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Abstract. Microwave radiometers are widely used for the re-
trieval of liquid water path (LWP) and integrated water va-
por (IWV) in the context of cloud and precipitation stud-
ies. This paper presents a new site-independent retrieval al-
gorithm for LWP and IWV, relying on a single-frequency
89 GHz ground-based radiometer. A statistical approach is
used based on a neural network, which is trained and tested
on a synthetic dataset constructed from radiosonde profiles
worldwide. In addition to 89 GHz brightness temperature,
the input features include surface measurements of temper-
ature, pressure, and humidity, as well as geographical infor-
mation and, when available, estimates of IWV and LWP from
reanalysis data. An analysis of the algorithm is presented
to assess its accuracy, the impact of the various input fea-
tures, its sensitivity to radiometer calibration, and its stabil-
ity across geographical locations. While 89 GHz brightness
temperature is crucial to LWP retrieval, it only moderately
contributes to IWV estimation, which is more constrained by
the additional input features. The algorithm is shown to be
quite robust, although its accuracy is inevitably lower than
that obtained with state-of-the-art multi-channel radiometers,
with a relative error of 18 % for LWP (in cloudy cases with
LWP> 30 g m−2) and 6.5 % for IWV. The highest accuracy
is obtained in midlatitude environments with a moderately
moist climate, which are more represented in the training
dataset. The new method is then implemented and evaluated
on real data that were collected during a field deployment
in Switzerland and during the ICE-POP 2018 campaign in
South Korea.

1 Introduction

Clouds play a key, though complex, role in the atmo-
sphere’s radiative balance and global circulation (Hartmann
and Short, 1980; Slingo, 1990; Hartmann et al., 1992; Wang
and Rossow, 1998; Stephens, 2005; Mace et al., 2006; Mc-
Farlane et al., 2008), and cloud studies have thus been pro-
pelled to the forefront of climate research. One of the core
challenges is the monitoring, quantification, and modeling
of cloud liquid water, which has a significant contribution
to radiative processes on a global scale. In this perspective,
highly accurate methods were developed to retrieve liquid
water path (LWP) and integrated water vapor (IWV) from
microwave radiometer measurements, relying on the fact that
water in its liquid and vapor phases is the main atmospheric
contributor to brightness temperatures in millimeter wave-
lengths outside the oxygen window. On a different note,
quantifying cloud liquid water content is also relevant to the
field of snowfall studies. Identifying the presence of super-
cooled liquid water during a snowfall event is of paramount
importance to the understanding of snowfall microphysics
because it drives riming of snow particles, which in turn
affects the efficiency and the spatial distribution of precip-
itation (Saleeby et al., 2011), as well as wet deposition of
aerosols (Poulida et al., 1998). Improving the monitoring of
cloud liquid water processes is thus valuable to climatologi-
cal, meteorological, and hydrological applications.

The quantitative retrieval of LWP from ground-based or
satellite measurements of brightness temperature (TB) at a
single-millimeter wavelength is an underdetermined prob-
lem. This brightness temperature results from the radiative
contribution of gases and hydrometeors across the atmo-
spheric column, and it depends on the vertical profile of tem-
perature. To lift this underdetermination, state-of-the-art re-
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trievals of LWP and IWV rely on multi-frequency radiome-
ters, which provide TB measurements in several microwave
channels. This allows for the separation of the contributions
of water vapor and liquid water (e.g., Westwater et al., 2001)
and, to some extent, the retrieval the full profile of liquid wa-
ter content and humidity in the atmospheric column (Löhn-
ert et al., 2004). It should be noted that IWV retrievals with
similar accuracy are obtained using GPS sensors, as first pro-
posed by Bevis et al. (1994), but this widely used technique
does not allow for the joint retrieval of LWP.

Multi-frequency instruments, however, are not always
available. It was shown (Küchler et al., 2017) that a radiome-
ter channel at 89 GHz could be added to a W-band cloud
radar operating at 94 GHz, thus allowing collocated measure-
ments of radar variables and brightness temperature, paving
the way for an improved understanding of cloud and precip-
itation physics. Küchler et al. (2017) proposed a method to
derive LWP estimates from single-frequency measurements
of brightness temperature, and the present study builds on
those findings.

Two approaches are commonly considered for the retrieval
of LWP and IWV from microwave radiometer measure-
ments, as described in Turner et al. (2007) and Cadeddu et al.
(2013). The first method relies on the reconstruction of atmo-
spheric profiles with a physical model that is iterated until
modeled TB values match the measured ones. Although this
method is formally the most accurate (Turner et al., 2007), it
requires more than one radiometer frequency to lift the prob-
lem’s fundamental underdetermination, and is thus not ap-
plicable for this study. The other way to tackle the problem
is to derive statistical relationships between TBs and LWP
and/or IWV based on synthetic datasets. This approach has
been widely used for both ground-based and satellite appli-
cations, with varying degrees of complexity in the algorithms
(linear, quadratic, log fitting, or using neural network archi-
tectures) (Karstens et al., 1994; Löhnert and Crewell, 2003;
Mallet et al., 2002; Cadeddu et al., 2009). The retrieval coef-
ficients that are computed with this method are usually site-
specific, since they incorporate during the learning or regres-
sion stage the climatological features at the location of the
dataset. The geographical range within which a site-specific
algorithm could be reliable is difficult to estimate, especially
if the orography of the region is complex, as highlighted
by Massaro et al. (2015). In general, implementing a site-
specific algorithm in a location with a different climatology
is likely to yield erroneous retrievals (Gaussiat et al., 2007).
In order to implement such an algorithm at another site, a
new parameterization should be performed using a suitable
dataset; but there might not always be enough reliable data
available for this purpose. In order to avoid this lengthy pro-
cess, and in the case of instruments that are intended to be
deployed in various locations, a site-independent algorithm
is more adequate (Liljegren et al., 2001).

The purpose of this study is to present a new site-
independent method for the retrieval of both LWP and IWV

that relies on a single radiometer frequency. The regression is
performed through a neural network, whose input consists of
brightness temperature at 89 GHz, as well as surface mea-
surements and geographical information. Those additional
input features are shown to be especially key to the retrieval
of IWV. Although this new method comes with a loss of pre-
cision in comparison with state-of-the-art multi-frequency
retrievals, its advantage is to be applicable in any location
with a constrained uncertainty.

The following section describes the data used in the differ-
ent steps of this study, from the design steps to the validation
of the new method. Section 3 outlines the forward model that
is used to build the synthetic dataset on which the LWP and
IWV retrieval algorithms are trained. In Sect. 4, the design
of the algorithms is detailed, and the results for the synthetic
dataset are reviewed and analyzed in Sect. 5. An independent
validation of the method is presented in Sect. 6 using two
contrasting datasets that were collected during field deploy-
ments in Payerne (Switzerland) and in the Taebaek moun-
tains (South Korea). A summary and conclusions are pro-
vided in Sect. 7.

2 Data

The present work is based on two types of data: a multiyear
collection of radiosonde observations across the world (for
training and testing of the retrieval algorithms) and sets of
measurements from an 89 GHz radiometer deployed in var-
ious regions during field campaigns limited in time. Those
two types of data are described below.

2.1 Radiosonde dataset

The design of a statistical algorithm requires a large dataset
on which to perform statistical learning. Here, this dataset
was built using radiosonde profiles collected in over 180
stations throughout the world, available through the Uni-
versity of Wyoming portal (Oolman, 2020). In total, ∼ 106

radiosonde profiles are used from 20 years of data (2000–
2019). It was ensured that the data included radiosonde sta-
tions from all climatic regions covering a wide range of alti-
tudes (0 to 4000 m). However, lack of available data in some
areas inevitably results in an unbalanced dataset, wherein po-
lar and tropical areas are underrepresented compared to mid-
latitudes, especially Europe. The possible impact on the per-
formance of the algorithm is further discussed in Sect. 5.

A quality check was performed on each of the relevant
variables (pressure, temperature, relative humidity) through
the following steps: first, the minimum and maximum P (T ,
RH) in a given range of altitudes were extracted from each
radiosonde. When examining the distributions that are ob-
tained, outliers were visible, which were then removed with
a 10−4 quantile (upper and lower quantile). The atmospheric
column was split into nine ranges of altitudes, and this rou-
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tine was performed for each. In total, 6395 profiles were
flagged and removed. It was ensured that this did not re-
sult in the systematic removal of some geographical loca-
tions. Following this step, the vertical profiles of pressure,
temperature, and relative humidity were used as input to the
forward model, as described in Sect. 3. The vertical extent
of the atmospheric profiles ranges from 1 to 50 km, with a
0.25 quantile of 11 km, meaning the profiles largely cover
the lower troposphere. The vertical resolution is relatively
low (0.37 km on average).

2.2 Field deployments

In the validation stage of this work, the new method was im-
plemented using real 89 GHz radiometer data that were col-
lected during campaigns described below.

2.2.1 Instrument

The main instrument that was used for the implemen-
tation of the algorithm is the one described in Küchler
et al. (2017), which is here referred to as WProf. This
radar–radiometer system, conceived and built by Radiome-
ter Physics GmbH (RPG), consists of a 94 GHz frequency-
modulated continuous-wave (FMCW) cloud radar with an
89 GHz radiometer channel, which allows for joint active and
passive retrievals of cloud and precipitation. In the data pre-
sented here, WProf was deployed together with a weather
station that provided surface measurements of temperature,
pressure, and relative humidity.

2.2.2 Payerne 2017

The first dataset on which the new algorithm was evaluated
was collected during a field deployment in Payerne (Switzer-
land) at 450 m of altitude in late spring 2017 (15 May–
15 June). As a means of comparison, data from the Swiss
meteorological institute (MeteoSwiss) were used. The Me-
teoSwiss facilities in Payerne comprise a multi-frequency
radiometer with tipping-curve calibration, HATPRO (Rose
et al., 2005; Löhnert and Maier, 2012). This state-of-the-art
instrument retrieves LWP and IWV with a nominal accuracy
of 20 g m−2 and 0.2 kg m−2, respectively (RPG Radiometer
Physics GmbH, 2014). During this deployment, both WProf
and HATPRO measured brightness temperatures with a high
temporal resolution of the order of a few seconds. The in-
struments were located approximately 65 m apart; this dis-
tance is small enough that it should generally not affect the
comparison of the retrieved values from the two instruments.
However, in some rare cases, it is possible that a cloud would
overpass one of the radiometers but not the other, leading to
a discrepancy in the measured brightness temperatures.

In addition, radiosondes are launched twice daily in Pay-
erne by MeteoSwiss, allowing for the direct computation of
IWV values, which are used as a further source of validation
for the IWV retrieval algorithm.

Figure 1. Illustration of the different steps of the forward model.

2.2.3 ICE-POP 2018

The second dataset on which the new algorithm was tested
was gathered during the ICE-POP 2018 campaign, which
took place in South Korea during the 2017–2018 winter
in the context of the 2018 Olympic and Paralympic win-
ter games in Pyeongchang. A description of the data is pre-
sented in Gehring et al. (2021). During this campaign, the
weather was generally cold and dry; nine precipitation events
were recorded, and occasional fog was present (about 25
occurrences during the campaign timeframe). WProf was
deployed from November 2017 to April 2018 in Mayhills,
50 km southeast of Pyeongchang, at 789 m of altitude. This
allows for an implementation of the algorithm in a context
different than Payerne: i.e., in winter conditions and in a fully
different geographical setting located at a lower latitude and
closer to the sea.

In this case, unlike in Payerne, no independent measure-
ments of LWP are available; however, radiosondes were
launched every 3 h, thus providing a means of comparison
for IWV retrievals, although only with a lower temporal res-
olution.

3 Forward model

In order to develop a statistical algorithm, a large amount
of data is required to reliably perform the statistical learning
phase. For this purpose, a synthetic dataset was built using
the radiosonde profiles described in the previous section as a
starting point. A two-step forward model was implemented,
first to identify clouds in each profile and derive the corre-
sponding liquid water content, then to compute the resulting
89 GHz brightness temperature. The different steps of this
forward model are illustrated in the flowchart in Fig. 1.

3.1 Cloud liquid model

To derive profiles of liquid water content (LWC) from ra-
diosonde profiles of atmospheric variables, the cloud model
from Salonen and Uppala (1991) was used. Cloud boundaries
are identified using a threshold Uc for relative humidity, with

https://doi.org/10.5194/amt-14-2749-2021 Atmos. Meas. Tech., 14, 2749–2769, 2021



2752 A.-C. Billault-Roux and A. Berne: IWV and LWP retrieval using a single-channel radiometer

this threshold being pressure- and temperature-dependent ac-
cording to Eq. (1).

Uc = 1−ασ(1− σ)[1+β(σ − 0.5)] (1)

Here, σ = P
P0

, with P and P0 respectively denoting atmo-
spheric pressure at the current level and at the ground. Cor-
rections from Mattioli et al. (2009) are used for the coeffi-
cients α and β of the Salonen model. Within the cloud lay-
ers, the liquid water profile is then calculated as a function of
temperature and height above cloud base following Eq. (2):

LWC(h,T )= w0

(
h−hb

hr

)a

f (T ), (2)

where f (T )= 1+ cT for T ≥ 0 and f (T )= exp(cT ) for
T < 0, with T in degrees Celsius (◦C), a = 1.4, c =
0.04 ◦C−1, w0 = 0.17 g m−3, hr = 1.5 km, and h and hb re-
spectively denoting the height and the height of the cloud
base. There are some limitations to assuming a single univer-
sal cloud model, since it may fail to capture specific cloud
properties in certain environments; more sophisticated and
accurate models could be defined on a local geographical
scale to counter this (e.g., Pierdicca et al., 2006). However,
given the stated objective of this study to design a non-site-
specific algorithm, it was considered preferable to assume a
single universal liquid cloud model in spite of its potential
drawbacks.

A further limitation of the cloud model is related to the rel-
atively low resolution of the atmospheric profiles extracted
from the radiosonde data (see Sect. 2.1) that are used as an
input. This might result in a misrepresentation of the cloud
layers in their detection and their size. In order to ensure that
this forward model generated the least possible bias, its re-
sults were compared against LWP values from ERA5 reanal-
ysis data (Copernicus Climate Change Service, 2020). Even
though the model might fail, on a given occurrence, to repro-
duce the actual liquid water profile in the atmospheric col-
umn, it should not produce a significant bias on average. This
condition guarantees that the synthetic dataset that is used
for training contains realistic – if not real – profiles, and this
should therefore not degrade the quality of the retrieval al-
gorithm. This cloud model was chosen over other commonly
used ones (Decker model, Salonen model without correction;
see Mattioli et al., 2009) because it was found to produce the
least bias when compared to ERA5 LWP values (mean bias
of 14 g m−2 vs. 26 g m−2 (−24 g m−2) for the unadjusted Sa-
lonen model (the Decker model with a 95 % threshold). In-
evitably, when using this criterion for the choice of the cloud
liquid model, it is assumed that reanalysis values of LWP are
themselves bias-free, which could be questioned, especially
in extreme environments (e.g., Lenaerts et al., 2017).

3.2 Radiative transfer model

Ground-level brightness temperatures (TB) at 89 GHz are
simulated for each profile using the Passive and Active Mi-

crowave TRansfer Model (PAMTRA; Maahn, 2015; Mech
et al., 2020) available at https://github.com/igmk/pamtra (last
access: 18 November 2020). As input to the radiative transfer
calculations, vertical profiles of temperature, pressure, hy-
drometeor mixing ratio, and water vapor mixing ratio are
used. Gaseous absorption is calculated using the default pa-
rameters in PAMTRA, i.e., with the model proposed by
Rosenkranz (1998) and modifications from Liljegren et al.
(2005) and Turner et al. (2009). Liquid water absorption is
modeled according to Ellison (2007). It should be kept in
mind that some irreducible uncertainty remains tied to the
choice of these parameters in the radiative transfer model.

The cloud droplet size distribution (DSD) is chosen as
a monodisperse distribution with radius rc = 20 µm follow-
ing Cadeddu et al. (2017), and scattering calculations are
performed with Mie equations, assuming spherical particles.
Let us note here that the exact choice of the DSD has lit-
tle impact on TB modeling as long as the droplets are in
the Rayleigh regime for the given frequency, since the emis-
sion cross section in this regime is quasi-linearly related to
the particle’s volume. When the droplet size deviates from
this regime, for instance as droplets grow larger near the
onset of precipitation, then the Rayleigh assumption falls
short and higher-order terms in the Mie equations become
non-negligible, which alters the modeling of TB (e.g., Zhang
et al., 1999). This implies that the algorithm will output bi-
ased results when applied to raining cases and should not be
trusted in those circumstances. This shall be considered an
intrinsic limitation to the algorithm.

There is no clear-cut relation between LWP values and
the occurrence of precipitation, although the general trend
is that higher LWP is related to more likely rain: as such,
deviation from the Rayleigh regime is likely in high-LWP
cases. In order to have a more rigorous grasp on when and
how this drawback might affect the retrieval, criteria from
Karstens et al. (1994) were used. In their study, the authors
distinguished three types of liquid water clouds based on the
value of LWC at a given altitude; for each category of cloud,
a different characteristic radius is chosen for the DSD. Mie
effects can start to become an issue in the second category of
clouds (Cumulus congestus) identified for LWC> 0.2 g m−2;
in our dataset, the atmospheric profiles in which this LWC
threshold is exceeded in at least one range gate have, on av-
erage, a total LWP≥ 830 g m−2, and around 2 % of the entire
dataset fall into this category. Taking the third category (Cu-
mulonimbus) with LWC> 0.4 g m−2, this applies to 1 % of
the entire dataset and the average LWP threshold increases
to 1400 g m−2. Those values can serve as a benchmark to
identify LWP values at which Mie effects can typically con-
taminate the retrieval. However, edge cases can also exist
in which the total LWP is quite low, but a small layer of
nearly precipitating or drizzling cloud still contaminates the
retrieval without featuring extremely high total LWP.

Finally, the forward model that is presented here does not
include the contribution of ice clouds and snowfall. While
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radiative emissions from ice and snow particles have a mi-
nor influence on brightness temperature when compared to
emissions from liquid droplets and water vapor and are in
general negligible, solid hydrometeors do contribute to mi-
crowave brightness temperature through the backscattering
of surface radiation. Scattering from snowfall particles is dif-
ficult to model accurately, but Kneifel et al. (2010) suggest
that this effect could be notable during snowfall in a way
that is highly dependent on the microphysical properties of
snowfall particles and that would increase with their size.
The present study does not take this process into account and
could therefore yield biased results during intense snowfall
events.

4 Design of the IWV and LWP retrieval algorithms

4.1 Input features

When a single frequency is available for the measurement
of TB, the problem’s underdetermination can be partially re-
lieved by including other available information in the re-
trieval’s measurement vector. Adding further information al-
lows us to disentangle IWV and LWP, which could not be
achieved from the sole measurement of 89 GHz TB. In this
study, several categories of variables were included in the
input features. The first category consists of TB and higher-
order polynomials (up to fourth degree) and is expected to
have the greatest importance in the retrieval of LWP, while
the other categories would likely be more correlated with
IWV. The effect of higher-order polynomial terms will be
discussed further on. In order to simulate realistic measure-
ments, random Gaussian noise was added to the modeled
brightness temperatures, with a mean and standard devia-
tion of 0 and 0.5 K, respectively; those values were identified
by Küchler et al. (2017) as the characteristics of the mea-
surement noise of the 89 GHz radiometer. Secondly, surface
measurements are included (temperature, sea-level pressure,
and relative humidity); in the case of the radar–radiometer
setup that is used here, a weather station is collocated, mean-
ing those measurements are available at the location of the
instruments. The third class of input features comprises ge-
ographical descriptors: latitude, longitude, and altitude. The
day of the year is also included in this group of features as a
means to account for seasonal variability in atmospheric and
meteorological conditions. When available, a fourth category
is added to the input features with reanalysis data (precip-
itable water and liquid water) from ERA5 (Copernicus Cli-
mate Change Service, 2020). The spatial and temporal reso-
lution of these reanalysis data is too low for them to be held
as ground truth, but they can serve as a reasonable rough es-
timate and thus bring some improvements to the statistical
learning process – although it could not be included as such
in a physical model. Those four groups of features are used
for both the retrieval of IWV and that of LWP. In the case of

LWP, an additional input feature can be added, which is the
output of the IWV retrieval algorithm. The impact of each
of those feature groups on the retrieval will be discussed in
Sect. 5.

4.2 Dataset preprocessing

Rain events should be excluded from the training set, since
they are out the algorithm’s range of validity, as explained
in Sect. 3. Profiles with LWP> 1000 g m−2 are therefore re-
moved (i.e., in the range of heavy rain according to Cadeddu
et al., 2017, and in view of the discussion conducted in
Sect. 3.2). The resulting dataset contains ∼ 106 profiles and
is used for the design of the IWV retrieval algorithm.

Further preprocessing for LWP dataset

In the case of LWP retrieval, additional preprocessing is
needed, since the forward model produced a large majority
of clear-sky cases. If left as such, the training phase would
result in a strong bias of the retrieval toward low LWP val-
ues (a bias of ∼ 100 g m−2 for LWP> 400 g m−2 was noted
in the development stages of the algorithm): this is a com-
mon artifact in statistical learning algorithms as an effect of
an unbalanced training set. In order to avoid this, the dataset
was subsampled so that clear-sky and cloudy cases (up to
600 g m−2) would be equally represented; the value chosen
for this threshold results from a trade-off between bias reduc-
tion and preservation of overall accuracy. The resulting his-
togram is shown in Fig. 2, and the LWP dataset thus contains
∼ 105 profiles. In the case of IWV, the distribution is also not
uniform, but it suffers from a much smaller asymmetry than
the initial LWP dataset. After some trials, it was considered
preferable to use the full IWV dataset rather than go through
subsampling steps, which did not seem to bring significant
improvements in this case. It should also be noted here that
the additional preprocessing that was necessary for the LWP
retrieval algorithm led us to design two separate algorithms
rather than a single one that would retrieve IWV and LWP
at once. Indeed, while LWP retrieval is mostly relevant in
cloudy cases, IWV can show some significant variability in
clear-sky cases, which should therefore not be excluded from
the training stage.

4.3 Statistical retrieval using a neural network

After preprocessing, LWP and IWV datasets were randomly
split into training, validation, and testing sets (70 %–15 %–
15 %) and normalized using the mean and standard deviation
of each input feature in the training set. The validation set is
used for tuning the hyperparameters of the neural network,
while the final evaluation metrics are computed from the
testing set. A densely connected neural network architecture
was chosen over linear regression and decision-tree-based re-
trieval techniques because it was found to produce more re-
liable results with higher accuracy than the former, and it is
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Figure 2. Distribution of the target variables (IWV and LWP in panels a and b, respectively) in the synthetic dataset after preprocessing.

less prone to overfitting than the latter. The algorithm was de-
signed using the Keras library in Python (Chollet, 2015). The
neural network was trained through mini-batch gradient de-
scent using the RMSprop optimizer, which allows for learn-
ing rate adaptation and is often used for statistical regression
problems (Chollet, 2017). As comes across from the training
curve of the LWP retrieval in Fig. 3, the training dataset is
large enough to ensure that the algorithm is not prone to over-
fitting: indeed, the error on the validation set quickly drops
with the size of the training set, then plateaus with a slight
decrease. In other words, the accuracy of the algorithm is not
limited by the amount of data used in the training stage. Fig-
ure 4 and Table 1 summarize the resulting architecture and
relevant parameters of the algorithm. These include the de-
scription of the neural network’s structure (number of neu-
rons and hidden layers) and training parameters such as the
batch size and number of epochs, i.e., the number of itera-
tions through the entire dataset in the learning phase. Differ-
ent versions of the algorithm were trained using various sets
of input features to assess the importance of each category
(discussed below).

5 Results on synthetic dataset

In this section, the algorithm is evaluated on the synthetic
dataset (testing set) through different criteria. Overall, results
are encouraging and the retrieval appears to be robust. Some
limitations can be identified, which will be discussed here.
Additionally, an analysis of the impact of the various input
features on the retrieval of IWV and LWP is conducted.

5.1 Error curves

Figure 5 presents the distribution of the error on the testing
set for the best version of the algorithm, which is the one
that uses the full set of input features. In panels (c) and (d),
the target variables IWV and LWP, respectively, are binned
into intervals in which the root mean square error (RMSE)
is calculated. This illustrates the behavior of the algorithm
across the entire range of values rather than summarizing the

Figure 3. Learning curves for the LWP retrieval, showing the
RMSE for the training and validation set with a varying training set
size. Shaded areas correspond to the interquartile range calculated
over 50 realizations of random splitting of the dataset into training
and validation sets; bold lines are the median.

performance with a single metric such as total RMSE, which
can conceal specific behaviors related to the distribution of
the target variable in the dataset. Along the same line, we
emphasize that comparing total RMSE values to those from
other studies should be done carefully because they strongly
depend on the dataset from which they are calculated. In a
similar way, Fig. 5e (f) illustrates the distribution of the mean
bias across the range of IWV (LWP) values. For reference,
the definitions of the error metrics that are used in this section
and further on are given in Table A1.

Figure 6 shows how this total error, represented by the
RMSE (left panels) and the correlation coefficient (R) (right
panels), is affected by the addition or removal of input fea-
tures. For each set of input features, a full tuning of the algo-
rithm was performed, and the results that are presented cor-
respond to those from the tuned – i.e., best – version on the
testing set.
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Figure 4. Structure of the retrieval algorithms. Some versions of the LWP retrieval include, among the input features, the output of the IWV
retrieval. Note that the IWV and LWP algorithms are trained on different datasets.

Table 1. Main parameters of the neural networks and training process.

Target Neurons Layers Cost function Optimizer Activation Epochs Batch size

IWV 120 7 Mean square error RMSprop ReLU 70 512
LWP 150 6 Mean square error RMSprop ReLU 90 512

5.1.1 IWV algorithm

Overall, the IWV retrieval algorithm yields an RMSE of
1.6 kg m−2 for the testing set, which corresponds to a relative
error of 6.5 %. For comparison, the ERA5 data alone have a
higher RMSE (3.4 kg m−2) for the same dataset. Looking at
Fig. 5a, c, and e, it comes across that the retrieval performs
quite well over the full range of IWV values, and the error
distribution is relatively homogeneous. For high IWV val-
ues, however, a significant negative bias is present (as large as
−6 kg m−2). Because such high values are underrepresented
in the dataset, they are not well captured during the statistical
learning stage, which leads to a systematic underestimation.
However, these are by definition “border” cases for which a
decrease in accuracy is to be expected.

From Fig. 6a and b it comes across that the IWV retrieval
is significantly improved by the addition of multiple input
features. The highest accuracy is obtained with the full set of
input t features and corresponds to an RMSE of 1.53 kg m−2.
On the other hand, including solely TB measurements in the
input deteriorates the RMSE to nearly 6 kg m−2. If only one
input feature were available, all the versions would predict
worse results than those given by reanalysis data. Including
TB in the retrieval does not lead to the same leap in accuracy
as for LWP (discussed in the following subsection); however,
excluding TB from the input features degrades the RMSE

to 2.56 kg m−2, i.e., +67 % error, which clearly shows that
brightness temperature incorporates additional relevant in-
formation into the retrieval.

An analysis was conducted to identify the importance of
higher-order polynomials in the algorithm, a summary of
which can be found in Fig. A1. It was found that the most ac-
curate retrieval is obtained by including TB and T 2

B . If higher-
order terms are added, this slightly reduces the accuracy of
the retrieval and also degrades its robustness to TB miscali-
bration. On the other hand, including only TB, while it makes
the algorithm slightly more stable, does not appear to be the
best solution because it has lower accuracy. Hence, the re-
sults presented here and in the following sections are those
obtained using TB and T 2

B .

5.1.2 LWP algorithm

The LWP retrieval algorithm has an RMSE of 86 g m−2 at
best for the testing set (training set: 84 g m−2, validation set:
86 g m−2). This corresponds to a relative error of 29 % for the
testing set. Let us underline the fact that the subsampling per-
formed on the dataset for the retrieval of LWP is applied to
training, validation, and testing sets: the results that are pre-
sented here are therefore computed on the testing set with a
truncated distribution – i.e., after subsampling. Additionally,
if clear-sky cases are removed using 30 g m−2 as a thresh-
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Figure 5. Results of the retrieval algorithms for the synthetic testing dataset. The best versions of the algorithms are presented, i.e., the ones
which use the full set of input features. Panels (a) and (b) show the distribution of predicted vs. target values of IWV and LWP, respectively.
The size of the testing set is indicated (N ), as are relevant error metrics (RMSE, bias, R). Panels (c) and (d) illustrate the distribution of the
RMSE across the range of IWV and LWP values, binned into intervals of 4 kg m−2 and 50 g m−2, respectively. Similarly, panels (e) and (f)
show the distribution of mean bias across the range of IWV and LWP values.

old value, following Löhnert and Crewell (2003), the relative
error is 18 %. As already mentioned, the total RMSE values
given here should be taken with care since they depend on
the dataset’s distribution. For comparison, when the retrieval
is implemented on the full dataset, i.e., without the subsam-
pling step, the total RMSE drops to 40 g m−2. The RMSE
is here again rather homogeneous across the range of LWP
values (Fig. 5d); however, there is a small bias of around
20 g m−2 for low LWP values (visible in Fig. 5f), which are
slightly overestimated, and there is an underestimation of
large LWP (LWP> 800 g m−2), with a negative bias down to
−100 g m−2. Both biases result from an effect of regression
towards the mean, which is an intrinsic artifact of statisti-
cal algorithms. The significant negative bias for large LWP
values is enhanced by the lack of data in this range. It is

likely acceptable because it would correspond mostly to rain-
ing cases (light to moderate), which the retrieval does not
aim to capture; yet this highlights once again that those cases
are out of the algorithm’s scope and that retrievals with high
LWP should be taken with care.

The analysis of higher-order terms’ importance in the case
of LWP retrieval shows that the best results are obtained by
using TB polynomials up to the fourth order (see Fig. A2),
and this does not significantly affect the stability of the re-
trieval to errors in TB. Let us highlight the fact that in the
case of a linear regression, one would expect the error to di-
verge when high-order polynomials are included. This is not
the case here because of the saturating behavior of the neural
network. Therefore, in the results shown here and further, TB
implies that TB polynomials up to the fourth order are used.
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Figure 6. Global error metrics (RMSE in panels a, c and correlation coefficient R in b, d) computed with the testing set for different versions
of the (a, b) IWV and (c, d) LWP retrievals. Each bar shows the result of a version whose input features are specified in the label. For
example, ERA-IWVpred-Geo-Surf corresponds to the version of the LWP retrieval algorithm that uses the following categories of input
features: ERA5 variables, IWV obtained from the IWV retrieval, geographical information, and surface measurements. The bars are sorted
with increasing RMSE. For the IWV retrieval, the accuracy of the algorithm is compared to that of reanalysis data alone (dashed lines).

Figure 6c and d show that for LWP retrieval, input fea-
tures other than TB only bring second-order improvements,
while they were shown to be crucial in the IWV retrieval.
For instance, the addition of reanalysis data significantly im-
proves the IWV retrieval, but only in a relatively minor way
does it increase the accuracy of LWP retrieval. In contrast,
excluding TB from the input features leads to RMSE near
200 g m−2 and R < 0.7, i.e., to values that make the retrieval
not relevant. This highlights the fact that while environmental
descriptors are well correlated with IWV, they are not suffi-
cient to provide a reasonable estimate of LWP, for which mi-
crowave radiometer measurements are critical. An additional
reason for this high dependence on TB is that LWP at a given
location can have large temporal variability due to cloud dy-
namics in the atmospheric column, which might not always
be captured in the time series of surface atmospheric vari-
ables, nor by ERA5 models, which have a comparatively low
spatial and temporal resolution.

Still, the accuracy of the algorithm drops severely when
no features are considered other than brightness temperature
(RMSE of 140 g m−2). This means that, although second or-
der when taken individually and somehow redundant when
all used together, the secondary input features are efficient in
incorporating statistical trends and climatological informa-
tion into the retrieval during the training phase.

Adding IWV prediction as an input feature to the LWP
retrieval has a very minor impact. For clarity, it was only in-
cluded in Fig. 6c in the best-case scenario and not for ev-
ery other combination of input features. This is not surpris-
ing, since it is itself the output of an algorithm that relies on
essentially the same input features. However, the slight im-
provement that is seen can be understood by recalling that
the IWV retrieval algorithm was trained on a much larger
dataset, which includes in particular a larger number of clear-
sky cases (see Sect. 3).
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5.2 Sensitivity to instrument calibration

In order to assess the stability of the algorithm with respect to
potential miscalibration or calibration drift of the radiometer,
TB offsets were virtually added to the testing dataset before
implementing the retrieval. Figure 7 illustrates the behavior
of the algorithm when such a miscalibration with a constant
offset is present (varying from 0 to 5 K). Panel (a) shows that
a 5 K offset in TB results in a 30 % increase in RMSE for the
IWV estimations, which is non-negligible. Ensuring proper
radiometer calibration thus seems crucial in constraining the
error of this retrieval. For comparison, the 89 GHz radiome-
ter presented in Küchler et al. (2017) has a nominal accu-
racy of 0.5 K after calibration. If the calibration cannot be
ensured and if there is no means to correct for miscalibration
(of > 3 K), it is preferable for IWV retrieval to use the algo-
rithm that does not rely on TB, which is shown with the black
dashed line.

In terms of relative impact, the LWP algorithm is less af-
fected (Fig. 7b) with an increase in the RMSE of less than
10 % for an offset of 5 K in TB, which makes it reasonably
stable to inaccuracy of TB measurements. It also appears that
the different versions are affected in a similar way by off-
set TB values. However, the algorithm that includes the pre-
diction of IWV in the input features diverges faster than the
others. This is understandable because the error in TB prop-
agates through the IWVpred input feature, in addition to the
TB features themselves. Therefore, in the case of uncertain
calibration, more robust results would be obtained without
including this feature.

It is noteworthy that for TB-only retrievals, the addition of
a TB offset does not result in a large increase in the error.
For IWV, the addition of a 5 K offset increases the RMSE
from 5.6 to 6.2 kg m−2; for LWP, the same offset leads to an
increase from 139 to 142 g m−2. This behavior is also ob-
served when looking at how the bias, instead of the RMSE,
increases with the addition of a TB offset (not shown). In both
cases, the error increases more drastically when multiple fea-
tures are included than when only TB is used as input. One
possible explanation for this effect is the following. When in-
corporating numerous input features, the algorithm is able to
narrow down the range of possible IWV and LWP values in
a given environmental context; in this constrained configura-
tion, the correlation and sensitivity of the retrieval to TB are
then enhanced, leading to a stronger influence of a TB offset.

5.3 Geographical distribution of the error

One of the motivations of this study was to design an algo-
rithm that could be used across the globe with a constrained
uncertainty. Figure 8 illustrates the geographical distribution
of the error for both LWP and IWV retrievals using the syn-
thetic radiosonde-based dataset. Two approaches were used
to assess this error: first, RMSE values were calculated for
the entire set of data available for each location, excluding

LWP greater than 1000 g m−2. Second, the RMSE was nor-
malized by the mean value of LWP (IWV) for each site, ex-
cluding low values (LWP less than 20 g m−2, i.e., using a
conservative threshold to exclude clear-sky cases). Note that
this normalized error is not equal to the relative error; rather,
it gives an idea of how large the RMSE of the retrieval is
compared to the mean values that are observed at a given lo-
cation.

From the non-normalized error (left panels in Fig. 8), it
can be seen that most high-latitude and midlatitude loca-
tions have a constrained RMSE around 20–60 g m−2, while
tropical sites are not as well captured, with RMSE exceed-
ing 120 g m−2 in some locations. The temperature and hu-
midity conditions, as well as the strong precipitation events
that typically occur in those regions, are probably responsi-
ble for this discrepancy. Cases with high LWP are more com-
mon under such climatic conditions, and it was observed in
Sect. 5.1.2 that the accuracy of the algorithm decreases in that
range. Tropical climates are underrepresented in the dataset
because few data are available from this region in compari-
son with midlatitude areas: their specificity might therefore
not be fully captured during the learning stage of the algo-
rithm. This accounts at least partly for the enhanced error
over the Indian peninsula and southeastern Asian islands.

The normalized error (right panels in Fig. 8) shows that
the error is overall of the same order of magnitude across the
globe. However, a few regions stand out from this analysis,
which typically feature arid climates: the stations of Dalan-
zadgad (Mongolia), Salalah (Oman), Minfeng (China, north
of Tibet), and Jeddah (Saudi Arabia) all have a normalized
error in LWP higher than 0.7 and are in the desert. In a simi-
lar way, it appears that the IWV retrieval algorithm performs
poorly – in terms of normalized error – in cold environ-
ments where absolute humidity is low, such as in Sermersooq
(Greenland). In such regions, the new algorithm is not sen-
sitive enough to accurately capture the fine variations of at-
mospheric vapor and liquid water content; if detailed studies
of those areas were to be conducted, more than one radiome-
ter frequency would likely be necessary, along with specific
training sets on which to perform the statistical learning, as
was done in the Arctic by Cadeddu et al. (2009).

6 Evaluation in two contrasting datasets

As a further step in the validation process, the algorithm was
applied to data from two campaigns involving WProf: first
in Payerne, Switzerland, then near Pyeongchang, South Ko-
rea (see Sect. 2 for the full description of the datasets). In
both cases, the output of the retrieval is compared with val-
ues retrieved through other methods, either a multi-channel
radiometer or – in the case of IWV – radiosonde data.
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Figure 7. RMSE for the testing set of the different versions of the (a) IWV and (b) LWP retrieval after the addition of a constant TB offset
in the input. Dashed lines show the retrievals without TB in the input features.

6.1 Payerne 2017

6.1.1 IWV retrieval

The results of the new IWV retrieval algorithm are com-
pared to those from the MeteoSwiss operational radiometer
HATPRO and to the radiosonde-derived values. From Fig. 9a
and c it appears that the IWV retrieval has relatively limited
spread but has a constant bias (−1.8 kg m−2), which is visible
in both the comparison against HATPRO (a) and radiosonde-
derived measurements (c). This might be due to a bias in
ERA5 data during this timeframe over the region (with a
value of−4.1 kg m−2), which is visible in ERA5 records dur-
ing the entire campaign (not shown here) and for which there
is no clear explanation at this stage. This bias points to one of
the limitations of the IWV retrieval algorithm, which is sensi-
tive not only to radiometer miscalibration but also to possible
biases in other input variables; this can be difficult to moni-
tor and assess – as in the case of ERA5 values in Payerne. In
spite of this, the top panels in Fig. 10 (which illustrate the er-
ror vs. HATPRO measurements) and Fig. 11 (error vs. value
derived from radiosounding) show that, overall, the imple-
mentation of the different versions of the algorithm on the

Payerne dataset matches the conclusions from the testing set
results: more features lead to an enhanced precision of the
retrieval. The accuracy drops when only one or two groups
of input features are included, but no single group of features
seem to increase the accuracy alone. There is, however, a dif-
ference between Fig. 10b and Fig. 11b: in the latter, higher
R (and similar RMSE) is actually obtained from the algo-
rithm that does not use TB in input than with the full set of
input features. This is at first surprising, but it was explained
by taking a closer look at the results: the algorithm without
TB leads to IWV values that are more smooth and less sen-
sitive to short-time variations. These are not reflected in the
comparison against radiosonde data, for which a 30 min av-
eraging was implemented.

When variations over a small timeframe are considered,
the inclusion of TB improves the retrieval, as comes across
from the comparison against HATPRO’s measurements in
Fig. 10.

6.1.2 LWP retrieval

Figure 9b shows that LWP values retrieved with the new al-
gorithm are in general agreement with those obtained thanks
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Figure 8. Geographical distribution of the error for the synthetic dataset. Panels (a) and (c) illustrate the total RMSE for IWV and LWP,
respectively. Panels (b) and (d) show the normalized error, i.e., the RMSE normalized by the mean value of IWV (LWP) at each location.
For the evaluation of LWP, clear-sky and strong rainy cases are removed (LWP< 20 g m−2 and LWP> 1000 g m−2). The size of the disks
represents the mean value of IWV or LWP at each site, while the color codes are for the error of the retrieval.

to HATPRO, although a larger spread is observed than in
the IWV retrieval. A saturation effect can be seen near pre-
cipitation onset when LWP values from HATPRO reach
600 g m−2. Additionally, outliers are visible as vertical and
horizontal bars close to the axes, for which two hypotheses
are considered. One is that the distance between the two in-
struments was big enough that in some cases a liquid wa-
ter cloud would overpass one of the two instruments but not
the other. Hence, HATPRO would measure a nonzero LWP,
while WProf would indicate a clear sky or vice versa. Mea-
surement artifacts also cannot be excluded, e.g., due to the
persistence of a liquid water film on the radome of either ra-
diometer after precipitation or due to condensation.

For comparison, the method described in Küchler et al.
(2017) was implemented (further on referred to as K17) by
performing a quadratic regression on a dataset consisting
solely of radiosonde profiles collected in Payerne. As pro-
posed by the authors, a first version (K17A) relies on a mea-
surement vector consisting of TB, T 2

B , and the IWV esti-
mate from reanalysis data IWVERA5 and IWV2

ERA5. Another
version (K17B) includes only TB and T 2

B . Theoretical RM-
SEs derived for those quadratic regressions for the synthetic
dataset (19 720 profiles) are 21 and 43 g m−2, respectively,
which is similar to the values obtained by the authors from
radiosonde data from De Bilt (the Netherlands), i.e., 15 and
44 g m−2.

K17A and K17B were applied to the Payerne campaign
dataset, and their results are compared to those from the new
algorithm in Fig. 10. The error metrics are calculated using

HATPRO’s values as a reference. The algorithms perform in
a similar way, with slightly better results for the new algo-
rithm when at least one of the secondary input features is in-
cluded. We remind readers that K17A and K17B were specif-
ically tuned on Payerne data, while the new algorithm was
tuned globally on a dataset that did not comprise radiosonde
profiles from Payerne.

6.2 ICE-POP 2018

As detailed in Sect. 2, the South Korean deployment of
WProf in 2017–2018 also offers an opportunity to compare
results from the IWV retrieval to IWV from radiosonde mea-
surements.

The analysis of the TB time series showed that a miscali-
bration of the radiometer led to unrealistic – negative – val-
ues for which a correction had to be implemented through
the addition of a constant offset to TB measurements. The
value of this offset (20 K) was determined by computing the-
oretical brightness temperatures from clear-sky radiosonde
profiles and comparing them to measured TBs, following the
approach of Ebell et al. (2017). This is, however, only a first-
order correction whose output should be taken with care, es-
pecially after the analysis in Sect. 5.2, which underlined the
importance of TB accuracy for IWV retrieval.

After this correction, the IWV retrieval gives coherent re-
sults (see Fig. 12), with a total RMSE that is slightly lower
than that obtained for the testing dataset (1.25 kg m−2). The
best results are found when several input features are in-
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Figure 9. Comparison of (a) IWV and (b) LWP retrieved over Payerne with the new algorithm using the full set of input features against the
retrieval from the MeteoSwiss radiometer HATPRO. Panel (c) shows IWV retrieved from the new algorithm and from HATPRO against that
from radiosonde measurements; a 30 min time averaging is used for radiometer measurements. The size of the dataset is indicated (N ), as
are relevant error metrics (RMSE, mean bias, R).

cluded and drop severely when no secondary input features
are used, which corresponds to the results for the synthetic
dataset presented in Sect. 5. The algorithm largely relies on
non-radiometric features, and this is even more the case in
cold and dry environments like that of ICE-POP, where IWV
is low. In fact, slightly better results are obtained with all in-
put features except brightness temperature. The miscalibra-
tion of the radiometer, which may not have been perfectly
corrected by the addition of a constant offset, might empha-
size this error. This also corresponds to what was noted in
Payerne: when the results are averaged over 30 min, bright-
ness temperature brings little, if any, improvement to the re-
sults. TB is relevant when a higher temporal resolution is
considered (see Sect. 6.1.1) – for which no comparison was
available during ICE-POP – or when ERA5 data are sig-
nificantly off. In this case, however, it comes across from
Fig. 12 that the algorithm is consistently outperformed by
ERA5 products: they have both a lower RMSE and a higher
R, which makes the algorithm less relevant for the study of
this specific campaign. The high accuracy of ERA5 data dur-
ing ICE-POP also explains the high correlation coefficient of
the retrieval that uses ERA5 and geographical input features:

since the geographical parameters are constant, the tempo-
ral variability is that of the reanalysis data, and therefore
the correlation coefficient of the retrieval is close to that of
ERA5 data alone. Let us highlight the fact that although re-
analysis data outperform the retrieval for ICE-POP, this was
not the case in Payerne nor in the full radiosonde dataset, for
which the algorithm has a higher accuracy than ERA5 values.
Possibly, the dry and cold weather that was observed during
the ICE-POP campaign featured little short-term variability
and was associated with stable atmospheric conditions that
were particularly well captured in ERA5 reanalyses. Snow-
fall events during the campaign, as well as occasional fog,
can also bias the retrieval by enhancing brightness tempera-
ture.

The analysis of the ICE-POP data was taken a step further
to explore the latter point. It appears that the IWV retrieval
is most reliable in non-precipitating or cold conditions, i.e.,
when little liquid water is expected in the column. To visual-
ize this, periods with no precipitation or fog are identified us-
ing WProf’s radar measurements as time steps with low radar
equivalent reflectivity (Ze <−10 dBZ) in the lower gates
(first kilometer above the radar), and temperature time series
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Figure 10. Error of the new retrieval algorithms over Payerne compared to HATPRO retrievals. In panels (a) and (c) the RMSE of IWV and
LWP is respectively calculated for different versions of the algorithm. Similarly, R is shown in (b, d). Each bar shows the result of a version
whose input features are specified in the label. In panels (a) and (b), the black dashed line shows the error of IWV from ERA5 reanalysis
data. In (c, d), the dashed lines present the results from K17A and K17B, as defined in the text.

are provided by the weather station coupled to WProf. Fig-
ure 13 shows the scatter plot of the error – for the algorithm
that includes all input features – color-coded to differenti-
ate dry from precipitating or fog conditions: black triangles
correspond to dry time steps and circles to time steps with
Ze >−10 dBZ, with their color indicating surface tempera-
ture. The algorithm yields a larger bias in rain – as was ex-
pected in the design steps of the algorithm (Sect. 3) – but also
during snow events with relatively warm temperatures close
to or slightly above 0 ◦C (Fig. 13). Changes in the dielectric
properties of snowflakes during the melting process can ex-
plain this increased error; additionally, the process described
by Kneifel et al. (2010) and that was recalled in Sect. 3 sug-
gests that snowfall events with large snow particles (typi-
cally present with relatively mild temperatures) could have a
non-negligible contribution to brightness temperature, which
might explain the enhanced error in those cases.

7 Summary and conclusions

A new site-independent method was designed for the re-
trieval of LWP and IWV from a single-channel ground-based
radiometer. In addition to 89 GHz brightness temperature,
additional input features were used for the retrieval, such
as surface atmospheric variables (temperature, pressure, and
humidity) and information on the geographical location and
season. A neural network architecture was chosen for the sta-
tistical learning.

Training and testing were performed on a synthetic dataset
that was built using radiosonde profiles worldwide. The ge-
ographical distribution of the error shows that the algorithm
performs better in midlatitudes and regions with a moderate
climate than in areas with extreme climates (either arid or
very moist), which include both tropical and polar regions
that are not well represented in the training dataset due to
lack of available data. Also, the forward model that was used
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Figure 11. Results of the IWV retrieval in Payerne compared to radiosonde measurements (a: RMSE, b: R). The radiometer measurements
are averaged over 30 min. For comparison, the dashed lines illustrate the error of HATPRO (green) and ERA5 (black) vs. radiosonde-derived
IWV.

Figure 12. Error of the IWV retrieval during the ICE-POP campaign with different versions of the algorithm. The RMSE is computed against
IWV from radiosonde profiles after 30 min of temporal averaging in the radiometer data. The dashed line shows the error of IWV from ERA5
reanalysis data.

should most likely be revised in order to finely capture the at-
mospheric conditions in such specific environments. In addi-
tion, the training dataset lacks data from locations with com-
plex orography, and more in-depth investigations should be
conducted regarding the reliability of the retrieval in such ter-
rain (Massaro et al., 2015).

The algorithm was then applied to two contrasting
datasets, one reflecting summertime weather conditions in
Switzerland and the other winter conditions in South Korea.

For this application, measurements from RPG’s cloud radar–
radiometer system were used.

In Payerne, the new LWP retrieval was found to perform
slightly better than the method proposed by Küchler et al.
(2017) for the same instrument, although the latter algorithm
was specifically trained using radiosonde data from Payerne.
When compared to radiosonde measurements of IWV, the
IWV retrieval was found to be less accurate than that of
a state-of-the-art multi-channel radiometer (HATPRO), al-
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Figure 13. Scatter plot of retrieved IWV vs. IWV computed from
radiosonde profiles. The algorithm used for the retrieval is the one
with the full set of input features. The color indicates the surface
temperature (in ◦C). Dry conditions are identified with the equiv-
alent radar reflectivity in the first kilometer above the radar (with
a −10 dB threshold) and are coded as black triangles; precipitating
conditions are denoted with circles. The size of the dataset is indi-
cated (N ), as are relevant error metrics (RMSE, mean bias, R).

though both instruments yield errors within the same order
of magnitude. In the South Korean winter dataset, the IWV
retrieval proved relatively robust in spite of a slight bias dur-
ing some snowfall events that could be related to the scatter-
ing properties of snow particles, which were not taken into
account in the forward model. In the case of ICE-POP, re-
analysis data were actually more accurate than the IWV re-
trieval when compared with radiosonde measurements, but
their temporal resolution remains low, which makes the use
of the algorithm still relevant for retrievals for which a high
temporal resolution is required.

Further steps in the improvement of the current algorithm
would include coupling information from the radar and the
radiometer channel (Ebell et al., 2010; Cadeddu et al., 2020).
The detection of clear-sky cases with radar data (Mätzler and
Morland, 2009) could help monitor the calibration of the ra-
diometer and introduce TB offsets for correction when nec-
essary (Ebell et al., 2017). If available through a separate
sensor such as a GPS receiver, independent IWV measure-
ments could be included in the algorithm, possibly leading to
an enhanced precision of the LWP retrieval. Radar moments
could be used to distinguish cloudy from drizzling or rainy
cases, similar to the approach used by Cadeddu et al. (2020),
and to select appropriate DSDs for each case to account for
non-Rayleigh scattering by precipitating droplets. However,
forward modeling of radar data requires further assumptions
on microphysical properties and atmospheric conditions, for
which generalization to a global geographical scale is a real
challenge. Additionally, the retrieval that is presented here
uses reanalysis data as an optional feature, which was shown

to be valuable. In a case in which near-real-time retrievals
are necessary, the user could choose to use a version of the
algorithm that does not rely on ERA5, but this would be
detrimental, especially for the IWV retrieval. Another option
would be to implement the algorithm with the output of fore-
cast models (IWV and LWP) instead of reanalysis data. This
approach, however, was not tested at this stage.

Overall, the LWP and IWV retrieval methods that were
designed within this study were shown to be robust when ap-
plied to both synthetic and real datasets, although their per-
formance is inevitably lower than that of multi-channel ra-
diometers specifically designed for LWP and IWV retrieval.
While retrieving IWV based on TB at 89 GHz alone does not
lead to accurate results – this would require the use of other
microwave frequencies more suited to the emission spectrum
of water vapor – this study showed that reliable retrievals
could be achieved by including surface and geographical in-
formation, as well as reanalysis data if available, among the
input features. The new algorithms should be seen as a valu-
able tool for atmospheric liquid water and vapor monitoring
in the context of radar–radiometer studies. They are non-site-
specific and thus do not require further tuning before use at
a new site, which makes them easy to implement, and their
accuracy is well characterized.
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Appendix A

Figure A1. Effect of higher-order TB polynomials on IWV retrieval. Panels (a) and (b) show the RMSE and R for the testing set. It comes
across that the best results are obtained with TB and T 2

B . Adding T 3
B and T 4

B leads to similar results, with slightly higher RMSE. Panel (c)
illustrates how the RMSE changes when a constant TB offset is added to the testing input, simulating a miscalibration of the radiometer.
In terms of relative increase, the retrieval with TB only is slightly less affected, but it does not bring a large enough improvement to be
considered preferable in comparison with the retrieval with TB and T 2

B .

Table A1. Error metrics. X refers to LWP or IWV, and N is the length of the considered dataset.

Root mean square error Relative error Bias Correlation coeff. (R)[
1
N

∑N
k=1

(
Xretrieved,k −Xtarget,k

)2] 1
2 1

N

∑N
k=1
|Xretrieved,k−Xtarget,k |

Xtarget,k
1
N

∑N
k=1

(
Xretrieved,k −Xtarget,k

)
Pearson

Xretrieved and Xtarget are length-N real positive vectors with the values of predicted (i.e., algorithm-retrieved) and target values, respectively. For the calculation of relative
error, Xtarget,k = 0 g m−2 is excluded from the dataset.
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Figure A2. Effect of higher-order TB polynomials on LWP retrieval. Panels (a) and (b) show the RMSE and R for the testing set. It comes
across that the best results are obtained with the full set of TB polynomials up to the fourth order. Using only TB and T 2

B leads to similar
results, with slightly higher RMSE. Panel (c) illustrates how the RMSE changes when a constant TB offset is added to the testing input,
simulating a miscalibration of the radiometer. In terms of relative increase, the retrieval with TB only is slightly less affected, but the RMSE
remains higher than that of the other retrievals.
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