean COD
weighted by the cloud coverage inside the lidar footprint is
0.9, the assigned value for the optical depth of the PP cloud
(Fig. 11b). In other words, the PP profile can be considered a
profile computed for a homogeneous cloud with optical depth
equal to the mean optical depth of the cloudy part weighted
by the cloud cover of the 3D cloud. The ICA simulation is
carried out by averaging 30 % of a simulation with a homo-

Figure 10. Vertical profiles of an MS radar Doppler spectrum
(logarithm of the spectra density; in m−1 sr−1 (m s−1)−1) in the
CPR/EarthCARE configuration simulated by McRALI-FR. The MS
Doppler velocity (black line) and SS (black dotted line) vertical pro-
files of Doppler velocity are superimposed. The homogeneous cloud
layer base altitude is 9 km; its geometrical thickness is 1 km. The
vertical velocity is set to 6 m s−1 (downdraft) and −6 m s−1 (up-
draft) in the upper and lower part of the cloud layer, respectively.
Optical depth is 3.

geneous cloud with COD of 3 % and 70 % of a simulation in
a clear-sky atmosphere (Fig. 11c). In other words, ICA pro-
files can be considered a profiles averaged over columns (two
columns in this case) weighted by the cloud coverage.

Figure 12 shows the HSR spectra simulated by McRALI-
FR for the three cloud models at four altitude levels: above
the cloud (12 km, Fig. 12a), at cloud top (9.8 km, Fig. 12b)
and base (9.2 km, Fig. 12c), and below the cloud (8.5 km,
Fig. 12d). In the clear-sky region above the cloud (Fig. 12a),
the three frequency spectra line up very well, as expected,
because the lidar laser beam has not yet been scattered
by the cloud. A similar feature is observed at cloud top
(Fig. 12b), whereas a few spikes can be seen in the molecu-
lar broad spectrum. Deeper in the cloud (Fig. 12c) and below
(Fig. 12d), spikes are more numerous with higher intensity.
These spikes are simulation artifacts. They are caused by spe-
cific events of multiple scattering, namely by cases when for-
ward scattering is involved during a photon random path. For
example, the photons can first be scattered by air molecules,
inducing a large frequency shift, then by cloud particles, in-
ducing a large contribution due to the highly forward-peaked
phase function. The scattering phase function of ice parti-
cles spans about 6 orders of magnitude. Thus, the forward-
scattered photons have a weight that is several orders of mag-
nitude larger than those scattered in other directions. At the
same time, such cases occur rarely. Consequently, we should
carry out simulations with an unrealistic number of photons
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Figure 11. Conceptual representation of cloud models used for the HSR lidar simulations: (a) box-cloud model (3D), (b) plane-parallel and
homogeneous (PP) model, and (c) independent column approximation (ICA) cloud. The purple circles represent the lidar footprint location
for the simulations.

Figure 12. Normalized HSR power spectra (a) above the cloud
(12 km of altitude), (b) at cloud top (9.8 km of altitude), (c) at cloud
base (9.2 km of altitude), and (d) below the cloud (at 8.5 km of alti-
tude). Black lines represent simulations using the PP cloud model,
purple lines the ICA cloud model, and green lines the 3D box-cloud
model.

emitted by the lidar to smooth spikes, which is not possi-
ble. Spikes are not observed in simulations under the single-
scattering regime (not shown here).

One can clearly see that the intensity of the central Mie
(particulate) peak computed by ICA and 3D is lower than the
one computed by the PP simulation. The opposite behavior
is observed concerning the Rayleigh (molecular) scattering
region: the broad and low-intensity spectra for ICA and 3D
simulations show larger values (in intensity) compared to the
PP simulation and for the full range of frequency shift. The
same observation can be made below the cloud.

In order to obtain the molecular and particulate ATB ver-
tical profiles for the three cloud models (Fig. 13b and c),
the HSR spectra are filtered by a modeled Fabry–Pérot in-
terferometer (see Sect. 2.5.3 for the filtering parameters) at
each altitude level. The ATB vertical profiles (Fig. 13a) ex-
hibit features observed in HSR spectra more clearly: once the
cloud is reached (i.e., below 10 km), the three cloud models
give very different total ATB. Higher values are observed in
clouds for the PP model compared to ICA and 3D cloud mod-
els, whereas the opposite is observed below the cloud. This

Figure 13. Vertical profiles of (a) total, (b) molecular, and (c) par-
ticulate ATB simulated by McRALI. The cloud is located between
9 and 10 km. Black lines represent simulations using the PP cloud
model, purple lines the ICA cloud model, and green lines the 3D
box-cloud model.

feature shows that PP cloud representation can lead to large
discrepancies and is suitable to account for 3D cloud struc-
ture. In contrast, ICA cloud models give results rather close
to 3D cloud models. In Fig. 13b and c the PP cloud shows
the most significant differences, with PP particulate ATB in
the cloud larger than ICA and 3D particulate ATB and a PP
molecular ATB that is smaller. To a lesser extent, ICA and
3D computations also show differences with 3D total and 3D
particulate ATB smaller than the ICA computation. This dif-
ference is the opposite for molecular ATB.

In order to quantify the differences coming from the
cloud models, PP, ICA, and 3D biases have been computed.
These biases, well described in Davis and Polonsky (2005),
were first defined in the radiance framework by Cahalan et
al. (1994) and were adapted to a lidar signal framework by
Alkasem et al. (2017). The 3D bias on ATB (i.e., 1ATB3D)

is the sum of the PP bias (i.e., 1ATBPP) and the ICA bias
(i.e., 1ATBICA) defined as

1ATBPP = ATBPP−ATBICA, (22.1)
1ATBICA = ATBICA−ATB3D, (22.2)

1ATB3D =1ATBPP+1ATBICA

= ATBPP−ATB3D , (22.3)
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Figure 14. Vertical profiles of biases on (a) total, (b) molecular,
and (c) particulate ATB and vertical profiles of relative biases on
(d) total, (e) molecular, and (f) particulate ATB. Black lines rep-
resent simulations using the PP cloud model, purple lines the ICA
cloud model, and green lines the 3D box-cloud model.

where ATBICA, ATBPP, and ATB3D are ATB computed by
McRALI with the ICA, PP, and 3D cloud models, respec-
tively. The relative biases are also computed and correspond
to the biases divided by the reference ATB3D. In Appendix B,
it is shown that the PP bias of molecular ATB and particulate
ATB is always negative and positive, respectively. It is also
shown that the larger multiple scattering, the smaller the PP
particulate bias. Note that the PP bias of total ATB is posi-
tive but becomes negative with increasing cloud optical depth
(Alkasem et al., 2017).

Figure 14 shows that the PP biases are the largest on to-
tal ATB as well as the molecular and particulate compo-
nents. Indeed, they reach 250 %, −60 %, and 1200 % for to-
tal, molecular, and particulate ATB, respectively. The ICA
biases present lower values (around 25 %, −10 %, and less
than 100 % for total, molecular, and particulate ATB, respec-
tively). These results thus show that 3D biases are mainly due
to PP biases.

Based on the three cloud models, further simulations have
been carried out with varying the cloud coverage inside the
lidar FOV from 10 % to 90 % in order to evaluate the impact
of cloud coverage on HSR lidar observations. A simulation
has been carried out for the study of the NUBF effect on radar

observations in a similar way (see Sect. 3.2). The SS bias
and the MS relative bias on total, molecular, and particulate
ATBs at cloud top (9.8 km), cloud base (9.2 km), and in the
middle of the cloud (9.5 km) have been computed for each
cloud model in Fig. 15.

Figure 15d and f show that MS total and particulate biases
decrease when cloud coverage increases and reach almost
zero for 90 % cloud coverage. These relative biases always
show the largest values at cloud base, then in the middle of
cloud, and then at cloud top, whereas it is not observed for
SS bias (Fig. 15a and c). This is due to the division by ref-
erence ATB3D values that exponentially increase with cloud
altitude. We also find that PP biases are positive, with a max-
imum bias of 250 % observed for the total relative ATB at
cloud base and for cloud coverage of 30 %. These last two
observations are consistent with simulation results under the
SS regime: PP biases of total ATB and of particulate ATB
are generally positive (see Eq. B8) and strictly positive (see
Eq. B7), respectively. The maximum bias of ATB also occurs
for cloud coverage of 30 %. Otherwise, regardless of cloud
coverage, Fig. 15d and f show that MS total and particulate
ICA biases are still rather small (< 50 % and < 200 %, re-
spectively) compared to PP biases (< 250 % and < 4000 %,
respectively). For total and particulate ATB, PP biases are the
largest and are mainly responsible for the 3D biases, confirm-
ing the findings of the previous section for any cloud cover-
age in both the SS and MS regimes.

For molecular signals, Fig. 15e shows the negative PP bias
that increases in absolute value with increasing cloud cov-
erage, reaching −40 % and −80 % for 90 % cloud coverage
in the middle of the cloud and at cloud base, respectively.
The negative value of MS molecular PP bias is consistent
with the SS molecular PP bias definition (see Eq. B6). Oth-
erwise, MS ICA bias is negative for cloud coverage smaller
than 50 % and rather positive for cloud coverage larger than
50 %. This latter observation is consistent with simulation
results performed under SS regimes (see Fig. 15b): molecu-
lar ICA bias is negative, null, and positive for cloud cover-
age smaller than, equal to, and larger than 50 %, respectively.
Figure 15e shows that MS ICA bias reaches only 15 % and
50 % in the middle of the cloud and at cloud base, respec-
tively. At cloud top, all the molecular biases remain small
(between 5 % and−15 %). Because of competition under the
MS regime between the rather negative PP bias and the pos-
itive and negative ICA bias of the same order of magnitude,
no specific trend in the 3D molecular biases according to the
cloud coverage can be highlighted, and conclusions are less
obvious than for total and particulate ATB.

Finally, our simulation results also show that 3D bias de-
creases in magnitude when COD decreases due to the PP bias
that decreases. For example, if COD is 0.1, 3D total, molecu-
lar, and particulate biases are less than 6 %, 15 %, and 100 %,
respectively, mainly driven by ICA bias.
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Figure 15. ICA (dashed), PP (dotted dashed), and 3D (full line) biases under the single-scattering (SS) regime on (a) total ATB, (b) molecular
ATB, and (c) particulate ATB as a function of cloud coverage (%) inside the lidar receiver FOV computed at cloud top (9.8 km, blue curves),
in the middle of the cloud (9.5 km; yellow curves), and at cloud base (9.2 km; green curves). Panels (d), (e), and (f) are the same as (a),
(b), and (c) but for relative bias and the MS regime. Cloud optical depth is 3.

Figure 16. Same as Fig. 13 but with 50 % cloud coverage. Simula-
tions with ATLID FOV (65 µrad) are represented by full lines and
simulations with a 650 µrad FOV are represented by dotted lines.

3.3.2 Impact of the size of the field of view on total,
molecular, and particulate ATB

We briefly investigate the impact of the size of the field
of view (FOV) by carrying out simulations with an FOV
10 times greater than in the simulations performed in the
previous sections. Simulations have been carried out for
cloud coverage of 50 %, implying COD of 1.5 for the PP
cloud model. Figure 16 shows vertical profiles of ATB bi-
ases and relative ATB biases computed with this large FOV
(i.e., 650 µrad) and those computed with the ATLID FOV
(i.e., 65 µrad).

When comparing ATB computed with the three cloud
models (i.e., PP, ICA, and 3D cloud model) for the large
FOV, the same conclusions as for the ATLID FOV can be
made: when reaching the cloud base, total and particulate

ATBs show lower values for ICA and 3D models than for the
PP model, and the opposite is true for the molecular ATB.
Biases also show the same trend as for ATLID FOV, with a
maximum bias for the PP model and lower values for ICA
models.

When comparing simulations carried out with a large FOV
to those performed with a small FOV, we observed that with a
larger FOV, ATB values are larger when going into the cloud
for the three cloud models. The reason is mainly the multiple
scattering, which is obviously more pronounced as the FOV
increases. Figure 16 shows that the biases and the relative bi-
ases for the large FOV present the same trend as for a small
FOV. For total and particulate ATB, we can note that ICA
biases are larger whatever the vertical position in the cloud,
whereas PP biases are smaller in the upper part of the cloud
due to multiple scattering, which becomes more significant
as the FOV increases; this latter behavior is coherent with
Eq. (B7). The relative biases for the large FOV show slightly
smaller values for the three signal components (total, molec-
ular, and particulate). The maximum values for the 3D bias
are 150 %, −60 %, and 200 % for the total, molecular, and
particulate ATBs, respectively.

4 Conclusions

This paper presents the Monte Carlo code McRALI-FR that
provides simulations of range-resolved z and frequency-
resolved f Stokes parameters S(z,f )= (I,Q,U,V )

recorded by different kinds of monostatic polarized high-
spectral-resolution lidars and Doppler radars from a 3D
cloudy atmosphere and/or precipitation fields. McRALI-FR
is an extension of 3DMcPOLID, a Monte Carlo code simu-
lating a polarized active sensor (Alkasem et al., 2017). The
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Figure 17. Same as Fig. 14 but with 50 % cloud coverage. Simula-
tions with ATLID FOV (65 µrad) are represented by straight lines
and simulations with a 650 µrad FOV are represented by dotted
lines.

core of McRALI-FR is based on the 3D polarized Monte
Carlo atmospheric radiative transfer model 3DMCPOL
(Cornet et al., 2010; Fauchez et al., 2014), which uses the
local estimate method to reduce the noise level. Gas absorp-
tion in micro-wavelength is taken into account according
to the work of Liebe (1985). McRALI-FR considers the
Doppler effect related to the motion of hydrometeors and
aerosols. The random motion, i.e., the turbulent flow, is
assumed to be homogeneous and isotropic. It is modeled
as a multivariate normal distribution. Generally, the regular
motion of particles, i.e., the wind and/or precipitating
hydrometeors, is assigned as a 3D vector field. The spectral
distribution of the molecular scattering is modeled following
the conventional method based on the Doppler shift from
independent molecules moving with a Maxwell distribution
of velocities. Each of the Stokes parameters is computed
by McRALI-FR as a two-dimensional matrix (range- and
frequency-resolved) and stored in an output file. Separate
software uses the saved files to account for spectral and po-
larization characteristics of receivers and computes profiles
of corresponding HSR lidar or Doppler radar signals.

A study has been carried out on the effects of NUBF on
the HSR ATLID lidar and Doppler CPR radar signals of the
EarthCARE mission with the help of the academic 3D box
cloud, characterized by a single isolated jump in cloud opti-
cal depth. It is the simplest 3D cloud model that can be used
to show and interpret the 3D radiative effects of clouds and
for which the displayed results can only be obtained if the
simulator is entirely in 3D. Moreover, for simplification, the
wind speed is assumed to be only vertical and constant. Par-
ticle sedimentation velocity is null.

Regarding Doppler CPR radar signals, it appears that mul-
tiple scattering does not affect the velocity estimation when
the cloud characteristics are locally homogeneous across the
radar beam. But if vertical wind velocity sharply varies with
altitude, the measured Doppler velocity profile can be largely

affected by multiple-scattering processes, as already men-
tioned by Battaglia and Tanelli (2011). At the same time, it is
confirmed that horizontally nonuniform beam filling induces
a severe bias in velocity estimates. Indeed, the Doppler spec-
tra shape is geometrically affected by the NUBF: the shape
is all the more asymmetrical as the radar system vertically
points away from the edge of the box cloud, inducing a bias
in the estimation of the Doppler velocity. Within our very
specific conditions of simulation with the box cloud and with
McRALI-Fr code, we found a proportional coefficient value
around 0.15 m s−1 (dBZ km−1)−1 close to that obtained by
Sy et al. (2014) and Kollias et al. (2014).

Regarding HSR ATLID lidar signals, we confirm that
multiple-scattering processes are not negligible, whatever the
box-cloud cloud optical depth between 0.1 and 3, as previ-
ously studied by Reverdy et al. (2015) and pointed out by
Donovan (2016). We also investigated the NUBF effect due
to different cloud coverages inside the FOV on HSR ATLID
lidar observables under the MS regime. For this purpose, we
computed the vertical profiles of the 3D, PP, and ICA biases
for total, molecular, and particulate ATB. The main conclu-
sion is that 3D biases are mainly due to the PP biases, im-
plying that NUBF effects are mainly due to unresolved vari-
ability of cloud inside the FOV and, to a lesser extent, to hor-
izontal photon transport, which increases if FOV increases.
Finally, these results give an indication of the reliability of
lidar signals modeled using ICA.

All these simulations and results are still a test bench to
show the ability of the McRALI-FR simulation tool to study
the impact of multiple scattering and 3D cloud radiative ef-
fects on remote sensing observations and products. Real de-
tailed cloud case studies and statistical analysis of represen-
tative fine-structure 3D cloud field effects on lidar and radar
observables, while taking into account the polarization of
light, will be the topic of future papers.
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Appendix A: List of acronyms used in this work and
their definition

Acronym Definition
A-train Afternoon constellation
ADM-Aeolus Atmospheric Dynamics Mission
ALADIN Atmospheric LAser Doppler Instrument
ATB Attenuated backscatter
ATLID ATmospheric LIDar
CALIPSO Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations
CNES French National Centre for Space Studies
COD Cloud optical depth
CPR Cloud Profiling Radar
3D Three-dimensional
3DMCPOL 3D POLarized Monte Carlo atmospheric radiative transfer model
3DMcPOLID 3D Monte Carlo simulator of POLarized LIDar signals
DOMUS Doppler multiple-scattering simulator
EECLAT Expecting EarthCARE, Learning from A-train
EarthCARE Earth Clouds, Aerosol and Radiation Explorer mission
ECSIM EarthCARE simulator
ESA European Space Agency
FOV Field of view
ICA Independent column approximation
INSU French National Institute for Earth Sciences and Astronomy
HSR High spectral resolution
MC Monte Carlo
MS Multiple scattering
McRALI Monte Carlo modeling of RAdar and LIdar signals
McRALI-FR McRALI Frequency-Resolved simulator
MUSCLE MUltiple SCattering in Lidar Experiments
NUBF Nonuniform beam filling
PDF Probability density function
PP Plane-parallel and homogenous cloud
RTE Radiative transfer equation
SS Single scattering
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Appendix B: Estimation of the PP bias of molecular,
particulate, and total ATB as a function of cloud
coverage and multiple-scattering intensity for the
box-cloud model

Total, molecular, and particulate ATB are hereafter noted
ATBt , ATBm, and ATBp, respectively. According to Alka-
sem et al. (2017), PP bias can be understood from the fol-
lowing. Assuming null absorption and vertically constant at-
mospheric properties, then ATB(r)t at position r can be ex-
pressed as

ATB(r)t =
(
Pmσm+Ppσp

)
e−2

∫ r
0 (σm+γ σp)dr , (B1)

where σm and σp are the molecular and particulate scatter-
ing coefficients, respectively, Pm and Pp are the molecular
and particulate phase functions at 180◦, respectively, and γ
is a factor that takes into account the multiple-scattering ef-
fects (Platt, 1973). In the same way, ATB(r)m and ATB(r)p,
by voluntarily omitting r , assuming that σm and σp are ver-
tically constant, and introducing the thickness 1r to lighten
the writing, can be expressed as

ATBm = Pmσme
−2(σm+γ σp)1rATBp

= Ppσpe
−2(σm+γ σp)1r . (B2)

Let α represent the cloud coverage inside the lidar receiver
FOV; then the molecular (i.e., ATBm;IPA), particulate (i.e.,
ATBp;IPA), and total ATB (i.e., ATBt;IPA) computed with the
IPA cloud model can be written as

ATBm;IPA = (1−α)Pmσme
−2σm1r

+αPmσme
−2(σm+γ σp)1rATBp;IPA

= αPpσpe
−2(σm+γ σp)1r ATBt;IPA

= (1−α)Pmσme
−2σm1r

+α
(
Pmσm+Ppσp

)
e−2(σm+γ σp)1r , (B3)

and the molecular (i.e., ATBm;PP), particulate (i.e., ATBp;PP),
and total (i.e., ATBt;PP) ATB computed with the PP cloud
model can be written as

ATBm;PP = Pmσme
−2(σm+αγσp)1r ATBp;PP

= αPpσpe
−2(σm+αγσp)1r ATBt;PP

=
(
Pmσm+αPpσp

)
e−2(σm+αγσp)1r . (B4)

The PP molecular bias 1ATBm;PP, estimated as

1ATBm;PP = ATBm;PP−ATBm;IPA

= Pmσm

[
e−2(σm+γασp)1r

−(1−α)e−2σm1r −αe−2(σm+γ σp)1r
]
, (B5)

is always negative. The PP particulate bias 1ATBp;PP, esti-
mated as

1ATBp;PP = ATBp;PP−ATBp;IPA

= Ppσp

{
α
[
e−2(σm+αγσp)1r

−e−2(σm+γ σp)1r
]}
, (B6)

is always positive. Note that the smaller γ is, the smaller
1ATBp;PP is. In other words, the larger the multiple-
scattering effects, the smaller the PP particulate bias. The PP
total bias 1ATBt;PP, estimated as

1ATBt;PP = ATBt;PP−ATBt;IPA

=
(
Pmσm+αPpσp

)
e−2γ (σm+ασp)1r

− (1−α)Pmσme
−2γ σm1r

−α
(
Pmσm+Ppσp

)
e−2γ (σm+σp)1r , (B7)

is positive but becomes negative with increasing cloud opti-
cal depth, as explained in Alkasem et al. (2017).
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