



## Supplement of

## The improved comparative reactivity method (ICRM): measurements of OH reactivity under high-NO $_x$ conditions in ambient air

Wenjie Wang et al.

Correspondence to: Bin Yuan (byuan@jnu.edu.cn)

The copyright of individual parts of the supplement might differ from the article licence.

## 22 **1. Calculation of X\_R**

Due to the variation of reagent ion source and sample humidity, the pyrrole (C<sub>4</sub>H<sub>5</sub>N) ion signal is normalized to a standard reagent ion signal of  $10^6$  counts/s (cps) as following in Eq. 1.

$$Pyrrole_{ncps} = \frac{i[C_4H_5NH^+] \times 10^6}{i[H_3O^+] + X_R \times i[H_3O^+H_2O]}$$
(1)

Where  $Pyrrole_{ncps}$  is a normalized signal of the pyrrole, and  $i[C_4H_5NH^+]$ ,  $i[H_3O^+]$ , and  $i[H_3O^+H_2O]$  represent the signals of different product ions, respectively. The value of X<sub>R</sub> not only represents difference in detection efficiencies of detector, but also the difference in rate coefficients of the proton transfer reactions H<sub>3</sub>O<sup>+</sup> + pyrrole and H<sub>3</sub>O<sup>+</sup>(H<sub>2</sub>O) + pyrrole (de Gouw et al., 2003; de Gouw et al., 2007).

32 Here, the X<sub>R</sub> value of pyrrole was determined by the laboratory experiment. The  $i[C_4H_5NH^+]$ ,  $i[H_3O^+]$ , and  $i[H_3O^+H_2O]$  were measured from a dry (0%) to 100% 33 humidified pyrrole standard gas, respectively. The pyrrole signal become independent 34 of relative humidity when normalized to  $i[H_3O^+] + X_R \times i[H_3O^+H_2O]$ . In other 35 words, the correlation coefficient  $(r^2)$  of relative humidity and normalized pyrrole signal 36 reaches a minimum at the optimized X<sub>R</sub> value. This method is inspired by the 37 calculation of enhancement ratios and the source contribution of different species in the 38 previous studies (Millet et al., 2005; Yuan et al., 2010). Figure S1 (a) shows the result 39 of the correlation coefficient of at different X<sub>R</sub> with a bin of 0.01 values. We found that 40  $r^2$  is the smallest when the X<sub>R</sub> value is 0. Figure S1 (b) shows the time series of pyrrole 41 signals before and after normalizing to  $i[H_3O^+] + X_R \times i[H_3O^+H_2O]$ , respectively. It 42 is shown that pyrrole signal reaches a stable level after normalized with the increase of 43 44 relative humidity. Therefore, the X<sub>R</sub> value is determined as 0.

| Species name           | Species name           | Species name           |
|------------------------|------------------------|------------------------|
| Alkanes                | n-Undecane             | 1,2,3-Trimethylbenzene |
| Ethane                 | n-Dodecane             | p-Diethylbenezen       |
| Propane                | Alkenes                | m-Diethylbenezen       |
| iso-Butane             | Ethene                 | Alkyne                 |
| n-Butane               | Propene                | Acetylene              |
| iso-Pentane            | cis-2-Butene           | <b>OVOCs</b>           |
| n-Pentane              | trans-2-Butene         | Formaldehyde           |
| Cyclopentane           | 1-Butene               | Methanol               |
| 2-Methylpentane        | 1-Pentene              | Acetaldehyde           |
| n-Hexane               | Isoprene               | Ethanol                |
| Cyclohexane            | cis-2-Pentene          | Acrolein               |
| 2,2-Dimethylbutane     | trans-2-Pentene        | Acetone                |
| 2,3-Dimethylbutane     | 1-Hexene               | Furan                  |
| 3-Methylpentane        | Aromatics              | MVK+MACR               |
| 3-Methylhexane         | Benzene                | MEK                    |
| 2,2,4-Trimethylpentane | Toluene                | Pentanones             |
| Methylcyclopentane     | Ethylbenzene           | Phenol                 |
| n-Heptane              | x, p-Xylene            | Furfural               |
| Methylcyclohexane      | Styrene                | Cresol                 |
| 2,3,4-Trimethylpentane | o-Xylene               | Inorganics             |
| 2-Methylheptane        | n-Propylbenzene        | СО                     |
| 3-Methylheptane        | isopropylbenzene       | NO                     |
| 2,4-Dimethylpentane    | o-Ethyltoluene         | NO <sub>2</sub>        |
| 2,3-Dimethylpentane    | m-Ethyltoluene         | $SO_2$                 |
| 2-Methylhexane         | p-Ethyltoluene         | O3                     |
| n-Octane               | 1,2,4-Trimethylbenzene |                        |
| n-Decane               | 1,3,5-Trimethylbenzene |                        |

Table S1. The list of all species used to calculate OH reactivity in this study.



48

Figure S1. (a) The horizontal represents different  $X_R$  values (from -2.5 to 2.5). The vertical represents the correlation coefficient that pyrrole is normalized to H<sub>3</sub>O<sup>+</sup> signals and m37/m19 at different  $X_R$  values. (b) The time series of the signal of pyrrole in cps (red) and in ncps (yellow, normalized to m19 and m37) with the change of humidity (blue, represented as the ratio of m37 to m19).



Figure S2. The remaining concentrations of pyrrole, NO, NO<sub>2</sub>, HO<sub>2</sub>, and RO<sub>2</sub>
outflowing of the reactor (with the reaction time of ~ 11 s) as a function of introduced
NO in the reactor.



Figure S3. The reaction rates of HO<sub>2</sub>+NO, HO<sub>2</sub>+HO<sub>2</sub>, HO<sub>2</sub>+RO<sub>2</sub> and Pyrrole+OH as a
function of reaction time in the reactor. Four levels of introduced NO concentrations (0,
20, 40, 50, 60 ppbv) was selected. The reaction time ranging from 0 to 1s is displayed
due to the high reaction rates mainly occurred during this period.



Figure S4. Linear correlation between measured and true OH reactivity of propane, CO, and SO<sub>2</sub> simulated by box-model.



66

Figure S5. The effect of NO on the difference between true reactivity and measured OH reactivity ( $R_{true} - R_{meas}$ ) in the original CRM system. In this study, to correct the systematic deviation at ambient NO=0, the  $R_{true} - R_{meas}$  is defined as the difference between true OH reactivity ( $R_{true}$ ) and the corrected measured OH reactivity ( $R'_{meas}$ ) using the calibration factor  $\alpha_1$  ( $R'_{meas} = (\frac{1}{\alpha_1} * R_{meas})$ ).



Figure S6. (a) The OH reactivity calibration of NO<sub>2</sub>, (b) Comparison of measured and
true OH reactivity of NO<sub>2</sub> at different NO concentrations introduced through arm C in
ICRM system.



Figure S7. The variation in pyrrole concentration due to photolysis effect in the ICRM
system. Two modes were tested by turning on and off the mercury lamp at dry condition
(no humidification).







Figure S8. Total OH reactivity detection limit measured for the ICRM.



**Figure S9**. The daily calibration of measured reactivity during the field campaign at Heshan site. The ratio of  $R_{\text{meas}}$  to  $R_{\text{true}}$  ( $R_{\text{meas}}/R_{\text{true}}$ ) of each day is given. The dashed line represents the average value of  $R_{\text{meas}}/R_{\text{true}}$  during the measurement. Three VOC standard gases (propane, propene and Toluene) were used for the calibration.

## 87 **References**

- 88 de Gouw, J. and Warneke, C.: Measurements of volatile organic compounds in the earth's atmosphere
- using proton-transfer-reaction mass spectrometry, Mass Spectrom Rev, 26, 223-257, 2007.
- 90 de Gouw, J. A., Goldan, P. D., Warneke, C., Kuster, W. C., Roberts, J. M., Marchewka, M., Bertman, S.
- 91 B., Pszenny, A. A. P., and Keene, W. C.: Validation of proton transfer reaction-mass spectrometry
- 92 (PTR-MS) measurements of gas-phase organic compounds in the atmosphere during the New
- 93 England Air Quality Study (NEAQS) in 2002, Journal of Geophysical Research: Atmospheres,
- 94 108, 2003.
- 95 Millet, D. B. and Neil M. Donahue, S. N. P., Andrea Polidori, Charles O. Stanier, Barbara J. Turpin,
- 96 Allen H. Goldstein: Atmospheric volatile organic compound measurements during the Pittsburgh
- 97 Air Quality Study: Results, interpretation, and quantification of primary and secondary
- 98 contributions, Journal of Geophysical Research, 110, 1-17, 2005.
- 99 Yuan, B., Liu, Y., Shao, M., Lu, S., and Streets, D. G.: Biomass Burning Contributions to Ambient
- 100 VOCs Species at a Receptor Site in the Pearl River Delta (PRD), China, Environmental Science &

101 Technology, 44, 4577-4582, 2010.