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Abstract. Precipitation is a crucial driver of hydrological
processes. Ironically, a reliable characterization of its spa-
tiotemporal variability is challenging. Ground-based rain-
fall measurement using rain gauges is more accurate. How-
ever, installing a dense gauging network to capture rain-
fall variability can be impractical. Satellite-based rainfall es-
timates (SREs) could be good alternatives, especially for
data-scarce basins like in Ethiopia. However, SRE rainfall
is plagued with uncertainties arising from many sources. The
objective of this study was to evaluate the performance of
the latest versions of several SRE products (i.e., CHIRPS2,
IMERG6, TAMSAT3 and 3B42/3) for the Dhidhessa River
Basin (DRB). Both statistical and hydrological modeling ap-
proaches were used for the performance evaluation. The Soil
and Water Analysis Tool (SWAT) was used for hydrolog-
ical simulations. The results showed that whereas all four
SRE products are promising to estimate and detect rainfall
for the DRB, the CHIRPS2 dataset performed the best at
annual, seasonal and monthly timescales. The hydrological
simulation-based evaluation showed that SWAT’s calibration
results are sensitive to the rainfall dataset. The hydrological
response of the basin is found to be dominated by the subsur-
face processes, primarily by the groundwater flux. Overall,
the study showed that both CHIRPS2 and IMERG6 products
could be reliable rainfall data sources for the hydrological
analysis of the DRB. Moreover, the climatic season in the
DRB influences rainfall and streamflow estimation. Such in-

formation is important for rainfall estimation algorithm de-
velopers.

1 Introduction

Precipitation is an important hydrological component
(Behrangi et al., 2011; Meng et al., 2014). Accurate represen-
tation of its spatiotemporal variability is crucial to improve
hydrological modeling (Grusson et al., 2017). Ironically, pre-
cipitation is one of the most challenging hydrometeorologi-
cal data to be accurately represented (Yong et al., 2014). Cli-
matic and topographic conditions are the primary factors that
affect the accuracy of rainfall measurements.

Rainfall is measured either using ground-based (i.e., rain
gauge and radar) or satellite sensors, in which all measure-
ment methods exhibit limitations (Thiemig et al., 2013). In
addition, commercial microwave links (CMLs) have been
introduced recently as a cheap and fast rainfall estimation
method (Smiatek et al., 2017), but they do not have a fully
tested methodology (Nebuloni et al., 2020). Ground-based
rainfall measurements using rain gauges are direct and gener-
ally accurate near the sensor location. However, rain gauges,
for instance, either are of poor density to represent spatial and
temporal variability in precipitation or may not even exist in
many basins, especially in developing countries (Behrangi
et al., 2011). Rain-gauge-based rainfall measurement tech-
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niques provide point measurements and are subject to miss-
ing data mainly due to measurement errors (Kidd et al., 2012;
Maggioni et al., 2016). It may also be infeasible to install
and maintain dense ground-based gauging stations in remote
areas like mountains, deserts, forests and large water bodies
(Dinku et al., 2018; Tapiador et al., 2012). On the other hand,
radar-based rainfall measurement techniques cover larger ar-
eas and provide rainfall data at high spatial and temporal
scales (Sahlaoui and Mordane, 2019). However, radar rain-
fall measurements have limitations due to the attenuation
of the radar signal by several features that negatively affect
the quality of rainfall measurement (Villarini and Krajew-
ski, 2010; Berne and Krajewski, 2013; Sahlaoui and Mor-
dane, 2019). Satellite-based rainfall estimates (SREs), how-
ever, provide high-resolution precipitation data including in
areas where ground-based rainfall measurements are imprac-
tical, sparse or nonexistent (Stisen and Sandholt, 2010).

Consequently, high-resolution precipitation products have
been developed over the last 3 decades. These prod-
ucts include Tropical Rainfall Measuring Mission (TRMM)
Multi-satellite Precipitation Analysis (TMPA; Huffman et
al., 2007), the Precipitation Estimation from Remotely
Sensed Information using Artificial Neural Networks (PER-
SIANN; Sorooshian et al., 2000), Climate Prediction
Center (CPC) morphing algorithm (CMORPH) (Joyce et
al., 2004), African Rainfall Climatology (ARC; Xie and
Arkin, 1995), Tropical Applications of Meteorology using
SATellite (TAMSAT) (Maidment et al., 2017) and the Cli-
mate Hazards Group InfraRed Precipitation with Station data
(CHIRPS) (Funk et al., 2015). The consistency, spatial cov-
erage, accuracy and spatiotemporal resolution of SREs have
been improved over time (Behrangi et al., 2011).

As indirect rainfall estimation techniques, SRE products
possess uncertainties resulting from errors in measurement,
sampling, retrieval algorithm and bias correction processes
(Dinku et al., 2010; Gebremichael et al., 2014; Tong et
al., 2014). Local topography and climatic conditions can
also affect the accuracy of SRE estimation (Bitew and Ge-
bremichael, 2011). Hence, SRE products should be carefully
evaluated before using the products for any application. Sta-
tistical and hydrological modeling are two common meth-
ods for evaluating SREs. The statistical evaluation method
examines the intrinsic precipitation data quality including its
spatiotemporal characteristics via pairwise comparison of the
SRE products and ground observations. Scale mismatches
between area-averaged SRE data and point-like ground-
based measurements are the most critical drawback. The hy-
drological modeling method evaluates the performance of an
SRE product for a specific application such as streamflow
predictive ability at watershed scale (Su et al., 2017). The two
methods complement each other in that the statistical method
provides information on data quality, while the hydrologi-
cal model technique assesses the usefulness of the data for
hydrological applications (Thiemig et al., 2013). However,

most studies used only statistical evaluation methods (e.g.,
Dinku et al., 2018; Ayehu et al., 2018).

Studies have recommended SRE products for data-scarce
basins (Behrangi et al., 2011; Bitew and Gebremichael,
2011; Thiemig et al., 2013). However, there is no consen-
sus regarding the “best” SRE product for different climatic
regions. Nesbitt et al. (2008) found that CMORPH and PER-
SIANN produced higher rainfall rates compared to TRMM
for the mountain ranges of Mexico. Dinku et al. (2008) re-
ported the better performance of the TRMM and CMORPH
products in Ethiopia and Zimbabwe, whereas PERSIANN
outperformed TRMM in South America according to de
Goncalves et al. (2006). Interestingly, the performance of
SRE products seems to differ even within a basin. For the
Blue Nile Basin in Ethiopia, for example, CMORPH over-
estimated precipitation for the lowland areas but underesti-
mated it for the highlands (Bitew and Gebremichael, 2011;
Habib et al., 2012; Gebremichael et al., 2014). The dis-
crepancy in the findings of these studies shows the perfor-
mance of SREs varies with region, topography, season and
climatic conditions of the study area (Kidd and Huffman,
2011; Seyyedi et al., 2015; Nguyen et al., 2018; Dinku et
al., 2018). As such, many studies have recommended SRE
evaluation at a local scale to verify its performance for spe-
cific applications (Hu et al., 2014; Toté et al., 2015; Kimani
et al., 2017; Ayehu et al., 2018).

Studies have examined the performance of SREs in
Ethiopia (Haile et al., 2013; Worqlul et al., 2014; Ayehu et
al., 2018; Dinku et al., 2018). However, a majority of these
studies used the statistical method to evaluate SREs, and
no study has been completed for the Dhidhessa River Basin
(DRB). With only 0.32 rain gauges per 1000 km2, the DRB
meets the World Meteorological Organization (WMO) data-
scarce basin classification (WMO, 1994). Evaluating the per-
formance of various SRE products in terms of characteriz-
ing the spatiotemporal distribution of rainfall in the DRB
could assist with the planning and management of existing
and planned water resource projects in the river basin.

SREs have been continuously updated to minimize bias
and uncertainty. Evaluating and validating improved prod-
ucts for various climatic regions would be valuable (Ki-
mani et al., 2017). Recently improved SRE products in-
clude Tropical Rainfall Measuring Mission (TRMM) Multi-
Satellite Precipitation Analysis version 7 (hereafter referred
to as 3B43 for monthly and 3B42 for daily products), Cli-
mate Hazards Group InfraRed Precipitation with Station data
version 2 (CHIRPS2), Tropical Applications of Meteorology
using SATellite version 3 (TAMSAT3) and Integrated Multi-
satellitE Retrievals for GPM version 6B (IMERG6). Studies
have reported improvements in these new versions compared
to their predecessors. However, to the best of the authors’
knowledge, the rainfall detection and hydrological simula-
tion capability of these SRE datasets were not evaluated for
the basins in Ethiopia including the DRB. This study exam-
ined the latest SRE products in terms of their rainfall de-
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tection and estimation skills and how to improve the hydro-
logical prediction for the DRB, a medium-sized river basin
with scarce gauging data. As such, the objectives of this
study were (1) to evaluate the intrinsic rainfall data quality
and detection skills of multiple SRE products (i.e., 3B42/3,
CHIRPS2, TAMSAT3 and IMERG6) and (2) to examine hy-
drological prediction performances of SREs for the DRB.
The Soil and Water Assessment Tool (SWAT), a physically
based semi-distributed model that has performed well in hu-
mid tropical regions like Ethiopia, was used for the hydro-
logical simulation.

2 Methods and materials

2.1 Descriptions of the study area

The Dhidhessa River drains into the Blue Nile River (Fig. 1).
It is one of the largest and most important river basins
in Ethiopia in terms of its physiography and hydrology
(Yohannes, 2008). Located between 7◦42′43 to 10◦2′55′′ N
latitude and 35◦31′23 to 37◦7′60′′ E longitude, the river basin
exhibits highly variable topography that ranges from 619 m
to 3213 m above mean sea level (amsl). The Dhidhessa River
starts from the Sigmo mountain ranges and travels 494 km
before it joins the Blue Nile River around the Wanbara and
Yaso districts. The outlet considered for this study is the con-
fluence of the Dhidhessa River and the Blue Nile River which
covers a total drainage area of 28 175 km2. The river basin
has many perennial tributaries (Fig. 1).

Temperature and precipitation in the Dhidhessa River
Basin exhibit substantial spatial and seasonal variability. The
mean maximum and minimum daily air temperatures in
the river basin range from 20–33 to 6–19 ◦C, respectively.
The long-term mean annual rainfall ranges from 1200 to
2200 mm in the river basin. Soils in the DRB are generally
deep and have high organic content, implying that they have
high infiltration potential. The dominant soil type is Acrisols,
while Cambisols and Nitisols are common (OWWDSE1). Ig-
neous, sedimentary and metamorphic rocks are common, but
igneous rock, particularly basalt, is dominant in the basin.2

Forest, shrubland, grassland and agriculture are the dominant
land cover types in the basin (Kabite et al., 2020). Major
crops include perennial and cash crops like coffee, mango
and avocado (OWWDSE, 2014).

1Oromia Water Works Design and Supervision Enterprise
(OWWDSE): Dhidhessa Sub-Basin Soil Survey Report, Dhidhessa-
Dabus Integrated Land Use Planning Study Project, unpublished

2Geological Survey of Ethiopia (GSE): Geology of the Nekemte
and Gimbi Area, Sheet Number: NC-37-9 and NC-36-12, respec-
tively, unpublished

2.2 Data sources and descriptions

For this study, we used different spatial and temporal datasets
such as a digital elevation model (DEM), climate, stream-
flow, soil and land cover from different sources (Table 1).

The DEM derived from the Shuttle Radar Topography
Mission (SRTM) of 30 m×30 m spatial resolution was ob-
tained from the United States Geological Survey (USGS).
It is one of the input data for the SWAT model from which
topographic and drainage parameters (e.g., drainage pattern,
slope and watershed boundary) were derived. The soil map
was obtained from the sources described in Table 1. The soil
physical properties required for the SWAT model were de-
rived from the soil map. The supervised image classification
was used to prepare the land cover map of 2001. Together
with the land cover and soil maps, a DEM was used to create
hydrological response units (HRUs).

Rainfall data for nine stations within the river basin and
for three nearby stations (Fig. 1) from 2001 to 2014 were
obtained from the National Meteorological Agency (NMA)
of Ethiopia. The rainfall data were used to evaluate the
SREs using the statistical and hydrological modeling evalu-
ation methods. In addition, Enhancing National Climate Ser-
vice Time Series (ENACTS) gridded (4 m× 4 m) minimum
and maximum air temperature data were obtained from the
National Meteorological Agency (NMA) of Ethiopia. Daily
streamflow data from 2001 to 2014 were obtained for a sta-
tion near the town of Arjo (Fig. 1) from the Ethiopian Min-
istry of Water, Irrigation and Energy (EMoWI).

The hydrometeorological stations used for this study were
selected due to their long-term records and better data qual-
ity. The observed streamflow was used to calibrate and
validate the SWAT model. The land use map for 2001
and soil map were obtained from Kabite et al. (2020)
and the Ethiopian Ministry of Water, Irrigation and Energy
(EMoWI), respectively.

Satellite rainfall products

The satellite rainfall estimates (SREs) considered in this
study include 3B42/3, TAMSAT3, CHIRPS2 and IMERG6.
These datasets were selected because of several reasons in-
cluding that they (i) have relatively high spatial resolutions,
(ii) are gauge-adjusted products, (iii) are the latest products
and have been found to perform well by recent studies, and
(iv) were not compared for the basins in Ethiopia, particu-
larly IMERG6.

The TMPA provides rainfall products for the area cov-
ering 50◦ N–50◦ S for the period of 1998 to the present at
0.25◦×0.25◦ and 3 h spatial and temporal resolution, respec-
tively. The 3 h rainfall product is aggregated to daily (3B42)
and monthly (3B43) gauge-adjusted post-real-time precipita-
tion. The performance of the 3B42v7 is superior compared to
its predecessor (i.e., 3B42v6) and the real-time TMPA prod-
uct (3B42RT) (Yong et al., 2014). The 3B43 was used in this
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Figure 1. Location map of Dhidhessa River Basin with ground stations (USGS, 1998).

Table 1. Data description and sources.

Data type Data periods Resolution Sources

SRTM DEM 1998 30 m×30 m USGS
3B42/3 2001–2014 0.25◦ (∼ 25 km) NASA and JAXA
CHIRPS2 2001–2014 0.05◦ (∼ 5 km) USGS and Climate Hazard Group
TAMSAT3 2014–2014 0.0375◦ (∼ 4 km) Reading University
IMERG6 2001–2014 0.1◦ (∼ 10 km) NASA and JAXA
Streamflow data 2001–2014 Daily EMoWI
Meteorological data 2001–2014 Daily NMA
Land cover 2001 30 m×30 m Kabite et al. (2020)
Soil map 2013/14 Variable EMoWI, FAO and OWWDSE

study for the statistical evaluation, while the 3B42 was used
for the hydrological performance evaluation. The detailed de-
scription is given by Huffman et al. (2007).

The TAMSAT3 algorithm estimates precipitation in an in-
direct method using the cloud-index method, which com-
pares the cold cloud duration (CCD) with a predetermined
temperature threshold. The CCD is the length of time that a
satellite pixel is colder than a given temperature threshold.

The algorithm calibrates the CCD using parameters that vary
seasonally and spatially but are constant from year to year.
This makes interannual variations in rainfall dependent only
on the satellite observation. The dataset covers the whole of
Africa at ∼ 4 km and 5 d (pentadic) resolutions for the pe-
riod of 1983 to the present. The original 5 d temporal reso-
lution is disaggregated to daily time steps using daily CCDs
from which monthly data are derived. TAMSAT3 algorithm
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is improved compared to its processor (i.e., TAMSAT2). The
details are described in Maidment et al. (2017).

The Climate Hazards Group InfraRed Precipitation with
Stations (CHIRPS) is a quasi-global precipitation product
at ∼ 5 km (0.05◦) spatial resolution and is available at
daily, pentadic (5 d) and monthly timescales. The CHIRPS
precipitation data are available from 1981 to the present.
It is a gauge-adjusted dataset which is calculated using
weighted bias ratios rather than using absolute station values,
which minimizes the heterogeneity of the dataset (Dinku et
al., 2018). The latest version of CHIRPS that uses more sta-
tion data (i.e., CHIRPS version 2 hereafter CHIRPS2) was
used in this study. A detailed description of CHIRIPS2 is
given in Funk et al. (2015).

The Global Precipitation Measurement (GPM) is the suc-
cessor of TRMM with better rainfall detection capability.
GPM provides precipitation measurements at 0.1◦ and half-
hourly spatial and temporal resolutions. Integrated Multi-
satellitE Retrievals for GPM (IMERG) is one of the GPM
precipitation products estimated from all constellation mi-
crowave sensors, infrared-based observations from geosyn-
chronous satellites and monthly gauge precipitation data.
IMERG is the successor algorithm of TMPA. The IMERG
products includes Early Run (near real time with a latency
of 6 h), Late Run (reprocessed near real time with a latency
of 18 h) and Final Run (gauge-adjusted with a latency of
4 months). The IMERG Final Run product provides more
accurate precipitation information compared to the near-real-
time products as it is gauge-adjusted. The latest release of
GPM IMERG Final Run version 6B (IMERG6) was used for
this study. The details are described in Huffman et al. (2014).

In this study, the performances of 3B42/3, TAMSAT3,
CHIRPS2 and IMERG6 rainfall products were evaluated sta-
tistically and hydrologically. All the SREs considered in this
study are gauge-corrected, and thus bias correction may not
be required. Therefore, rain gauge stations (e.g., Jimma and
Nekemte) that were used for calibrating the SRE datasets
were excluded for fair comparison. The lists of rain gauge
stations used for this study are shown in Fig. 1 and Appendix
Table A1. The detail summaries of the data types used for
this study are shown in Table 1.

2.3 Methodology

Satellite rainfall estimates offer several advantages com-
pared to the conventional methods but can also be prone
to multiple errors. The rainfall detection capability of SREs
can be affected by local climate and topography (Xue et
al., 2013; Meng et al., 2014). Therefore, the performance of
SREs should be examined for a particular area before us-
ing the products for any application (Hu et al., 2014; Toté et
al., 2015; Kimani et al., 2017).

The two common SRE performance evaluation methods
are statistical (i.e., ground truthing) and hydrological mod-
eling performance (Behrangi et al., 2011; Bitew and Ge-

bremichael, 2011; Thiemig et al., 2013; Abera et al., 2016;
Jiang et al., 2017), and they were used in this study. The
methods complement each other, and their combined ap-
plication is recommended for more reliable SRE evalua-
tion techniques. The statistical evaluation method involves
a pairwise comparison of SREs and the rain gauge products.
The method provides insight into the intrinsic data quality,
whereas the modeling approach assesses the usefulness of
the data for a desired application (Thiemig et al., 2013). Sta-
tistical evaluation was performed for all the SRE products
considered in this study (i.e., 3B43, CHIRPS2, TAMSAT3
and IMERG6) to examine their rainfall detection skills. Con-
tinuous and categorical validation indices were used to eval-
uate the performance of the products. In addition, the SRE
product and gauge datasets were independently used as forc-
ing to calibrate and verify the SWAT model. Accordingly,
streamflow prediction performance of the rainfall products
was evaluated graphically and using statistical indices.

2.3.1 Statistical evaluation of satellite rainfall estimates

The statistical SRE evaluation method was conducted at
monthly, seasonal and annual timescales for the overlapping
period of all the rainfall data sources (i.e., 2001–2014). A
daily comparison was excluded from this study due to weak
performance reported in previous studies (Ayehu et al., 2018;
Zhao et al., 2017; Li et al., 2018). This is attributed to the
measurement time mismatch between ground and satellite
rainfall products.

Two approaches are commonly used for the statistical
evaluation method. The first approach is pixel-to-pixel pair-
wise comparisons of the spatially interpolated gauge-based
and satellite-based data. The second approach is a point-
to-pixel pairwise comparison in which satellite rainfall esti-
mates are extracted for each gauge location, and the satellite-
gauge data pairs are generated and compared. The second ap-
proach was used for this study. This is because the 12 rainfall
stations considered in this study are too unevenly distributed
throughout the basin to accurately represent spatial variabil-
ity in rainfall in the DRB as required for the first approach.
As a result, we chose to extract gauge–satellite rainfall pair
values at each rain gauge location instead of interpolating the
gauge measurements into gridded products.

Accordingly, 168 and 2016 paired data points were ex-
tracted for annual and monthly analysis, respectively, and
were evaluated using continuous validation indices such as
Pearson correlation coefficient (r), bias ratio (BIAS), Nash–
Sutcliffe efficiency (E) and root mean square error (RMSE).
The Pearson correlation coefficient (r) evaluates how well
the estimates correspond to the observed values, BIAS re-
flects how the satellite rainfall estimate over- or underesti-
mates the rain gauge observations, and E shows how well
the estimate predicted the observed time series. On the other
hand, RMSE measures the average magnitude of the estimate
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errors. The summary of performance indices are presented in
Table 2.

In addition to the continuous validation indices, tercile cat-
egories (i.e., percentile-based evaluation) along with proba-
bility of exceedance were performed to test the performance
of SREs in detecting low- and high-end values. The ter-
cile (percentile) and probability of exceedance methods bet-
ter evaluate the rainfall detection capabilities of SREs at
monthly timescales compared to the other categorical in-
dices such as probability of detection (POD), false alarm ra-
tio (FAR) and critical success index (CSI). This is because
the POD, FAR and CSI are not effective for monthly based
analysis but effective for daily based analysis.

Tercile is a set of data that is partitioned into three equal
groups each containing one-third of the total data. To cal-
culate terciles, percentiles were used for this study. Accord-
ingly, the low, middle and high terciles were defined using
the 33rd, 67th and 100th percentiles. As such, the first 33rd
percentile is named lower tercile (P33), the second 33rd per-
centile is named medium tercile (P67), and the third 33rd
percentile is named higher tercile (P100). On the other hand,
the probability of exceedance was calculated as a percentage
of a given event to be equaled or exceeded.

P =
m

n+ 1
· 100, (1)

where P represents the percentage probability that a given
event will be equaled or exceeded, m represent ranks of the
event value, with 1 being the largest possible value, and n is
the total number of events or data points on record.

In general, SREs with r > 0.7 and relative bias (RB)
within 10 % can be considered as reliable precipitation mea-
surement sources (Brown, 2006; Condom et al., 2011). How-
ever, attention should be given to certain indices depend-
ing on the application of the product (Toté et al., 2015). For
flood forecasting purposes, for example, an underestimation
of rainfall should be avoided (i.e., mean error, ME, > 0 is
desirable). In contrast, for drought monitoring, an overesti-
mation must be avoided (i.e., ME < 0 is preferred) (Dembélé
and Zwart, 2016).

2.3.2 SWAT model setup

The Soil and Water Assessment Tool (SWAT) is a semi-
distributed, deterministic and continuous simulation water-
shed model that simulates many water quality and quantity
fluxes (Arnold et al., 2012). It is a physically based and
computationally efficient model that has been widely used
for various hydrological and/or environmental applications
in different regions of the world (Gassman et al., 2014). Fur-
thermore, the capability of the SWAT model to be easily
linked with calibration, sensitivity analysis and uncertainty
analysis tools (e.g., SWAT Calibration and Uncertainty Pro-
gram, SWAT-CUP) made it more preferable.

The SWAT model follows a two-level discretization
scheme: (i) subbasin creation based on topographic data and

(ii) hydrological response unit (HRU) creation by further dis-
cretizing the subbasin based on land use and soil type. An
HRU is a basic computational unit assumed to be homoge-
neous in hydrological response. Hydrological processes are
first simulated at the HRU level and then routed at the sub-
basin level (Neitsch et al., 2009). The SWAT model estimates
surface runoff using the modified United States Department
of Agriculture (USDA) Soil Conservation Service (SCS)
curve number method. In this study, a minimum threshold
area of 400 km2 was used for determining the number of sub-
basins, and a 5 % threshold for the soil, slope and land use
was used for the HRU definition. Accordingly, 13 subbasins
and 350 HRUs are created for the Arjo gauging station as
outlets.

2.3.3 SWAT model calibration and validation

The hydrological modeling performance evaluation tech-
nique is commonly performed by either calibrating the hy-
drological model with gauge rainfall data and then validating
with SREs (i.e., static parameters) or calibrating and validat-
ing the model independently with each rainfall product (i.e.,
dynamic parameters) and then comparing accuracies of the
streamflow predicted using the capacity of the rainfall prod-
ucts. The latter is preferred for watersheds such as the DRB
where gauging stations are sparse and unevenly distributed.
Moreover, studies have reported that independently calibrat-
ing the hydrological model with SREs and gauge data im-
proves the performance of the hydrological model (Zeweldi
et al., 2011; Vernimmen et al., 2012; Lakew et al., 2017).

The calibration, validation and sensitivity analysis of
SWAT was done using the SWAT-CUP software. The sequen-
tial uncertainty fitting (SUFI-2) implemented in SWAT-CUP
was used in this study (Abbaspour et al., 2007). SUFI-2 pro-
vides more reasonable and balanced predictions than the gen-
eralized likelihood uncertainty estimation (GLUE) and the
parameter solution (ParaSol) methods (Zhou et al., 2014; Wu
and Chen et al., 2015) offered by the tool. It also estimates
parameter uncertainty attributed to input data and model pa-
rameter and structure as total uncertainty (Abbaspour, 2015).
The total uncertainty in the model prediction is commonly
measured by P factor and R factor. P factor represents the
percentage of observed data enveloped by the 95 % predic-
tion uncertainty (95PPU) simulated by the model. The R fac-
tor represents the ratio of the average width of the 95PPU
band to the standard deviation of observed data. For realis-
tic model prediction, P factor ≥ 0.7 and R-factor ≤ 1.5 are
desirable (Abbaspour et al., 2007; Arnold et al., 2012).

The first steps in the SWAT model calibration and valida-
tion process is determining the most sensitive parameters for
a given watershed. For this study, 19 parameters were identi-
fied based on the recommendations of previous studies (Roth
et al., 2018; Lemann et al., 2019). Global sensitivity analysis
was performed on the 19 parameters from which 11 param-
eters were found to be sensitive for the DRB, and they were
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Table 2. SRE evaluation indices, mathematical descriptions and perfect score.

Indices Mathematical expression Description Perfect
score

Pearson r =

∑
(Rg−Rg)(Rs−Rs)√∑

(Rg−Rg)
2√∑

(Rs−Rs)
2 Rg is gauge rainfall observation; Rs satellite rainfall estimates; 1

correlation Rg is average gauge rainfall observation;
Rs is average satellite rainfall estimates.
The value ranges from −1 to 1.

Root mean RMSE=
√∑

(Rg−Rs)2

n The number of data pairs is n; the value ranges from 0 to∞. 0
square error
(mm)

Bias ratio BIAS=
∑

Rs∑
Rg

A value above (below) 1 indicates an aggregate satellite 1

(BIAS) overestimation (underestimation) of the ground
precipitation amounts.

Relative bias RB=
∑

(Rs−Rg)∑
Rg

· 100 This describes the systematic bias of the SREs; positive values 0

(RB) indicate overestimation, while negative values indicate
underestimation of precipitation amounts.

Mean error ME= 1
n

n∑
i=1

(
Rs−Rg

)
This describes the average errors of the SREs relative 0

(ME) to the observed rainfall data. 0

Nash–Sutcliffe E = 1−
∑

(Rs−Rg)
2∑

(Rg−Rg)2 The value ranges from −∞ to 1; 0 < E ≤ 1 is acceptable, 1

efficiency while E ≤ 0 is unacceptable.
coefficient
(E)

Percent bias PBIAS=
∑

(Qo−Qs)∑
(Qo)

· 100 Qo is observed discharge; Qs is simulated 0

( %) discharge for the available pairs of data for which
<±15 % is very good.

Coefficient of r2
=

( ∑n
i=1
(
Oi−O

)(
Si−S

)√∑n
i=1(Oi−O)2

√∑n
i

(
Si−S

)2
)2

Oi and O are observed and average streamflow, respectively; 1

determination Si and S are simulated and average streamflow, respectively.
(r2) The value ranges from 0 to 1.

Nash–Sutcliffe NSE=
∑

(Qo−Qo)
2
−
∑

(Qo−Qs)
2∑

(Qo−Qo)2 Qo is the mean value of the observed discharge for 1

efficiency the entire time under consideration.
coefficient

used for the calibration, verification and uncertainty analysis.
The hydrological simulations were performed for the 2001 to
2014 period. A 2-year spin-up (warm-up) period (i.e., 2001
and 2002), a 6-year calibration period (2003 to 2008) and a
6-year verification period (2009 to 2014) were used. Graph-
ical and statistical measures were used to evaluate the pre-
diction capability of the rainfall datasets. Accordingly, the
performance of the model forced by each rainfall dataset was
tested using the most widely used statistical indices (i.e., R2,
NSE and PBIAS) in addition to the P factor and R factor.

3 Results

3.1 Statistical evaluation

Figure 2 compares mean annual spatial rainfall distribu-
tions in the DRB. Average annual rainfall of the study
area for the 2001 to 2014 period was 1682.09 mm yr−1

(1150 to 2127 mm yr−1), 1698.59 mm yr−1 (1432 to
1837 mm yr−1), 1699.06 mm yr−1 (1092 to 2414 mm yr−1)
and 1680.28 mm yr−1 (1342 to 1721 mm yr−1) according
to the CHIRPS2, IMERG6, TAMSAT3 and 3B43 products,
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Figure 2. Spatial mean annual rainfall distribution of the four SREs for the DRB (2001 to 2014).

respectively. For reference, mean annual rainfall for the
DRB is 1650 mm yr−1 based on the rain gauge data, which
is within 1.8 % to 3 % of the estimates provided by the prod-
ucts. However, total annual rainfall range estimates were
substantially different among the products. The decreasing
rainfall trend from the southern (highlands) to the northern
(lowlands) part of the basin was captured by all products. In
particular, TAMSAT3 and CHIRPS2 captured the rainfall
variability in better detail perhaps due to their high spatial
resolution. On the other hand, the resolution of the 3B43
rainfall product seems too coarse to satisfactorily represent
spatial variability in rainfall in the basin.

Figures 3 to 5 show the results of statistical evaluation in-
dices calculated from rainfall from the rain gauges and from
the SRE products. More specifically, Figs. 3 and 4 show cor-
relation coefficients for the annual and monthly timescales,
respectively. The results show that all four SRE products pro-
duced rainfall that correlates better with the ground-based
rainfall observations at monthly timescales than at annual
timescales. This is because the performance of SREs im-
proved with increased time aggregation and peaks at monthly
timescales. More likely, the seasonal variability is much
larger than the interannual variability. The seasonal variabil-
ity is, apparently, captured reasonably well, causing a higher
degree of correlation for monthly data. The values of statis-
tical evaluation indices for all products are summarized in
Table 3. The results show that the CHIRPS2 performed bet-
ter for the DRB with relatively higher r and E and lower
BIAS, ME and RMSE for annual and monthly timescales,
respectively.

Figures 3 to 5 and Table 3 show that generally, CHIRPS2
performed better than the other three products for the
DRB. Correlation coefficients for both monthly and annual
timescales, as well as all the indices presented in Fig. 5, fa-

vor CHIRPS2, indicating its superior performance. The rela-
tive performance of the other three SREs is inconsistent as it
varies with the statistical indices used in this study. The 3B43
product, for example, performed worse based on Figs. 3
and 4 (i.e., correlation coefficients for annual and monthly
timescales) and RMSE and E (Fig. 5) but performed better
than the other two SREs based on BIAS and ME.

The tercile (percentile) categorical and probability of ex-
ceedance analysis results (Fig. 6) show that all the SREs con-
sidered in this study have a high rainfall detection capabil-
ity for the DRB. Rainfall threshold used for this figure is
1 mm d−1. The lower tercile (33rd percentile; P33), middle
tercile (67th percentile; P67) and higher tercile (100th per-
centile; P100) of all SREs have values closer to the corre-
sponding gauge values, indicating that the SREs detect rain-
fall for the DRB. However, CHIRPS2, 3B43 and IMERG6
have lower tercile, medium tercile and higher tercile values
much closer to the gauges, respectively. Moreover, the prob-
ability of exceedance further confirms the rainfall detection
capability of the SREs considered in this study for the DRB.
The probability of exceedance result indicated that TAM-
SAT3 has an 80 % probability to exceed 0 mm, whereas the
other products have nearly 100 % probability. This is because
TAMSAT3 has more observations with zero rainfall values
compared to the other products. Overall, TAMSAT3 exhib-
ited relatively less rainfall detection skill, which could be at-
tributed to the relatively greater sensitivity of TAMSAT3 to
topographic effects.

Figure 7 shows the seasonal SRE performance evaluation
results. The figure generally shows that the performance of
the SREs varied from season to season and among the rain-
fall products. The main rainy season in the DRB is from June
to September, while a short rainy season ranges from March
to May, but the rest is the dry season (Fig. 9). For exam-
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Table 3. Statistical evaluation indices of all SREs.

SREs R BIAS ME RMSE (mm) E

Annual Monthly Annual Monthly Annual Monthly Annual Monthly Annual Monthly

CHIRPS2 0.78 0.92 1.01 1.01 25.94 2.70 214.36 50.48 0.51 0.84
3B43 0.48 0.87 1.02 1.02 30.58 2.55 306.34 62.05 0.76 0.76
IMERG6 0.52 0.90 1.03 1.03 48.87 4.07 299.55 56.95 0.39 0.80
TAMSAT3 0.62 0.89 1.03 1.03 51.46 2.67 274.00 61.28 0.77 0.77

Figure 3. Correlation coefficient of the four SREs at monthly timescales over DRB.

ple, CHIRPS2 is superior in detecting and estimating rainfall
events for the DRB for all months (seasons). The rainfall de-
tection and estimating capability of CHIRPS2 is better for
the rainy season compared to the dry season. Likewise, the
rainfall detection capability of TAMSAT3 is stronger for the
rainy season (May to November) but weaker for the dry sea-
son (December to April). Compared to the other SRE prod-
ucts, TAMSAT3 generally poorly correlated for all months
(seasons), and its BIAS was the highest for the rainy season
but the lowest for the dry season.

3.2 Hydrological modeling performance evaluation

The centroid of each subbasin was used as gauging loca-
tions and used for extracting rainfall for all the SRE rain-
fall datasets. Thus, each subbasin is represented by a dense
group of separate gauges unlike that of the measured rainfall
representation. The performance of the rainfall products was
evaluated using SWAT-CUP at monthly time steps.

Table 4 shows details of the calibrated parameters, includ-
ing their ranges, best fit values and sensitivity ranks when

different rainfall datasets are used as inputs for the DRB.
The best fit values were multiplied by 1 plus the given value
and replaced by the given value for the parameters with r

prefix and v prefix. The table shows that ranges and the
best fit values vary from one rainfall data source to another.
This indicates the sensitivity of hydrological model perfor-
mance to rainfall products, and thus the accurate character-
ization of rainfall variability is very critical for reliable hy-
drological predictions. This finding is consistent with stud-
ies that reported that different precipitation datasets influence
model performance, parameter estimation and uncertainty
in streamflow predictions (Sirisena et al., 2018; Goshime et
al., 2019). The relative sensitivity of the parameters also var-
ied between the rainfall datasets. In general, the threshold
depth of water in the shallow aquifer required for return flow
to occur (mm) (GWQMN.gw), base flow alpha factor (AL-
PHA_BF.gw), groundwater delay (day) (GW_DELAY.gw),
deep aquifer percolation fraction (RCHRG_DP.gw), and
runoff curve number for moisture condition II (CN2.mgt)
are the top five sensitivity parameters. This seems to indi-
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Figure 4. Annual correlation coefficient of the four SREs for the DRB.

Figure 5. Statistical indices of the four SREs for the DRB at annual and monthly timescales.

cate that groundwater processes dominate streamflow in the
DRB. This could be attributed to the dominantly deep and
permeable soil, vegetated land surface, and dominant ter-
tiary basaltic rocks in the DRB (Conway, 2000; Kabite and
Gessesse, 2018). The groundwater parameters can have a
strong effect on the amount of streamflow that can cause the
over- or underestimation of streamflow. For this reason, the

validation of streamflow was sorely dependent on the rainfall
products.

Figure 8 compares the observed and the predicted stream-
flows for the calibration (2003 to 2008) and verification
(2009 to 2014) periods for all five rainfall datasets. The good-
ness of the streamflow predictions is also summarized in Ta-
ble 5. The results show that the peak streamflow is under-
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Table 4. Initial parameter ranges, fit values and sensitivity ranks for rainfall data sources.

Parameters Initial values Gauge CHIRPS2 IMERG6 3B42 TAMSAT3

Fit value Rank Fit value Rank Fit value Rank Fit value Rank Fit value Rank

v_GWQMN.gw 0 to 5000 4936.02 1 201.64 3 3379.76 3 4784.74 1 −0.15 1
v_ALPHA_BF.gw 0 to 1 0.00 2 0.45 4 0.04 4 0.00 2 0.00 2
v_GW_DELAY.gw 0 to 500 339.10 3 29.02 5 34.76 6 391.13 4 318.08 3
v_RCHRG_DP.gw 0 to 1 0.02 4 0.44 7 0.04 5 0.30 3 0.04 4
r_CN2.mgt −0.25 to 0 310.12 5 −0.25 11 −0.17 10 −0.13 5 −0.15 5
r_SOL_K.sol 0 to 2000 260.96 6 1086.63 9 391.90 11 286.12 6 447.41 6
v_CH_N2.rte −0.01 to 0.3 0.74 7 0.02 1 0.05 1 0.29 8 0.61 7
v-CH_K2.rte −0.01 to 500 310.12 8 354.51 2 426.08 2 256.15 7 298.36 8
v_GW_REVAP.gw 0.02 to 0.2 0.40 9 0.15 8 0.20 8 0.26 9 0.33 10
r_SOL_AWC.sol −0.5 to 0.5 −0.01 10 −0.49 6 −0.19 7 −0.85 10 −0.59 9
v_REVAPMN.gw 0 to 500 170.26 11 14.52 10 381.84 9 142.11 11 176.48 11

Figure 6. Tercile categories (a) and probability of exceedance of
SREs (b).

estimated for all rainfall products, including gauges, but the
streamflow volume is generally overestimated. This could be
due to the uncertainty in SREs for the extreme rainfall events
at daily scales (Jiang et al., 2017) and the SWAT model er-
rors. The overestimated streamflows could also be attributed
to the overestimation of rainfalls by the SREs as described
in the previous sections. Generally, the indices provided in
Table 4 indicate that the streamflow predictions are good for
CHIRPS2 and IMERG6 and satisfactory for the gauged rain-
fall but not for TAMSAT3 and 3B42 according to the classi-
fication system of Moriasi et al. (2007). The performance of

the SREs is consistent with the climatology of the products.
Mean monthly rainfall from 2001 to 2014 showed that TAM-
SAT3 and 3B42 deviate more from observed rainfall, while
CHIRPS2 and IMERG6 are relatively closer (Fig. 9).

4 Discussion

The statistical SRE evaluation results showed that all the
rainfall products captured the spatiotemporal rainfall vari-
ability in the DRB except the 3B43. The poor performance of
3B43 in capturing the basin’s rainfall variability is in agree-
ment with findings of two previous studies done for other
basins in Ethiopia (Dinku et al., 2008; Worqlul et al., 2014).
The reasons could be attributed to the fact that gauge adjust-
ment for the 3B43 product did not use adequate gauge data
from Ethiopian highlands due to the lack of data (Haile et
al., 2013) and coarse spatial resolution of the dataset (Huff-
man et al., 2007). However, Gebremicael et al. (2019) re-
ported the better performance of 3B43 for the Tekeze–Atbara
Basin, which is located in the northern mountainous area of
Ethiopia.

A better correlation of SREs with observed rainfall was
observed at monthly rather than at annual timescales for all
products. This is consistent with studies that reported the per-
formance of SREs improved with increased time aggregation
that peaks at monthly timescales (Dembélé and Zwart, 2016;
Katsanos et al., 2016; Zhao et al., 2017; Ayehu et al., 2018;
Li et al., 2018; Guermazi et al., 2019). The weak agreement
of SREs with observed data at annual timescales shows that
the SREs considered in this study generally did not capture
the interannual rainfall variability. In this regards, particu-
larly the 3B43 product failed to capture annual rainfall vari-
ability compared to the other three SREs. Overall, all four
SRE products overestimated rainfall for the DRB by 10 %
for CHIRPS2 to 30 % for IMERG6 and TAMSAT3 (Fig. 5).
This finding is consistent with studies that reported the over-
estimation of IMERG6 and 3B43 products for the alpine
and gorge regions of China (Chen et al., 2019). However,
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Figure 7. Seasonal statistical evaluation result comparison of each SRE for the DRB.

Table 5. Calibration and validation results for the different rainfall products.

Rainfall products Calibration Validation

NSE R2 PBIAS P factor R factor NSE R2 PBIAS P factor R factor

Gauge 0.55 0.54 2.8 0.43 0.55 0.54 0.57 −9.3 0.15 0.27
CHIRPS2 0.69 0.7 −2.5 0.72 0.64 0.65 0.66 5.3 0.46 0.58
IMERG6 0.65 0.67 2.2 0.70 0.66 0.73 0.78 −14.5 0.64 0.86
TAMSAT3 0.43 0.46 −16.7 0.31 2.94 0.48 0.48 −4.9 0.46 2.68
3B42 0.48 0.51 8.6 0.65 3.88 0.45 0.46 1.3 0.82 2.96

Gebremicael et al. (2019) reported underestimation of rain-
fall by CHIRPS2 for the Tekeze–Atbara Basin, which is a
mountainous and arid basin in northern Ethiopia. Ayehu et
al. (2018) also reported a slight underestimation of rainfall
by CHIRPS2 for the upper Blue Nile Basin. The discrepancy
between our finding and the previous studies done for the
basins in Ethiopia may be due to differences in watershed
characteristics such as topography, vegetation cover and cli-
matic conditions.

Generally, this study showed that the SRE products con-
sidered in this study exhibited a satisfactory rainfall detection

and estimation capability for the DRB. The products could
be applicable for flood forecasting applications for the DRB
(Toté et al., 2015). CHIRPS2 performed better than the other
three SREs for annual, seasonal and monthly timescales in
detecting and estimating rainfall for the basin. The superi-
ority of CHIRPS2 was also reported by previous studies for
different parts of the world (Katsanos et al., 2016; Dembélé
and Zwart, 2016), including basins in Ethiopia (Bayissa et
al., 2017; Ayehu et al., 2018; Dinku et al., 2018; Gebremi-
cael et al., 2019). For example, Dinku et al. (2018) reported
better rainfall estimation capability of CHIRPS2 for eastern
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Figure 8. Graphical calibration and validation of streamflow at
monthly scales.

Figure 9. Mean monthly rainfall (2001 to 2014).

Africa compared to African Rainfall Climatology version 2
(ARC2) and TAMSAT3 products. Ayehu et al. (2018) re-
ported the better performance of CHIRPS2 for the Blue Nile
Basin compared to ARC2 and TAMSAT3. The better per-
formance of CHIRPS2 has been attributed to the capability
of the algorithm to integrate satellite, gauge and reanalysis
products and its high spatial and temporal resolution (Funk
et al., 2015). In contrast, generally, the 3B43 rainfall product
performed poorly for the DRB for all timescales. This could

be due to its coarse spatial resolution and lack of gauge ad-
justments for the highlands of Ethiopia (Haile et al., 2013).
The IMERG6 showed a better rainfall detection and esti-
mation capability for the study area than the 3B43 product,
which is consistent with findings of previous studies (Huff-
man et al., 2015; Zhang et al., 2018, 2019). The better per-
formance of IMERG6 is attributed to the inclusion of dual
and high-frequency channels which improve light and solid
precipitation detection capabilities (Huffman et al., 2015).

The hydrological simulation performance evaluation re-
sults of SREs showed that the accurate characterization
of rainfall variability is very critical for reliable hydro-
logical predictions. This finding is consistent with studies
that reported that different precipitation datasets influence
model performance, parameter estimation and uncertainty
in streamflow predictions (Sirisena et al., 2018; Goshime
et al., 2019). The overestimation of streamflow for all SRE
products could result from uncertainty in SREs for extreme
rainfall events at daily scales (Zhao et al., 2017). The over-
estimated streamflow could also be attributed to the overesti-
mation of rainfalls by the SREs as described in the previous
sections and the uncertainty in the SWAT model.

Overall, this study showed that CHIRPS2 and IMERG6
predicted streamflow better than the gauge rainfall and other
two SRE products for the DRB. The superior hydrologi-
cal performance of SRE products compared to gauge rain-
fall data was also reported by many other studies (Grus-
son et al., 2017; Bitew and Gebremichael, 2011; Goshime
et al., 2019; Xian et al., 2019; Li et al., 2018; Belete et
al., 2020). For example, Bitew and Gebremichael (2011) re-
ported that satellite-based rainfall predicted streamflow bet-
ter than gauge rainfall for complex high-elevation basins in
Ethiopia. Likewise, a bias-corrected CHIRP rainfall dataset
resulted in better streamflow prediction than a gauge rain-
fall dataset for the Ziway watershed in Ethiopia (Goshime et
al., 2019).

The relatively poor performance of gauge rainfall com-
pared to the CHIRPS2 and IMERG6 shows that the exist-
ing rainfall gauges do not represent spatiotemporal variabil-
ity in rainfall in the DRB. The rain gauges are sparse, spa-
tially uneven and incomplete records for the DRB. As previ-
ously mentioned, rain gauge density for the DRB is 0.32 per
1000 km2, which is much lower than the World Meteorolog-
ical Organization (WMO) recommendation of one gauge per
100–250 km2 for mountainous areas of tropical regions such
as the DRB (WMO, 1994).

In contrast to several previous studies on SRE evaluation,
the present study combined statistical and hydrological per-
formance evaluations in the data-scarce river basin of the up-
per Blue Nile Basin, the Dhidhessa River Basin. This method
is important for identifying SREs that better detect and esti-
mate rainfall and selecting application-specific rainfall prod-
ucts such as for hydrological and climate change studies. The
results of this study also highlight the seasonal dependence
of rainfall detection and hydrological performance capabil-
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ities of SREs for the DRB and similar basins in Ethiopia.
In addition, the performance of IMERG6, which is the latest
SRE product, was evaluated for Ethiopian basins for the first
time. Overall, this study showed that CHIRPS2 and IMERG6
rainfall products performed best in terms of detecting and
estimating rainfall, as well as predicting streamflow, for the
DRB.

5 Conclusions

Satellite rainfall estimation is an alternative rainfall data
source for hydrological and climate studies for data-scarce
regions like Ethiopia. However, SREs contain uncertainties
attributed to errors in measurement, sampling, retrieval al-
gorithm and bias correction processes. Moreover, the accu-
racy of the rainfall estimation algorithm is influenced by to-
pography and the climatic conditions of a given area. There-
fore, SRE products should be evaluated locally before they
are used for any application. In this study, we examined
the intrinsic data quality and hydrological simulation per-
formance of CHIRPS2, IMERG6, 3B42/3 and TAMSAT3
rainfall datasets for the DRB. The statistical evaluation re-
sults generally revealed that all four SRE products showed a
promising rainfall estimation and detection capability for the
DRB. Particularly, all SREs captured the south–north declin-
ing rainfall patterns of the study area. This could be due to
the fact that all the SRE products were gauge adjusted and
that they are the latest improved versions. However, all the
SRE datasets overestimated rainfall for the DRB, indicating
that the rainfall products could be applicable for flood stud-
ies but not for drought studies. The results also showed the
stronger correlation of all SREs with measured rainfall data
for the monthly timescales than for the annual timescales,
which shows that all the rainfall products considered in this
study cannot capture interannual rainfall variability.

The quantitative statistical indices showed that CHIRPS2
performed the best in estimating and detecting rainfall events
for the DRB at monthly and annual timescales. This is likely
due to the fact that CHIRPS2 was developed by merging
satellite, reanalysis and gauge datasets at high spatial reso-
lution, whereas 3B43 performed poorly for the basin.

The hydrological-modeling-based performance evaluation
showed that ranges, best fit values and relative sensitivi-
ties of SWAT’s calibration parameters varied with the rain-
fall datasets. Overall, groundwater-flow-related parameters
such as GWQMN.gw, ALPHA_BF.gw, GW_DELAY.gw and
RCHRG_DP.gw were found to be more sensitive for all rain-
fall products. This showed that subsurface processes dom-
inate hydrological responses in the DRB. The hydrological
simulation performance results also showed that all the rain-
fall products, including the observed rainfall, overestimated
streamflow and especially the high flows. The peak stream-
flow overestimation could be attributed to the uncertainty in
SRE rainfall to predict at shorter timescales (e.g., daily) and
event rainfalls. The study showed CHIRPS2 and IMERG6
predicted streamflow for the basin satisfactorily and even
outperformed the performance of the gauge rainfall. The rel-
atively poor performance of the gauge rainfalls can be at-
tributed to the fact that the gauges are too sparse to accu-
rately characterize rainfall variability in the basin. Overall,
the CHIRPS2 and IMERG6 products seem to perform better
for the DRB in detecting rainfall events, estimating rainfall
quantity, and improving streamflow predictions. The new in-
sights of this study include the following: (i) the SRE eval-
uation was done by combining statistical and hydrological
modeling methods, (ii) the SREs considered in this study are
the latest products and are reported to be the best in dif-
ferent studies (IMERG6 is the most recent product, and it
is being evaluated in Ethiopian basins for the first time in
this study), and (iii) the rainfall detection and estimation, as
well as the streamflow prediction capability of SREs, is de-
pendent on seasons. The results of this study are of inter-
est to both scientific communities and water resource man-
agers, and this paper has made a good contribution to im-
prove our understanding of the latest SREs for Ethiopia and
the DRB. However, the streamflow simulation capability of
the selected SRE products should be tested for other hydro-
logical model to see if model types affect the results.
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Appendix A

Table A1. List of rain gauge stations used for SRE evaluation.

Station no. Stations Latitude Longitude Elevation Remark

1 Bedele 8.3 36.2 2011 Within the basin
2 Gatira 8.0 36.2 2358 Within the basin
3 Gimbi 9.2 35.8 1970 Within the basin
4 Nedjo 9.5 35.5 1800 Within the basin
5 Anger 9.3 36.3 1350 Within the basin
6 Gida Ayana 9.9 36.9 1850 Within the basin
7 Arjo 8.5 36.3 2565 Within the basin
8 Jimma∗ 7.8 36.4 1718 Within the basin
9 Nekemte∗ 9.1 36.5 2080 Within the basin
10 Shambu 9.6 37.1 2460 Near the basin
11 Sibu Sire 9.0 35.9 1826 Within the basin
12 Bure 8.2 35.1 1750 Near the basin
13 Sokoru 7.9 37.4 1928 Near the basin
14 Gore 8.1 35.5 2033 Near the basin

∗ Systematically removed from being used for calibration as they are already used for SRE calibration.
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