
Atmos. Meas. Tech., 14, 2787–2798, 2021
https://doi.org/10.5194/amt-14-2787-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.

Reducing cloud contamination in aerosol optical depth
(AOD) measurements
Verena Schenzinger1 and Axel Kreuter1,2

1Institute for Biomedical Physics, Medical University Innsbruck, Innsbruck, Austria
2Luftblick OG, Innsbruck, Austria

Correspondence: Verena Schenzinger (verena.schenzinger@i-med.ac.at)

Received: 11 September 2020 – Discussion started: 29 September 2020
Revised: 15 January 2021 – Accepted: 22 February 2021 – Published: 12 April 2021

Abstract. We propose a new cloud screening method for sun
photometry that is designed to effectively filter thin clouds.
Our method is based on a k-nearest-neighbour algorithm in-
stead of scanning time series of aerosol optical depth. Using
10 years of data from a precision filter radiometer in Inns-
bruck, we compare our new method and the currently em-
ployed screening technique. We exemplify the performance
of the two routines in different cloud conditions. While both
algorithms agree on the classification of a data point as clear
or cloudy in a majority of the cases, the new routine is found
to be more effective in flagging thin clouds. We conclude that
this simple method can serve as a valid alternative for cloud
detection, and we discuss the generalizability to other obser-
vation sites.

1 Introduction

Sun photometry is one of the longest-employed and ro-
bust measurement techniques for total column aerosol op-
tical depth (AOD) retrieval (Holben et al., 1998, 2001). AOD
is the most comprehensive aerosol parameter for radiative
forcing studies and serves as the ground-truth for valida-
tion of satellite data. Various surface-based networks such as
AERONET (Holben et al., 2001), SKYNET (Takamura and
Nakajima, 2004), and the WMO Global Atmosphere Watch
programme GAW-PFR (Kazadzis et al., 2018) conduct mea-
surements of AOD at a high time resolution, providing data
for local short- and long-term aerosol studies. As the calcula-
tion of AOD from photometer measurements is based on the
assumption of a cloud-free path between instrument and sun,
the identification and removal of cloud-contaminated data

are some of the most important prerequisites for high-quality
AOD data.

The most widely used algorithm by Smirnov et al. (2000)
sets a threshold on the temporal variation of AOD, assuming
a higher variation in the presence of clouds, as one of its flag-
ging criteria. It was developed and employed in AERONET,
as well as adapted for GAW-PFR (Kazadzis et al., 2018).
While this method reliably flags thick clouds, detection of
optically thin clouds exhibiting small AOD changes, i.e. be-
low the threshold, is not possible. This limitation introduces
a bias towards higher AOD (Chew et al., 2011; Huang et al.,
2011), as well as a bias in the Ångström parameters, which
indicate particle size.

To remedy this problem without additional manual quality
control, Giles et al. (2019) revised the Smirnov et al. (2000)
algorithm (see Table 2 of Giles et al., 2019, for specifics).
They include aureole scans in their cloud screening routine
which utilize the increased forward-scattering behaviour of
thin clouds for their identification. This is suitable for instru-
ments that measure sky radiance in addition to direct sun.
However, the procedure takes time and is only viable within
AERONET where these instruments are employed, whereas
it is not applicable for precision filter radiometers operated
within other networks, such as GAW-PFR.

Therefore, we developed a new algorithm that can identify
thin clouds, and it works with direct sun measurements only.
The main idea is that aerosol optical depth and microphysical
properties (represented by the Ångström parameters, Gobbi
et al., 2007) show little and slow variation within a day, while
clouds introduce outliers and stronger fluctuations in these
parameters.
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Instead of scanning the time series of these variables, we
examine their density in a four-dimensional space with a
k-nearest-neighbour algorithm. This principle is well estab-
lished in the fields of machine learning and data mining as an
efficient way to identify outliers in data (Ramaswamy et al.,
2000). In the context of AOD measurements, clear sky will
lead to regions of high density or short distance between
points, whereas clouds will result in less-dense regions or
outliers.

2 Data and methods

2.1 Instrument and raw data

We use a precision filter radiometer (PFR) developed by
the Physikalisch-Meteorologisches Observatorium Davos /
World Radiation Center (PMOD WRC) for the GAW net-
work (Wehrli, 2005) with four channels (368, 412, 501,
864 nm) and a field of view of 1.2◦. The instrument is set
up on top of a 10-storey university building in Innsbruck,
Austria (47◦15′ N, 11◦24′ E). Our operational guidelines are
based on the ones of GAW, and the instrument is calibrated
by PMOD. But our site runs independently of the network.
In additional to the minutely (every minute) PFR reading
with an acquisition time of about 2 s, we measure the air
temperature and pressure at the site and monitor the over-
all cloud conditions with an all-sky camera taking pictures
every 10 min.

2.2 Processing and filtering

First steps in quality control include the removal of data
points where any of the four voltages is negative. Fur-
thermore, flags are introduced if the sun tracker records a
value higher than 15 arcsec or an ambient temperature above
310 K.

After the initial filtering, aerosol optical depth (AOD) is
calculated from the voltage measurements. Starting from the
Lambert–Beer law, the aerosol optical depth is derived as
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]
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where V (λ) represents the measurements, V0(λ) the calibra-
tion factors, R the Sun–Earth distance, and m the air mass in
the path between instrument and sun.

Several atmospheric constituents contribute to the optical
depth, one of which is aerosols (indicated by subscript a).
Other factors (subscript o) which are taken into account in
our calculation are Rayleigh scattering (Kasten and Young,
1989; Bodhaine et al., 1999), ozone (Komhyr et al., 1989),
and NO2 (Valks et al., 2011). We use climatological values
for O3 and NO2, as well as temperature and pressure mea-
sured on site. Resulting unphysical values (negative or infi-
nite) of the aerosol optical depth at any wavelength are dis-
carded.

At each time step, we perform a linear and a quadratic
fit (indicated with subscripts l and q respectively) to τa(λ)

at all four wavelengths to derive the Ångström parame-
ters (Ångström, 1929, 1964; King and Byrne, 1976; O’Neill
et al., 2001, 2003).

ln
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)
= ln(βl)−αl ln(λ), (2)

ln
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)
= ln(βq)−αq ln(λ)+ γq ln(λ)2. (3)

The spectral slope αl of the linear fit and the spectral curva-
ture γq of the quadratic fit are used in further analysis and
referred to without the subscript hereafter.

2.3 Cloud flagging

The next step in quality control of the data is the flagging of
potentially cloud-contaminated data points. Figure 1 shows
the basic principle of the presently employed scheme and the
proposed new method.

Currently, our operational routine is based on the criteria
laid out in Smirnov et al. (2000), with some minor adaptions
due to the higher measurement frequency according to Wut-
tke et al. (2012). Data points for which the air mass exceeds a
value of 6 are considered cloudy. For lower air mass, the main
criterion for filtering data points is the difference between the
maximum and minimum AOD value within a multiplet of
consecutive data points (Smirnov et al., 2000, uses a triplet,
whereas we look at a quintuplet), which cannot exceed a set
value. For our site, we use a limit of 0.02 if AOD is lower
than 0.2; otherwise we use 0.03. This threshold is balanced
to filter clouds while retaining real AOD variations. Further
limits are set on the standard deviation of AOD within a day
and the second time derivative of the time series. Out of these
parameters, the multiplet criterion is the most relevant (more
than 99 % of the flagged points), so we will refer to the cur-
rently employed method as the “Multiplet” routine hereafter.

Instead of stepwise scanning time series, our new rou-
tine performs one calculation for all currently available data
points. We use a k-nearest-neighbour algorithm to establish
the 20 closest points {P1,P2, . . .,P20} for each of our mea-
surements P0 in a four-dimensional space. Then the mean
Euclidian distance between P0 and its neighbours is calcu-
lated (referred to as d20), and P0 is identified as cloudy if this
distance exceeds a threshold. This method is usually used
to identify clusters of data points; hence, we will call it the
“Clustering” routine.

The dimensions used are the aerosol optical depth at
501 nm, its first derivative with respect to time, and the two
Ångström parameters α and γ . The first two cover temporal
variations of one wavelength, and the last two cover changes
in the spectrum. To ensure that these parameters are compa-
rable in order of magnitude (and therefore of equal weight in
calculating the distance), the Ångström parameters derived
from Eqs. (2) and (3) are divided by a factor of 10. Further-
more, the finite-difference time derivative of the AOD, 1τ

1t
,
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Figure 1. Schematics of the cloud screening methods. (a) The Multiplet method evaluates the difference between the maximum and minimum
AOD value of a set number of consecutive data points. (b) The Clustering method calculates the mean distance to k nearest neighbours in an
n-dimensional space. Points for which a certain threshold of the respective measure d (indicated with the solid black lines) is passed will be
identified as cloudy. These points are coloured in grey, whereas the clear points are coloured red/blue for Multiplet/Clustering.

is used in units of 1 per 5 min (i.e. the value is divided by 12
when t is in hours), which is analogous to checking the AOD
variation within a quintuplet of minutely measurements.

Points affected by a track error will not be considered in
the set of possible nearest neighbours. If this leads to less
than 20 valid measurements, the number of nearest neigh-
bours k will be reduced accordingly down to a minimum
value of 5 points in real-time analysis. To account for the
lower number of nearest neighbours, the calculated distance
is then multiplied by 20

k
to make it comparable to the original

d20 measure. Similarly, if the number of data points iden-
tified as clear on one particular day is lower than 30, the
Clustering routine is rerun with 10 nearest neighbours dur-
ing post-processing to ensure retention of a high number of
data points.

To establish the threshold for possible cloud contamina-
tion, we calculate the distribution of d20 on about 150 clear
days. We estimate a limit from this continuous distribution,
which is further fine-tuned on benchmark days. These were
selected as representatives of different sky conditions and ex-
amples of unidentified thin clouds by a human observer of
the AOD time series, α–γ diagrams, and sky camera refer-
ence. An example (12 March 2020) is given in Figs. 2 and
3, with additional examples in Fig. A1. We show the four
dimensions of our space, as well as the resulting d20 of our
data points and the sky camera pictures for better illustra-
tion of the time series. Both algorithms pick up the thin
clouds around 09:15 UTC, but only Clustering determines
some smaller contrails between 09:30 and 10:00 as cloudy.

As can be seen from the d20 time series in Fig. 3, there
is no clear distinction between the two states (cloudy/clear)
but rather a continuous spectrum of values that has to be di-
vided to best fit the two categories. A lower threshold value
will classify the ambiguous points as cloudy but also risks a
higher number of false positives and therefore lower over-
all data retention, which matters for error of mean values

calculated from the data. Similarly, a higher threshold will
cause more false negatives, i.e. cloud-contaminated points to
be identified as clear. We set the d20 threshold to 0.012 con-
sidering these aspects on our clear reference and benchmark
days.

3 Results and discussion

To assess the performance of the Clustering routine, we will
compare it to the Multiplet routine, using the last 10 years of
measurements (2010–2019), with 3330 d of measurements in
total. Of these days, 1906 are found to have clear data points
by at least one routine.

To exemplify the similarities and differences between the
two routines, Fig. 4 shows days with different cloud and
aerosol conditions: clear, intermittent thick clouds, intermit-
tent thin clouds, a combination of passing thick and thin
clouds, Saharan dust, and volcanic ash. Depicted are the time
series of AOD at 501 nm as well as a scatterplot of the pa-
rameters α and γ for 5 d. Additional examples are shown in
Fig. A1.

On a clear day, the routines agree very well, as expected.
Clustering retains more points at the beginning and end of
the day, which get picked up by limiting the air mass in the
Multiplet routine. On the other hand, some slight outliers in
α and γ get flagged by Clustering. The difference in daily
mean is smaller than the measurement error.

When thick clouds are passing, with just short intervals
of clear sky in between, Multiplet hardly identifies these as
such. As Clustering takes all available data into account, it
can assign points as clear even if the immediately preceding
and consecutive point are deemed cloudy. Despite flagging
less points, Clustering lowers the daily mean τ501 by 0.008 in
this case, which is of similar magnitude as our measurement
error.
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Figure 2. Sky camera pictures at 15 min time resolution (time in UTC) for the time series shown in Fig. 3.

Figure 3. Three hours of an example day (12 March 2020) to illustrate the Clustering method: time series of the four dimensions used, as
well as the time series of the distance measure d20. Colour of the rectangles codes for the flagging of the data point (see legend). For the
distance measure d20, points below the threshold, i.e. categorized as clear by Clustering, are coloured dark grey, and cloudy points are in
light grey.
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Figure 4. Comparison of cloud flagging routines on selected days with different cloud conditions as signified in the respective title. Colours
are as in Fig. 3. Left: time series of AOD at 501 nm, Right: α–γ plots. The solid white lines show different particle radii, and the dotted white
lines show different fine mode fractions; grid adapted from Gobbi et al. (2007). Note the different x axis scales for the time series.
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On a day with lots of thin clouds (mainly contrails),
the differences between the two routines are pronounced:
a few relatively high AOD points in the morning (around
08:00 UTC) pass Clustering, as do points during midday (be-
tween 10:00 and 12:00 UTC). These points, which are spec-
trally very similar, are indeed cloud free, as confirmed by
pictures from the sky camera. Multiplet, however, filters less
points as cloudy, which show cloud contamination as a de-
crease in the fine mode fraction in the α–γ plane. For this
day, the Clustering minus Multiplet difference of daily mean
τ501 is−0.027, which is of the order of possible bias of Mul-
tiplet reported by Chew et al. (2011).

Another example of Clustering being more rigorous in
cloud flagging can be seen on the day labelled with “Vari-
ous Clouds”. There were several optically thick clouds pass-
ing, which get identified correctly, but neither their thin edges
nor the optically thin clouds on that day get picked up by the
Multiplet routine. This day gets correctly eliminated by Clus-
tering despite Multiplet marking 89 data points as clear.

Occasionally, Saharan dust can get transported to Austria
(e.g. Ansmann et al., 2003). Despite unusually high AOD,
both routines correctly identify most of the data as cloud free.
Daily mean τ501 is slightly lower (−0.005) when using Clus-
tering, but this is still of the order of the calibration error.

One very unusual event is depicted last: after the eruption
of Eyjafjallajökull in Iceland in April 2010, its ash plume
was dispersed over Europe (Schäfer et al., 2011). It exhibits
high AOD and similar particle radii and fine mode fraction
as Saharan dust. Clustering flags more data due to the high
variation in AOD with time but still retains data in the after-
noon after about 13:00 UTC. Unfortunately, we do not have
pictures available to estimate whether the data in the morning
were cloud free and should therefore be retained. Clustering
lowers daily mean τ501 significantly, leading to−0.057 abso-
lute and −12 % relative difference. However, such an event
is rare enough to be manually cloud screened if necessary.

Overall, the Clustering routine flags more data than the
Multiplet routine, albeit not necessarily the same data points.
A more detailed comparison can be seen in Fig. 5. The Mul-
tiplet routine identifies about 47.6 % of data points as cloudy
and Clustering about 50.5 %, which is a realistic value con-
sidering the amount of sunshine hours Innsbruck receives on
average (Stadt Innsbruck, 2019).

As the main objective of the new algorithm was to filter
thin clouds which previously passed the quality criteria, a
higher number of flagged data points overall is expected. On
the other hand, Clustering can flag isolated outliers without
flagging the preceding and succeeding points of the multi-
plet, which lowers the number of flagged points. In 88 % of
all cases, the two methods agree in the (non-)assignment of
a cloud flag. Nonetheless, about 10 % of the data deemed
cloudy by Multiplet are not flagged by Clustering, whereas
15 % of the data passing the Multiplet criteria are identified
as cloudy by Clustering.

Figure 5. Comparison of flagging by the two routines. The height of
each area is proportional to the total number of data points in each
category. Grey: both routines classify as cloudy, Red/blue/purple:
Multiplet/Clustering/both classify as clear.

The mean AOD values of all clear points based on Mul-
tiplet flagging are τ̄368 = 0.19, τ̄412 = 0.16, τ̄501 = 0.13, and
τ̄862 = 0.05. The respective values based on Clustering do
not differ significantly, which is partly due to the low num-
ber of data points on which the routines disagree.

On daily timescales, Clustering eliminates 169 d for which
Multiplet would still find valid data points. On the other
hand, there are only 10 d where the opposite is the case.
Nonetheless, there are more than 1000 d without clear data
in the 10-year record. The number of data points on the days
which are disregarded by Clustering ranges between 1 and
89. Most of these days would therefore not be considered
in further analysis in other measurement networks (Kazadzis
et al., 2018; Giles et al., 2019) either. Furthermore, as shown
in Fig. 4, some of these days should be eliminated as they are
indeed cloud contaminated.

Clustering leads to lower daily mean AOD on about 63 %
of the days (Fig. 6). The mean difference is−0.0029 for τ̄501,
which is of the order of the calibration error (0.005 to 0.01,
depending on wavelength and air mass). However, on par-
ticular days this difference can range from −0.08 to 0.04 in
absolute numbers or −62 % to +27 % relative to the values
based on Multiplet screening. Similarly, Clustering leads to
higher mean α on 67 % of the days. Averaged over 10 years
of data, this leads to an increment in ᾱ by 0.02. In extreme
cases, the difference can be as high as +0.54. Both distribu-
tions are indicative of Clustering flagging thin clouds which
Multiplet cannot properly detect.

Finally, we investigate the performance of the proposed
method at lower time resolution. We subsampled the time se-
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Figure 6. Histogram of the Clustering minus Multiplet difference in daily mean of AOD at 501 nm (a) and of α (b). Negative/positive values
mean that the daily mean is lower/higher when screened by Clustering.

Figure 7. Comparison of the distribution of d20 for different time
resolutions over 10 years. The bars extend from the 25th to the 75th
percentiles; the minimum and median of the distributions are indi-
cated in black. Note that the maxima are higher than the graph range
and therefore not shown.

ries to 5, 10, and 15 min and analysed the resulting data with
the same settings for the algorithm. Key parameters of the
resulting d20 distribution from the whole 10-year data record
are shown in Fig. 7. The coarser the time resolution, the
higher the minimum and median d20 values and interquar-
tile range. This is mainly due to the overall density of points
decreasing, thus increasing the mean distance to the nearest
neighbours. Furthermore, the values of the first time deriva-
tive will be lower, so the relative weight of this dimension
decreases.

To account for the changes in density, there are two pos-
sible adjustments: lower the number of nearest neighbours
or set a higher cloud flagging threshold. As an example of
the latter, we show the time series on 12 March 2020 (same
as in Fig. 3) at four different time resolutions in Fig. A2.
With increasing the d20 threshold to 0.019, 0.027, and 0.042
respectively for 5, 10, and 15 min resolution, a very similar
flagging behaviour can be achieved at all time resolutions.

4 Conclusions

We presented a new approach for flagging cloud-
contaminated data points from sun photometer measure-
ments by treating them as outliers or region of low density in
a four-dimensional space. Our routine only needs one semi-
empirically derived threshold and direct sun measurements
for assigning a cloud flag. The method tackles shortcomings
of the currently employed routine based on Smirnov et al.
(2000) in the presence of optically thin clouds, such as cirrus
and contrails, which lead to systematic bias of higher instant
AOD values. Reducing this bias contributes to an improve-
ment of long-term statistics and trend analysis of aerosol con-
ditions.

While fewer data points are retained overall, which is ex-
pected from being able to filter thin clouds, the Cluster-
ing routine does not just flag more but different data points
(Fig. 5). As there is an ambiguity in the transition between
humidified aerosols and clouds (Koren et al., 2007), an ex-
act discrimination between false positives and negatives for
either routine is not possible. Nonetheless, the new routine
leads to lower AOD and higher α in the long-term mean,
which indicates a reduction of cloud contamination bias.

Detailed comparison with the previously employed cloud
screening routine showed that both methods agree in their
classification for the vast majority of cases (Fig. 5). Still,
Clustering reduces mean AOD for most of the days in our
testing period (Fig. 6). The daily mean AOD at 501 nm av-
eraged over the last 10 years is lowered by 0.0029, which
is comparable to instrument precision (Wuttke et al., 2012).
However, on single days Clustering reduces daily mean by
more than 0.02 (up to 0.08), which is the same magnitude as
reported as bias of the Multiplet routine by Chew et al. (2011)
and exceeds the error of the instrument and trace gas optical
depth. Together with specific example days (Figs. 4 and A1),
this supports the notion that Clustering corrects some cloudy
points of the Multiplet routine to clear while flagging some
of its erroneously clear points as cloudy. The small differ-
ence in the long-term mean is partly due to the specific cloud
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conditions in Innsbruck and could therefore be much larger
in regions with higher prevalence of thin clouds.

Due to the nature of the Clustering routine, it needs at least
k measurements to serve as possible nearest neighbours. In
our case, we chose k = 20, although dynamic adaptions can
be made if there are less points available. As the accuracy of
the algorithm increases with a higher number of data points,
it is ideal for post-processing. Nonetheless, it can be used
for real-time analysis as well, given that erroneously cloudy
points can be corrected to clear when more data become
available but not the other way round (i.e. points identified
as clear once will be labelled as clear regardless of additional
measurements).

While the four dimensions considered in the Clustering
routine account for variations of one specific wavelength and
in the spectrum, the question arises as to whether these can
be reduced even further. Especially γ , which has the highest
error of the variables (Gobbi et al., 2007), might be a can-
didate. Initial independence tests using mutual conditional
information as a measure (Runge et al., 2019) show a strong
association with α and γ . However, outliers in γ can appear
independently of α, which is why we kept γ as a dimension
and therefore data constraint.

So far we have tested the algorithm only for our instru-
ment in Innsbruck. It performs well in different cloud and
aerosol conditions, as shown in Fig. 4, and is able to allevi-
ate AOD bias in the presence of thin clouds. For the appli-
cation at other measurement sites, the time resolution of the
data needs to be considered, as lower measurement frequency
leads to lower data density and therefore higher mean dis-
tances between points (Figs. A2 and 7). Nonetheless, adapta-
tions regarding the number of nearest neighbours, the relative
weight of the different dimensions, or the d20 threshold can
be easily done to optimize cloud detection with other instru-
ments as well.
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Appendix A

Figure A1. The 2 h excerpts from selected days (in addition to Fig. 4). The first five examples highlight cases where Clustering flags much
less than Multiplet; the others show the performance in the presence of thin clouds. Both categories are ordered by date.
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Figure A2. Time series of AOD at 501 nm and α–γ plots at the original 1 min resolution, as well as 5, 10, and 15 min subsampling. Note
that the initial data point was chosen randomly, so the 10 and 15 min resolutions are not a further subset of the 5 min resolution. Grey squares
indicate cloudy points and blue clear ones. The cloud detection threshold was set to 0.019, 0.027, and 0.042 for the lower time resolutions.
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