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Abstract. The COVID-19 pandemic resulted in reduced an-
thropogenic carbon dioxide (CO2) emissions during 2020 in
large parts of the world. To investigate whether a regional-
scale reduction of anthropogenic CO2 emissions during the
COVID-19 pandemic can be detected using space-based ob-
servations of atmospheric CO2, we have analysed a small en-
semble of OCO-2 and GOSAT satellite retrievals of column-
averaged dry-air mole fractions of CO2, i.e. XCO2. We focus
on East China and use a simple data-driven analysis method.
We present estimates of the relative change of East China
monthly emissions in 2020 relative to previous periods, lim-
iting the analysis to October-to-May periods to minimize the
impact of biogenic CO2 fluxes. The ensemble mean indi-
cates an emission reduction by approximately 10 %± 10 %
in March and April 2020. However, our results show consid-
erable month-to-month variability and significant differences
across the ensemble of satellite data products analysed. For
example, OCO-2 suggests a much smaller reduction (∼ 1 %–
2 %± 2 %). This indicates that it is challenging to reliably
detect and to accurately quantify the emission reduction with
current satellite data sets. There are several reasons for this,
including the sparseness of the satellite data but also the weak
signal; the expected regional XCO2 reduction is only on the

order of 0.1–0.2 ppm. Inferring COVID-19-related informa-
tion on regional-scale CO2 emissions using current satellite
XCO2 retrievals likely requires, if at all possible, a more
sophisticated analysis method including detailed transport
modelling and considering a priori information on anthro-
pogenic and natural CO2 surface fluxes.

1 Introduction

Carbon dioxide (CO2) is the most important anthropogenic
greenhouse gas significantly contributing to global warming
(IPCC, 2013). CO2 has many natural and anthropogenic
sources and sinks, and our current understanding of them
has significant gaps (e.g. Ciais et al., 2014; Chevallier
et al., 2014; Reuter et al., 2017c; Crisp et al., 2018;
Friedlingstein et al., 2019). Efforts are ongoing to im-
prove the fundamental understanding of the global carbon
cycle, to improve our ability to project future changes
and to verify the effectiveness of policies such as the
Paris Agreement (https://unfccc.int/process-and-meetings/
the-paris-agreement/the-paris-agreement, last access:
8 September 2020) aiming to reduce greenhouse gas
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emissions (e.g. Ciais et al., 2014, 2015; Pinty et al., 2017,
2019; Crisp et al., 2018; Matsunaga and Maksyutov, 2018;
Janssens-Maenhout et al., 2020).

Retrievals of XCO2 from the satellite sensors SCIA-
MACHY/ENVISAT (Burrows et al., 1995; Bovensmann
et al., 1999; Reuter et al., 2010, 2011) and TANSO-
FTS/GOSAT (Kuze et al., 2016) and from the Orbiting Car-
bon Observatory-2 (OCO-2) satellite (Crisp et al., 2004; El-
dering et al., 2017; O’Dell et al., 2012, 2018) have been used
in recent years to obtain information on natural CO2 sources
and sinks (e.g. Basu et al., 2013; Chevallier et al., 2014;
Chevallier, 2015; Reuter et al., 2014a, 2017c; Schneising et
al., 2014; Houweling et al., 2015; Kaminski et al., 2017; Liu
et al., 2017; Eldering et al., 2017; Yin et al., 2018; Palmer
et al., 2019; Miller and Michalak, 2020), on anthropogenic
CO2 emissions (e.g. Schneising et al., 2008, 2013; Reuter
et al., 2014b, 2019; Nassar et al., 2017; Schwandner et al.,
2017; Matsunaga and Maksyutov, 2018; Miller et al., 2019;
Labzovskii et al., 2019; Wu et al., 2020; Zheng et al., 2020a;
Ye et al., 2020), and for other applications such as climate
model assessments (e.g. Lauer et al., 2017; Gier et al., 2020)
or data assimilation (e.g. Massart et al., 2016).

Here we use an ensemble of satellite retrievals of XCO2
to determine whether COVID-19-related regional-scale (here
∼ 20002 km2) CO2 emission reductions can be detected and
quantified using the current space-based observing system.
This is important in order to establish the capabilities of cur-
rent satellites, which have been optimized to obtain infor-
mation on natural carbon sources and sinks but not to ob-
tain information on anthropogenic emissions. Nevertheless,
data from existing satellites have already been used to as-
sess anthropogenic emissions (see publications cited above).
These assessments and the assessment presented in this pub-
lication are relevant for future satellites focussing on anthro-
pogenic emissions, such as the planned European Coperni-
cus Anthropogenic CO2 Monitoring (CO2M) mission (e.g.
ESA, 2019; Kuhlmann et al., 2019; Janssens-Maenhout et
al., 2020), which is based on the CarbonSat concept (Bovens-
mann et al., 2010; Velazco et al., 2011; Buchwitz et al., 2013;
Pillai et al., 2016; Broquet et al., 2018; Lespinas et al., 2020).

We focus on China because regional-scale COVID-19-
related CO2 emission reductions are expected to be largest
there early in the pandemic (Le Quéré et al., 2020; Liu
et al., 2020). Satellite data have been used to estimate
China’s CO2 emissions during the COVID-19 pandemic as
shown in Zheng et al. (2020b), but that study inferred CO2
reductions from retrievals of nitrogen dioxide (NO2) not
using XCO2. Estimates of emission reductions have also
been derived from bottom-up statistical assessments of fos-
sil fuel use and other economic indicators. According to
Le Quéré et al. (2020), China’s CO2 emissions decreased
by 242 Mt CO2 (uncertainty range 108–394 Mt CO2) during
January–April 2020. As China’s annual CO2 emissions are
approximately 10 Gt CO2 yr−1 (Friedlingstein et al., 2019),
i.e. approximately 3.3 Gt CO2 in a 4-month period assum-

ing constant emissions, the average relative (COVID-19 re-
lated) change during January–April 2020 is therefore approx-
imately 7 %± 4 % (0.242/3.3± 0.14/3.3). This agrees rea-
sonably well with the estimate reported in Liu et al. (2020),
which is 9.3 % for China during the first quarter of 2020 com-
pared to the same period in 2019. Liu et al. (2020) also in-
dicate some challenges in terms of interpreting CO2 emis-
sion reductions as being caused by COVID-19, e.g. the fact
that the first months of 2020 were exceptionally warm across
much of the Northern Hemisphere. CO2 emissions associ-
ated with home heating may have therefore been somewhat
lower than for the same period in 2019, even without the dis-
ruption in economic activities and energy production caused
by COVID-19 and related lockdowns.

Sussmann and Rettinger (2020) studied ground-based
remote-sensing XCO2 retrievals of the Total Carbon Col-
umn Observing Network (TCCON) to find out whether re-
lated atmospheric concentration changes may be detected
by the TCCON and brought into agreement with bottom-up
emission-reduction estimates. Our study is one of the first
attempts to determine whether COVID-19-related regional-
scale CO2 emission reductions can be detected using exist-
ing space-based observations of XCO2. Tohjima et al. (2020)
inferred estimates of China’s CO2 emissions from modelled
and observed ratios of CO2 and methane (CH4) surface con-
centrations at Hateruma Island, Japan. They report for China
fossil fuel emission reductions of 32± 12 % and 19± 15 %
for February and March 2020, respectively, which is about
10 % higher compared to the results shown in Le Quéré et
al., 2020 (see Table 1 of Tohjima et al., 2020). From model
sensitivity simulations they conclude that even a 30 % re-
duction of China’s fossil fuel CO2 emissions would only
result in a 0.8 ppm XCO2 reduction over China and that it
therefore would be very challenging to detect any COVID-
19-related signal with the existing remote-sensing satellites
GOSAT and OCO-2. Their conjecture has essentially been
confirmed by Chevallier et al. (2020). They used XCO2 from
OCO-2 in combination with other data sets and the modelling
of CO2 emission plumes of localized CO2 sources to obtain
estimates of CO2 emissions focussing on several COVID-
19-relevant regions such as China, Europe, India and the
USA. They concluded that these places have not been well
observed by the OCO-2 satellite because of frequent or per-
sistent cloud conditions and they give recommendations for
future carbon-monitoring systems. Zeng et al. (2020) used
modelling, GOSAT XCO2 and other data sets. They conclude
that GOSAT is able to detect a short-term global mean XCO2
anomaly decrease of 0.2–0.3 ppm after temporal averaging
(e.g. monthly), but for East China they could not identify
a statistically robust COVID-19-related anomaly. Satellite-
derived results related to this application are also provided in
the internet (e.g. ESA-NASA-JAXA, 2020).

Regional-scale reductions of tropospheric NO2 columns
have been reported for China (e.g. Zhang et al., 2020;
Bauwens et al., 2020), but for CO2 such an assessment is
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more challenging because of small XCO2 changes on top of a
large background. For example, over extended anthropogenic
source areas such as East China, the XCO2 enhancement due
to anthropogenic emissions is typically only approximately
1–2 ppm (0.25 %–0.5 % of 400 ppm) or even less (see e.g.
Schneising et al., 2008, 2013; Hakkarainen et al., 2016, 2019;
Chevallier et al., 2020; Tohjima et al., 2020; and this study).
A 10 % emission reduction would therefore only change the
regional XCO2 enhancement by 0.1 to 0.2 ppm. This is be-
low the single measurement precision of current satellite
XCO2 data products (at footprint size, i.e. 10.5 km diameter
for GOSAT (Kuze et al., 2016) and 1.3× 2.3 km2 for OCO-
2 (O’Dell et al., 2018)), which is about 1.8 ppm (1σ ) (e.g.
Dils et al., 2014; Kulawik et al., 2016; Buchwitz et al., 2015,
2017a; Reuter et al., 2020) for GOSAT and around 1 ppm for
OCO-2 (Wunch et al., 2017; Reuter et al., 2019). In our study
we focus on XCO2 monthly averages. Averaging reduces the
noise of the satellite retrievals (e.g. Kulawik et al., 2016)
but also eliminates day-to-day XCO2 variations (e.g. Agustí-
Panareda et al., 2019), which cannot be interpreted using our
simple analysis methods. The accuracy of the East China
satellite XCO2 retrievals averaged over monthly timescales
is difficult to assess because of limited reference data. The
validation of the satellite data products is primarily based
on comparisons with ground-based XCO2 retrievals from the
TCCON, a relatively sparse network with an uncertainty of
about 0.4 ppm (Wunch et al., 2010).

The purpose of this study is to investigate – using satellite
XCO2 retrievals – if satellite-derived East China fossil fuel
(FF) CO2 emissions in 2020 (COVID-19 period) differ sig-
nificantly compared to pre-COVID-19 periods. Ideally, we
would like to know by how much emissions have been re-
duced due to COVID-19. This question, however, cannot be
answered using only satellite data because they do not con-
tain any information on how much would have been emitted
without COVID-19. Instead, we aim at answering the follow-
ing question: are satellite-derived East China FF CO2 emis-
sions early in the pandemic (here: January–May 2020) sig-
nificantly lower compared to pre-COVID-19 periods?

To answer this question, we analyse relative differences of
estimates of East China monthly FF emissions during dif-
ferent time periods. We focus on October-to-May periods,
and we refer to different periods via the year where a period
ends; i.e. we call the period October 2019 to May 2020 “year
2020 period” or simply “2020”, the period October 2018 to
May 2019 is called 2019, etc. Specifically, we compute and
analyse differences of monthly emissions in the year 2020
period relative to previous year 2016 to 2019 periods; i.e. we
use four periods for comparison with the year 2020 period.
To focus on the COVID-19 aspect, we subtract for each pe-
riod the October-to-December (OND) mean value, and we
refer to these time series as “OND anomalies”. These OND
anomalies are time series at monthly resolution of the rela-
tive emission difference between different periods relative to
OND. Negative OND anomalies during the COVID-19 pe-

riod would then suggest (depending on uncertainty) that an
emission reduction during the COVID-19 period has been
detected.

The structure of our paper reflects this procedure: in the
Data section (Sect. 2) we present the satellite and model in-
put data used for this study. In the Methods section (Sect. 3)
we present the analysis method, which consists of two main
steps. The purpose of the first step is to isolate the East
China FF emission signal from the XCO2 satellite retrievals.
This is done by subtracting appropriate XCO2 background
values from the XCO2 retrievals to obtain XCO2 anoma-
lies, 1XCO2. We use two methods to compute 1XCO2.
We describe one method, the DAM method, in detail in
Sect. 3.1 and only shortly explain the second method (TmS
method), referring for details to Appendix A. In the second
step (Sect. 3.2) we compute estimates of East China monthly
FF CO2 emissions from the XCO2 anomalies. These emis-
sion estimates are then used to compute the OND anomalies
explained above. In Results and discussion section (Sect. 4)
we present and discuss the results, i.e. the application of the
described methods to the satellite data. A summary and con-
clusions are given in Sect. 5.

2 Data

In this section, we present a short overview about the input
data used for this study.

2.1 Satellite XCO2 retrievals

This study uses four satellite XCO2 Level 2 (L2) data prod-
ucts. An overview about these data sets is provided in Ta-
ble 1. The first product listed in Table 1 is the latest ver-
sion of the bias-corrected OCO-2 XCO2 product delivered
to the Goddard Earth Science Data and Information Services
Center (GES DISC) by the OCO-2 team (ACOS v10r Lite).
The other three satellite XCO2 data sets are different ver-
sions of the GOSAT XCO2 product derived using retrieval
algorithms developed by groups at the University of Leices-
ter, UK (UoL-FP v7.3); the SRON Netherlands Institute for
Space Research (RemoTeC v2.3.8); and the University of
Bremen, Germany (FOCAL v1.0).

The XCO2 estimates derived from OCO-2 (e.g. O’Dell
et al., 2018) and GOSAT (e.g. Kuze et al., 2016) obser-
vations are complementary because these two spacecraft
use different sampling strategies. OCO-2 has been operat-
ing since September 2014. Its spectrometers collect about
85 000 cloud-free XCO2 soundings each day along a narrow
(< 10 km) ground track as it orbits the Earth 14.5 times each
day from its sun-synchronous 13:36 (local time) orbit. The
OCO-2 soundings provide continuous measurements with
relatively high spatial resolution (1.3× 2.3 km2) along each
track, but the individual ground tracks are separated by al-
most 25◦ longitudes in any given day. This spacing is reduced
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Table 1. Overview of the satellite XCO2 Level 2 (L2) input data products.

Satellite Algorithm Product Product ID References Data provider and data access information
version

OCO-2 ACOS v10r CO2_OC2_ACOS O’Dell et al. (2018),
Kiel et al. (2019),
Osterman et al.
(2020)

Product OCO2_L2_Lite_FP 10r obtained
from NASA’s Earthdata GES DISC website:
https://disc.gsfc.nasa.gov/datasets?keywords=
OCO-2%20v10r&page=1 (last access:
15 August 2020)

GOSAT UoL-FP v7.3 CO2_GOS_OCFP Cogan et al. (2012),
Boesch et al. (2019)

Generated by Univ. Leicester (contact: Antonio
Di Noia: adn9@leicester.ac.uk) and available
via the CDS∗

GOSAT RemoTeC v2.3.8 CO2_GOS_SRFP Butz et al. (2011),
Wu et al. (2019)

Generated by SRON (contact: Lianghai Wu:
l.wu@sron.nl) and available via the CDS∗

GOSAT FOCAL v1.0 CO2_GOS_FOCA Noël et al. (2020) Generated by Univ. Bremen and available on
request (contact: Stefan Noël:
stefan.noel@iup.physik.uni-bremen.de)

∗ Products are available via the Copernicus Climate Data Store (CDS, https://cds.climate.copernicus.eu/cdsapp#!/dataset/satellite-carbon-dioxide?tab=overview (last
access: 23 September 2020)) currently until end of 2019. Year 2020 data will be made available via the CDS in mid-2021 but are available from the authors on request (see
contact information).

to approximately 1.5◦ longitude after a 16 d ground track re-
peat cycle. GOSAT has been returning 300 to 1000 cloud-
free XCO2 soundings each day since April 2009. Its TANSO-
FTS spectrometer collects soundings with 10.5 km diameter
surface footprints, separated by approximately 250 km along
and across its ground track at it orbits from north to south
across the sunlit hemisphere.

2.2 Model CO2 data

We use data from NOAA’s (National Oceanic and Atmo-
spheric Administration) CO2 assimilation system, Carbon-
Tracker (CT2019) (Jacobson et al., 2020; Peters et al., 2007),
to define the relationship between XCO2 anomalies and fos-
sil fuel emissions. CarbonTracker is a global atmospheric in-
verse model that assimilates atmospheric CO2 measurements
to produce modelled fields of atmospheric CO2 mole frac-
tions by adjusting land biosphere and ocean CO2 surface
fluxes. An overview about CT2019 set is provided in Ta-
ble 2, including references and access information. In short,
CarbonTracker has a representation of atmospheric transport
based on weather forecasts, as well as modules represent-
ing air–sea exchange of CO2, photosynthesis and respiration
by the terrestrial biosphere, and release of CO2 to the atmo-
sphere by fires and combustion of fossil fuels.

3 Methods

3.1 Methods to compute XCO2 anomalies (1XCO2)

Satellite XCO2 retrievals contain information on anthro-
pogenic CO2 emissions (e.g. Schneising et al., 2013; Reuter

et al., 2014b, 2019; Nassar et al., 2017), but extracting this
information requires appropriate data processing and analy-
sis. For a strong (net) source region XCO2 is typically higher
compared to its surrounding area. Our method is based on
computing and subtracting XCO2 background values. The
purpose of this background correction is to isolate the re-
gional emission signal by removing large-scale spatial and
day-to-day temporal XCO2 variations, which cannot be dealt
with in our simple data-driven method to estimate emissions.

XCO2 varies temporally and spatially (e.g. Agustí-
Panareda et al., 2019; Reuter et al., 2020; Gier et al., 2020),
for example, due to quasi-regular uptake and release of CO2
by the terrestrial biosphere, which results in a strong sea-
sonal cycle, especially over northern mid- and high latitudes.
Compared to fluctuations originating from the interaction
of the terrestrial biosphere and the atmosphere, the spatio-
temporal XCO2 variations due to anthropogenic fossil fuel
(FF) CO2 emissions are typically much smaller (e.g. 1 ppm
compared to 10 ppm; Schneising et al., 2008, 2013, 2014;
Agustí-Panareda et al., 2019).

A method used for background correction is the one de-
scribed in Hakkarainen et al. (2019; see also Hakkarainen
et al., 2016, for a first publication of that method). We use
two different methods for background correction. We refer
to these methods as “daily anomalies via (latitude band) me-
dians” (DAM), which is essentially identical with the method
described in Hakkarainen et al. (2019), and “target minus sur-
rounding” (TmS).

Hakkarainen et al. (2019) applied their method to the
OCO-2 Level 2 XCO2 data product to filter out trends and
seasonal variations in order to isolate CO2 source/sink sig-
nals. For background correction, Hakkarainen et al. (2019)
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Table 2. Overview of the CarbonTracker CT2019 data set. For this study we used data from the period January 2015 to December 2018.

Model/version Details Reference Access

CarbonTracker
CT2019

Atmospheric CO2 mole fraction profiles
(spatio-temporal sampling: 3◦× 2◦,
3-hourly) and CO2 fluxes (spatio-
temporal sampling: 1◦× 1◦, 3-hourly)

Jacobson et al. (2020), DOI:
https://doi.org/10.25925/39m3-6069

CarbonTracker CT2019,
http://carbontracker.noaa.gov
(last access: 22 July 2020)

Table 3. Corner coordinates of the East China target region as anal-
ysed in this study.

Region ID Comments Latitude Longitude
range range
(◦ N) (◦ E)

East China Target region for DAM 28–44 102–126
and TmS methods

Extended region for 18–54 93–135
TmS method

calculate daily medians for 10◦ latitude bands and linearly
interpolate the resulting values to each OCO-2 data point. In-
stead of interpolation, we compute the median around each
latitude (running median) using a latitude band width of
±15◦. We use a larger width compared to Hakkarainen et
al. (2019), as we also apply our method to GOSAT data,
which are much sparser than OCO-2 data. Our investigations
showed that the width of the latitude band is not critical. The
band needs to be wide enough to contain a statistically sig-
nificant sample but narrow enough to resolve large latitudi-
nal gradients in CO2. We subtract the corresponding median
from each single XCO2 observation in the original Level 2
XCO2 data product files to obtain a data set of XCO2 anoma-
lies, 1XCODAM

2 .
In order to verify that our results do not critically depend

on the details of one method, we also use the second TmS
method. Here we obtain the background by averaging XCO2
in a region surrounding the target region (see Table 3 for the
latitude and longitude corner coordinates of the target and its
surrounding region).

We call these background-corrected XCO2 retrievals
XCO2 anomalies, and satellite-derived maps and time se-
ries of these XCO2 anomalies are presented and discussed in
Sect. 4.1. These XCO2 anomalies are then used to compute
East China FF CO2 emission estimates, COFF

2 , as described
in the following subsection.

3.2 Computation of emission estimates (COFF
2 )

To determine whether satellite XCO2 retrievals can provide
information on relative changes of anthropogenic CO2 emis-
sions for the East China target region, we must establish
a relationship between the XCO2 anomalies (see Sect. 3.1)

and the desired estimates of the target region fossil fuel (FF)
emissions. To develop a method to convert the XCO2 anoma-
lies,1XCO2, to FF emission estimates, COFF

2 , we use an ex-
isting model data set, the CarbonTracker CT2019 data set de-
scribed in Sect. 2.2, which contains atmospheric CO2 fields
and corresponding CO2 surface fluxes during 2015–2018.

Figure 1 shows CT2019 XCO2 maps (left) and corre-
sponding surface CO2 flux maps (right) for selected days in
the January-to-May-2018 period. The XCO2 has been com-
puted by vertically integrating the CT2019 CO2 vertical pro-
files (weighted with the surface pressure normalized pressure
change over each layer). The model data are sampled at lo-
cal noon, which is close to the overpass time of the satellite
data sets used here. The spatio-temporal sampling of a spe-
cific satellite XCO2 data product is not considered here; i.e.
we use the CT2019 data set independent of any satellite data
product apart for the sampling at local noon. As can be seen
from Fig. 1, XCO2 is clearly elevated over the East China tar-
get region (red rectangle) relative to its surrounding region on
15 January 2018 (Fig. 1a) and on 15 March 2018 (Fig. 1c).
On 15 May 2018 (Fig. 1e) the target region and parts of the
surrounding region contain large areas of lower-than-average
XCO2, a pattern which primarily results from carbon uptake
by vegetation during the growing season, which starts in east-
ern China around May each year. The CO2 fluxes, which are
shown on the right-hand side panels of Fig. 1, show simi-
lar spatial pattern as the XCO2 maps, but due to atmospheric
transport and the long lifetime of atmospheric CO2 there is
no one-to-one correspondence between atmospheric XCO2
and surface emissions. The CO2 fluxes are the sum of several
contributing fluxes including FF emissions, biogenic fluxes
and other fluxes (fires, oceans).

Figure 2a shows time series obtained by applying the
DAM method to CT2019 XCO2 for the East China target
region. The CT2019 data set not only contains atmospheric
CO2 concentrations but also its components due to fossil fuel
(FF) emissions and biogenic (BIO) and other fluxes. From
the CT2019 data set we computed total XCO2 (TOT) and its
FF and BIO components. From these components we sub-
tracted the background using the DAM method, and the cor-
responding monthly 1XCODAM

2 time series are shown in
Fig. 2a. As can be seen from Fig. 2a, total1XCODAM

2 (black
line) is dominated by its FF (red line) and BIO (green line)
components (their sum, i.e. FF+BIO (grey line), is close to
TOT (black line)). As can also be seen, FF emissions for East
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Figure 1. CT2019 XCO2 (a, c, e, in ppm) and corresponding CO2 surface fluxes (b, d, f, in Mt CO2 yr−1 per cell) for 15 January 2018 (a, b),
15 March 2018 (c, d) and 15 May 2018 (e, f). The red rectangle encloses the East China target region as defined for this study.

China (red line) are larger than the BIO fluxes (green line) at
least during October to April. During May to September the
BIO fluxes are negative due to uptake of atmospheric CO2
by the terrestrial biosphere, and their absolute value is on the
same order or may even significantly exceed the FF emis-

sions. As a consequence, total 1XCODAM
2 (black line) gets

negative. During these months, the total anomaly (black line)
is closer to BIO (green line) than to FF (red line).

The task for the satellite inversion is to obtain estimates of
East China FF CO2 emissions from the satellite-derived (to-

Atmos. Meas. Tech., 14, 2141–2166, 2021 https://doi.org/10.5194/amt-14-2141-2021
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Figure 2. Results obtained by applying the DAM method to CT2019 XCO2 for East China. (a) Different monthly 1XCODAM
2 components:

total 1XCODAM
2 (TOT) and its FF (red) and biogenic (BIO, green) components and their sum (FF+BIO). The non-shaded time periods

October to May indicate the periods analysed in this publication. (b) East China October-to-May FF CO2 emissions (red dots) and estimated
emissions COFF(DAM)

2 (black crosses) as obtained from total 1XCODAM
2 (TOT as shown in panel a) using the formula shown in panel (b).

(c) Scatter plot of estimated versus true (i.e. CT2019) FF emissions. (d) Relative difference of estimated and true emissions.

tal) XCO2 anomalies, 1XCODAM
2 (black line in Fig. 2a). To

determine to what extent this is possible, we fitted CT2019
1XCODAM

2 (i.e. the quantity that we can also obtain from
satellites) to the East China CT2019 FF CO2 emissions
(which are the known true emissions in this model data as-
sessment exercise). The results are shown in Fig. 2b for
October-to-May periods. The estimated emissions (black
crosses) have been obtained via a linear fit of 1XCODAM

2
to the CT2019 FF emissions (red dots). The two parameters
of the linear fit are also shown in Fig. 2b: scaling factor A
(= 0.90) and offset B (= 7.41). As can be seen, the estimated

emissions agree reasonably well with the true emissions. The
linear correlation coefficient R is 0.83 (see Fig. 2c), and the
relative difference in terms of mean and standard deviation
is 0.2 %± 5 % (see Fig. 2d). However, for individual months
the error can be as large as 10 %. From this we conclude that
the (approximately 2σ ) uncertainty of our method is approx-
imately 10 %.

A similar figure but generated using the TmS method is
shown in Appendix A as Fig. A1. As can be seen, the re-
sults shown in Fig. A1b to d are similar to the ones shown
in Fig. 2b to d, but the linear correlation is slightly worse
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and the errors are slightly larger. In contrast, the time se-
ries shown in panel (a) differ significantly. This is because of
the different background corrections used for the two meth-
ods. But despite these significant differences the quality of
the derived emissions is similar (the standard deviation of
the monthly biases is 5.5 % for TmS and 4.8 % for DAM;
see panel d). Nevertheless, the DAM method gives slightly
better results compared to the TmS method, and this is also
confirmed by applying both methods to the satellite data (see
Sect. 4). Therefore, the DAM method is our baseline method,
and we focus on results obtained with the DAM method.

It is perhaps surprising that the offset (fit parameter B; see
above) is so large (7.41 for DAM and 7.63 for TmS). Prob-
ably one would assume that the XCO2 anomalies 1XCO2
are directly proportional to the target region fossil fuel emis-
sions, i.e. one would assume that FF is (approximately)
equal to a constant multiplied by 1XCO2 (no offset added)
(for example, for FF= 8 Gt CO2 yr−1 and 1XCO2= 2 ppm
one would have expected that the conversion factor is 4
Gt CO2 yr−1 ppm−1). In that case, as we are only inter-
ested in relative changes in emissions, we would not need
to know the exact value of the scaling factor. However,
when analysing the satellite data, we found that 1XCO2
is around 2 ppm for January but decreases in subsequent
months, nearly approaching zero in May (which is consistent
with the CT2019 results shown in Fig. 2a). As anthropogenic
emissions are not expected to change that much within a few
months (and zero emissions around May are not realistic at
all), we concluded that the simple proportionality assump-
tion does not hold. To investigate this we used the CT2019
data set to test and improve our method, and the results are
reported in this section. We applied our method to CT2019
XCO2 (as shown in Fig. 2) and compared the retrieved FF
values with the (true) CT2019 FF values. We found large dif-
ferences, which could be significantly reduced by adding an
offset to the linear fit as discussed above. The reason for the
large offset is the influence of the biosphere. Around May the
uptake of atmospheric CO2 due to the biosphere is so large
that1XCO2 is close to zero – but the FF emissions are not –
and the East China target region is essentially carbon neutral
or even a net sink (see also Fig. 1).

As explained, scaling factor A and offset B are obtained
empirically via a linear fit using CT2019 data (Fig. 2b) and
used for the conversion of the satellite XCO2 anomalies dur-
ing the entire time period January 2015 to May 2020 (as will
be shown in Sect. 4). As can be seen from Fig. 2b and c,
the retrieval biases are within ±10 % during 2015–2018. We
assume in our study that the same conversion is also appro-
priate for 2019 and 2020. However, it cannot be ruled out that
2019 or 2020 were significantly different compared to previ-
ous years with respect to aspects relevant for our study. To
address this, we compare the period October 2019 to May
2020 results with the corresponding results from previous
October-to-December periods to find out to what extent the
period of interest, i.e. October 2019 to May 2020, is signifi-

Figure 3. DAM XCO2 anomaly map at 1◦× 1◦ resolution gener-
ated from OCO-2 Level 2 XCO2 (v10r, land) for 2015 to 2019.

cantly different, taking into account the year-to-year variabil-
ity, which we use to obtain uncertainty estimates.

The methods described in this section have been applied
to convert satellite-derived target region XCO2 anomalies,
1XCO2, into estimated target region FF CO2 emissions,
COFF

2 . How this has been done using the DAM method for
background correction is explained in the following Sect. 4,
where we refer for the corresponding TmS method results to
Appendix A.

4 Results and discussion

In this section, we present results obtained by applying the
DAM method (see Methods Sect. 3.1) to the satellite data to
obtain XCO2 anomalies from which we derive FF emission
estimates (see Methods Sect. 3.2).

4.1 Application of the DAM method to satellite XCO2
retrievals

The DAM method has been applied to the OCO-2 and
GOSAT satellite XCO2 data products listed in Table 1. Fig-
ure 3 shows a global OCO-2 DAM XCO2 anomaly map at
1◦× 1◦ resolution for the period 2015–2019. A similar map
is shown in Hakkarainen et al. (2019; see their Fig. 3, top
panel). The degree of agreement confirms the finding re-
ported in Sect. 3.1 that the generation of these anomaly maps
does not critically depend on how exactly the median is com-
puted and used to subtract the background. Hakkarainen et
al. (2019) discuss their OCO-2-derived maps in quite some
detail also in terms of seasonal averages and comparisons
with model simulations. They show that positive anomalies
correspond to fossil fuel combustion over major industrial ar-
eas including China. Their seasonal maps (see their Fig. 4)
show a strong positive anomaly over East China (similar
to that shown here in Fig. 3) except for the June–August
(JJA) summer season, where the XCO2 anomaly can be neg-
ative. This is consistent with the CT2019 results presented in
Sect. 3.2.
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Figure 4. As Fig. 3 but for China and surrounding areas.

A zoom into Fig. 3 is presented in Fig. 4, which shows
more details for China and its surrounding area. As can be
seen from Fig. 4, 1XCODAM

2 is positive especially in the re-
gion between Beijing, Wuhan and Hong Kong, with the high-
est values in the area between Beijing and Shanghai. This
positive anomaly indicates that this region is a strong CO2
source region as also discussed in Hakkarainen et al. (2019).
As already explained, there is no one-to-one correspondence
(especially not for every grid cell) between local XCO2
anomalies and local CO2 emissions (or uptake) because the
emitted CO2 is transported and mixed in the atmosphere.
Furthermore, the satellite data are typically sparse due to
strict quality filtering to avoid potential XCO2 biases, for ex-
ample, due to the presence of clouds. Cloud-contaminated
ground scenes are identified to the extent possible via the cor-
responding retrieval algorithm (see references listed in Ta-
ble 1) and flagged to be bad and are therefore not used for
this analysis. The sparseness of the satellite data set is obvi-
ous from Fig. 5, which shows OCO-2 DAM XCO2 anomaly
maps for February during the 6 years 2015 to 2020.

A key difference between the OCO-2 and the GOSAT
data products is the different sampling of the target region,
with GOSAT having much sparser coverage compared to
OCO-2. This is illustrated in Fig. 6, which shows February-
to-March-2020 averages of the OCO-2 XCO2 data product
(Fig. 6a) and the three GOSAT data products (Fig. 6b–d) at
1◦× 1◦ resolution. The OCO-2 product shown in Fig. 6a is
NASA’s OCO-2 operational Atmospheric CO2 Observations
from Space (ACOS) algorithm version 10r bias-corrected
XCO2 product (the so-called Lite product), which is re-
ferred to in this publication via the product identifier (ID)
CO2_OC2_ACOS. The three GOSAT XCO2 products are
(see details and references as given in Table 1) the Univer-
sity of Leicester’s GOSAT product (ID CO2_GOS_OCFP;
Fig. 6b), SRON Netherlands Institute for Space Research
GOSAT product (CO2_GOS_SRFP; Fig. 6c), and University
of Bremen’s GOSAT product (CO2_GOS_FOCA; Fig. 6d)
as retrieved with the Fast atmOspheric traCe gAs retrievaL
(FOCAL) retrieval algorithm initially developed for OCO-2
(Reuter et al., 2017a, b). As can be seen from Fig. 6, the spa-

tial sampling of the target region is different for each prod-
uct as only quality-filtered (i.e. good) data are shown and the
quality filtering is algorithm specific (see references listed in
Table 1).

Figure 6 also shows as red rectangle the East China tar-
get region as defined for this study (the geographical coordi-
nates are listed in Table 3). The fossil fuel (FF) CO2 emis-
sions of this target region are approximately 8 Gt CO2 yr−1;
i.e. the selected target region covers approximately 80 %
of the FF emissions of all of China, which are approxi-
mately 10 Gt CO2 yr−1 (Le Quéré et al., 2018; Friedlingstein
et al., 2019). In the following section we present East China
FF emission estimates as derived from the satellite XCO2
anomalies during and before the COVID-19 period.

4.2 Emission estimates

Carbon dioxide fossil fuel emission estimates, COFF
2 , have

been derived from the XCO2 anomalies, 1XCO2, computed
for each of the four satellite XCO2 data products listed in
Table 1. In this section the emission results are presented
and discussed. We focus on results based on1XCO2 derived
with the DAM method and refer to Appendix A for results
based on the TmS method.

4.2.1 Emission estimates from NASA’s OCO-2 (version
10r) XCO2

Figure 7 shows the results obtained by applying the DAM
method to product CO2_OC2_ACOS (see Table 1) for the
East China target region for the period January 2015 to May
2020 (the TmS version of this figure is shown as Fig. A2 in
Appendix A). Figure 7a shows daily DAM XCO2 anomalies
as a thin grey line and the corresponding monthly averages
as red dots. The amplitude (approximately±1 ppm) and time
dependence (e.g. the minimum in the middle of each year)
are similar to that for CT2019 (Fig. 2a black line). To ensure
that there are a sufficiently large number of observations per
month, two criteria need to be fulfilled: There must be a min-
imum number of days per month (here: 5) and a minimum
number observations per day (here: 30). The latter criterion
is also relevant for the daily data shown in Fig. 7(a) (grey
line). We also used other combinations of these two parame-
ters (as shown below, e.g. Fig. 9).

Figure 7b shows monthly 1XCODAM
2 for different

October-to-May periods, and Fig. 7c shows the correspond-
ing estimated FF emissions, COFF(DAM)

2 . Figure 7d shows
relative differences of the time series shown in Fig. 7c. For
example, the blue data are referred to as “(2020–2019)/2019”
in Fig. 7d, where 2019 refers to the blue data in Fig. 7c,
which corresponds to the period ending in May 2019. Shown
are differences of year 2020 data (red in Fig. 7c) minus data
from previous periods; i.e. Fig. 7d shows to what extent 2020
(strictly speaking the period October 2019–May 2020, i.e.
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Figure 5. As Fig. 4 but for (a) February 2015 to (f) February 2020.

the period which ends in 2020) differs relative to previous
October-to-May periods.

To find out if we can detect a difference between the
COVID-19 period and pre-COVID-19 periods, we subtract
from each time series shown in Fig. 7d the October-to-
December (OND) mean value. The corresponding time se-
ries are shown in Fig. 7e and are referred to as OND anoma-
lies in the following. As can be seen from Fig. 7e, the OND
anomalies vary within ±5 %. Values before January scatter
around zero as the mean value of OND anomalies is zero by
definition during October to December. In January the values
also scatter around zero. After January most values are nega-
tive, indicating reduced emissions compared to pre-COVID-
19 periods. This can be seen more clearly in Fig. 8, where the
same data as in Fig. 7e are shown, but in addition the ensem-
ble mean (light blue thick lines and dots) and median (royal
blue thick lines and dots) has been added, including uncer-
tainty estimates as computed from the standard deviation of
the ensemble members.

Figures 7 and 8 have been generated with the requirement
that for each day at least 30 observations need to be available
in the target region and for each month at least 5 d fulfilling
this 30 observations per day requirement. Figure 9 is similar
to Fig. 8 except that also results for additional combinations
have been added, i.e. other combinations of minimum num-
ber of observations per day and minimum number of days
per month. As can be seen, the results depend somewhat on
which combination of these parameters is used, but the en-
semble median and its uncertainty (royal blue symbols and
lines) are similar. The ensemble median values are similar
and negative during February to May 2020. The large uncer-
tainties (vertical lines; 1σ error estimates) reflect the scatter
of the ensemble members. The errors bars (1σ ) overlap with
the zero (i.e. no reduction) line, indicating that it cannot be
claimed with confidence that a significant drop of the emis-
sions during the COVID-19 period has been detected.
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Figure 6. (a) OCO-2 XCO2 (version 10r, product ID CO2_OC2_ACOS) over land at 1◦× 1◦ resolution for February–March 2020. The red
rectangle encloses the investigated East China target region. (b–d) As panel (a) but for products CO2_GOS_OCFP (b), CO2_GOS_SRFP (c)
and CO2_GOS_FOCA (d) (see Table 1 for details).

4.2.2 Emission estimates from GOSAT XCO2 data
products

The same analysis method as applied to NASA’s OCO-
2 data product (Sect. 4.2.1) has also been applied to the
three GOSAT XCO2 data products listed in Table 1. The
results are shown in Fig. 10 for product CO2_GOS_OCFP,
in Fig. 11 for product CO2_GOS_SRFP and in Fig. 12 for
product CO2_GOS_FOCA. The month-to-month variations
are larger for these GOSAT products compared to OCO-2
product (note the different scale of the y axes compared to
Fig. 9). This is because GOSAT products are much sparser
compared to the OCO-2 product (as shown in Fig. 6) and
because the single observation random error is larger for
GOSAT compared to OCO-2. As can be seen from a com-
parison of the results obtained for the three GOSAT prod-
ucts (Figs. 10–12), there are large differences among the
results obtained from these products. For example, product
CO2_GOS_OCFP (Fig. 10) suggests that the largest emis-
sion reduction is in April, in contrast to the other two prod-
ucts. The large spread of the GOSAT results means that no
clear conclusions can be drawn concerning East China emis-
sion reductions during the COVID-19 period.

4.2.3 Ensemble mean and uncertainty

An overview about the results obtained from all four satellite
data products using the DAM method is shown in Fig. 13 (the
corresponding TmS version of this figure is shown as Fig. A3

in Appendix A). The results obtained from the individual
products (as shown in royal blue in Figs. 9–12) are shown
here using reddish colours (the corresponding numerical val-
ues are listed in Table 4). Also shown in Fig. 13 is the mean of
the ensemble members and its estimated uncertainty (in dark
blue); the corresponding numerical values are listed in the
bottom row of Table 4. The ensemble mean suggests emis-
sion reductions by approximately 10 %± 10 % in March and
April 2020. However, as can also be seen, there are signif-
icant differences across the ensemble of satellite data prod-
ucts. For example, the analysis of the OCO-2 data suggests
a much smaller emission reduction of only about 1 %–2 %.
Because of the large differences between the individual en-
semble members it is concluded that the expected emission
reduction cannot be reliably detected and accurately quanti-
fied with our method.

5 Summary and conclusions

We have analysed a small ensemble of satellite XCO2 data
products to investigate whether a regional-scale reduction of
atmospheric CO2 during the COVID-19 pandemic can be de-
tected for East China. Specifically, we analysed four XCO2
data products from the satellites OCO-2 and GOSAT. For this
purpose, we used a simple data-driven approach, which in-
volves the computation of XCO2 anomalies, 1XCO2, using
a method called DAM (daily anomalies via (latitude band)
medians). This method, which is essentially identical with
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Figure 7. DAM analysis of the OCO-2 ACOS version 10r XCO2 product (CO2_OC2_ACOS) for the East China region from January 2015
to May 2020. (a) The thin grey line shows the daily DAM XCO2 anomalies, i.e. daily 1XCODAM

2 . The red dots are the corresponding

monthly values, which are also shown in panel (b) for different October–May periods. (c) As panel (b) but for COFF(DAM)
2 , i.e. for the

estimated East China monthly FF emissions (see main text). The data for October 2019–May 2020 (10.2019–5.2020) are shown in red (see
annotation for other periods). (d) Relative COFF(DAM)

2 differences for different periods. In blue, for example, the differences correspond
to the period 10.2019–5.2020 (shown in red in panel c) minus 10.2018–5.2019 (shown in blue in panel c). (e) As panel (d) but after the
October-to-December mean value (OND anomalies). The following parameters have been used to generate this figure: minimum number of
observations per day: 30; minimum number of days per month: 5.
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Figure 8. Ensemble member COFF(DAM)
2 OND anomalies derived from the satellite product CO2_OC2_ACOS. The thin lines and small

symbols show the same data also shown in the bottom panel of Fig. 7. The thick dots and lines show the corresponding ensemble median,
mean and scatter. The following parameters have been used to generate this figure (see also annotation): minimum number of observations
per day: 30; minimum number of days per month: 5.

Figure 9. The same as Fig. 8 but with additional combinations of minimum number of observations per day (30 as in Fig. 8 and in addition
50, 15 and 10) and minimum number of days per month (5 as in Fig. 8 and in addition 10) (see annotation).
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Figure 10. The same as Fig. 9 but for the product CO2_GOS_OCFP. Results are shown for several values of the required minimum number
of observations per day: 2, 4, 6, 8, 10 and 15. The required minimum number of days per month is 5.

Figure 11. The same as Fig. 10 but for the product CO2_GOS_SRFP.

Atmos. Meas. Tech., 14, 2141–2166, 2021 https://doi.org/10.5194/amt-14-2141-2021



M. Buchwitz et al.: Satellite study of East China CO2 reduction during the COVID-19 pandemic 2155

Figure 12. The same as Fig. 10 but for the product CO2_GOS_FOCA.

Figure 13. Overview of the ensemble-based COFF(DAM)
2 results for January–May 2020 relative to October–December 2019 and previous

years (also shown in Figs. 9–12) via reddish colours for each of the four analysed satellite XCO2 data products (see Table 1). The corre-
sponding ensemble mean value and its uncertainty is shown in dark blue. The uncertainty has been computed as the standard deviation of the
ensemble members. The corresponding numerical values of the ensemble members are listed in Table 4.

the method developed at the Finnish Meteorological Insti-
tute (FMI, Hakkarainen et al., 2019), helps to isolate local
or regional XCO2 enhancements originating from anthro-
pogenic CO2 emissions from large-scale daily XCO2 back-
ground variations (note however that the FMI method is not

supposed to extract exclusively anthropogenic emission con-
tributions to XCO2; see Hakkarainen et al., 2019). In addition
to the DAM method we also used a second method for the
computation of 1XCO2, which is referred to as TmS (tar-
get minus surrounding). Using model and satellite data we
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Table 4. Numerical values of the ensemble-based COFF(DAM)
2 results as shown in Fig. 13. Listed are the median values and corresponding

1σ uncertainties (in brackets). The dimensionless values listed here represent the relative COFF(DAM)
2 change for January–May 2020 relative

to October–December 2019 and previous years (OND anomalies; see main text).

Month

Product ID October November December January February March April May
2019 2019 2019 2020 2020 2020 2020 2020

CO2_OC2_ACOS −0.004 0.001 −0.010 0.008 −0.010 −0.003 −0.018 −0.019
(0.025) (0.024) (0.015) (0.026) (0.024) (0.020) (0.023) (0.027)

CO2_GOS_OCFP −0.049 0.026 0.071 −0.110 −0.055 −0.151 −0.281 −0.141
(0.046) (0.038) (0.050) (0.077) (0.087) (0.101) (0.055) (0.158)

CO2_GOS_SRFP −0.076 0.111 −0.061 0.038 −0.064 0.011 −0.082 0.024
(0.031) (0.030) (0.054) (0.101) (0.053) (0.081) (0.059) (0.077)

CO2_GOS_FOCA −0.057 0.053 0.008 −0.044 0.046 −0.176 −0.041 −0.080
(0.042) (0.029) (0.040) (0.062) (0.081) (0.066) (0.069) (0.064)

Ensemble −0.047 0.048 0.002 −0.027 −0.021 −0.085 −0.106 −0.054
(0.031) (0.047) (0.054) (0.065) (0.050) (0.091) (0.120) (0.072)

found that the results obtained with the DAM method pro-
vide better results compared to the TmS method. Therefore,
we focussed on DAM-based results but also report selected
results obtained with the TmS method (reported separately
in Appendix A). We analysed satellite data between January
2015 and May 2020 and compared year 2020 monthly XCO2
anomalies with the corresponding monthly XCO2 anomalies
from previous periods.

In order to link the satellite-derived XCO2 anomalies to
East China fossil fuel (FF) CO2 emissions, we used out-
put from NOAA’s CO2 assimilation system CarbonTracker
(CT2019) covering the years 2015 to 2018. We focus on
October-to-May periods to minimize the impact of the terres-
trial biosphere. Using CT2019, we show that1XCO2 can be
converted to FF emission estimates, denoted COFF

2 , via a lin-
ear transformation. The two coefficients slope and offset of
this linear transformation have been obtained empirically via
a linear fit; i.e. we established a linear empirical equation to
relate the two quantities 1XCO2 and COFF

2 . We show using
CT2019 that the retrieved emissions during October-to-May
periods agree within 10 % with the CT2019 East China FF
emissions.

For the analysis of the satellite data we focus on the
October-2019-to-May-2020 period, which covers months
during the COVID-19 pandemic but also pre-COVID-19
months. We compare results obtained during this period with
earlier October-to-May periods to find out to what extent
year 2020 differs from previous years. Our analysis is limited
to October-to-May periods because our simple data-driven
analysis method cannot deal with the large and highly vari-
able terrestrial biosphere CO2 fluxes outside of this period.
On the other hand this period is challenging for satellite re-

trievals because of the low sun angles especially during the
winter months and cloudiness.

We applied our method to each of the four satellite XCO2
data products to obtain monthly emission estimates, COFF

2 ,
for East China. We focus on changes relative to pre-COVID-
19 periods. Our results show considerable month-to-month
variability (especially for the GOSAT products) and signifi-
cant differences across the ensemble of satellite data products
analysed. The ensemble mean suggests emission reductions
by approximately 10 %± 10 % in March and April 2020.
This estimate is dominated by the GOSAT ensemble mem-
bers. Analysis of the OCO-2 product yields smaller values,
indicating a reduction of only about 1 %–2 % with an uncer-
tainty of approximately ±2 %.

The large uncertainty, which is on the order of the derived
reduction (i.e. 100 %, 1σ ), and the large spread of the results
obtained for the individual ensemble members indicate that
it is challenging to reliably detect and to accurately quantify
the emission reduction using the current generation of space-
based methods and the simple DAM-based analysis strategy
adopted here.

These findings, which are consistent with other recent
studies (e.g. Chevallier et al., 2020; Zeng et al., 2020), are
not unexpected. Regional XCO2 enhancements due to fos-
sil fuel emissions are typically only 1 to 2 ppm and even a
10 % emission reduction would therefore only correspond to
a reduction of the fossil-fuel-related regional XCO2 enhance-
ment by 0.1 to 0.2 ppm. XCO2 variations as small as 0.2 ppm
are below the estimated uncertainty of the single footprint
satellite XCO2 retrievals. The uncertainty of single observa-
tions, which is typically around 0.7 ppm (e.g. Buchwitz et
al., 2017a; Reuter et al., 2020), has been obtained by com-
parisons with ground-based Total Carbon Column Observing
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Network (TCCON) XCO2 retrievals, which have an uncer-
tainty of 0.4 ppm (1σ , Wunch et al., 2010). In this study we
focus on monthly averaged data because our analysis method
cannot properly deal with day-to-day variability and because
of the sparseness of the satellite data. Averaging results in the
reduction of the random error, but investigations have shown
that random errors do not simply scale with the inverse of
the square root of number of observations added due to (un-
known) systematic errors and error correlations (Kulawik et
al., 2016). Of course also other sources of uncertainty are
relevant in this context, in particular time-dependent atmo-
spheric transport and varying biogenic CO2 contributions
(e.g. Houweling et al., 2015, and references given therein).

We conclude that inferring COVID-19-related information
on regional-scale CO2 emissions using current (quite sparse)
satellite XCO2 retrievals requires, if at all possible, a more
sophisticated analysis method including the use of detailed a
priori information and atmospheric transport modelling.

The extent to which COVID-19-related emission reduc-
tions can be resolved on smaller scales – such as power
plants or cities (e.g. Nassar et al., 2017; Reuter et al., 2019;
Zheng et al., 2020a; Wu et al., 2020) has not been investi-
gated in this study. For this purpose, XCO2 retrievals from
NASA’s OCO-3 mission are promising, especially because of
its Snapshot Area Map (SAM) mode, which permits the map-
ping of XCO2 over∼ 80 km by 80 km areas around localized
anthropogenic CO2 emission sources (see https://ocov3.jpl.
nasa.gov/, last access: 28 August 2020). Even more complete
coverage is planned for the Copernicus CO2M mission in the
future (e.g. Janssens-Maenhout et al., 2020).
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Appendix A

As explained in the main text, a second method has been ap-
plied to the CT2019 and the satellite data. This method is
called “target minus surrounding” (TmS) and differs from
the DAM method in the approach to determine the XCO2
background. Whereas the DAM method computes the (daily)
background as the median of the XCO2 values in latitude
bands, the TmS background is computed from the XCO2 val-
ues in an area surrounding the target region (the coordinates
are listed in Table 3).

The TmS results are discussed in the main text. Here we
only show three figures. Figure A1 is the same as Fig. 2 but
using the TmS method instead of the DAM method. Fig-
ure A2 is the TmS version of Fig. 7, and Fig. A3 is the TmS
version of Fig. 13.

Figure A1. The same as Fig. 2 but using the target minus surrounding (TmS) method.
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Figure A2. The same as Fig. 7 but using the TmS method.
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Figure A3. The same as Fig. 13 but using the TmS method.
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Data availability. The key results of this study are listed in this pa-
per in numerical form (Table 4). Access information for the satellite
data used as input for this study is provided in Table 1. The CT2019
data are available from NOAA (see access information given in Ta-
ble 2).
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