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Abstract. Global navigation satellite systems (GNSS) have
been proved to be an excellent technology for retrieving pre-
cipitable water vapor (PWV). In GNSS meteorology, PWV
at a station is obtained from a conversion of the zenith wet
delay (ZWD) of GNSS signals received at the station using
a conversion factor which is a function of weighted mean
temperature (Tm) along the vertical direction in the atmo-
sphere over the site. Thus, the accuracy of Tm directly af-
fects the quality of the GNSS-derived PWV. Currently, the
Tm value at a target height level is commonly modeled us-
ing the Tm value at a specific height and a simple linear de-
cay function, whilst the vertical nonlinear variation in Tm is
neglected. This may result in large errors in the Tm result
for the target height level, as the variation trend in the ver-
tical direction of Tm may not be linear. In this research, a
new global grid-based Tm empirical model with a horizontal
resolution of 1◦× 1◦ , named GGNTm, was constructed us-
ing ECMWF ERA5 monthly mean reanalysis data over the
10-year period from 2008 to 2017. A three-order polynomial
function was utilized to fit the vertical nonlinear variation
in Tm at the grid points, and the temporal variation in each
of the four coefficients in the Tm fitting function was also
modeled with the variables of the mean, annual, and semi-
annual amplitudes of the 10-year time series coefficients.
The performance of the new model was evaluated using its
predicted Tm values in 2018 to compare with the following
two references in the same year: (1) Tm from ERA5 hourly
reanalysis with the horizontal resolution of 5◦× 5◦; (2) Tm
from atmospheric profiles from 428 globally distributed ra-
diosonde stations. Compared to the first reference, the mean
RMSEs of the model-predicted Tm values over all global
grid points at the 950 and 500 hPa pressure levels were 3.35

and 3.94 K, respectively. Compared to the second reference,
the mean bias and mean RMSE of the model-predicted Tm
values over the 428 radiosonde stations at the surface level
were 0.34 and 3.89 K, respectively; the mean bias and mean
RMSE of the model’s Tm values over all pressure levels in the
height range from the surface to 10 km altitude were −0.16
and 4.20 K, respectively. The new model results were also
compared with that of the GTrop and GWMT_D models in
which different height correction methods were also applied.
Results indicated that significant improvements made by the
new model were at high-altitude pressure levels; in all five
height ranges, GGNTm results were generally unbiased, and
their accuracy varied little with height. The improvement in
PWV brought by GGNTm was also evaluated. These results
suggest that considering the vertical nonlinear variation in Tm
and the temporal variation in the coefficients of the Tm model
can significantly improve the accuracy of model-predicted
Tm for a GNSS receiver that is located anywhere below the
tropopause (assumed to be 10 km), which has significance
for applications requiring real-time or near real-time PWV
converted from GNSS signals.

1 Introduction

Water vapor, as an important greenhouse gas, is closely re-
lated to weather variations; hence, it is crucial to monitor the
water vapor content in the atmosphere for a reliable weather
forecast. The meteorological parameter that is closely re-
lated to water vapor is precipitable water vapor (PWV) and
it can be measured by various technologies such as radioson-
des, remote-sensing satellites, and water vapor radiometers.
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Global navigation satellite systems (GNSS), which were ini-
tially designed for positioning, navigation, and timing, can
be used to retrieve the zenith tropospheric delay (ZTD) of
the GNSS signal over an observation station. The ZTD can
be divided into zenith hydrostatic delay (ZHD) and zenith
wet delay (ZWD). The ZHD can usually be obtained at a
high accuracy from the Saastamoinen model together with
measured meteorological data at the station. The atmospheric
water vapor information is contained in the GNSS-ZTD –
more precisely, in the GNSS-ZWD – which can be con-
verted into PWV. Different from the other atmospheric mea-
surement techniques, GNSS receivers are regarded as cost-
effective equipment for meteorological research; the main
advantage of the GNSS-based method is its real-time, stable,
high temporal-resolution, and relative long-term capabilities.
The GNSSs were first applied to meteorological research in
the 1990s (Bevis et al., 1992). Some preliminary research in
relation to the long-term feature of the GNSS-ZTD/PWV se-
ries and the relationship between GNSS-PWV and weather
or climate issues has already been carried out (Bianchi et al.,
2016; Bonafoni and Biondi, 2016; Calori et al., 2016; Chen
et al., 2018; Choy et al., 2013; He et al., 2019; Shi et al.,
2015; Rohm et al., 2014a; Wang et al., 2016, 2018; Zhang
et al., 2015). Near real-time GNSS-ZTD products estimated
from GNSS data processing have been routinely assimilated
into numerical weather models (NWMs) for improving the
performance of weather forecasts (Bennitt and Jupp, 2012;
Dousa and Vaclavovic, 2014; Guerova et al., 2016; Le Mar-
shall et al., 2012, 2019).

To obtain GNSS-PWV over a station, the first step is to
estimate the ZTD of the station from GNSS data process-
ing, and the two most common data processing strategies are
the network approach and precise point positioning (PPP) ap-
proach (Ding et al., 2017; Douša et al., 2016; Guerova et al.,
2016; Li et al., 2015; Lu et al., 2015; Rohm et al., 2014b;
Yuan et al., 2014; Zhou et al., 2020). The former uses double-
differenced observations, while the latter uses un-differenced
observations in the observation equation system. The ZWD
can be obtained from subtracting the ZHD from the GNSS-
ZTD or directly estimated if the ZHD has been corrected
in the GNSS observation equation system, depending on the
processing strategies adopted. Then the GNSS-PWV can be
converted by

PWV=5×ZWD, (1)

where 5 is the conversion factor (Askne and Nordius, 1987;
Bevis et al., 1992), which is given by

5=
106

ρwRv(
k3
Tm
+ k′2)

, (2)

where ρw is the density of liquid water; Rv =

461.5 J/(kg×K) is the specific gas constant for water
vapor; k′2 = 22.1 K/hPa and k3 = 373900 K2/hPa are at-
mospheric refractivity constants; Tm is the weighted mean

temperature over the GNSS site, which is defined and
approximated through the following equation (Davis et al.,
1985):

Tm =

∫
e
T

dh∫
e

T 2 dh
≈
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1
ei
T i
1hi∑n

1
ei

T
2
i

1hi
, (3)

where e and T are the water vapor pressure (hPa) and abso-
lute temperature (K), respectively; n is the number of the lay-
ers; ei , T i , and1hi are the mean water vapor pressure, mean
temperature, and thickness of the ith layer, respectively.

From Eq. (2), one can see that Tm is a crucial variable
for the determination of the conversion factor 5, which in
turn affects the determination of PWV expressed by Eq. (1).
The significance of obtaining accurate Tm values has been
demonstrated by previous research (Bevis, 1994; Jiang et al.,
2019a; Ning et al., 2016; Wang et al., 2005, 2016). Tm can
be calculated from an observed atmospheric profile. This ob-
served atmospheric profile can be acquired from a radiosonde
station, which is valid only for the sounding site. In fact, for
GNSS stations, they are usually not co-located with any re-
gional radiosonde stations; i.e., observed atmospheric pro-
files are unavailable. As a result, Eq. (3) is not applicable
for GNSS stations. Moreover, even if a GNSS station is co-
located with a radiosonde station, due to the low temporal
and spatial resolution of radiosonde data, the temporal reso-
lution of its resultant Tm is also low, which cannot meet the
requirements of GNSS near real-time or real-time (NRT/RT)
applications such as the conversion of GNSS-ZWD time se-
ries into PWV time series. The atmospheric profiles from
NWM data can be obtained for Tm determination (Wang et
al., 2005, 2016). However, for some time-critical applica-
tions, NRT/RT Tm is essential for NRT/RT GNSS-PWV de-
termination; thus the main drawback in using the reanalysis
data is its latency issue, and it is still difficult for most users to
obtain predicted results to obtain from the NWM data. Thus,
it is of great importance to develop empirical Tm models for
time-critical applications. Some Tm models have been devel-
oped with a focus of improving the accuracy of the Tm, and
these empirical models can be classified into two categories.
One category is such a model that depends on in situ surface
temperature observation Ts, like the Bevis model, which is
a simple linear function expressed as Tm = a+ bTs (Bevis
et al., 1992). The two coefficients of such a linear function
can be determined from the linear regression method based
on long-term regional radiosonde data. However, the deploy-
ment of radiosonde stations is geographically sparse due to
their high cost, and it is even worse that there are no ra-
diosonde stations at all in some areas. One of the possible
ways to solve the availability issue is to use reanalysis data
to develop Tm−Ts models. However, such a reanalysis-based
Tm−Ts model may not be as accurate as that derived from lo-
cal radiosonde profiles. Yao et al. (2014a) developed a global
latitude-dependent Tm–Ts linear model using Tm data from
the global geodetic observing system (GGOS) and Ts data
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from the European center for medium-range weather fore-
casts (ECMWF). Jiang developed a time-varying global grid-
ded Tm–Ts model using both Tm and Ts derived from ERA-
Interim (Jiang et al., 2019a). Ding (2018, 2020) developed
two generations of global Tm models using the neural net-
work algorithm, in which temperature observations were re-
quired for the input and the models performed well. The Tm
models mentioned above need in situ meteorological obser-
vations (mainly Ts) as the model’s input. However, for GNSS
stations, not all stations are equipped with meteorological
sensors. Although the meteorological parameters at the user
station can also be interpolated using the actual meteorologi-
cal measurements nearby, the interpolation error depends on
the terrain difference between the meteorological sensor’s lo-
cation and the point of interest in addition the interpolation
methods used.

To address the above-mentioned issues, the type of empir-
ical models that are independent of meteorological observa-
tions had to be constructed. Yao et al. (2014b, 2012, 2013)
used spherical harmonics to develop the GWMT, GTM-II,
and GTM-III models, in which both the height and the peri-
odicity of Tm were taken into account. Huang et al. (2019a)
established a global Tm model using the sliding window algo-
rithm, which was based on varying latitude and altitude. The
widely used GPT2w model (Böhm et al., 2015) and its suc-
cessor, GPT3 (Landskron and Böhm, 2018), provided grid-
ded results with both 1◦× 1◦ and 5◦× 5◦ horizontal reso-
lutions, and the models also contain a few terms related to
temporal variations in Tm including the mean, annual, and
semi-annual amplitudes. However, the height differences be-
tween the user site, e.g., a GNSS station, and its nearest four
surrounding grid points were not considered. Recent studies
have overcome this problem by providing Tm values at var-
ious heights ranging from ground surface to the upper tro-
posphere. He et al. (2017) developed a voxel-based global
model, named GWMT-D, using the Tm values at four height
levels of reanalysis data from the National Centers for En-
vironmental Prediction (NCEP) to construct the voxels. The
Tm predicted for the user site can be obtained from an inter-
polation of the Tm values at the eight grid points of the voxel
that contains the user site. In recent studies, some researchers
used a Tm lapse rate, the rate of change in Tm with altitude, to
correct the effect of the height element on Tm, e.g., IGPT2w
(Huang et al., 2019b), GTm_R (Li et al., 2020), and GPT2wh
(Yang et al., 2020). The GTrop model (Sun et al., 2019), de-
veloped for predicting both ZTD and Tm, also took into ac-
count the Tm lapse rate, and it outperforms GPT2w obviously
at altitudes under 10 km.

We have noticed that some studies have extended the
GNSS-PWV sensing to a shipborne GNSS receiver or GNSS
receiver that is onboard other moving vehicles (Fan et al.,
2016; Wang et al., 2019; Webb et al., 2016). Thus, we con-
centrated on developing a high-accuracy unbiased empiri-
cal model for predicting Tm values in any possible places,
which is meaningful for GNSS meteorology. As previously

Figure 1. Temperature T , water vapor pressure e, and Tm profiles
obtained from ERA5 monthly mean reanalysis in December 2017
at four grid points: (a) 90◦ N, 120◦ E; (b) 60◦ N, 120◦ E; (c) 30◦ N,
120◦ E; (d) 0◦ N, 120◦ E.

discussed, considering the lapse rate in a Tm model can im-
prove the model’s accuracy. However, the assumption that
Tm linearly varies with height, which many recently devel-
oped models were based on, may not agree well with the
truth. In this research, a new global grid-based empirical Tm
model, named GGNTm, in which the vertical nonlinear vari-
ation in Tm was taken into account, was developed using a
three-order polynomial function and ERA5 monthly mean
reanalysis data over the 10-year period from 2008 to 2017,
and the temporal variation in each of the four coefficients in
the Tm fitting function was also modeled with the variables of
the mean, annual, and semi-annual amplitudes of the 10-year
time series coefficient.

The outline of the paper is as follows. The features of
the vertical nonlinear variation in Tm were investigated in
Sect. 2.2; then a three-order polynomial function fitting the
10-year Tm profiles obtained from ERA-5 monthly mean
reanalysis data was developed for the GGNTm model. In
Sect. 3, the performance of GGNTm was validated using the
Tm values from ERA5 hourly reanalysis and globally dis-
tributed radiosonde profiles in 2018 as the references. Con-
clusions are summarized in the final section.
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Figure 2. Mean of rms’s of the Tm residuals of 120 monthly mean profiles from the 10-year period at each grid point for scheme 1 (a, for
linear function) and scheme 2 (b, for three-order polynomial function).

2 Methodology for new model construction

2.1 Data source

ERA5 reanalysis data were the latest reanalysis data de-
veloped by the ECMWF. In this research, ERA5 monthly
mean reanalysis data in the 10-year period from 2008 to
2017 containing geopotential heights, temperatures, and spe-
cific humidity at 37 pressure levels with a horizontal resolu-
tion of 1◦× 1◦ were downloaded from the web server of the
Copernicus Climate Change Service (C3S). The geopotential
heights, which are often used in meteorology, were then con-
verted to WGS-84 ellipsoidal heights. Water vapor pressure
was calculated by (Nafisi et al., 2012)

e = qp/(0.622+ 0.378q), (4)

where q is the specific humidity, which can be obtained from
NWM data; p is the atmospheric pressure.

2.2 Vertical variation in Tm

The ERA5 monthly mean products were used to analyze the
vertical variation in Tm. As defined in Eq. (3), Tm is a func-
tion of water vapor pressure and temperature. The variation
in water vapor pressure in the vertical direction has been
known to be nonlinear, while the vertical variation in temper-
ature is often assumed to be a linear decay function (Dousa
and Elias, 2014). In fact, there is such a phenomenon that
temperature increases with the increase in height, the so-
called temperature inversion, which occurs in both the upper
atmosphere and near ground surface, meaning that the ver-
tical variation in temperature is complex. As a result, Tm in
the vertical direction varies nonlinearly due to the irregular
variations in both water vapor pressure and temperature in
the vertical direction. Figure 1 shows four vertical profiles
of water vapor pressure, temperature, and Tm at the pres-
sure levels that were under a 10 km ellipsoidal height at four

grid points obtained from ERA5 monthly mean reanalysis in
December 2017. It should be noted that the surface heights
of the four grid points were different, and they were 0, 301,
13, and 180 m, respectively. Panels (a) and (b) show that, in
the height range near the surface, temperature increases with
the increase in height. In addition, all the four Tm profiles
(the black curves with dots) in these panels show a nonlin-
ear variation trend. This implies that using a constant lapse
rate to model the vertical Tm variation trend will result in
large errors; i.e., the Tm profiles cannot be accurately mod-
eled through a constant Tm lapse rate. This finding aligns well
with that of other researchers (e.g., Yao et al., 2018).

2.3 Three-order polynomial function for Tm vertical
fitting

A linear Tm decay function with a constant Tm lapse rate can
be expressed as

Tm = α+β(H −h0), (5)

where α is the Tm value at the reference height h0; β is the
Tm lapse rate and H is the ellipsoidal height (km) of the user
site. An equivalent expression of Eq. (5) is

Tm = α
′
+β ′H, (6)

where α′ denotes the Tm value at 0 km ellipsoidal height.
Some Tm models were constructed based on this linear Tm
decay function. Tm values from different height ranges can
be used to calculate the Tm lapse rate. However, if Tm varies
nonlinearly in the vertical direction, the calculated Tm lapse-
rate values would have large errors. To overcome this prob-
lem, in this research, a three-order polynomial function was
selected for a new Tm model:

Tm = a+ bH + cH
2
+ dH 3, (7)
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Figure 3. Periodicity reflected in the 10-year time series of each coefficient in the three-order polynomial function at 60◦ N, 120◦ E.

where a,b,c,d are the four unknown coefficient parameters
of the fitting function.

For the estimation of the two sets of unknown coeffi-
cient parameters expressed in Eqs. (6) and (7), two schemes,
named scheme 1 and scheme 2, fitted the sample data of Tm
profiles of the 120 monthly mean reanalysis data over the 10-
year period from 2008 to 2017 at each grid point for the two
functions. It should be noted that only those Tm values from
heights under 10 km were selected for the sample data. For
measuring how well the fitting function fits the sample data,
the root mean square (rms) of the differences between the Tm
values resulting from the fitting function and the sample data
was calculated by

rms=

√√√√1
n

n∑
i

12
i , (8)

where 1i is the residual of Tm at the ith pressure level over
the grid point. Figure 2 shows the map for the mean of the
rms’s of the fitting residuals of the Tm from the aforemen-
tioned 120 monthly mean Tm profiles (the samples) at each
of the grid points. The mean of the mean rms’s at all global
grid points for scheme 1 and scheme 2 were 1.26 and 0.30 K,
respectively. In addition, the rms results in panel (a) (for lin-
ear function) were latitude-dependent, and small rms’s (blue)
were in midlatitude regions; large rms values in both panels
were in Antarctica. Comparing the two panels, we found that
the rms values shown in panel (b) were all very small and
significantly smaller than those of panel (a), meaning that
the three-order polynomial fitting function was superior to
the linear fitting function.

Figure 4. Spatial interpolation of the Tm value for the target point
(ϕλH ). After obtaining the Tm values at height H at the four grid
points (see the four grids on the top plane) by the GGNTm model
using Eq. (7), the Tm value at the target point can be interpolated
(the dashed rectangle).

2.4 Tm temporal fitting for the new model

In the previous section, the 10-year time series of coefficients
in the three-order polynomial function expressed in Eq. (7) at
each of the grid points were obtained from the least-squares
estimation. Since they were not constant values, the tem-
poral variation in each coefficient at each grid point needs
to be further modeled for the new grid-based empirical Tm
model proposed in this study, GGNTm. The seasonal vari-
ation reflected in the 10-year time series of each of the co-
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Table 1. Mean bias and mean RMSE of Tm values at each of five pressure levels at 12:00 UTC at all global grid points in 2018 resulting from
each of the three models selected.

Pressure level (hPa) Statistic (K) Model

GTrop GWMT_D GGNTm

950

mean bias −0.14 1.68 −0.43
mean RMSE 3.39 3.98 3.35

800

mean bias −0.14 2.09 0.09
mean RMSE 3.79 4.46 3.77

650

mean bias 0.76 1.84 0.15
mean RMSE 4.14 4.58 4.07

500

mean bias 2.97 2.07 0.30
mean RMSE 5.17 4.57 3.94

350

mean bias 5.71 1.90 0.78
mean RMSE 7.12 3.93 3.02

efficients r = a,b,c,d was analyzed using the fast Fourier
transform (FFT), and results for seasonality and periodicity
at point 60◦ N, 120◦ E are shown in Fig. 3, which presented
noticeable annual and semi-annual amplitudes. Similar pe-
riodicities were also found at other grid points. According
to these characteristics, the fitting model for GGNTm con-
taining three terms including mean, annual, and semi-annual
amplitudes for each coefficient time series at each grid point
expressed by the following was adopted in this study:

r = A0+A1 cos(
doy− d1

365.25
2π)+A2 cos(

doy− d2

365.25
4π), (9)

where A0, A1, and A2 are the mean, annual, and semi-annual
amplitudes, respectively; doy denotes “day of year”; d1 and
d2 are the initial phases of the annual and semi-annual pe-
riodicities, which are estimated together with the mean and
amplitudes.

Then, the mean, annual, and semi-annual amplitudes and
initial phases for each coefficient at each of the grid points
over the globe (with the resolution of 1◦× 1◦ ) were deter-
mined using the least-squares estimation method and the 10-
year time series of the coefficient. To calculate Tm for a spe-
cific site and time, e.g., for a GNSS station at an observing
time, the following three-step procedure needs to be carried
out:

1. use Eq. (9) to calculate each of the four coefficients at
each of the four grid points surrounding the user site;

2. use Eq. (7) to calculate the Tm values at the height of the
user site at each of the above four grid points (which is
for the height dimension);

3. use an interpolation method, such as the inverse distance
weighting or bilinear interpolation, on the four Tm val-
ues from step (2) to obtain the Tm value for the user
site (which is for the horizontal dimension, as shown in
Fig. 4).

Till now the new model has been developed based on the
10-year sample data from 2008 to 2017. This model will be
validated using the model-predicted Tm results in 2018 com-
pared against the same year’s (i.e., out-of-sample) reference
data. Results will be discussed in the next section.

3 Evaluation of GGNTm

For the performance assessment of our newly developed Tm
model, Tm values over different pressure levels obtained from
both ERA-5 hourly reanalysis (at 12:00 UTC) and globally
distributed radiosonde profiles in 2018 were selected as the
references. Thus, both 24 and 12 h variations in Tm have been
contained in the reference data for the evaluation of our new
model. The two statistics – bias and RMSE – were utilized to
measure the systematic discrepancy and the accuracy of the
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Figure 5. RMSE of Tm at each grid point at 950 hPa (a, c, e) and 500 hPa (b, d, f) pressure levels in 2018 resulting from GTrop, GWMT_D,
and GGNTm.

model results. Their formulas are

bias=
1
n

n∑
i=1
(T model

mi
− T ref

mi
), (10)

RMSE=

√√√√1
n

n∑
i=1
(T model

mi
− T ref

mi
)2, (11)

where i is the index of the data element; T model
mi

denotes
the model resultant Tm value; T ref

mi
denotes the reference Tm

value; n is the number of the Tm values in the statistics.

3.1 Comparison with ERA5 hourly data

As the first set of the reference selected for the evaluation of
the new model, ERA-5 hourly data (with the resolution of
5◦× 5◦) at 12:00 UTC on each day in 2018, which were out-
of-sample data, were downloaded from the C3S. Then they
were converted to Tm profiles and Tm values at each of five

pressure levels: 950, 800, 650, 500, and 350 hPa were used to
calculate the bias and RMSE of the new model’s Tm results
at the pressure level. In addition to the GGNTm model, the
other two empirical models developed in recent years includ-
ing GTrop and GWMT_D, in which different vertical cor-
rection methods were also applied, were also evaluated for
performance comparisons of GGNTm and these two models.

Table 1 shows the mean bias and mean RMSE of the
Tm values over all global grid points resulting from each of
the above three models. As we can see, on a global scale,
GGNTm outperformed all the other two models, especially
at high pressure levels. The GTrop has been proved to be
considerably better than GPT3 (Sun et al., 2019), owing to
its use of the Tm lapse rate, although its Tm results still had
large errors at high pressure levels, which is most likely to
result from neglecting the nonlinear vertical variation in Tm.
The large bias and RMSE of the GWMT_D results were pos-
sibly because its modeling was based on NCEP reanalysis
data, and there may exist differences between the reanalysis
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Figure 6. Tm values (at the earth surface) integrated from the radiosonde measurements as well as that predicted by GGNTm at each of the
four radiosonde stations (nos. 23955, 42339,72293, and 87623).

data from ECMWF and NCEP (Chen et al., 2011; Decker
et al., 2012). Compared to GTrop and GWMT_D, GGNTm
performed very well at all pressure levels. This is because the
model accounted for the vertical nonlinear variation in Tm.

The results shown in Table 1 were the statistics of all
global grid points at each of the five pressure levels selected.
For more refined results, Fig. 5 shows the map for the RMSE
of Tm at each grid point at either the 950 or 500 hPa pres-
sure levels resulting from three models. The 950 hPa pressure
level (Fig. 5a, c, e) results indicated that the RMSEs of Tm
resulting from all the three models were latitude-dependent
and high-accuracy Tm values (in blue) were mainly in low-
latitude belts. However, the results at the 500 hPa pressure
level (Fig. 5b, d, f) indicated that the new model signifi-
cantly outperformed the other two models. In addition, from
the 950 hPa pressure level results, the percentages of those
RMSE values that were under 5 K from all the global grid
points for GTrop, GWMT_D, and GGNTm were 93.4 %,
82.1 %, and 94.6 %, respectively; while the corresponding
percentage values at the 500 hPa level were 44.9 %, 70.6 %,
and 88.7 %. These suggest that larger improvements made
by the new model, i.e., GGNTm, over the other two models
were at high-altitude pressure levels.

3.2 Comparison with radiosonde data

In this section, Tm from radiosonde profiles were used as the
reference for the performance assessment of the models se-
lected. The original radiosonde data at all globally distributed
stations in 2018 were downloaded from the website of the
University of Wyoming (http://weather.uwyo.edu/upperair/,
last access: 13 March 2020). Different from the use of reanal-
ysis data as the reference, water vapor pressure at each pres-

sure level from a radiosonde profile was calculated through a
mixing ratio:

e = Rp/(622+R), (12)

where R denotes the mixing ratio (g/kg).
An additional data pre-processing procedure needs to be

conducted for data quality control. Those poor radiosonde
profiles needed to be identified and excluded from their use
for the reference. The first check was for a valid mixing ratio
value: if a pressure level lacks a valid mixing ratio value, then
it is regarded as invalid and thus to be excluded. After this
initial checking was performed, further identifications were
also carried out. A profile would be excluded if it met any
one of the following four conditions:

1. the profile lacks surface meteorological observations;

2. the pressure value of the top pressure level is greater
than 100 hPa;

3. the difference in the pressure values at two successive
levels is under 200 hPa;

4. the profile consists of a few pressure levels; e.g., if
1P/n≤ 30 hPa (where 1P is the difference of the
pressure values at the surface and the 100 hPa pressure
levels and n is the number of all pressure levels from the
surface to the 100 hPa pressure levels), then the profile
was regarded to have sufficient number of pressure lev-
els; otherwise it would be excluded from the use in the
testing.

Sounding balloons are commonly launched twice a day
(at 00:00 and 12:00 UTC). In this research, only those sta-
tions that had at least 300 profiles in 2018 were selected in
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Table 2. Mean bias and mean RMSE of Tm values at 428 globally distributed radiosonde stations in 2018 resulting from GPT3, GTrop,
GWMT_D, and GGNTm.

Height Model Bias (K) RMSE (K)

Surface

GPT3 −0.36 [−7.87 5.81] 3.97 [1.36 12.51]
GTrop 0.16 [−2.39 4.23] 3.87 [1.35 7.22]
GWMT_D 1.30 [−1.74 5.64] 4.07 [1.51 7.81]
GGNTm −0.34 [−3.17 3.74] 3.89 [1.39 7.03]

Under 10 km

GPT3 22.00 [6.78 27.29] 27.67 [10.80 33.53]
GTrop 1.50 [−3.68 5.97] 5.08 [1.90 8.68]
GWMT_D 1.16 [−0.20 6.18] 4.61 [2.24 8.52]
GGNTm −0.16 [−3.81 4.69] 4.20 [1.37 7.30]

Note: the values within square brackets are the minimum and maximum.

Figure 7. RMSE of Tm at surface level (a, c, e) and all pressure levels under 10 km (b, d, f) at each of the 428 radiosonde stations in
2018 resulting from GTrop, GWMT_D, and GGNTm. The RMSE of Tm under 10 km was calculated using the differences between model-
predicted Tm values and the Tm values over all pressure levels with a height of less than 10 km.
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the model performance assessment. After the above five-step
quality control procedure was performed, a total of 260 140
profiles from 428 global radiosonde stations were finally
used in the performance evaluation of three selected models.
Figure 6 shows the Tm values (at the earth surface) integrated
from the radiosonde measurements as well as that predicted
by GGNTm at four radiosonde stations.

Table 2 shows the mean bias and RMSE of surface Tm val-
ues and Tm values at all pressure levels from the surface to
10 km height at all the aforementioned radiosonde stations
resulting from each of the three models that were the same
as the ones tested in the previous section. For the surface Tm
results, the mean RMSE of GTrop and GGNTm were very
close; GWMT_D was the worst, with the largest bias and
RMSE values, which may be due to its low horizontal res-
olution (5◦× 5◦). The other set of results, the RMSE of Tm
under 10 km, was calculated using the differences between
model-predicted Tm values and the reference Tm values over
all pressure levels with a height of less than 10 km. A small
RMSE of Tm under 10 km indicates that the model performs
well at any altitudes below the tropopause. As we can see,
GWMT_D was slightly better than GTrop, possibly because
the Tm value from the former was interpolated from the Tm
values at four height levels; the mean bias of Tm from the new
model, GGNTm, was the lowest, with the value of −0.16,
which was close to 0, meaning nearly unbiased; the RMSE
of the new model was also the lowest, among the three mod-
els, which suggests that the vertical nonlinear variation in Tm
was modeled more accurately in the new model than in the
other existing models.

Similar to Fig. 5, Fig. 7 shows the map for the RMSE of
Tm values at each of the 428 radiosonde stations in 2018 at
the surface pressure level (Fig. 5a, c, e) and all pressure lev-
els with a height of less than 10 km (Fig. b, d, f) resulting
from GTrop, GWMT_D, and GGNTm. It can be found that
the RMSEs of all models were latitude-dependent, and those
stations that had a large RMSE value were mostly located
in north Africa and northeast America. At the four stations
located in Antarctic, their surface Tm values were accurately
modeled by these models. However, in terms of the RMSE of
all pressure levels under 10 km, the GTrop results were rel-
atively large at the four stations, whilst both GWMT_D and
GGNTm performed well at three of the stations.

To further evaluate the performance of the three mod-
els at different height ranges under 10 km, the models’ Tm
values from the aforementioned radiosonde profiles at the
428 global stations were divided into five height ranges, and
Fig. 8 shows each height range’s bias and RMSE. We can
see the following results: (1) in the height ranges above 4 km,
the GTrop results had the largest bias and largest RMSE, and
GWMT_D was considerably better than GTrop; (2) in low
height ranges the GWMT_D results were the worst; (3) in all
height ranges the GGNTm results were nearly unbiased and
their accuracy varied little with height. The GGNTm model’s
consistent high accuracy in all height ranges suggests that

Figure 8. Bias and RMSE of Tm from radiosonde profiles at 428
global radiosonde stations in each of five height ranges resulting
from GTrop, GWMT_D, and GGNTm.

the characteristics of the vertical nonlinear variation in Tm
are modeled by the proposed model more accurately than the
other models.

3.3 Evaluation of GGNTm under extreme weather
conditions

The performance of our model under extreme weather con-
ditions has also been assessed. The Tm values integrated
from the radiosonde profiles at KingsPark radiosonde sta-
tion (no. 45005, Hong Kong) from August to September in
2018 (summer storm period) were taken as the reference data
in this research. As is shown in Fig. 9, the Tm values at
the station predicted by GGNTm as well as a Tm–Ts model
(Tm = 0.6195× Ts+ 103.3452) developed using Tm and Ts
series at KingsPark station (He et al., 2019) were compared
against corresponding radiosonde measurements during the
summer storm period. The daily total rainfall data (pub-
lished by Hong Kong Observatory, https://www.hko.gov.hk,
last access: 2 December 2020) during the 2 months are also
shown in the figure. Heavy rainfall occurred frequently in
Hong Kong during the 2 months, and a super typhoon, named
Mangkhut, landed near Hong Kong and caused torrential rain
on 16 September. As is shown in the figure, our model shows
clear outperformance during the 2 months compared to the
Tm–Ts model. More experiments showed that the coefficients
of Tm–Ts models vary significantly with time (i.e., 0.6195 vs.
0.58 for the linear part and 103.3452 vs. 115.71 for the con-
stant part, respectively), which means that a Tm− Ts model
that is based on the linear regression may have large errors
during some periods.

3.4 Impact of GGNTm on PWV

The accuracy of GNSS-PWV over a GNSS site at an ob-
serving time is dependent upon the accuracies of the ZWD
and the conversion factor. Uncertainty analysis has been con-

Atmos. Meas. Tech., 14, 2529–2542, 2021 https://doi.org/10.5194/amt-14-2529-2021

https://www.hko.gov.hk


P. Sun et al.: A new global grid-based weighted mean temperature model 2539

Figure 9. Tm derived from radiosonde profiles, the Tm− Ts model,
GGNTm from August to September in 2018 at KingsPark station,
and the daily total rainfall at Hong Kong International Airport.

ducted by some researchers to study the uncertainty of the
GNSS-derived PWV resulting from different variables, in-
cluding the uncertainty of GNSS-ZTD, the atmospheric pres-
sure, the Tm, and other constants utilized (Jiang et al., 2019b;
Ning et al., 2016). This section mainly focuses on the impact
of the newly developed Tm model on PWV; however, it is
difficult to evaluate the impact of Tm on the GNSS-PWV di-
rectly. In this research, the ZWD and Tm derived from the
ERA5 hourly reanalysis (the same as the data utilized in
Sect. 3.1) were used for simulating the GNSS-PWV sensing.
The ZWDs at each of the pressure levels over the globally
distributed grid points (2664 grid points in total) were calcu-
lated through integration:

ZWD= 10−6
∫
∞

H

(k′2
e

T
+ k3

e

T 2 )dh, (13)

where H is the height of the reference pressure level. Then
the reference PWVs can be obtained using the ZWDs and
the corresponding conversion factors resulting from the ref-
erence Tm values, as is shown in Eq. (1). Similarly, the PWVs
resulting from different empirical Tm models can be ob-
tained. The statistical results of the RMSEs of the PWVs
resulting from different model-predicted Tm values by com-
paring the PWVs resulting from the reference Tm values
(as references) are shown in Fig. 10. As we can see, the
performance of both GGNTm and GTrop were better than
GWMT_D. The mean RMSE of the predicted PWVs result-
ing from GTrop and GGNTm over 2664 grid points were ap-
proximately the same. But the maximum RMSE of the PWVs
resulting from GGNTm were better than GTrop from 1000 to
775 hPa. This is because the nonlinear variation in Tm in the
vertical direction was properly modeled in some regions. We
can also find that there are not significant differences between
the RMSEs of the predicted PWVs resulting from GGNTm
and GTrop due to less water vapor at the pressure levels with

Figure 10. Mean RMSE and maximum RMSE of PWV values at
each of the pressure levels at 12:00 UTC at all global grid points in
2018 resulting from each of the three models selected.

high altitudes, although the accuracy of the model-predicted
Tm values resulting from GGNTm was better than GTrop.
However, due to the fact that the water vapor content varies
with latitude, terrain, season, and weather, the improvement
in the model-predicted Tm values at pressure levels with high
altitudes is still meaningful.

4 Conclusions

In GNSS meteorology, Tm is an essential parameter for con-
verting GNSS-ZWD to PWV over the GNSS observing sta-
tion. In practice, the Tm value over a GNSS station at an ob-
serving time is commonly obtained from an empirical Tm
model, such as GPT3, GTrop, and GWMT_D. In this re-
search, a new global gridded empirical Tm model, named
GGNTm, was developed. In this model, the vertical nonlin-
ear variation in Tm was modeled using a three-order poly-
nomial function fitting ERA5 monthly mean reanalysis data
over the 10-year period from 2008 to 2017; and seasonal vari-
ation terms, including mean, annual, and semi-annual ampli-
tudes, for each of the coefficients in the polynomial function
at each of global grid points were also modeled based on the
10-year time series of the coefficient.

The performance of the newly developed GGNTm model
was assessed and compared with GTrop and GWMT using
model-predicted Tm values in 2018 against two references
in the same year: (1) Tm from ERA5 hourly reanalysis data
and (2) Tm from radiosonde profiles at 428 global radiosonde
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stations. Compared to the first reference, the RMSEs of Tm
values resulting from GGNTm at five pressure levels over
all the global grid points in 2018 were significantly smaller
than those of the other three models at high-altitude pres-
sure levels. Compared to the second reference, the mean bias
and mean RMSE of Tm resulting from GGNTm at all the
428 radiosonde stations in 2018 were 0.34 and 3.89 K, re-
spectively; and the mean bias and mean RMSE of Tm result-
ing from GGNTm at all pressure levels from the surface to
10 km height were 0.16 and 4.20 K, respectively, which was
significantly smaller than those of all the other three models.
In all five height ranges from the surface to 10 km in altitude,
the GGNTm results were nearly unbiased, and their accuracy
varied little with height. This result suggests that the charac-
teristics of the vertical nonlinear variation in Tm is modeled
by the approach proposed in this study more accurately than
the existing models. In addition, the impact of GGNTm on
GNSS-PWV was analyzed. The results showed that the ac-
curacy of the PWV resulting from GGNTm outperformed the
GTrop and GWMT models.

The improvement in the accuracy of the new Tm model
has significance for both long-term GNSS-PWV analysis and
NRT/RT GNSS-PWV sensing. Our future work will be fo-
cusing on using high temporal-resolution atmospheric data
such as ERA5 hourly reanalysis data, instead of monthly
mean data used in this study, to model the temporal varia-
tion in the coefficients in the Tm fitting function for further
improving the accuracy of the GGNTm model.

Data availability. ERA5 monthly mean data are avail-
able here: https://doi.org/10.24381/cds.6860a573 (Hers-
bach et al., 2019). ERA5 hourly data are available here:
https://doi.org/10.24381/cds.bd0915c6 (Hersbach et al., 2018).

Radiosonde data are provided by the University of Wyoming
via http://weather.uwyo.edu/upperair/sounding.html (last access:
13 March 2020, University of Wyoming, 2020).
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