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Abstract. A LiDAR Statistical Barnes Objective Analysis
(LiSBOA) for the optimal design of lidar scans and retrieval
of the velocity statistical moments is proposed. LiSBOA rep-
resents an adaptation of the classical Barnes scheme for the
statistical analysis of unstructured experimental data in N -
dimensional space, and it is a suitable technique for the eval-
uation over a structured Cartesian grid of the statistics of
scalar fields sampled through scanning lidars. LiSBOA is
validated and characterized via a Monte Carlo approach ap-
plied to a synthetic velocity field. This revisited theoretical
framework for the Barnes objective analysis enables the for-
mulation of guidelines for the optimal design of lidar ex-
periments and efficient application of LiSBOA for the post-
processing of lidar measurements. The optimal design of li-
dar scans is formulated as a two-cost-function optimization
problem, including the minimization of the percentage of the
measurement volume not sampled with adequate spatial res-
olution and the minimization of the error on the mean of
the velocity field. The optimal design of the lidar scans also
guides the selection of the smoothing parameter and the to-
tal number of iterations to use for the Barnes scheme. LiS-
BOA is assessed against a numerical data set generated us-
ing the virtual lidar technique applied to the data obtained
from a large eddy simulation (LES). The optimal sampling
parameters for a scanning Doppler pulsed wind lidar are re-
trieved through LiSBOA, and then the estimated statistics are
compared with those of the original LES data set, showing a
maximum error of about 4 % for both mean velocity and tur-
bulence intensity.

1 Introduction

Reliable measurements of the wind velocity vector field are
essential for understanding the complex nature of atmo-
spheric turbulence and providing valuable data sets for the
validation of theoretical and numerical models. However,
field measurements of wind speed are typically characterized
by large uncertainties due to the generally unknown and un-
controllable boundary conditions (Braham, 1979), the broad
range of timescales and length scales (Cushman-Roisin and
Beckers, 1990a), and the complexity of the physics involved
(Stull, 1988). Furthermore, the large measurement volume,
which typically extends throughout the height of the atmo-
spheric boundary layer, imposes on the experimentalists the
selection of the sampling parameters as a trade-off between
spatial and temporal resolutions.

Wind speed has been traditionally measured through local
sensors, such as mechanical, sonic, and hot-wire anemome-
ters (Liu et al., 2019; Kunkel and Marusic, 2006). Besides
their simplicity, mechanical anemometers are affected by er-
rors due to the flow distortion of the supporting structures,
drawbacks under harsh weather conditions (Mortensen,
1994), and overspeeding (Busch and Kristensen, 1976). Fur-
thermore, their relatively slow response results in a limited
range of the measurable time–length scales, which makes
them unsuitable, for instance, for measuring the turbulent
flow around urban areas (Pardyjak and Stoll, 2017). Sonic
anemometers can measure the three velocity components,
with frequencies up to 100 Hz (Cuerva and Sanz-Andrés,
2000), in a probing volume of the order of 10−4 m3, yet
measurements might be still affected by the wakes generated
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by the supporting structures, such as met towers and struts,
and they are sensitive to temperature variations (Mortensen,
1994). Hot-wire anemometers, although they provide a full
characterization of the energy spectrum, require a compli-
cated calibration (Kunkel and Marusic, 2006) and are ex-
tremely fragile (Wheeler and Ganji, 2010a). Furthermore,
traditional, single-point sensors are unable to provide an ade-
quate characterization of the spatial gradients of the wind ve-
locity vector, which is particularly significant in the vertical
direction (Cushman-Roisin and Beckers, 1990b). To over-
come this issue, several anemometers arranged in arrays, and
supported by meteorological masts, have been deployed in
several field campaigns (Haugen et al., 1971; Bradley, 1983;
Taylor and Teunissen, 1987; Emeis et al., 1995; Pahlow et al.,
2001; Berg et al., 2011; Kunkel and Marusic, 2006).

In the last few decades, remote sensing instruments have
been increasingly utilized to probe the atmospheric bound-
ary layer (Debnath et al., 2017a, b), and nowadays they rep-
resent a more cost-effective and flexible alternative to mete-
orological towers (Newsom et al., 2017). In particular, in the
realm of remote sensing anemometry, Doppler wind light de-
tection and ranging (lidar) systems underwent a rapid devel-
opment due to the significant advancement in eye-safe laser
technology (Emeis, 2010). Wind lidars have been heavily
employed in wind energy (Bingöl et al., 2010; Aitken and
Lundquist, 2014; Trujillo et al., 2011; Iungo et al., 2013b;
Machefaux et al., 2016; Garcia et al., 2017; El-Asha et al.,
2017; Bromm et al., 2018; Zhan et al., 2019, 2020), airport
monitoring (Köpp et al., 2005; Tang et al., 2011; Holzäpfel
et al., 2016; Thobois et al., 2019), micro-meteorology (Gal-
Chen et al., 1992; Banakh et al., 1999; Banta et al., 2006;
Mann et al., 2010; Muñoz-Esparza et al., 2012; Rajewski
et al., 2013; Schween et al., 2014), urban wind research
(Davies et al., 2007; Newsom et al., 2008; Xia et al., 2008;
Kongara et al., 2012; Huang et al., 2017; Halios and Barlow,
2018), and studies of terrain-induced effects (Bingöl, 2009;
Krishnamurthy et al., 2013; Kim et al., 2016; Pauscher et al.,
2016; Risan et al., 2018; Fernando et al., 2019; Bell et al.,
2020).

Besides the mentioned capabilities, lidars present some
important limitations, such as reduced range in adverse
weather conditions (precipitation, heavy rain, fog, low
clouds, or low aerosol concentration; Liu et al., 2019; Mann
et al., 2018) and a limited spatiotemporal resolution of this
instrument, namely about 20 m in the radial direction and
about 10 Hz in sampling frequency. These technical speci-
fications, associated with the nonstationary wind conditions
typically encountered for field experiments, pose major chal-
lenges in the application of wind lidars for the statistical anal-
ysis of turbulent atmospheric flows.

In the realm of wind energy, early lidar measurements
were limited to the qualitative analysis of snapshots of the
line-of-sight (LOS) velocity, i.e., the velocity component par-
allel to the laser beam (Käsler et al., 2010; Clive et al.,
2011). Fitting of the wake velocity deficit was also success-

fully exploited for the extraction of quantitative information
about wake evolution from lidar measurements (Aitken and
Lundquist, 2014; Wang and Barthelmie, 2015; Kumer et al.,
2015; Trujillo et al., 2016; Bodini et al., 2017). To charac-
terize velocity fields with higher statistical significance, the
time averages of several lidar scans were calculated for pe-
riods with reasonably steady inflow conditions (Iungo and
Porté-Agel, 2014; Machefaux et al., 2015; Van Dooren et al.,
2016). In the case of data collected under different wind and
atmospheric conditions, clustering and bin-averaging of li-
dar data were carried out (Machefaux et al., 2016; Garcia
et al., 2017; Bromm et al., 2018; Zhan et al., 2019, 2020).
Finally, more advanced techniques for first-order statistical
analysis, such as variational methods (Xia et al., 2008; New-
som and Banta, 2004), optimal interpolation (Xu and Gong,
2002; Kongara et al., 2012), least squares methods (Newsom
et al., 2008), and Navier–Stokes solvers (Astrup et al., 2017;
Sekar et al., 2018), were applied for the reconstruction of the
velocity vector field from dual Doppler measurements.

Besides the mean field, the calculation of higher-order
statistics from lidar data to investigate atmospheric turbu-
lence is still an open problem. In this regard, Eberhard
et al. (1989) re-adapted the postprocessing of the veloc-
ity azimuth display (VAD) scans (Lhermitte, 1969; Wilson,
1970; Kropfli, 1986) to estimate all the components of the
Reynolds stress tensor by assuming horizontal homogene-
ity of the mean flow within the scanning volume, which
can be a limiting constraint for measurements in complex
terrains (Frisch, 1991; Bingöl, 2009). Range height indica-
tor (RHI) scans were used to detect second-order statistics
(Bonin et al., 2017), spectra, skewness, dissipation rate of
the velocity field, and even heat flux (Gal-Chen et al., 1992).
Recently, in the context of wind radar technology, but read-
ily applicable to lidars as well, a promising method for the
estimation of the instantaneous turbulence intensity (i.e., the
ratio between standard deviation and mean of streamwise ve-
locity), based on the Taylor hypothesis of frozen turbulence,
was proposed by Duncan et al. (2019). More advanced tech-
niques exploit additional information of turbulence carried
by the spectrum of the backscattered lidar signal (Smalikho,
1995). However, this approach requires the availability of li-
dar raw data, which is not generally available for commer-
cial lidars. For a review on turbulence statistical analyses
through lidar measurements, the reader can refer to Sathe
and Mann (2013). Another typical scanning strategy to ob-
tain high-frequency lidar data consists of performing scans
with fixed elevation and azimuthal angles of the laser beam
while maximizing the sampling frequency (Mayor et al.,
1997; O’Connor et al., 2010; Vakkari et al., 2015; Frehlich
and Cornman, 2002; Debnath et al., 2017b; Choukulkar et al.,
2017; Lundquist et al., 2017).

For remote sensing instruments, data are typically col-
lected based on a spherical coordinate system, and then in-
terpolated over a Cartesian reference frame oriented with the
x axis in the mean wind direction. This interpolation can be a
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source of error (Fuertes Carbajo and Porté-Agel, 2018), espe-
cially if a linear interpolation method is used (Garcia et al.,
2017; Carbajo Fuertes et al., 2018; Beck and Kühn, 2017;
Astrup et al., 2017). Delaunay triangulation has also been
widely adopted for coordinate transformation (Clive et al.,
2011; Trujillo et al., 2011, 2016; Iungo and Porté-Agel, 2014;
Machefaux et al., 2015), yet the accuracy has not been quan-
tified in the case of nonuniformly distributed data. It is rea-
sonable to weight the influence of the experimental points on
their statistics according to the distance from the respective
grid centroid, such as using uniform (Newsom et al., 2008),
hyperbolic (Van Dooren et al., 2016), or Gaussian weights
(Newsom et al., 2014; Wang and Barthelmie, 2015; Zhan
et al., 2019). The use of distance-based Gaussian weights for
the interpolation of scattered data over a Cartesian grid is at
the base of the Barnes objective analysis (or Barnes scheme;
Barnes, 1964), which has been systematically used in meteo-
rology but only sporadically used for lidar data. It represents
an iterative statistical ensemble procedure to reconstruct a
scalar field arbitrarily sampled in space and is low-pass fil-
tered with a cut-off wavelength that is a function of the pa-
rameters of the scheme.

The scope of this work is to define a methodology to post-
process scattered data of a turbulent velocity field measured
through a scanning Doppler wind lidar (or eventually other
remote sensing instruments) to calculate mean, standard de-
viation and even higher-order statistical moments on a Carte-
sian grid. The proposed methodology, referred to as the Li-
DAR Statistical Barnes Objective Analysis (LiSBOA), rep-
resents an adaptation of the classic Barnes scheme to N -
dimensional domains, enabling applications for nonisotropic
scalar fields through a coordinate transformation. A major
point of novelty of LiSBOA is the estimation of wind ve-
locity variance (and, eventually, higher-order statistics) from
the residual field of the mean, which also provides adequate
filtering of dispersive stresses due to data variability not con-
nected with the turbulent motion. A criterion for the rejec-
tion of statistical data affected by aliasing, due to the under-
sampling of the spatial wavelengths under investigation, is
formulated. LiSBOA is assessed against a synthetic scalar
field to validate its theoretical response and the formulated
error metric. Detailed guidelines for the optimal design of
a lidar experiment and the effective reconstruction of the
wind statistics are provided. The effectiveness of the pro-
posed scheme in the identification of the optimal scanning
parameters and retrieval of turbulence statistics is quantified
using virtual lidar data.

It will be shown in the following that the revisited Barnes
scheme offers several advantages compared to the above-
cited techniques for lidar data analysis: (i) it allows one to ex-
plicitly select the cut-off wavenumber to filter out small-scale
variability, while retaining relevant modes in the flow field;
(ii) the distance-based weighting function provides smoother
fields than linear interpolation or window average, while still
being simpler and computationally inexpensive compared

to more sophisticated techniques (e.g., optimal interpolation
and variational methods); and (iii) it provides guidance for
the optimal design of lidar scans to investigate specific wave-
lengths in the flow. On the other hand, the procedure requires
estimates of input parameters for the flow under investigation
and the lidar system used. In case these parameters cannot be
obtained from existing literature or preliminary tests, a sen-
sitivity study on the variability in the LiSBOA results to the
input parameters can be carried out.

The remainder of the paper is organized as follows: in
Sect. 2, the extension of the Barnes scheme theory to N -
dimensional domains and higher-order statistical moments
is presented. In Sect. 3, the theoretical response function of
LiSBOA is validated against a synthetic case, while guide-
lines for proper use of the proposed algorithm and optimal
scan design are provided in Sect. 4. In Sect. 5, the accuracy
of LiSBOA is tested, using the virtual lidar technique. Chal-
lenges in the application of the methodology to field experi-
mental data are then discussed in Sect. 6. Finally, concluding
remarks are provided in Sect. 7.

2 The Barnes objective analysis – fundamentals and
extension to statistical N -dimensional analysis

The Barnes scheme was originally conceived as an iterative
algorithm aiming to interpolate a set of sparse data over a
Cartesian grid (Barnes, 1964), and it was inspired by the suc-
cessive correction scheme by Cressman (1959). The first iter-
ation of the algorithm calculates a weighted space-averaged
field, g0, over a Cartesian grid from the sampled scalar field,
f . The mean field is iteratively modified by adding contri-
butions to recover features characterized by shorter wave-
lengths, which are inevitably damped by the initial averaging
process. In this work, we adopt the most classical form of the
Barnes scheme as follows:
g0
i =

∑
j

wijfj

gmi =
∑
j

wij (fj −φ(g
m−1)j )+ g

m−1
i ∀ m ∈ N+,

(1)

where gmi is the average field at the ith grid node with coor-
dinates ri (bold symbols indicate vectorial quantities) for the
mth iteration, fj is the scalar field sampled at the location
rj , and φ represents the linear interpolation operator from
the Cartesian grid to the sample location. The weights for the
sample acquired at the location rj and for the calculation of
the statistics of f at the grid node, with coordinates ri , wij ,
are defined as follows:

wij =
e
−
|ri−rj |

2

2σ2∑
j

e
−
|ri−rj |

2

2σ2

, (2)

where σ is referred to as the smoothing parameter, and |.|
indicates Euclidean norm. For practical reasons, the summa-
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tions over j are performed over the neighboring points in-
cluded in a ball with a finite radius Rmax (also called the ra-
dius of influence) and centered at the ith grid point. In this
work, following Barnes (1964), we select Rmax = 3σ , which
encompasses 99.7 % and 97 % of the volume of the weight-
ing function in 2D and 3D, respectively.

In the literature, there is a lack of consensus regarding
the selection of the total number of iterations (Barnes, 1964;
Achtemeier, 1989; Smith and Leslie, 1984; Seaman, 1989)
and the smoothing parameter (Barnes, 1994a; Caracena,
1987; Pauley and Wu, 1990). A reduction of the smoothing
parameter, σ , as a function of the iteration, m, was originally
proposed by Barnes (1973); however, this approach turned
out to be detrimental in terms of noise suppression (Barnes,
1994c).

In the frequency domain, the Barnes objective analysis is
tractable as a low-pass filter applied to a scalar field, f , with
a response as a function of the spatial wavelength, depending
on the smoothing parameter, σ , and the number of iterations,
m. This feature has been exploited in meteorology to separate
small-scale from mesoscale motions (Doswell, 1977; Mad-
dox, 1980; Gomis and Alonso, 1990). The spectral behavior
of the Barnes scheme has been traditionally characterized by
calculating the so-called continuous response at the mth iter-
ation, Dm(k), with k being the wavenumber vector. Dm(k)
is defined as the ratio between the amplitude of the Fourier
mode eik·x (with i=

√
−1) for the reconstructed field, gm, to

its amplitude in the input field, f , in the limit of a continuous
distribution of samples and an infinite domain. The analyti-
cal expression for the continuous response was provided by
Barnes (1964) and Pauley and Wu (1990) for 1D and 2D do-
mains, respectively, while, in the context of LiSBOA, it is
extended to N dimensions to enhance its applicability. Fur-
thermore, besides the spatial variability of f , the temporal
coordinate, t , is introduced to determine the response of the
statistical moments of f .

We consider a continuous scalar field, f (x, t), which is de-
fined over anN -dimensional domain, x. It is further assumed
that the field f is ergodic in time. In practice, ergodic data
can be obtained by selecting samples collected for a temporal
window exhibiting stationary boundary conditions or, more
generally, through a cluster analysis of discontinuous data
(Machefaux et al., 2016; Bromm et al., 2018; Iungo et al.,
2018; Zhan et al., 2019, 2020). By adopting the approach
proposed by Pauley and Wu (1990), and by taking advantage
of the isotropy of the Gaussian weights (Eq. 2), we can define
the LiSBOA operator at the 0th iteration as follows:

g0(x)=
1

(
√

2πσ)N

∫
RN

 1
t2− t1

t2∫
t1

f (ξ , t)dt

e− |x−ξ |22σ2 dξ , (3)

where t1 and t2 are initial and final time. The term within the
square brackets represents the mean of f over the considered
sampling interval [t1, t2], which is indicated as f . Moreover,
to reconstruct a generic qth central statistical moment of the

scalar field, f , it is sufficient to apply the LiSBOA opera-
tor of Eq. (3) to the fluctuations over f to the qth power as
follows:

µ
q
f (x) =

1

(
√

2πσ)N

·

∫
RN

 1
t2− t1

t2∫
t1

[
f (ξ , t)− f (ξ , t)

]q
dt


· e
−
|x−ξ |2

2σ2 dξ . (4)

For practical applications, the mean field f is generally not
known, but it can be approximated by the LiSBOA output,
gm, interpolated at the sample location through the operator
φ. By comparing Eq. (4) with Eq. (3), it is understandable
that the response function of any central moment with an or-
der higher than one is equal to that of the 0th iteration re-
sponse of the mean, g0. Indeed, Eq. (3) can be interpreted as
the 0th iteration of the LiSBOA spatial operator (see Eq. 3)
applied to the fluctuation field to the qth power.

By leveraging the convolution theorem, it is possible to
calculate the response function of the mean of the 0th itera-
tion of LiSBOA in the frequency domain (see Appendix A
for more details). This result, combined with the recursive
formula of Barnes (1964) for the response at the generic it-
eration, m, provides the spectral response of LiSBOA for the
mean as follows:

Dm =


D0(k)= e−

σ2
2 |k|

2
= e
−
σ2π2

2

[∑N
p=1

1
1n2
p

]
,

for m= 0;
D0∑m

p=0(1−D
0)p,

for m ∈ N+,

(5)

where 1n is the half-wavelength vector associated with k.
Equation (5) states that, for a given wavenumber (i.e., half
wavelength), the respective amplitude of the interpolated
scalar field, gm, is equal to that of the original scalar field
damped with a function of the smoothing parameter, σ , and
the number of iterations, m. This implies that the parame-
ters σ and m should be selected properly to avoid significant
damping for wavelengths of interest or dominating the spatial
variability of the scalar field under investigation.

For real applications, the actual LiSBOA response func-
tion can depart from the abovementioned theoretical re-
sponse (Eq. 5) for the following reasons:

– the convolution integral in Eq. (3) is calculated over a
ball of finite radius Rmax;

– f is sampled over a discrete domain and, thus, intro-
duces related limitations, such as the risk of aliasing
(Pauley and Wu, 1990);

– the distribution of the sampling points is usually irreg-
ular and nonuniform, leading to larger errors where a
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lower sample density is present (Smith et al., 1986;
Smith and Leslie, 1984; Buzzi et al., 1991; Barnes,
1994a) or in proximity to the domain boundaries
(Achtemeier, 1986);

– an error is introduced by the back-interpolation func-
tion, φ, from the Cartesian grid, ri , to the location of
the samples, rj (Eq. 1) (Pauley and Wu, 1990).

Before proceeding with further analysis, it is necessary
to address the applicability of LiSBOA to anisotropic and
multi-chromatic scalar fields. Generally, the application of
LiSBOA with an isotropic weighting function is not recom-
mended in the case of severe anisotropy of the field and/or
the data distribution. At the early stages of objective analy-
sis techniques, the use of an anisotropic weighting function
was proved to be beneficial for increasing accuracy while
highlighting patterns elongated along a specific direction,
based on empirical (Endlich and Mancuso, 1968) and the-
oretical arguments (Sasaki, 1971). Furthermore, the adop-
tion of a directional smoothing parameter, σp, where p is
a generic direction, allows maximizing the utilization of the
data retrieved through inherently anisotropic measurements,
such as the line-of-sight fields detected by remote sensing in-
struments (Askelson et al., 2000; Trapp and Doswell, 2000).
With this in mind, we propose a linear scaling of the physical
coordinates before the application of LiSBOA to recover a
pseudo-isotropic velocity field. The scaling reads as follows:

x̃p =
xp − x

∗
p

1n0,p
, (6)

where x∗ is the origin of the scaled reference frame, and
1n0,p is the scaling factor for the pth direction. Hereinafter,
·̃ refers to the scaled frame of reference. From a physical
standpoint, the scaling is equivalent to the adoption of an
anisotropic weighting function, while the rescaling approach
is preferred to ensure generality with respect to the mathe-
matical formulation outlined in this section.

The scaling factor, 1n0, is an important parameter in the
present framework and is referred to as the fundamental half
wavelength, while the associated Fourier mode is denoted
as the fundamental mode. The selection of the fundamen-
tal half wavelength should be guided by a priori knowledge
of the dominant length scales of the flow in various direc-
tions. Modes exhibiting degrees of anisotropy different to
that of the selected fundamental mode will not be isotropic in
the scaled mapping, which leads to the following two conse-
quences: first, their response will not be optimal, in the sense
that the shortest directional wavelength can produce exces-
sive damping of the specific mode (Askelson et al., 2000);
second, the shape preservation of such nonspherical features
in the field reconstructed through LiSBOA is not ensured
(Trapp and Doswell, 2000).

Regarding the reconstruction of the flow statistics through
LiSBOA, two categories of error can be identified. The first

is the statistical error due to the finite number of samples of
the scalar field, f , available in time. This error is strictly con-
nected with the local turbulence statistics, the sampling rate,
and the duration of the experiment. The second error cate-
gory is the spatial sampling error, which is due to the dis-
crete sampling of f in the spatial domain x. The Petersen–
Middleton theorem (Petersen and Middleton, 1962) states
that the reconstruction of a continuous and band-limited sig-
nal from its samples is possible if, and only if, the spacing
of the sampling points is small enough to ensure nonover-
lapping of the spectrum of the signal with the replicas dis-
tributed over the so-called reciprocal lattice (or grid). The
latter is defined as the Fourier transform of the specific sam-
pling lattice. The 1D version of this theorem is the well-
known Shannon–Nyquist theorem (Shannon, 1984). An ap-
plication of this theorem to nonuniform distributed samples,
like those measured by remote sensing instruments, is unfea-
sible due to the lack of periodicity of the sampling points.
To circumvent this issue, we adopted the approach suggested
by Koch et al. (1983), who defined the random data spacing,
1d , as the equivalent distance that a certain number of sam-
ples enclosed in a certain region, Nexp, would have if they
were uniformly distributed over a structured Cartesian grid.
The generalized form of the random data spacing reads as
follows:

1d(ri)=
V

1
N

Nexp(ri)
1
N − 1

, (7)

where V is the volume of the hyper sphere, with radius
Rmax = 3σ centered at the specific grid point, andNexp repre-
sents the number of not colocated sample locations included
within the hyper sphere. Then, the Petersen–Middleton the-
orem for the reconstruction of the generic Fourier mode of
half-wavelength 1n can be translated as the following con-
straint:

1d(ri) < 1np, p = 1,2, . . .,N. (8)

Violation of the inequality (Eq. 8) will lead to local aliasing,
with the energy content of the undersampled wavelengths be-
ing added to the low-frequency part of the spectrum.

3 LiSBOA assessment through Monte Carlo
simulations

The spectral response of LiSBOA is studied through the
Monte Carlo method. The goal of the present section is
twofold, namely validating the analytical response of mean
and variance (Eq. 5) and characterizing the sampling error
of LiSBOA as a function of the random data spacing. For
these aims, a synthetic 3D scalar field is generated, while its
temporal variability is reproduced locally by randomly sam-
pling a normal probability density function. Specifically, the
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synthetic scalar field is as follows:

f =
[
1+ sin

( π
1n

x
)

sin
( π
1n

y
)

sin
( π
1n

z
)]

+

[
1+ sin

( π
1n

x
)

sin
( π
1n

y
)

sin
( π
1n

z
)]0.5
ℵ(0,1), (9)

where ℵ is a generator of random numbers with a normal
probability density function with mean value of zero and
standard deviation equal to one. The constant of one in the
two terms on the right-hand side (RHS) of Eq. (9) does not af-
fect LiSBOA response and is introduced to obtain both mean
and variance of f equal to the following function:

f = 1+ sin
( π
1n

x
)

sin
( π
1n

y
)

sin
( π
1n

z
)
. (10)

It is noteworthy that f−1 is a monochromatic isotropic func-
tion.

An experimental sampling process is mimicked by eval-
uating the scalar field f through randomly and uniformly
distributed samples collected at the locations rj . The latter
are distributed within a cube spanning the range ±10σ in
the three Cartesian directions. The total number of sampling
points considered for each realization,Ns, is varied from 500
up to 20 000 to explore the effects of the sample density on
the error. The sampling process is repeated L times for each
given distribution of Ns points to capture the variability in
the field introduced by the operator ℵ. The whole procedure
can be considered as an idealized lidar experiment, where a
scan including Ns sampling points is performed L times to
probe an ergodic turbulent velocity field.

Since the response is only a function of 1n/σ and m

(Eq. 5), for the spectral characterization of LiSBOA, the
parameter 1n/σ is varied among the following values:
[1,2,3,4,5]. An implementation of LiSBOA algorithm for
discrete samples is then applied to reconstruct the mean, gm,
and variance, vm, of the scalar field, f , over a Cartesian struc-
tured grid, ri , with a resolution of 0.25. Figure 1 depicts an
example of the reconstruction of the mean scalar field, gm,
and its variance, vm, from the Monte Carlo synthetic data
set.

For the error quantification, the 95th percentile of the abso-
lute error calculated at each grid point ri (AE95 hereinafter)
is adopted as follows:

AE95(1n/σ,m,Ns,L)

=


percentile95〈|(g

m
− 1)−Dm(f − 1)|〉ri ,

for the mean;

percentile95〈|(v
m
− 1)−D0(f − 1)|〉ri ,

for the variance.

(11)

The AE95 quantifies the discrepancy between the outcome of
LiSBOA and the analytical input damped by the theoretical
response evaluated over the Cartesian grid. As highlighted in
Eq. (11), the expected value of AE95 is a function of the half

wavelength over the smoothing parameter, 1n/σ , the num-
ber of iterations,m, the number of samples,Ns, and the num-
ber of realizations, L. To investigate the link between AE95
and the abovementioned parameters, the Pearson correlation
coefficients are analyzed (Table 1). The number of samples
Ns, which is inversely proportional to the data spacing 1d
(Eq. 7), is the variable exhibiting the strongest correlation
with the error for both mean and variance. This indicates, as
expected, that a larger number of samples for each measure-
ment realization is always beneficial for the estimates of the
statistics of the scalar field, f . Furthermore, the negative sign
of correlations ρ(AE95,Ns), and ρ(AE95,1n/σ), corrobo-
rate the hypothesis that the ratio 1d/1n, i.e., the number of
samples per half wavelength, is the main driving factor for
the sampling error (Koch et al., 1983; Barnes, 1994a; Cara-
cena et al., 1984).

The small positive correlation ρ(AE95,m) detected for the
mean is due to an amplification of the error occurring during
the iterative process (Barnes, 1964). The issue will be dis-
cussed in more detail in Sect. 4. For the variance, ρ(AE95,m)

is practically negligible, confirming that the response of the
higher-order statistics is insensitive to the number of itera-
tions, m. Finally, the negative correlations with L show that
the statistical error is inversely proportional to the number of
realizations collected. The dependence ρ(AE95,L) is mainly
due to the statistical error connected with the temporal sam-
pling, and thus, the number of realizations, L, is progres-
sively increased until convergence of the AE95 is achieved.
Figure 2 displays the behavior of the error as a function of
Ns and L. The values displayed represent the median for all
the wavelengths and iterations, with the AE95 just mildly de-
pendent on these parameters. As Fig. 2 shows, increasing the
number of realizations, L, beyond 100 has a negligible effect
on the error; thus, a final value of L= 200 is selected for the
remainder of this analysis.

To verify the analytical response of the mean and variance
of the scalar field, f , a numerical estimator of the response
is defined as the median in the space of the ratio between the
field reconstructed via LiSBOA and the expected value of the
synthetic input, as follows:
Dm =median

〈
gm−1
f−1

〉
ri

for the mean

D0
=median

〈
vm−1
f−1

〉
ri

for the variance.
(12)

In the calculation of the numerical response through Eq. (12),
the influence of the edges is removed by rejecting points
closer than Rmax to the boundaries of the numerical domain.
Furthermore, the zero crossings of the synthetic sine func-
tion (|f − 1|< 0.1) are excluded to avoid singularities. A
comparison between the actual and the theoretical response
(Eq. 5) for several wavelengths of the input function is re-
ported in Fig. 3 for the case with the highest number of sam-
ples Ns = 20000. An excellent agreement is observed be-
tween the theoretical prediction and the Monte Carlo out-
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Figure 1. Visualization of LiSBOA applied to a Monte Carlo simulation of the synthetic field in Eq. (9) for the case with Ns = 20000,
L= 200, 1n/σ = 4, and m= 5. (a) Samples, (b) 3D reconstructed mean field, gm, and (c) 3D reconstructed variance, vm.

Table 1. Pearson correlation coefficient between the AE95 of the mean and variance and the parameters 1n/σ , m, Ns, and L. The values in
parenthesis represent the 95 % confidence bounds.

1n/σ m Ns L

AE95 of mean −0.259 (−0.303, −0.210) 0.257 (0.211, 0.301) −0.709 (−0.732, −0.684) −0.171 (−0.217, −0.124)
AE95 of variance −0.069 (−0.117, −0.021) −0.03 (−0.078, 0.019) −0.694 (−0.718, −0.668) −0.206 (−0.251, −0.159)

come, which indicates that, in the limit of negligible statisti-
cal error (large L) and adequate sampling (largeNs and near-
uniform distributed samples), the response approaches the
predictions obtained from the developed theoretical frame-
work.

The trend of the response of the mean (Fig. 3a) sug-
gests that, for a given wavelength, the same response can
be achieved for an infinite number of combinations σ −m,
and specifically, a larger σ requires a larger number of itera-
tions, m, to achieve a certain response, Dm. It is noteworthy
that, for a smaller number of iterations, m, the slope of the
response function is lower. This feature can be beneficial for
practical applications for which the LiSBOA response will
have small changes for small variations of 1n. However, a
lower slope of the response function can be disadvantageous
for short wavelength noise suppression. Figure 3b confirms
that the response of the variance and, similarly for higher-
order statistics, is not a function of the total number of itera-
tions, m, and is equal to the response of the mean for the 0th
iteration, D0.

Finally, the link between error and the random data spac-
ing, 1d, is investigated. In Fig. 4, the discrepancy with re-
spect to theory quantified by the AE95 is plotted versus the
random data spacing normalized by the half wavelength for
a fixed total number of iterations m= 5. The values dis-
played on the x axis represent the median over all grid points,
ri . This analysis reveals a strong correlation between the
normalized random data spacing and the error. This anal-
ysis corroborates that, in the limit of negligible statistical
error (i.e., a high number of realizations, L), uncertainty is
mainly driven by the local data density normalized by the
wavelength, which is related to the Petersen–Middleton cri-

terion. Indeed, the cases satisfying the Petersen–Middleton
constraint (Eq. 8) are those exhibiting an AE95 smaller than
∼ 40% of the amplitude of the harmonic function f for both
the mean and variance. However, if a smaller error is needed,
it will be necessary to reduce the maximum threshold value
for 1d/1n.

4 Guidelines for an efficient application of LiSBOA to
wind lidar data

An efficient application of LiSBOA to lidar data relies on
the appropriate selection of the parameters of the algorithm,
namely the fundamental half wavelengths, 1n0, the smooth-
ing parameter, σ , the number of iterations, m, and the spa-
tial discretization of the Cartesian grid, dx. Furthermore,
the data collection strategy must be designed to ensure ad-
equate sampling of the spatial wavelengths of interest so that
the Petersen–Middleton constraint (Eq. 8) is satisfied. In this
section, we show that the underpinning theory of LiSBOA,
along with an estimate of the properties of the flow under
investigation, can guide the optimal design of a lidar exper-
iment and evaluation of the statistics for a turbulent ergodic
flow. The whole procedure can be divided into three phases,
namely characterization of the flow, design of the experi-
ment, and reconstruction of the statistics from the collected
data set.

First, the integral quantities of the flow under investigation
required for the application of LiSBOA need to be estimated,
such as extension of the spatial domain of interest, character-
istic length scales, integral timescale, τ , characteristic tempo-
ral variance of the velocity, u′2, and expected total sampling
time, T , which depends on the typical duration of stationary
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Figure 2. Median of the AE95 for all the tested half wavelengths, 1n/σ , and the number of iterations, m. (a) AE95 of the mean field, gm,
and (b) AE95 of the variance field, vm. The error bars span the interquartile range.

Figure 3. Validation of the 3D theoretical response of LiSBOA for the case Ns = 20000−L= 200. (a) Mean and (b) variance. The circles
are the numerical output of the Monte Carlo simulation (Eq. 12), while the continuous lines represent Eq. (5).

boundary conditions over the domain. These estimates can
be based on previous studies available in the literature, nu-
merical simulations, or preliminary measurements.

Then, it is necessary to define the fundamental half wave-
lengths, 1n0, which are required for the coordinate scaling
(Eq. 6). Imposing the fundamental half wavelengths equal
to (or even smaller than) the estimated characteristic length
scales of the smallest spatial features of interest in the flow is
advisable. This ensures isotropy of the mode associated with
the fundamental half wavelength (and all the modes char-
acterized by the same degree of anisotropy) and guides the
selection of the main input parameters of the LiSBOA algo-
rithm, i.e., smoothing parameter, σ , and number of iterations,
m. Indeed, 1n0 can be considered as the cut-off half wave-
length of the spatial low-pass filter represented by the LiS-
BOA operator. To this end, it is necessary to select σ and m
to obtain a response of the mean associated with the funda-
mental mode, Dm(1ñ0), as close as possible to one. After
the coordinate scaling (Eq. 6), the response of the fundamen-
tal mode is universal, and it is reported in Fig. 5. For instance,
if we select a response equal to 0.95, then all the points lying
on the isocontour defined by the equality Dm(1ñ0)= 0.95

give, in theory, the same response for the mean of the scalar
field f . This implies that an infinite number of combinations
σ −m allow us to obtain a response of the mean equal to the
selected value. However, with increasing σ , the response at
the 0th iteration, D0(1ñ0), reduces, which indicates a lower
response for higher-order statistics. For the LiSBOA applica-
tion, the following aspects should be also considered:

– the smaller σ , the smaller the radius of influence of LiS-
BOA, Rmax, and, thus, the lower the number of samples
averaged per grid node, Nexp, and the greater the statis-
tical uncertainty;

– an excessively large m can lead to overfitting of the ex-
perimental data and noise amplification (Barnes, 1964);

– the higher m, the higher the slope of the response func-
tion (see Fig. 3), which improves the damping of high-
frequency noise, but it produces a larger variation in the
response of the mean with different spatial wavelengths;
and
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Figure 4. AE95 as a function of the random data spacing (Eq. 7) for the case with m= 5, N = 20000, and L= 200. (a) Error on the mean
and (b) error on the variance. The full symbols refer to points not affected by the presence of the finite boundaries of the domain, while the
empty symbols are taken within a distance of less than Rmax from the boundaries.

– the radius of influence Rmax (and therefore σ ) can affect
the data spacing 1d in case of nonuniform data distri-
bution.

A few handy combinations of smoothing parameters and to-
tal iterations for Dm(1ñ0)= 0.95 are provided in Table 2.
As mentioned above, all these σ−m pairs allow us to achieve
roughly the same response for the mean, while the response
for the higher-order statistics reduces with an increasing
number of iterations, m.

As a final remark about the selection of 1n0, we should
consider that, if the fundamental half wavelength is too large
compared to the dominant modes in the flow, small-scale spa-
tial oscillations of f will be smoothed out during the calcu-
lation of the mean, with the consequence of underestimated
gradients and incorrect estimates of the high-order statistics
due to the dispersive stresses (Arenas et al., 2019). On the
other hand, the selection of an overly small 1n0 would re-
quire an excessively fine data spacing to satisfy the Petersen–
Middleton constraint (Eq. 8), which may lead to an overly
long sampling time, or it may even exceed the sampling ca-
pabilities of the lidar.

The optimal lidar scanning strategy aimed to characterize
atmospheric turbulent flows implies finding a trade-off be-
tween a sufficiently fine data spacing, which is quantified
through 1d in the present work (Eq. 7), and an adequate
number of time realizations, L, to reduce the temporal sta-
tistical uncertainty. Considering a total sampling period, T ,
for which statistical stationarity can be assumed, and a pulsed
lidar that scans Nr points evenly spaced along the lidar laser
beam, with a range gate 1r and accumulation time τa, the
total number of collected velocity samples is then equal to
Ns =Nr · T/τa. The angular resolution of the lidar scanning
head in azimuth (1θ for plan position indicators, PPIs), el-
evation (1β, for RHIs), or both axes (for volumetric scans)
can be selected to modify the angular spacing between con-
secutive lines of sight (i.e., the data spacing) and the total

sampling period for a single scan, τs (i.e., the number of re-
alizations, L).

The design of a lidar scan aiming to reconstruct turbulent
statistics of an ergodic flow through LiSBOA can be formal-
ized as a two-objective (or Pareto front) optimization prob-
lem. The first cost function of the Pareto front, which is re-
ferred to as εI, is the percentage of grid nodes for which the
Petersen–Middleton constraint, applied to the smallest half
wavelength of interest (i.e., 1n0), is not satisfied. With re-
spect to the scaled reference frame, this can be expressed as
follows:

εI(1θ,1β,σ)=

∑Ni
i=1[1d̃ > 1]

Ni
, (13)

where the square brackets are Iverson brackets, and Ni is the
total number of nodes in the Cartesian grid, ri . For a more
conservative formulation, rejecting all the points with a dis-
tance smaller than Rmax from an undersampled grid node,
i.e., with 1d̃ > 1, is recommended. This condition will en-
sure that the statistics are based solely on regions that are ad-
equately sampled. The cost function εI depends not only on
the angular resolution but also on Rmax, which is equal to 3σ
in this work. In general, increasing σ results in a larger num-
ber of samples considered for the calculation of the statistics
at each grid point ri and, thus, in a reduction in εI. Therefore,
a larger σ entails a larger percentage of the spatial domain
fulfilling the Petersen–Middleton constraint. The smoothing
parameter, σ , also plays a fundamental role in the response
of higher-order statistical moments. Specifically, if the recon-
struction of the variance or higher-order statistics is impor-
tant, the response D0(1ñ0) should be included in the Pareto
front analysis as an additional constraint.

The second cost function for the optimal design of lidar
scans, εII, is equal to the standard deviation of the sample
mean, which, for an autocorrelated signal, is (Bayley and
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Figure 5. Response of the fundamental mode in the scaled coordinates as a function of the number of iterations and the smoothing parameter.
(a) 2D LiSBOA and (b) 3D LiSBOA. The white crosses indicate the pairs σ −m provided in Table 2.

Table 2. Selected combinations of σ and m for achieving a ∼ 95 % recovery of the mean of the selected fundamental half wavelength and
associated response of the higher-order moments (HOM).

N = 2 N = 3

σ m Dm (mean) D0 HOM σ m Dm (mean) D0 (HOM)

1/3 6 0.942 0.334 1/4 5 0.952 0.397
1/4 3 0.955 0.540 1/6 2 0.961 0.663
1/6 1 0.942 0.76 1/8 1 0.957 0.793
1/13 0 0.943 0.943 1/17 0 0.950 0.950

Hammersley, 1946) as follows:

εII(1θ,1β)=

√
u′2

√√√√ 1
L
+

2
L2

L−1∑
p=1

(L−p)ρp

∼

√
u′2

√√√√ 1
L
+

2
L2

L−1∑
p=1

(L−p) e−
τs
τ
p, (14)

where ρp is the autocorrelation function at lag p, τ is the in-
tegral timescale, and the approximation is based on George
et al. (1978). The velocity variance, u′2, and the autocorrela-
tion, ρp, are functions of space; however, to a good degree of
approximation, they can be replaced by a representative value
and be considered as being uniform in space. Figure 6 shows
the standard deviation of the sample mean normalized by the
standard deviation of the velocity as a function of the number
of realizations, L, and for different integral timescales, τ . It
is noteworthy that the standard deviation of the sample mean
represents the uncertainty of the time average of each mea-
surement point, rj , while the final uncertainty of the mean
field at the grid nodes ri is generally reduced due to the
spatial averaging process intrinsic to LiSBOA. It is notewor-
thy that the estimates of the statistical error obtained through
LiSBOA do not consider other sources of error, such as ac-
curacy of the instruments and spatial averaging due to the
lidar measuring process (Rye and Hardesty, 1993; O’Connor

et al., 2010; Puccioni and Iungo, 2020). Eventually, other
error estimates can be coupled with the sampling error es-
timated through LiSBOA for a more comprehensive error
analysis (Wheeler and Ganji, 2010b). Furthermore, LiSBOA
allows the calculation of velocity statistics, including contri-
butions of eddies with different sizes, which span from the
largest eddy advected within the total sampling time to the
smallest eddy detectable for a given accumulation time (Puc-
cioni and Iungo, 2020). Therefore, a careful preprocessing of
the lidar data should eventually be performed to remove con-
tributions due to nonturbulent mesoscale eddies (Högström
et al., 2002; Metzger et al., 2007; O’Connor et al., 2010).

The whole procedure for the design of a lidar scan and re-
trieval of the statistics is reported in the flow chart of Fig. 7.
Summarizing, from a preliminary analysis of the velocity
field under investigation, we estimate the maximum total
sampling time, T , the characteristic integral timescale, τ , the
characteristic velocity variance, u′2, and the fundamental half
wavelengths, 1n0. This information, together with the set-
tings of the lidar (namely the accumulation time, τa, the num-
ber of points per beam, Nr, and the gate length, 1r), allow
the generation of the Pareto front as a function of 1θ and/or
1β and for different values of σ . Based on the specific goals
of the lidar campaign in terms of the coverage of the selected
domain (i.e., εI ), the statistical significance of the data (i.e.,
εII) and, eventually, the response of the higher-order statisti-
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Figure 6. Standard deviation of the sample mean normalized by the
standard deviation of velocity as a function of the number of real-
izations, L, and for different values of the ratio between the integral
timescale and the sampling time, τ/τs.

cal moments (i.e.,D0(1ñ0)), the LiSBOA user should select
the optimal angular resolution, 1θ and/or 1β, and the set of
allowable σ values. Due to the abovementioned nonideal ef-
fects on LiSBOA, the selection of σ is finalized during the
postprocessing phase when the lidar data set is available and
the statistics can be calculated for different pairs of σ −m
values. For the resolution of the Cartesian grid, Koch et al.
(1983) suggested that it should be chosen as a fraction of
the data spacing, which, in turn, is linked to the fundamental
half wavelength. The same author suggested a grid spacing
included in the range dx ∈ [1n0/3,1n0/2]. In this work,
we have used dx =1n0/4, which ensures a good grid reso-
lution with acceptable computational costs.

By following the steps outlined in the present section,
the mean, variance, or even higher-order statistical moments
of the velocity field can be accurately reconstructed for the
wavelengths of interest. It is worth mentioning that the LiS-
BOA of wind lidar data should always be combined with a
robust quality control process of the raw measurements. In-
deed, the space–time averaging operated by LiSBOA makes
the data analysis sensitive to the presence of data outliers,
which need to be identified and rejected beforehand to pre-
vent contamination of the final statistics. The interested
reader is referred to Manninen et al. (2016), Beck and Kühn
(2017), and Vakkari et al. (2019) for more information on
quality control of lidar data. On a final note, for applications
of LiSBOA, the uncontrollable environmental conditions and
the uncertainty in the flow characteristics needed, as the in-
put of LiSBOA may pose some challenges, will be discussed
more in detail in Sect. 6.

5 LiSBOA validation against virtual lidar data

The LiSBOA algorithm is applied to a synthetic data set gen-
erated through the virtual lidar technique to assess accuracy
in the calculation of statistics for a wind turbine wake probed
through a scanning lidar installed on the turbine nacelle.
For this purpose, a simulator of a scanning Doppler pulsed
wind lidar is implemented to extract the line-of-sight veloc-
ity from a numerical velocity field produced through high-
fidelity large eddy simulations (LES). Due to their simplic-
ity and low computational costs, lidar simulators have been
widely used for the assessment of postprocessing algorithms
of lidar data and scan design procedures (Mann et al., 2010;
Stawiarski et al., 2015; Lundquist et al., 2015; Mirocha et al.,
2015).

As a case study, we use the LES data set of the flow past
of a single turbine with the same characteristics of the 5-MW
NREL (National Renewable Energy Laboratory) reference
wind turbine (Jonkman et al., 2009). The rotor is three bladed
and has a diameter D = 126 m. The tip-to-speed ratio of the
turbine is set to its optimal value of 7.5. A uniform incom-
ing wind with a free stream velocity of U∞ = 10 ms−1 and
turbulence intensity of 3.6 % is considered. The rotor is simu-
lated through an actuator disk with rotation, while the drag of
the nacelle is taken into account using an immersed bound-
ary method (Ciri et al., 2017). More details on the LES solver
can be found in Santoni et al. (2015). The computational
domain has dimensions (Lx ×Ly ×Lz = 12D× 6D× 6D)
in the streamwise, spanwise, and vertical directions, respec-
tively, and it is discretized with 960× 256× 300 uniformly
spaced grid points, respectively, resulting in a spacing of
dx = 0.0125D, dy = 0.025D and dz= 0.0202D. A radiative
condition is imposed at the outlet (Orlanski, 1976), while pe-
riodicity is applied in the spanwise direction. For the sake of
generality, a uniform incoming wind is generated by impos-
ing free-slip conditions at the top and bottom of the numeri-
cal domain. Ergodic velocity vector fields are available for a
total time of T = 750 s.

For the estimation of the flow characteristics necessary for
the scan design, the azimuthally averaged mean and stan-
dard deviation of streamwise velocity, as well as the integral
timescale are considered (Fig. 8). The use of cylindrical co-
ordinates is justified by the axisymmetry of the statistics of
the wake velocity field generated by a turbine operating in a
uniform velocity field (Iungo et al., 2013a; Viola et al., 2014;
Ashton et al., 2016).

The streamwise LES velocity field shows the presence of
a higher-velocity jet surrounding the nacelle, while u/U∞
exhibits a clear minimum placed at y/D ∼ 0.25 (Fig. 8a).
These flow features are consistent with the double Gaussian
velocity profile typically observed in the near-wake region
(Aitken and Lundquist, 2014). In Fig. 8b, the standard de-
viation of the streamwise velocity has high values in the
very near wake (x/D < 1) in the proximity of the rotor axis,
which is most probably connected with the vorticity struc-
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Figure 7. Schematic of the LiSBOA procedure for the optimal design of lidar scans and reconstruction of the statistics for a turbulent ergodic
flow.

Figure 8. Azimuthally averaged statistics of the LES streamwise velocity field. (a) Mean value, (b) standard deviation, and (c) integral
timescale.

tures generated in proximity of the rotor hub and their dy-
namics (Iungo et al., 2013a; Viola et al., 2014; Ashton et al.,
2016). Similarly, enhanced values of the velocity standard
deviation occur at the wake boundary (r/D ≈ 0.5), which are
connected with the formation and dynamics of the helicoidal
tip vortices (Ivanell et al., 2010; Debnath et al., 2017c). A

peak of
√
u′2/U∞ is observed around (x/D ≈ 3), which can

be considered as being the formation length of the tip vor-
tices. The integral timescale is evaluated by integrating the
sample biased autocorrelation function of the time series of
u up to the first zero crossing (Zieba and Ramza, 2011). The
integral timescale is generally smaller within the wake than
for the typical values observed in the free stream, which is
consistent with the smaller dimensions of the wake vortic-
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ity structures compared to the larger energy-containing struc-
tures present in the incoming turbulent wind.

To reconstruct the mentioned flow features, the funda-
mental half wavelengths in the spanwise and vertical direc-
tions selected for this application of LiSBOA are 1n0,y =

1n0,z = 0.5D, which allows the retrieval of spatial features
of the velocity field as small as the rotor blade in the cross-
stream direction, which are typically observed in the near
wake (Aitken and Lundquist, 2014; Santoni et al., 2017). Fur-
thermore, considering the streamwise elongation of the iso-
contours of the flow statistics shown in Fig. 8a, a conserva-
tive value of the fundamental half wavelength in the x direc-
tion 1n0,x = 2.5D is selected. This information could also
have been inferred from previous studies (e.g., Chamorro and
Porté-Agel, 2010; Abkar and Porté-Agel, 2013; Zhan et al.,
2019).

The availability of the LES data set allows the testing of
the relevance of the selected 1n0 by evaluating the 3D en-
ergy spectrum of u/U∞ and u′2/U2

∞ in the physical and
scaled reference frames (Eq. 6). The spectra are azimuthally
averaged by exploiting the axisymmetry of the wake. The
spectra in the physical reference frame (Fig. 9a and b) re-
veal the clear signature of a streamwise elongation of the
energy-containing scales for both velocity mean and vari-
ance, with the energy being spread over a larger range of
frequencies in the radial direction compared to the stream-
wise direction. After the scaling (Fig. 9c and d), the spec-
tra become more isotropic in the spectral domain, namely
the energy is distributed equally along the k̃x and k̃r axes.
In Fig. 9c, the blue dashed line represents the intersection
with the k̃x–k̃r plane of the spherical isosurface that, in the
wavenumber space, is characterized by Dm(1ñ0)= 0.95.
All the modes contained within that sphere are reconstructed
with a response Dm > 0.95, while higher-frequency features
lying outside will be damped. Numerical integration of the
3D energy spectrum shows that 94 % of the total spatial vari-
ance of the mean is contained within that sphere, which en-
sures that the energy-containing modes in the mean flow are
adequately reconstructed with the selected parameters.

The analysis of the flow statistics reported in Fig. 8 en-
ables estimates of flow parameters needed as input for LiS-
BOA. For instance, the wake region is characterized by√
〈u′2〉/U∞ ≈ 0.1 and τU∞/D ≈ 0.4 (τ ≈ 5 s).
A main limitation of lidars is represented by the spatiotem-

poral averaging of the velocity field, which is connected with
the acquisition process. Three different types of smoothing
mechanisms can occur during the lidar sampling. The first
is the averaging along the laser beam direction within each
range gate, which has commonly been modeled through the
convolution of the actual velocity field with a weighting
function within the measurement volume (Smalikho, 1995;
Frehlich, 1997; Sathe et al., 2011). The second process is
the time averaging associated with the sampling period re-
quired to achieve a backscattered signal with adequate inten-

sity (O’Connor et al., 2010; Sathe et al., 2011), while the last
one is the transverse averaging (azimuth-wise or elevation-
wise averaging) occurring in case of a scanning lidar operat-
ing in continuous mode (Stawiarski et al., 2013). These fil-
tering processes lead to a significant underestimation of the
turbulence intensity (Sathe et al., 2011), an overestimation of
integral length scales (Stawiarski et al., 2015), and a damping
of energy spectra for increasing wavenumbers (Risan et al.,
2018; Puccioni and Iungo, 2020).

A total of three versions of a lidar simulator are imple-
mented for this work. The simplest one is referred to as ideal
lidar, which samples the LES velocity field at the experi-
mental points through a nearest-neighbor interpolation. This
method minimizes the turbulence damping while retaining
the geometry of the scan and the projection of the wind veloc-
ity vector onto the laser beam direction. The second version
of the lidar simulator reproduces a step-stare lidar, i.e., the
lidar scans for the entire duration of the accumulation time
at a fixed direction of the lidar laser beam. A total of two
filtering processes take place for this configuration, namely
beam-wise convolution and time averaging. To model the
beam-wise average, the retrieval process of the Doppler li-
dar is reproduced using a spatial convolution (Mann et al.,
2010) as follows:

uLOS(x, t)=

∞∫
−∞

φ(s)n ·u(x+ns, t)ds, (15)

where n is the lidar laser beam direction, u is the instanta-
neous velocity vector, and the dot indicates scalar product.
A triangular weighting function φ(s) was proposed by Mann
et al. (2010) as follows:

φ(s)=

{
1r/2−|s|
1r2/4 if |s|<1r/2

0 otherwise,
(16)

where 1r is the gate length. The former expression is valid,
assuming matching time windowing, i.e., gate length equal to
the pulse width, and the velocity value is retrieved based on
the first momentum of the backscattering spectrum. Despite
its simplicity, Eq. (16) has shown to estimate realistic tur-
bulence attenuation due to the beam-wise averaging process
of a pulsed Doppler wind lidar (Mann et al., 2009). Further-
more, time averaging occurs due to the accumulation time
necessary for the lidar to acquire a velocity signal with suf-
ficient intensity and, thus, signal-to-noise-ratio. This process
is modeled through a window average within the acquisition
interval of each beam. For the sampling of the LES veloc-
ity field in space and time, a nearest-neighbor interpolation
method is used.

The third version of the lidar simulator mimics a pulsed li-
dar operating in continuous mode and performing PPI scans,
where, in addition to the beam-wise convolution and time av-
eraging, azimuth-wise averaging occurs due to the variation
in the lidar azimuth angle of the scanning head during the
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Figure 9. Azimuthally averaged energy spectra of the LES velocity fields. (a) Mean streamwise velocity on the physical domain, (b) variance
of streamwise velocity on the physical domain, (c) mean streamwise velocity on the scaled domain, and (d) variance of streamwise velocity
on the scaled domain. The blue dashed line indicates wavenumbers reconstructed with response equal to Dm(1ñ0)= 0.95.

scan. The latter is taken into account by adding an azimuthal
averaging to the time average, among all data points included
within the following angular sector:{
|θ − θp|<1θ/2

|β −βp|< sin−1
(
1z
2rp

)
,

(17)

where r is the radial distance from the emitter, while θ and β
are the associated azimuth and elevation angles, respectively.
The subscript p refers to the pth lidar data point. Following
the suggestions by Stawiarski et al. (2013), the out-of-plane
thickness, 1z, is considered equal to the length of the diago-
nal of a cell of the computational grid.

It is noteworthy that the accuracy estimated through the
present analysis only includes error due to the sampling in
time and space and data retrieval. Other error sources, such
as the accuracy of the instrument (Rye and Hardesty, 1993;
O’Connor et al., 2010), are not included and should be cou-
pled to the LiSBOA estimates for a more general error quan-
tification (Wheeler and Ganji, 2010b).

Figure 10a shows a snapshot of the streamwise velocity
field over the horizontal plane at hub height obtained from
the LES. The respective data of the radial velocity obtained
from the three versions of the lidar simulator, by consid-
ering a scanning pulsed wind lidar deployed at the turbine
location and at hub height, highlight the increased spatial
smoothing of the radial velocity field by adding the various

averaging processes connected with the lidar measuring pro-
cess, namely beam-wise, temporal, and azimuthal averaging
(Fig. 10).

The application of LiSBOA requires the provision of tech-
nical specifications of the lidar, specifically accumulation
time, τa, number of gates, Nr, and gate length, 1r . For this
work, these parameters are selected based on the typical set-
tings of the WindCube 200S and StreamLine XR lidars (El-
Asha et al., 2017; Zhan et al., 2019, 2020), namely τa = 0.5 s,
Nr = 39, and1r = 25 m. Furthermore, to probe the wake re-
gion, a volumetric scan, including several PPI scans, with
azimuth and elevation angles uniformly spanning the range
±10◦, with a constant angular resolution in both azimuth and
elevation being selected, is conducted, while the virtual lidar
is placed at the turbine hub.

With the information provided about the flow under in-
vestigation and the lidar system, it is possible to draw the
Pareto front for the optimization of the lidar scan as a func-
tion of different combinations of angular resolutions of the
lidar scanning head, 1θ and 1β, and the smoothing param-
eter of LiSBOA, σ , as shown in Fig. 11 for the case under
investigation.

For the optimization of the lidar scan, the lidar angular
resolution, 1θ , is evenly varied for a total number of seven
cases, from 0.75 to 4◦, whereas three values of the ratio
1β/1θ , namely 0.5, 1, and 2, are tested separately. The
four values of σ recommended in Table 2, to achieve a re-
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Figure 10. Snapshot at the hub height horizontal plane of the wake generated by the 5-MW NREL reference wind turbine. (a) LES streamwise
velocity. (b) Ideal virtual lidar with angular resolution 1θ = 2.5◦, zero elevation, accumulation time τa = 0.5 s, and gate length 1r = 25 m.
(c) Step-stare virtual lidar (same settings). (d) Continuous mode virtual lidar (same settings).

Figure 11. Pareto front for the design of the optimal lidar scan for the LES data set for different 1θ/1β combinations. (a) 1β/1θ = 0.5.
(b) 1β/1θ = 1. (c) 1β/1θ = 2. The circle indicates the selected optimal configurations.

sponse of the mean Dm(1ñ0)= 0.95, are considered here.
In Fig. 11, markers indicate the different σ and, thus, the re-
sponse of high-order statistical moments, D0(1ñ0). Chang-
ing the ratio 1β/1θ affects the optimal 1θ (circled in black
in Fig. 11); however, it has a negligible effect on the mag-
nitude of the optimal εI and εII. For the rest of the dis-
cussion, we select the setup 1β/1θ = 1, as suggested by
Fuertes Carbajo and Porté-Agel (2018). The Pareto front
for 1β/1θ = 1 (Fig. 11b) shows that increasing 1θ from
0.75 up to 2.5◦ drastically reduces the uncertainty on the
mean (εII) by roughly 70 % but does not significantly af-
fect data loss consequent to the enforcement of the Petersen–
Middleton constraint (εI). For larger angular resolutions, the
statistical significance improves just marginally but at the
cost of a relevant data loss. For 1θ ≥ 2◦, in particular, εI

becomes extremely sensitive to σ , with the most severe data
loss occurring for small σ (i.e., small Rmax). The Pareto front
also shows that, to achieve a higher response for the higher-
order statistics, D0(1ñ0) generally entails an increased data

loss and/or statistical uncertainty of the mean. This analysis
suggests that the optimal lidar scan for the reconstruction of
the mean velocity field should be performed with 1θ = 2.5◦

and σ = 1/4 or 1/6.
Virtual lidar simulations are performed for all the values

of angular resolution utilized in the Pareto front reported
in Fig. 11. The streamwise component is estimated from
the line-of-sight velocity through an equivalent velocity ap-
proach (Zhan et al., 2019). The latter states that, for small
elevation angles (i.e., β� 1) and under the assumption of
negligible vertical velocity compared to the horizontal com-
ponent (i.e., |w| �

√
u2+ v2) and uniform wind direction,

θw, a proxy for the streamwise velocity can be calculated as
follows:

u∼
uLOS

cos(θ − θw)cosβ
. (18)

The mean velocity and turbulence intensity are reconstructed
through LiSBOA. The maximum error is quantified through
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Figure 12. Error analysis of LiSBOA applied to virtual radial velocity fields: (a, d) ideal lidar; (b, e) step-stare lidar; (c, f) continuous lidar;
(a, b, c) mean streamwise velocity; (d, e, f) streamwise turbulence intensity. The optimal configurations are highlighted in yellow.

the 95th percentile of the absolute error, AE95, using as ref-
erence the LES statistics interpolated on the LiSBOA grid.

Figure 12 reports the AE95 for the flow statistics for all the
virtual experiments. The error for the mean field (Fig. 12a–
c) is mostly governed by the angular resolution, with a
higher error occurring for slower scans. This is a clear con-
sequence of the increased statistical uncertainty due to the
limited number of scan repetitions, L, that are achievable for
small 1θ values and a fixed total sampling period, T , while
AE95 stabilizes for 1θ ≥ 2.5◦. The trend of the AE95 for
u/U∞, with the pair-smoothing-parameter number of itera-
tions, σ −m, is less significant since the theoretical response
of the fundamental mode is ideally equal for all four cases.
Conversely, the error on the turbulence intensity (Fig. 12d–f)
shows low sensitivity to the angular resolution but a steep in-
crease for small σ values, which is due to the reduction in the
radius of influence, Rmax, and the number of points averaged
per grid node.

From a more technical standpoint, the error on the mean
velocity field, u/U∞, appears to be relatively insensitive to
the type of lidar scan, with the spatial and temporal filtering
operated by the step-stare and continuous lidar even being
beneficial in some cases. In contrast, the error on the turbu-
lence intensity exhibits a more consistent and opposite trend,
with the continuous lidar showing the most severe turbulence
damping. This feature has been extensively documented in
previous studies, see e.g., Sathe et al. (2011).

This error analysis confirms that the optimal configu-
rations selected through the Pareto front (i.e., 1θ = 2.5◦,
σ = 1/4−m= 5, and σ = 1/6−m= 2) are arguably opti-
mal in terms of accuracy (AE95 of u/U∞ = 3.3 %–4.1 % and

3.9 %–4.4 % and AE95 of
√
u′2/u= 3.2 %–4.7 % and 3.3 %–

4.5 %, respectively) and data loss (εI = 33 % and 37 %, re-
spectively).

The 3D fields of mean velocity and turbulence intensity
calculated over T = 750 s through the first optimal configu-
ration, (i.e., 1θ = 2.5◦, σ = 1/4, and m= 5), are rendered
in Figs. 13 and 14, respectively. Furthermore, in Fig. 15, az-
imuthally averaged profiles at three downstream locations are
also provided for a more insightful comparison. The mean
velocity field is reconstructed fairly well, regardless of the
type of lidar scan, due to the careful choice of the funda-
mental half wavelength, 1n0, for this specific flow. On the
other hand, the reconstructed turbulence intensity is highly
affected by the lidar processing, which leads to visible damp-
ing of the velocity variance for the step stare and even more
for the continuous mode. The ideal lidar scan, whose acqui-
sition is inherently devoid of any space–time averaging, al-
lows the retrieval of the correct level of turbulence intensity
for locations for x ≥ 4D, while in the near wake it struggles
to recover the thin turbulent ring observed in the wake shear
layer. Indeed, such a short wavelength feature has a small re-
sponse for the chosen settings of LiSBOA, particularly 1n0
and σ (see Fig. 3b). On the other hand, any attempt to in-
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Figure 13. Mean streamwise velocity for 1θ = 2.5◦, σ = 1/4, m= 5. (a) LES, (b) ideal lidar, (c) step-stare lidar, and (d) continuous mode
lidar. The shaded area corresponds to the points rejected after the application of the Petersen–Middleton constraint.

Figure 14. As in Fig. 13 but for streamwise turbulence intensity.

crease the response of the higher-order moments, for instance
by reducing the fundamental half wavelengths or decreasing
the smoothing and the number of iterations, would result in
higher data loss and fewer experimental points per grid node.

Finally, Figs. 16 and 17 show u/U∞ and
√
u′2/u over sev-

eral cross-flow planes and for all the combinations of σ −m
tested for the ideal lidar and the optimal angular resolution.
For the mean velocity, the most noticeable effect is the in-

creasingly severe data loss as a consequence of the reduction
in σ , which indicates σ = 1/4−m= 5 as being the most ef-
fective setting. The turbulence intensity exhibits, in addition
to the data loss, a moderate increase in the maximum value
for smaller σ , which is due to the higher response of the
higher-order statistics (see Table 2). However, this effect is
negligible in the far wake, where the radial diffusion of the
initially sharp turbulent shear layer results in a shift of the en-
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Figure 15. Azimuthally averaged profiles of mean streamwise velocity and turbulence intensity for three downstream locations. (a) x/D =
2.25, (b) x/D = 4.125, and (c) x/D = 6. The dashed lines correspond to regions rejected after the application of the Petersen–Middleton
constraint.

Figure 16. Mean streamwise velocity fields obtained through the ideal lidar simulator with 1θ = 2.5◦ over cross-flow planes at three
downstream locations and four combinations of σ −m, compared with the corresponding LES data.

ergy content towards scales with larger 1n, which are fairly
well recovered – even for σ = 1/4.

6 Notes on LiSBOA applications

LiSBOA can be applied to lidar data sets that are statistically
homogeneous as a function time, t . This statistical property
can be ensured with two approaches. The first approach con-
sists of considering lidar data collected continuously in time,
with a given sampling frequency, for a period where en-
vironmental parameters, such as wind speed and direction,
Obukhov length, and bulk Richardson number for the atmo-
spheric stability regime, are constrained within prefixed in-
tervals (e.g., Banta et al., 2006; Iungo et al., 2013b; Kumer

et al., 2015; Puccioni and Iungo, 2020). For instance, the sta-
tistical stationarity of a generic flow signal, α, can be verified
through the nonstationary index (IST; Liu et al., 2017) as fol-
lows:

IST=
|α′α′m−α′α′|

α′α′
, (19)

where · represents time averaging and α′α′m is the mean
value of the variance calculated over consecutive nonover-
lapping subperiods. The IST values should be lower than a
selected threshold, depending on the specific flow parameter
considered (Foken et al., 2004). A second approach to en-
sure statistical homogeneity of the lidar data set consists of
performing a cluster analysis based on environmental param-
eters, such as those mentioned above. This can be a fruitful
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Figure 17. Same as Fig. 16 but for streamwise turbulence intensity.

alternative when the application of the first approach leads
to too short periods with statistical stationarity and, thus,
with low accuracy in the calculation of the turbulent statis-
tics. With the clustering approach, larger data sets can be
achieved for each cluster, enabling an enhanced statistical
convergence (see, e.g., applications of clustering analysis to
lidar measurements of wind turbine wakes; Machefaux et al.,
2016; Bromm et al., 2018; Iungo et al., 2018; Zhan et al.,
2019, 2020).

The results of LiSBOA for the optimal design of wind lidar
scans are affected by the selection of the input parameters,
such as the total sampling time, T , the integral timescale, τ ,
the velocity variance, u′2, and the fundamental half wave-
length,1n0. In this section, we will discuss the sensitivity of
LiSBOA to these input parameters by considering, as a ref-
erence case, the volumetric scan performed with the virtual
lidar technique on the LES data set analyzed in Sect. 5. The
respective results are summarized in Fig. 18.

The total sampling time, T , directly affects the objective
function εII through parameter L, which represents the num-
ber of realizations. In Fig. 18a–d, different Pareto fronts are
generated for the case under investigation, by varying T from
3 min to 1 h. The various Pareto fronts exhibit similar trends
for the various values of T and generally higher values of εII,
so lower statistical accuracy, for smaller T . For all the cases,
the optimal configuration is still that selected in Sect. 5,
namely 1θ = 2.5◦–σ = 1/4.

For this sensitivity study, the characteristic integral
timescale, τ , has been varied between 0 s (completely ran-
dom uncorrelated data) up to 35 s, with the upper value be-
ing based on the largest integral length scale in the atmo-
spheric boundary layer (ABL), according to (ESDU, 1975),
and considering an advection velocity of 8 ms−1. The respec-

tive Pareto fronts reported in Fig. 18e–h show that the opti-
mal lidar scan is weakly affected by variations of τ , which
is an advantageous feature of LiSBOA for applications in
which this parameter cannot be estimated from previous in-
vestigations or the literature.

Regarding the characteristic velocity variance, u′2, it is
a multiplicative parameter for the objective function εII

(Eq. 14). Therefore, even though it affects the accuracy of
the statistics retrieved, it does not alter the selection of the
optimal scanning parameters.

The choice of the fundamental half wavelength, 1n0, de-
serves special attention since it affects both the optimal scan
design and retrieval of data statistics. The fundamental half
wavelength can be considered as being the cut-off wave-
length of the spatial low-pass filtering operated by LiSBOA
(Sect. 4). The selection of1n0 depends mostly on the length
of the smallest spatial feature of interest in the flow under in-
vestigation, so the Pareto front is likely to be rather sensitive
to changes in1n0. As mentioned in Sect. 4, if the fundamen-
tal half wavelengths are too large compared to the predomi-
nant spatial modes, the turbulence statistics may be contam-
inated by over-smoothing and dispersive stresses, whereas
overly small 1n0 may require angular and radial resolu-
tions that are too small, a longer sampling period, and, thus,
a smaller number of repetitions for a given T . Figure 18i–
l shows the Pareto fronts calculated at different 1n0,x . The
previously selected optimal setup (1θ = 2.5◦−σ = 1/4) still
belongs to the optimality frontier. Finally, Fig. 18p–m dis-
plays the effect of varying 1n0,y on the Pareto front. Unlike
the other cases, the shape of the front is very sensitive to
1n0,y , with a significant increase in data loss, εI, consequent
to refinements of the angular resolution,1θ . The Pareto front
correctly indicates that finer angular resolutions are needed to
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Figure 18. Pareto fronts for the design of the volumetric scan for different inputs. (a–d) Sensitivity to total sampling time T . (e–h) Sensitivity
to integral timescale, τ . (i–l) Sensitivity to streawmise fundamental half wavelength, 1n0,x . (m–p) Sensitivity to spanwise fundamental half
wavelength, 1n0,y . The parameters not indicated at the top of the figures are kept equal to the optimal design case identified in Sect. 5.

adequately sample a velocity field characterized by smaller
wavelengths.

For the sake of completeness, the influence of the differ-
ent fundamental half wavelengths on the statistics is assessed
by calculating the AE95 between LiSBOA and LES for the
statistics reconstructed using several combinations of 1n0,x
and 1n0,y (Fig. 19). Larger values of 1n0,x and 1n0,y pro-
duce detrimental effects on the accuracy for both mean veloc-
ity and turbulence intensity due to the over-smoothing of the
mean velocity and turbulence intensity field and dispersive
stresses for the turbulence intensity only. On the other hand,
excessively small values of 1n0,y exhibit a slight increase in
error as a consequence of the smaller number of samples per
grid node. Nonetheless, the most relevant effect, in this case,
is represented by the high data loss, as already identified in
the Pareto front (e.g., Fig. 18m, n). It is worth noting how
the choice of 1n0 = [2.5,0.5,0.5]D in Sect. 5, which was
purely based on physical considerations about the expected
relevant modes in the near wake, turned out to be the opti-
mal configuration in terms of the overall error of u/U∞ and√
u′2/u.
We acknowledge that the technical specifications required

by LiSBOA (namely τa, Nr, and 1r) are dependent on the
specific lidar system used, the contingent atmospheric condi-
tions, and the best practices followed by the user. Since these
parameters are greatly case dependent, they will not be dis-
cussed further in this context. In general, the selection of the
accumulation time and gate length is a trade-off between the

need to achieve a target maximum range, while keeping a
sufficiently fine radial resolution and a sufficient intensity of
the backscattered lidar signal. In the case of uncertain envi-
ronmental conditions, checking, before the deployment, the
influence of selected combinations of τa, Nr, and 1r on the
Pareto front is recommended.

For the sake of completeness, LiSBOA is compared with
other widely used techniques for statistical postprocessing of
wind lidar data, specifically the Delaunay triangulation (see,
e.g., Clive et al., 2011; Trujillo et al., 2011, 2016; Iungo and
Porté-Agel, 2014; Machefaux et al., 2015), linear interpola-
tion in spherical coordinates (see, e.g., Mohr and Vaughan,
1979; Fuertes Carbajo and Porté-Agel, 2018), and window
averaging (see, e.g., Newsom et al., 2008). Figure 20 shows
the mean velocity and turbulence intensity fields retrieved
from the considered LES data set through the various tech-
niques for a step-stare virtual lidar scan. The various meth-
ods use the same grid as for LiSBOA (see Sect. 5). The voids
in the 3D rendering correspond to regions outside of the data
distribution for the Delaunay triangulation and linear interpo-
lation (i.e., extrapolation cannot be performed) or bins having
a standard error on the mean higher than 15 % of the incom-
ing wind speed for the window average (for an analogy with
LiSBOA, see Fig. 4). A qualitative comparison of the results
reported in Fig. 20 with those for LiSBOA in Figs. 13c and
14c reveals that LiSBOA is the method enabling the largest
spatial coverage for the retrieved statistics for the same li-
dar scan. From the parameter εI , which is reported in Ta-
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Figure 19. AE95 of the statistics reconstructed from virtual lidar data for different streamwise and spanwise fundamental half wavelengths,
for the setup 1θ = 2.5◦− σ = 1/4. (a) Mean streamwise velocity. (b) Streamwise turbulence intensity.

Figure 20. Statistics retrieved from a step-stare virtual lidar scan of the LES data set by means of different techniques. (a, d) Delaunay
triangulation. (b, e) Linear interpolation. (c, f) Window averaging. (a, b, c) Mean streamwise velocity. (d, e, f) Streamwise turbulence
intensity.

ble 3 for the various methods, it is noted that LiSBOA is the
method with the lowest data rejection rate (εI = 33 %), while
the largest is for the window average (εI = 66 %).

Overall, all the methods, except for the window average,
have similar accuracy in the retrieval of the mean velocity
(see the mean absolute percentage error, MAPE, in Table 3),
yet LiSBOA is the method with the lowest error. Further-
more, LiSBOA is the only method not showing artifacts for
the retrieval of turbulence intensity over space, such as en-
hanced turbulence intensity and unexpected peaks, as the sig-
nificantly lower error on turbulence intensity confirms. This
result is in agreement with Trapp and Doswell (2000), where
the effectiveness of the Barnes scheme in the suppression of
short-wavelength noise compared to linear interpolation was
already noted. Finally, the computational time, using MAT-
LAB on a quad-core i7 laptop, is negligible and comparable

Table 3. Comparison between LiSBOA and other techniques for the
retrieval of mean velocity and turbulence intensity from the LES
data set through a virtual lidar scan.

MAPE of MAPE of εI Time

u/U∞

√
u′2/u

LiSBOA 1.2 % 1.3 % 33 % 1.79 s
Delaunay triangulation 1.3 % 1.7 % 53 % 0.65 s
Linear interpolation 1.3 % 1.6 % 55 % 0.01 s
Window average 2 % 1.5 % 66 % 1.55 s

for all the algorithms considered (∼ 1–2 s), with only the lin-
ear interpolation being considerably faster (Table 3).

On a final note, it is noteworthy that LiSBOA is currently
formulated for a single scalar field, namely a velocity com-
ponent (radial or equivalent horizontal). However, in princi-
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ple, this procedure can be extended to vector fields, such as
fully 3D velocity fields. Furthermore, other constraints can
be added for the optimal scanning design, such as imposing a
divergence-free velocity field for incompressible flows. Also,
some modifications could extend the application of LiSBOA
to other remote sensing instruments, such as sodars and scan-
ning radars.

7 Conclusions

A revisited Barnes objective analysis for sparse, nonuniform
distributed, and stationary lidar data has been formulated to
calculate mean, variance, and higher-order statistics of the
wind velocity field over a structured N -dimensional Carte-
sian grid. This LiDAR Statistical Barnes Objective Analysis
(LiSBOA) provides a theoretical framework to quantify the
response in the reconstruction of the velocity statistics as a
function of the spatial wavelengths of the velocity field un-
der the investigation and quantification of the sampling error.

LiSBOA has been validated against volumetric synthetic
3D data generated through Monte Carlo simulations. The re-
sults of this test have shown that the sampling error for a
monochromatic scalar field is mainly driven by the data spac-
ing being normalized by the half wavelength.

The LiSBOA framework provides guidelines for the op-
timal design of scans performed with a scanning Doppler
pulsed wind lidar and the calculation of wind velocity statis-
tics. The optimization problem consists of providing back-
ground information about the turbulent flow under investiga-
tion, such as total sampling time, expected velocity variance,
and integral length scales, technical specifications of the li-
dar, such as range gate and accumulation time, and spatial
wavelengths of interest for the velocity field. The formulated
optimization problem has two cost functions, namely the per-
centage of grid nodes not satisfying the Petersen–Middleton
constraint for the smallest half wavelength of interest (i.e.,
lacking adequate spatial resolution to avoid aliasing in the
statistics), and the standard deviation of the sample mean.
The outputs of the optimization problem are the lidar angu-
lar resolution and, for a given response of the mean field, the
allowable smoothing parameters and number of iterations to
use for LiSBOA.

LiSBOA has been validated using a data set obtained
through the virtual lidar technique, namely by numerically
sampling the turbulent velocity field behind the rotor of a
5 MW turbine obtained from a large eddy simulation (LES).
The 3D mean streamwise velocity and turbulence intensity
fields have shown a maximum error with respect to the LES
data set of about 4 % of the undisturbed wind speed for the
mean streamwise velocity and 4 % of the streamwise tur-
bulence intensity in absolute terms. Wake features, such as
the high-velocity stream in the hub region and the turbulent
shear layer at the wake boundary, have been accurately re-
constructed.

In the companion paper (Letizia et al., 2021), LiSBOA is
used to reconstruct the turbulence statistics of utility-scale
turbine wakes probed with scanning pulsed Doppler lidars.
That study also illustrates the detailed preconditioning ap-
plied to the raw lidar data to extract statistically stationary
and normalized radial velocity data and showcases the po-
tential of LiSBOA for wind energy research.

Atmos. Meas. Tech., 14, 2065–2093, 2021 https://doi.org/10.5194/amt-14-2065-2021



S. Letizia et al.: LiSBOA (LiDAR Statistical Barnes Objective Analysis) – Part 1 2087

Appendix A: Derivation of the analytical response
function of LiSBOA

The first iteration of LiSBOA produces a weighted average in
space of the scalar field, f , with the weights being Gaussian
functions centered at the specific grid nodes, x. In the limit of
a continuous function defined over an infinite domain, Eq. (3)
represents the convolution between the scalar field, f , and
the Gaussian weights, w. Therefore, the response function of
LiSBOA can be expressed in the spectral domain as follows
(Pauley and Wu, 1990):

D0
=

F[g0
]

F[f ]
= F[w], (A1)

where the operator F indicates the Fourier transform (FT).
The FT of the weighting function in Eq. (A1) can be conve-
niently recast as the product of N 1D FT as follows:

F[w] =
N∏
p=1

∞∫
−∞

1
√

2πσ
e
−x2
p

2σ2 · e−ikpxp dxp, (A2)

where kp is the directional wavenumber and i=
√
−1.

Hence, by leveraging the closed form FT of the Gaussian
function (Greenberg, 1998) as follows:

F

[
1

√
2πσ

e
−x2

2σ2

]
= e

−k2σ2
2 , (A3)

we obtain the desired results, i.e., the following:

D0(k)= e−
σ2
2 |k|

2
. (A4)

Appendix B: List of symbols

x, y, z Streamwise, spanwise, and
vertical Cartesian coordinates

t Nonspatial coordinate or time
u, v, w Streamwise, spanwise, and vertical

velocity components
uLOS Radial or line-of-sight wind speed
L Number of realizations and/or scans
θ Azimuth angle
β Elevation angle
1θ Azimuth angle resolution
1β Elevation angle resolution
τa Accumulation time
1r Gate length
Nr Number of range gates along the laser beam
T Total sampling time
σ Smoothing parameter
m Number of iterations
Rmax Radius of influence
1n Half-wavelength vector
1n0 Fundamental half-wavelength vector
1d Random data spacing
dx Resolution vector in Cartesian coordinates
Dm Response at the mth iteration
ri position in the N -dimensional space of

the ith grid node of the Cartesian grid
rj Position in the N -dimensional space

of the j th sample
εI Cost function I (data loss)
εII Cost function II (standard deviation

of the sample mean)
Ni Total number of nodes of the Cartesian grid
τ Integral timescale
.̃ Spatial variable in the scaled frame

of reference
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Code availability. The LiSBOA algorithm has been implemented
in a publicly available code which can be downloaded at https://
github.com/UTD-WindFluX/LiSBOA (last access: 4 March 2021,
Letizia and Iungo, 2021).
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