
Atmos. Meas. Tech., 14, 2873–2890, 2021
https://doi.org/10.5194/amt-14-2873-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.

Detection of the melting level with polarimetric weather radar
Daniel Sanchez-Rivas and Miguel A. Rico-Ramirez
Department of Civil Engineering, University of Bristol, Bristol, BS8 1TR, United Kingdom

Correspondence: Daniel Sanchez-Rivas (d.sanchezrivas@bristol.ac.uk)

Received: 16 September 2020 – Discussion started: 28 September 2020
Revised: 13 February 2021 – Accepted: 2 March 2021 – Published: 13 April 2021

Abstract. Accurate estimation of the melting level (ML) is
essential in radar rainfall estimation to mitigate the bright
band enhancement, classify hydrometeors, correct for rain
attenuation and calibrate radar measurements. This paper
presents a novel and robust ML-detection algorithm based
on either vertical profiles (VPs) or quasi-vertical profiles
(QVPs) built from operational polarimetric weather radar
scans. The algorithm depends only on data collected by the
radar itself, and it is based on the combination of several po-
larimetric radar measurements to generate an enhanced pro-
file with strong gradients related to the melting layer. The
algorithm is applied to 1 year of rainfall events that occurred
over southeast England, and the results were validated using
radiosonde data. After evaluating all possible combinations
of polarimetric radar measurements, the algorithm achieves
the best ML detection when combining VPs of ZH, ρHV
and the gradient of the velocity (gradV ), whereas, for QVPs,
combining profiles of ZH, ρHV and ZDR produces the best
results, regardless of the type of rain event. The root mean
square error in the ML detection compared to radiosonde
data is ∼ 200 m when using VPs and ∼ 250 m when using
QVPs.

1 Introduction

The melting level (ML) is defined as the altitude of the 0 ◦C
constant temperature surface (American Meteorological So-
ciety, 2021b). It is located at the top of the melting layer,
which represents the altitude interval where the transition be-
tween solid and liquid precipitation occurs (American Mete-
orological Society, 2021a). As the melting layer generates
distinctive weather radar signatures, for example, the well-
known radar bright band (BB), its detection is important

for meteorological and hydrological applications of weather
radar rainfall measurements.

When using weather radar data for quantitative precipita-
tion estimation (QPE), it is necessary to apply several correc-
tions to the radar data before they can be converted into es-
timates of rainfall rates (Dance et al., 2019; Hong and Gour-
ley, 2015; Mittermaier and Illingworth, 2003). For instance,
corrections due to the BB are necessary as it generates a re-
gion of enhanced reflectivity due to the melting of hydrome-
teors, which cause an overestimation of rainfall rates (Cheng
and Collier, 1993; Rico-Ramirez and Cluckie, 2007). In this
case, the ML location is necessary to delimit the BB and ap-
ply algorithms that mitigate the effects of this error source in
radar QPE (Sánchez-Diezma et al., 2000; Smyth and Illing-
worth, 1998; Vignal et al., 1999). Above the BB, a correction
for the variation of the vertical profile of reflectivity (VPR)
is also required, especially during stratiform precipitation,
where the reflectivity of snow and ice particles decreases
with height. In the UK, VPR corrections to radar data are
usually performed using an idealised VPR in which the alti-
tude of the ML is computed from a numerical weather predic-
tion (NWP) model and a constant BB thickness is assumed
(Harrison et al., 2000; Mittermaier and Illingworth, 2003).
Additionally, most of the radar-based hydrometeor classifi-
cation algorithms require some form of separation between
liquid and solid precipitation; hence, the reliability of accu-
rate identification of the ML is necessary (Hall et al., 2015;
Kumjian, 2013a; Park et al., 2009). Moreover, the attenua-
tion of the radar signal at higher frequencies (C, X, Ka and
W bands) is a significant error source for radar QPE. Attenu-
ation correction algorithms are applied in the rain region, and
this requires knowledge of the height of the ML (Bringi et al.,
2001; Islam et al., 2014; Park et al., 2005; Rico-Ramirez,
2012).
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Knowledge of the ML is also useful for calibrating radar
measurements. For instance, ZDR is prone to calibration er-
rors. The ML location is helpful for quantifying the bias of
ZDR and mitigating errors in rain rate algorithms that use ZH
and ZDR data (Richardson et al., 2017). Depending on the
radar-scanning strategy, radar networks worldwide have im-
plemented operational algorithms forZDR calibration that re-
quire knowledge of the ML. Gorgucci et al. (1999) developed
a method where vertical-pointing radar observations in light
rain are used to calibrate ZDR, given that the shape of rain-
drops seen by the radar at 90◦ elevation is nearly circular, and
therefore, ZDR measurements in light rain should be around
0 dB. As vertical measurements sometimes are not available
due to mechanical radar restrictions, Ryzhkov et al. (2005),
Bechini et al. (2008) and Gourley et al. (2009), among oth-
ers, developed algorithms for ZDR calibration analysing the
interdependency between ZDR and other polarimetric vari-
ables for several targets with a known – intrinsic value of
ZDR, e.g. rain medium or dry snow; hence, the importance
of the ML estimation is necessary.

There is a large number of papers that show the relation-
ship between the BB and the melting layer. Klaassen (1988)
modelled the melting layer and found that the BB enhance-
ment in the radar reflectivity (ZH) is related to the density
of the ice particles. Fabry and Zawadzki (1995) analysed the
dependency of the BB on the precipitation intensity and con-
firmed the relationship between the radar BB signatures and
the melting of snowflakes in stratiform precipitation. White
et al. (2002) introduced an algorithm based on Doppler wind
profiling radar scans for detecting the BB height; their results
showed a correlation between the melting layer and the peaks
of the gradients of ZH and the radial velocity (V ) taken at
vertical incidence. Recently, the development of polarimetric
weather radar has allowed measuring the size and thermody-
namic phase of precipitation particles, which has improved
the identification of the melting layer. For instance, Baldini
and Gorgucci (2006) used the differential reflectivity (ZDR)
and the differential propagation phase (8DP) taken at ver-
tical incidence to the analysis of the ML. They showed that
the standard deviation of these measurements, along with ZH
and V , are useful for the identification of the ML using C-
band radar data.

Several algorithms for identifying the melting layer us-
ing range height indicator (RHI) scans have been proposed.
Matrosov et al. (2007) proposed an approach for identify-
ing the melting layer based on ρHV (correlation coefficient)
measurements collected by an X-band radar. The method re-
lates the depressions on the ρHV profile to the melting layer,
with the disadvantage that the absence of such depressions
hampers the application of the algorithm. Similarly, Wolfens-
berger et al. (2016) designed an algorithm that combines ZH
and ρHV to create a new vertical profile that enables the de-
tection of strong gradients related to the boundaries of the
melting layer for X-band radar measurements. Their results
showed that the algorithm is efficient for characterising the

thickness of the melting layer. Shusse et al. (2011) described
the shape and variation of the melting layer on different rain-
fall systems and provided insights into the behaviour of ZDR
and ρHV during convective precipitation using C-band radar
measurements.

Algorithms for identifying the melting layer based on plan
position indicator (PPI) scans have also been proposed in the
literature. Brandes and Ikeda (2004) developed an empirical
procedure based primarily on idealised profiles of ZH, linear
depolarisation ratio (LDR) and ρHV that are compared with
observed profiles to estimate the height of the freezing level.
The estimation of the freezing-level height is refined using
equations related to precipitation intensity. Giangrande et al.
(2008) analysed the correspondence between maxima of ZH
andZDR and minima in ρHV to estimate the boundaries of the
melting layer. This algorithm is tailored for scans with eleva-
tions angles between 4 and 10◦. Later, Boodoo et al. (2010)
proposed an adaptation of this algorithm, varying the scan el-
evation and the range of values of ZH, ZDR and ρHV, making
the algorithm more sensitive to less intense signatures of the
melting layer.

As PPIs are the most common scans derived from oper-
ational weather radars, Ryzhkov et al. (2016) proposed the
quasi-vertical profile (QVP) technique to seize the benefits
of PPIs. QVPs can be used for monitoring the temporal
evolution of precipitation and the microphysics of precipi-
tation. For instance, Kaltenboeck and Ryzhkov (2017) anal-
ysed the evolution of the melting layer in freezing rain events
with QVP signatures, demonstrating the ability of QVPs to
represent several microphysical precipitation features as the
dendritic growth layer and the riming region. Furthermore,
Kumjian and Lombardo (2017) and Griffin et al. (2018) in-
troduced new procedures for generating QVPs of the V and
specific differential phase (KDP) to explore the polarimetric
signatures of microphysical processes in winter precipitation
events at S-band frequencies. Despite the enormous benefits
that QVPs bring in terms of improving our understanding of
the microphysics of precipitation, there is very little research
on the use of QVP-based algorithms for estimating the ML.

Most of the algorithms mentioned above require measure-
ments often not available from operational weather radar
networks as weather radars cannot always perform vertical-
pointing scans or produce RHI scans to observe the vertical
structure of precipitation events. Hence, the main objective
of this work is to present an automated, operational and ro-
bust algorithm that can accurately detect the ML based on
QVPs or VPs (vertical profiles) collected from operational
polarimetric weather radars. The algorithm outputs are val-
idated using ML heights from high-resolution radiosonde
data. Note that the proposed algorithm is not intended to re-
place NWP-based ML estimation methods, but it is an al-
ternative way of detecting the ML when only polarimetric
weather radar measurements are available. The paper is or-
ganised as follows. Section 2 describes the data sets used to
design and validate the algorithm. Section 3 examines the
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signatures of the melting layer on both QVPs and VPs of po-
larimetric variables. Section 4 provides a detailed explana-
tion of the design of the algorithm. Results, implementation,
validation and several examples of the outputs of the algo-
rithm are presented in Sect. 5. Section 6 provides a discussion
on the performance and implementation of the algorithm. Fi-
nally, Sect. 7 provides a summary of the conclusions from
this work.

2 Data sets and methods

Radiosonde data were used to validate the ML estimated
from radar observations. The radiosonde is an instrument
that is released into the atmosphere to measure several atmo-
spheric parameters. The UK Met Office (UKMO) uses the
Vaisala RS80 radiosonde model to collect upper-air observa-
tions twice a day at different locations across the UK. The
ascent of the radiosonde extends to heights of approximately
10–30 km, and it takes measurements at 2 s intervals (Met
Office, 2007). The closest station to the selected radar site
is the Herstmonceux station (see location in Fig. 1), which
provides high-resolution radiosonde information of pressure,
temperature, relative humidity, humidity mixing ratio, sonde
position, wind speed and wind direction. As these measure-
ments provide insights for the ML location, the radiosonde
data were processed to estimate the height of the 0 ◦C wet-
bulb temperature to evaluate the algorithm performance.

The Chenies C-band operational weather radar, located in
southeast England, was selected for this work. It was one of
the first UKMO radars upgraded with polarimetric capabil-
ities (Norman et al., 2014). The radar transmits both hori-
zontally and vertically polarised electromagnetic waves si-
multaneously and receives co-polar signals at the same po-
larisation as that of the transmitted wave, generating mea-
surements such as ZH, ZDR, ρHV and 8DP. Radial velocity
(V ) measurements of the observed precipitation targets are
also available; LDR measurements are also produced for the
lowest elevation scan (Met Office, 2013). The volume radar
scanning strategy generates the following products:

– A total of 5 PPI scans sampled on long pulse (LP) mode
(pulse length is equal to 2000 µs; range covered is equal
to 250 km) at 0.5, 1, 2, 3 and 4◦ elevation angles, with a
600 m gate resolution every 5 min.

– A total of 5 PPI scans sampled on short pulse (SP) mode
(pulse length is equal to 500 µs; range covered is equal
to 115 km) at 1, 2, 4, 6 and 9◦ elevation angles, every
10 min, with the same gate resolution as above.

– A single SP PPI scan at vertical incidence (range cov-
ered is equal to 12 km) every 10 min, with 75 m gate
resolution.

– A single PPI scan with LDR measurements every 5 min
at the lowest elevation (0.5◦).

Figure 1. Location and coverage (on short pulse, SP, mode) of
the Chenies weather radar and location of the Herstmonceux ra-
diosonde station. Source: base map contains OS data. ©Crown
copyright and Crown database right, 2020.

Table 1. Chenies radar characteristics.

Chenies radar

Location 51◦41′21.1′′ N, 0◦31′46.9′′W
Wavelength λ= 5.3 cm
Multiple elevation scans 0.5 to 90◦

Beam width 1.0◦

Pulse repetition frequency 900 Hz (SP)–300 Hz (LP)
Revolutions per minute 3.6 (SP)–1.4 (LP)

The location and other radar characteristics are provided in
Table 1 and Fig. 1.

Polarimetric scans related to precipitation events through-
out 2018 were analysed for the design and evaluation of the
algorithm. To reduce the probability of ground clutter con-
tamination and beam spreading effects, only SP scans from
the 4, 6, 9 and 90◦ elevations angles were retained for fur-
ther processing. Then, a pre-processing of the raw radar data
is carried out to discard non-meteorological echoes and con-
struct the profiles of polarimetric variables as follows:

– For the 4, 6 and 9◦ elevation scans, remnant clutter
and anomalous propagation echoes were removed using
the algorithm proposed by Rico-Ramirez and Cluckie
(2008), specifically calibrated with data from this radar.
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Then, following the procedure suggested by Ryzhkov
et al. (2016), we generated QVPs of ZH, ZDR, ρHV
and8DP measurements. The procedure suggests the az-
imuthal averaging of the polarimetric measurements at
high-elevation scans (10–30◦), but such elevation angles
were not available on our data sets; hence, we used the
highest elevation angles available to generate the QVPs.
Although it is possible to produce time-averaged QVPs
to avoid local storm effects, we decided to keep the
original time resolution of the QVPs; therefore, we pro-
duced one QVP for each PPI scan. Details on the con-
struction of the QVPs are provided in Sect. 6.

– For the scans taken at vertical incidence, the data re-
lated to the first kilometre above ground level (a.g.l.) are
not usable due to some inherent radar limitations, e.g.
the de-ionisation time of the transmit–receive (TR) cell
(Timothy Darlington, Met Office, personal communica-
tion, 2019) or clutter contamination. After discarding
the data below this height, an azimuthal averaging of the
polarimetric and radial velocity data collected at vertical
incidence was performed, generating VPs of ZH, ZDR,
ρHV, 8DP and V . For the analysed radar data sets, the
spectral width variable was not available. We also de-
fine a new variable, the radial velocity gradient (gradV ),
computed using the gradient of the 90◦ radial velocity
profile (note that gradV ≡ dV/dH ). This new variable
accentuates the profile extremes related to the change
in the hydrometeor fall velocities from ice or snow to
rain. The gradient of V is computed using first-order
central differences in the interior points and first-order
forward or backwards differences at the boundaries; for
an in-depth description of numerical differentiation and
finite-differences methods, see Moin (2010).

Regarding the attenuation corrections needed for ZH and
ZDR, for most of the scans used in this work (especially 90
and 9◦ elevation scans) we observed that rain attenuation was
relatively small after analysing the total differential phase
shift. Furthermore, the ML height is essential for implement-
ing rain attenuation correction algorithms. Hence, no attempt
was made to correct for attenuation.

Based on the constructed VPs and QVPs, a total of 94 rain-
fall events, with visible signatures of the melting layer on ZH
or ρHV, were selected, i.e. an enhancement up to 30 dBZ on
ZH or ρHV constantly decreasing below 0.90. Also, from the
total number of rain events, only 25 events observed by the
radar showed a suitable temporal matching with the data col-
lected by the radiosondes, i.e. the difference in time between
radar and radiosonde measurements do not exceed 2 h. This
time window was set to minimise the impact of the variability
of the height of the ML.

3 Polarimetric signatures of the melting layer

The VPs and QVPs of the polarimetric measurements are dis-
played in height versus time plots. This enables the visualisa-
tion of the temporal evolution of the polarimetric radar signa-
tures in the melting layer. Figure 2 depicts a stratiform rain-
fall event recorded between 9 and 10 April 2018 using VPs
and QVPs (9◦ elevation angle). It can be seen that every radar
variable exhibits distinctive features that provide unique in-
formation for the identification of the melting layer on both
VPs and QVPs; e.g. Fig. 2a–b and c–d exhibit regions of en-
hanced values of ZH (BB) and ZDR, respectively, that are
visible just below 2 km in height. Concurrently, Fig. 2e–f
and g–h show that ρHV and 8DP are sensitive to the phase
and shape of hydrometeors, while Fig. 2i shows that the fall
velocities of snow particles are lower compared to rain parti-
cles, which is an important feature that can be used to detect
the ML. Figure 2j shows the gradient of the radial velocity
(gradV ) generated from 90◦ elevation scans, where the BB
enhancement is clearly visible at 2 km in height, and it is re-
lated to the increase in the fall velocities of the hydrometeors.
The different BB signatures expected in the melting layer on
the QVPs and VPs are explained next.

For comparison purposes, Fig. 3 shows normalised ver-
sions of VPs and QVPs (scaling each profile into the range [0,
1]) taken from the stratiform event presented in Fig. 2; also,
the height of the 0 ◦C wet-bulb isotherm is shown. The nor-
malisation process intensifies the signatures of the melting
layer. Note that the QVPs provide information below 1 km;
this is important for the analysis of showers or events with
ML at relatively low altitude.

Given that the main objective of this work is to detect the
melting layer boundaries based on the geometric features of
the polarimetric profiles, herein, we will try to explain how
the melting layer shapes the structure of the radar profiles.
Figure 3 shows the presence of enhancements on the po-
larimetric profiles related to the variation in the phase and
concentration of the hydrometeors. Taking the 0 ◦C wet-bulb
height as a reference (just below 2 km in altitude), it is feasi-
ble to associate the upper boundaries of these enhancements
to the ML. These enhancements are not necessarily at the
same height in all polarimetric variables, but this has to do
with the backscattering properties of the melting particles
and their relationship with the measured variable. Also, it
is important to highlight that the methods used in the con-
struction of the profiles play a key role in the location of the
peaks, i.e. both VPs and QVPs result from an azimuthal av-
eraging of the rays, representing an average structure of the
storm that helps to enhance the BB signature. So, the BB
peaks in the VPs and QVPs in all radar measurements differ
from the instantaneous profiles observed at individual slant
ranges; this will be discussed in Sect. 6.

The reflectivity (ZH) represents the power backscattered
by precipitation particles, thus providing information about
the concentration, size and phase of the hydrometeors
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Figure 2. Height versus time plots of ZH (a–b), ZDR (c–d), ρHV (e–f) and8DP (g–h), generated from VPs (left) and QVPs (right) for a pre-
cipitation event recorded by a weather radar located at Chenies, UK. Also, panel (i) portrays the radial (vertical) velocity V of hydrometeors,
whilst panel (j) shows a plot of the profiles based on the gradient of V measurements [dV/dH ].

(Hong and Gourley, 2015). In Fig. 2a and b, it can be seen
that the values of ZH on both QVPs and VPs show similar
intensities. Also, the well-known BB effect on ZH is visible
on both profiles (around 1.7 km). The BB is caused by the
increase in the dielectric constant of melting particles, by the

change in size from large melting snowflakes to raindrops
and by the increase in the fall speed of the hydrometeors that
reduce the particle concentration (Fabry, 2015). The BB is
easily observed in stratiform events; however, it is difficult
to set the melting layer boundaries based only on ZH; e.g. in
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Figure 3. Normalised version of VPs and QVPs generated from polarimetric scans recorded at different elevation angles, related to a
stratiform-type rain event. The 0 ◦C wet-bulb height is shown with the dashed–dotted line.

Fig. 3a, the top of the BB is not easy to discern. Moreover,
the profiles of ZH do not show the BB feature in convective
events; therefore, the estimation of ML for convective events,
based only on ZH, is not feasible.

The differential reflectivity (ZDR) represents the ratio be-
tween horizontal and vertical reflectivity values (ZH/ZV),
and it is related to the orientation, shape and size of the hy-
drometeors (Islam and Rico-Ramirez, 2014); therefore, ZDR
measurements for QVPs and VPs may describe different fea-
tures of the particles as the elevation angle varies. For both
QVPs and VPs, ZDR profiles show similar behaviour in strat-
iform events. Figure 3b shows that ZDR exhibit mean small
slope changes on the rain medium (below 1.2 km), but there
is a noticeable peak associated with the melting layer on
both VPs and QVPs, and although there is a difference in
the peak height between both types of profiles, the top and
bottom boundaries are at similar heights, especially for the
QVPs. Brandes and Ikeda (2004) and Ryzhkov et al. (2016)
showed that the presence of melting, randomly oriented ice
particles within the melting layer and the mixing of hydrom-
eteors produce the peaks in ZDR in stratiform events. How-
ever, for profiles related to convective events (not shown),
the VPs sometimes exhibit an inverse peak exactly above the
rain medium and then generate a noisy, random pattern on
the melting layer that makes the estimation of the ML more
difficult when using VPs of ZDR. Finally, the most signifi-
cant difference for this variable can be seen in Fig. 2c and d,
where the values of ZDR for VPs and QVPs differ from each
other, especially in the melting layer and above. It is also im-
portant to highlight that ZDR provides valuable information
for QPE. However, it usually shows a bias that must be cor-
rected; e.g. in Fig. 2c there is a bias in ZDR (∼−0.35 dB) as
we expect near-to-zero values for ZDR in the rain region for
vertically pointing measurements, as raindrops are symmet-
rical on average when observed from underneath (Gorgucci

et al., 1999). A subsequent analysis of birdbath scans in light
rain through the whole data set confirmed a persistent off-
set in ZDR. This reaffirms the importance of the detection of
the melting layer boundaries, as it helps to set limits for the
implementation of a ZDR calibration algorithm.

The correlation coefficient (ρHV) measures the correlation
between the backscatter amplitudes at vertical and horizontal
polarisations. It is sensitive to the distribution of particle sizes
and shapes and, hence, sensitive to the hydrometeors phase,
becoming a valuable hydrometeor classifier for identifying
non-meteorological echoes (Islam and Rico-Ramirez, 2014).
Additionally, ρHV is a reliable indicator of the quality of the
radar data as, in the rain medium, the correlation is close to
1, becoming an indicator of the quality of the polarimetric
radar measurements (Kumjian, 2013a). Figure 2e and f show
that ρHV is close to one within the rain region, which con-
firms the high quality of this radar data set. Figure 3c shows
that the melting layer causes a similar response on ρHV as
in ZH and ZDR, but in the opposite direction, resulting in a
depression on the profiles starting at 1.4–1.5 km in height for
QVPs and VPs, respectively. This depression results from the
shift between high values of ρHV, related to raindrops and ice
crystals and lower values triggered by the variety of shapes
and axis ratios of the hydrometeors (Kumjian, 2013b). The
behaviour of ρHV is similar on both VPs and QVPs from 9◦

elevation for stratiform or convective events, where the major
difference lies in the depth of the depressions. This may be
caused by the resolution and elevation angle of the original
scans. On the other hand, the QVPs constructed from lower
elevation angles, i.e. 4 and 6◦, exhibit less pronounced peaks
related to the melting layer, and a pronounced decrease in
ρHV above the BB that can make it difficult to identify the
ML.

As can be seen in Figs. 2g–h and 3d, the signatures of the
melting layer on the differential propagation phase (8DP)
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are, to a certain degree, ambiguous in our data sets, espe-
cially on the QVPs. 8DP represents the difference between
the phase of the radar signal at horizontal and vertical polar-
isation, providing valuable information about the shape and
concentration of the hydrometeors (Islam and Rico-Ramirez,
2014). Hence, the peaks on this type of profile may be related
to a greater concentration of particles due to the presence of
the melting layer or the dendritic growth layer (DGL), as pre-
viously explored by Griffin et al. (2018), Kaltenboeck and
Ryzhkov (2017) and Ryzhkov et al. (2016). Figure 3d shows
that the QVPs of 8DP from 9◦ elevation exhibit a small peak
at 1.7 km in height related to the melting layer, but it is not as
pronounced as with the other polarimetric variables, although
there are significant peaks aloft (between 2.8 and 3.8 km)
that may represent particle (ice or snowflakes) alignment on
the DGL, as suggested by Kaltenboeck and Ryzhkov (2017),
while lower elevation angles do not show strong signatures
on the melting layer or the DGL. In contrast, for 90◦ eleva-
tion scans, there is a well-defined depression in 8DP related
to melting and particle growth (Brandes and Ikeda, 2004) at
1.8 km in height that closely matches the height of the BB;
regarding the signatures of the DGL on the VPs, due to the
noisiness of the profile above the ML, it is difficult to deter-
mine if these peaks are related to the DGL.

Figures 2i and 3e show the profiles related to the radial
(vertical) velocities (V ) and the signatures of the melting
layer on this variable. It can be seen that the fall velocity
of the hydrometeors is relatively constant and close to zero
above the ML, which is related to the fall velocity of ice and
snow particles; then, there is a sharp increase in the fall veloc-
ity of the precipitation particles in the melting layer that be-
comes constant again in the rain region. However, it is chal-
lenging to incorporate the velocity profile into the ML de-
tection because its features are not easy to identify using an
automated peak search algorithm. Conversely, the VP of the
radial (vertical) velocity gradient (gradV ), shown in Figs. 2j
and 3e (dotted line), exhibits a BB enhancement and peak
similar to the rest of polarimetric variables, where the upper
and lower curvatures of the peak match the top and bottom
extents of the melting layer.

4 Algorithm to identify the melting level

The melting level algorithm (MLA) automatically detects the
ML, using either QVPs or VPs, under the premise that the
peaks on each polarimetric profile and their curvatures are
related to the melting layer. The MLA is based on the pro-
cedure proposed by Wolfensberger et al. (2016) that com-
bines ZH and ρHV to create a new profile with enhanced
melting layer features. However, Fig. 3 shows that there are
additional variables, such as gradV , that may improve the
identification of the ML. Therefore, we propose an algorithm
that combines all the various radar signatures to estimate the
melting layer boundaries. A subsequent analysis of the out-

Figure 4. Flow chart of the proposed MLA.

puts of the algorithm, in combination with radiosonde data,
determines the combination of radar signatures that is the
best predictor of the ML. Some considerations are made for
its design; for example, to minimise the effect of beam broad-
ening, the analysis is constrained to a height of 5 km (for 9◦

scans, the height of the centre of the beam is similar to 30 km
in range). Also, as shown in Fig. 3, some profiles become
noisy above the ML or contain spurious echoes aloft, mak-
ing it necessary to set an initial upper extent for the algo-
rithm to work. The MLA is divided into two parts. The first
part determines if the profile contains elements for detecting
the melting layer based on the combination of two profiles
and setting an upper limit for its implementation. The second
part estimates the ML based on a combination of the polari-
metric profiles and their features. The algorithm uses either
QVPs or VPs, but we avoid combining both profiles, as VPs
might not be available in other weather radar networks. A
flow chart that illustrates the MLA steps is shown in Fig. 4
and described below.
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Table 2. Possible combinations of polarimetric variables for VPs and QVPs used for the ML detection.

(VPs) (QVPs) P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15

1− gradV ∗ – ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

Z∗H Z∗H ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • • • • • • •

Z∗DR Z∗DR ◦ ◦ ◦ • • • • ◦ ◦ ◦ ◦ • • • •

1− ρ∗HV 1− ρ∗HV ◦ • • ◦ ◦ • • ◦ ◦ • • ◦ ◦ • •

1−8∗DP 8∗DP • ◦ • ◦ • ◦ • ◦ • ◦ • ◦ • ◦ •

(VPs) (QVPs) P16 P17 P18 P19 P20 P21 P22 P23 P24 P25 P26 P27 P28 P29 P30 P31

1− gradV ∗ – • • • • • • • • • • • • • • • •

Z∗H – ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • • • • • • •

Z∗DR – ◦ ◦ ◦ ◦ • • • • ◦ ◦ ◦ ◦ • • • •

1− ρ∗HV – ◦ ◦ • • ◦ ◦ • • ◦ ◦ • • ◦ ◦ • •

1−8∗DP – ◦ • ◦ • ◦ • ◦ • ◦ • ◦ • ◦ • ◦ •

Note: The asterisk (∗) refers to the normalised version of the variables.

1. Part 1

The first part of the MLA identifies profiles that are
likely to contain signatures related to the melting layer
and sets an upper limit in the profiles to use all the avail-
able variables.

1a. The algorithm takes advantage of the distinctive
signatures on the profiles of ZH and ρHV, on both
VPs and QVPs, to perform an initial identification
of rain echoes. These two profiles are normalised
and combined into a single profile (Pcomb), as sug-
gested by Wolfensberger et al. (2016), but using dif-
ferent thresholds for ZH and ρHV related to drizzle,
heavy rain, snow and ice (Kumjian, 2013a; Fabry,
2015). Hence, values of ZH, between 5 and 60 dBZ,
and ρHV, between 0.85 and 1, are normalised to
0 and 1 as follows: [ZH(dBZ)[5,60] → Z∗H[0,1]]
and [ρHV( )[0.85,1] → ρ∗HV[0,1]]. Values outside
these intervals are fixed to 0 and 1, correspondingly.
The normalisation is carried out using the min–max
normalisation procedure. Then, the normalised pro-
files are combined using the complement of ρHV to
enhance the peaks present in the profiles as follows:

Pcomb = Z
∗
H ·

(
1− ρ∗HV

)
. (1)

Note that the asterisk (∗) refers to a normalised vari-
able.
The profile Pcomb is likely to show an enhanced
peak if potential melting layer signatures were
present in the profiles of ZH and ρHV.

1b. The MLA locates the peaks on the profile Pcomb by
comparing neighbouring values. A peak is a sample
for which the direct neighbours have smaller mag-
nitudes. Inversely, the valleys (or boundaries of the
peaks) within the profile can also be detected using
a similar rationale. As several peaks can be present

in the profile, the peak with the higher magnitude
(i.e. the horizontal distance between the peak and
the origin) is set as Ppeak. Then, to identify profiles
with a Ppeak strong enough to be related to poten-
tial melting layer signatures, a threshold, k, is set.
If the magnitude of Ppeak is less than the thresh-
old, k (set to 0.05 for VPs and 0.08 for QVPs), the
MLA determines that the gradients are not strong
enough to correspond to melting layer signatures,
and therefore, the profile does not contain elements
for detecting the ML. This step is illustrated in
Fig. 5a, where the magnitude of Ppeak (∼ 0.14) is
greater than the threshold, k. Further discussion on
the value of this parameter is provided in Sects. 4.1
and 6.

1c. If the magnitude of Ppeak is greater than k, an up-
per limit (UL) is set, taking the height of Ppeak
and adding 750 m above. This value is selected as
the melting layer thickness usually reaches values
less than about 800 m (Fabry and Zawadzki, 1995);
hence, 750 m is sufficient for refining the search of
the ML. Figure 5a illustrates this step, where 750 m
are added to the height of Ppeak (∼ 1.51 km) to set
an upper limit (∼ 2.26 km).

2. Part 2

In the second part of the algorithm, we incorporate the
rest of the polarimetric variables to analyse their ca-
pability for refining the detection of the melting layer
boundaries and determining the combination that better
detects the ML.

2a. In this step, the profiles of all the radar variables are
cut below UL. Then, and considering that Z∗H and
ρ∗HV were already normalised in step 1a, the other
variables are also normalised but use the minimum
and maximum values in each profile as thresh-
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olds. To incorporate all the variables into the al-
gorithm, the complement of the variables is used
when appropriate. This is made to generate profiles
with analogue peaks that enhance the footprints of
the melting layer when combined with other vari-
ables. Equations (2) and (3), respectively, are de-
rived based on the patterns observed in VPs and
QVPs. These equations vary according to the com-
bination of the variables presented in Table 2.

P ∗i =
(
1− gradV ∗

)
·
(
Z∗H

)
·
(
Z∗DR

)
·
(
1− ρ∗HV

)
·
(
1−8∗DP

)
(2)

P ∗i =
(
Z∗H

)
·
(
Z∗DR

)
·
(
1− ρ∗HV

)
·
(
8∗DP

)
, (3)

where i depends on the combination of the vari-
ables used according to Table 2.
The algorithm computes all the possible combina-
tions of the profiles to analyse the influence of each
variable by, in this case, generating 31 different pro-
files if using VPs and 15 profiles when using QVPs.

2b. The profiles (P ∗i ) generated in the previous step
will very likely show a peak related to the melt-
ing layer. The next step in the MLA is to apply a
peak enhancement technique to refine the bound-
aries of this peak. This can be done using the fol-
lowing equation:

Pi = P
∗

i −
(
w ·P ∗′′i

)
, (4)

where Pi is the enhanced profile, P ∗i is the pro-
file given by Eqs. (2) or (3), w is a weighting fac-
tor, and P ∗′′i is the second derivative of P ∗i . The
optimum choice of the parameter w depends upon
the signal-to-noise ratio and the desirable sharpen-
ing extent. Table 2 lists the enhanced profiles pro-
duced by combining different polarimetric profiles,
and Fig. 5b shows the enhancement of the peak and
valleys. Details on the value of the parameter w are
presented in Sects. 4.1 and 6.

2c. For each profile Pi , the maximum enhancement in
the BB has a magnitude given by Ppeak and com-
puted as in step 1b. Then the parameter k is used to
discard profiles with peaks not related to the melt-
ing layer (k = 0.05 for VPs; k = 0.08 for QVPs).

2d. The top and bottom boundaries of the BB enhance-
ment in Pi can be placed by searching the inverse
peaks (valleys) directly above and below Ppeak. Fi-
nally, the algorithm allocates these points as being
the boundaries of the melting layer. This step is
shown in Fig. 5c, where the selected profile P26 is
highlighted. The top valley of Pi is set as the esti-
mated height of the ML (MLTop).

As can be seen in Fig. 5a, the combination of Z∗H and
1− ρ∗HV produces a profile with a peak (Ppeak) that is use-

Figure 5. Depiction of the implementation of the algorithm for ML
detection.

ful for detecting the presence of the melting layer. An ad-
equate choice of the magnitude of the parameter (k) is im-
portant to discard profiles with a Ppeak that is not strong
enough to be related to the melting layer. However, addi-
tional variables can be used (see Eqs. 2 and 3) to refine
the detection of the ML. The upper limit (UL) allows the
use of other variables that otherwise could not be part of
the algorithm due to noisiness or spurious echoes present
at the top of the profiles. Figure 5b shows the importance
of the refinement of the profile, e.g. the profile combination
P ∗26 = (1− gradV ∗) · (Z∗H) · (1− ρ

∗
HV) (blue line) has a peak

related to the melting layer, and the valley located at the top
of this peak is close to the ML, but it is difficult for a peak
detection algorithm to detect its height, as it is not as pro-
nounced as required. The use of the first derivative of the
profile, i.e. P ∗

′

26 (grey line), is not helpful, as the peaks are not
close to the ML. The profile P26 (green line) results from the
implementation of Eq. (4), where a value of w equal to 0.75
enhances the peak and its valleys enough for the algorithm
to detect their boundaries. A proper choice of the parameter
w depends on the desired weight to the original profile rather
than its second derivative. The impact of the parameters k
and w on the algorithm is discussed in the following section.

4.1 Implementation of the ML algorithm

As described before, the MLA performs a pre-classification
of profiles likely to contain melting layer signatures. Some
tests were carried out by replacing Z∗H with other variables
(e.g.ZDR or 1−gradV ∗) to identify improvements in the pre-
classification. From Fig. 3b, it is clear that the QVPs of ZDR
exhibit a pronounced peak related to the melting layer, even
for low elevation angles, but unfortunately, ZDR is not cali-
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brated, and the thresholds for normalising this variable may
vary depending on the elevation angle. On the other hand,
replacing Z∗H with the profile 1− gradV ∗ for the VPs could
improve the pre-classification, but this may restrict the imple-
mentation of the algorithm, i.e. it would be only applicable
if vertical velocity profiles are available. Although we ob-
served some improvements using these variables in the first
part of the MLA, especially for rain showers, we wanted to
keep this part as simple and robust as possible to enable the
reproducibility of the algorithm. Hence, we used the combi-
nation of Z∗H and ρHV for part 1 of the algorithm, as initially
proposed by Wolfensberger et al. (2016).

On the other hand, the algorithm relies on the parameters
k and w, as shown in Fig. 5a and b. These parameters can be
adjusted according to the radar data sets, e.g. the parameter
k can be affected by the quality of ρHV. In our data sets, and
after the removal of non-meteorological echoes, ρHV exhibits
values close to 0.85 in the melting layer on both QVPs and
VPs, but this may vary depending on the type of radar, scan-
ning strategy and quality of the data sets. We set k equal to
0.05 for VPs and k equal to 0.08 for QVPs empirically, and
these values allow the algorithm to discard enhancements in
the profile not related to the melting layer. Moreover, several
tests were carried out using time-averaged QVPs, resulting in
smoother profiles, and this parameter was helpful for iden-
tifying profiles with melting layer signatures. On the other
hand, Eq. (4) is applied to the profiles to enhance the BB
peak and the top and bottom boundaries (i.e. valleys) within
the profile, thus refining the detection of the ML. This equa-
tion combines the original profile with its second derivative,
weighted with the parameter w. As shown in Fig. 5b, the
second derivative of the profile (yellow line) exhibits deeper
peaks, but its top boundary is still far from the measured ML.
After several trials, we set w equal to 0.75, as this value en-
hances the peaks of the original profile without compromis-
ing the match of the top boundary and improving the ML
detection. Likewise, this parameter can be adjusted depend-
ing on the radar data sets, e.g. profiles that exhibit smoother
peaks due to the nature of its construction process and the
resolution of the original scans, or profiles with vertical res-
olution too coarse can be adjusted with the parameter w for
a better algorithm performance.

5 Results

5.1 VP and QVP comparison

Both VPs and QVPs proved to be an efficient way of mon-
itoring the temporal evolution of the melting layer, but the
elevation angle used to build the QVPs affects each radar
variable in different ways, as described in Sect. 3 and shown
in Figs. 2 and 3. Hence, to support the performance and out-
puts of the algorithm, we assessed the consistency between
the ZH profiles constructed from different elevation angles,

Figure 6. Comparison of VPs and QVPs of ZH generated at two el-
evation angles for a collection of stratiform events. Counts indicate
the number of points in the hexagon.

Figure 7. As in Fig. 6 but for a collection of convective events.
Counts indicate the number of points in the hexagon.

as this is the variable less prone to significant variations due
to the elevation angle. For the rest of the variables, it is not
possible to compare QVPs as their characteristics vary with
the elevation angle used to build the QVPs.

To carry out this analysis, we manually classified the rain
events recorded by the radar according to the recommenda-
tions of Fabry and Zawadzki (1995) and Rico-Ramirez et al.
(2007). From a total of 94 rainfall events, 68 events were
classified as stratiform. This category includes low-level rain
and rain with BB, as they showed the well-known enhance-
ment of reflectivity observed within the melting layer or
look-alike drizzle events below the 0 ◦C. On the other hand,
26 events recorded mainly during the summer met the char-
acteristics of showers, i.e. indistinguishable signatures of the
melting layer in the ZH profiles, in which higher values of
reflectivity are present; the latter is the type of precipitation
less common in the UK (Collier, 2003). The comparison be-
tween VPs and QVPs takes into account the timestamp and
spatial resolution of the profiles. The Pearson correlation co-
efficient (r) is computed to analyse the consistency between
the VPs and QVPs. The results for stratiform and convective
events are shown in Figs. 6 and 7, respectively.

Figure 6 shows that reflectivity values related to light and
moderate rain rates (expected on stratiform-type events) are
similarly depicted on both VPs and QVPs. However, the
agreement diminishes when decreasing the elevation angle,
mainly because higher values of ZH do not always match
their pairs as the elevation decrease. This could be explained
by the averaging process carried out in the construction pro-
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cess of the profiles, as the radar resolution volume increases
with distance. On the other hand, Fig. 7 shows a more scat-
tered distribution of ZH for shower-type events in which
higher values of ZH (related to moderate to heavy rain rates)
are present. Again, the correlation decreases for lower ele-
vation angles, and it can be seen that there are mismatches
for cells with higher values of reflectivity. This can be re-
lated to local storm effects and spatially nonuniform convec-
tive elements present in the QVPs, as explored by Ryzhkov
et al. (2016). It is worth mentioning that QVPs constructed
from lower elevation angles were also assessed (results not
shown), but similar behaviour was observed, e.g. correlation
decreases even further. Also, a similar analysis was carried
out using other polarimetric variables. However, the results
were not consistent as only ZH describes similar properties
of the precipitation measurements taken at these elevation an-
gles.

5.2 ML detection from VPs

The MLA outputs were analysed to find the combination of
VPs that better detects the ML. These outputs are compared
against 0 ◦C wet-bulb isotherms over 1 year of rainfall events.
Since soundings are released twice daily, the radiosonde data
are extended at several time steps to create short time win-
dows and enable a comprehensive comparison with the radar
data. Performance metrics (Pearson correlation coefficient –
r; mean absolute error – MAE; root mean square error –
RMSE) between the height of the 0 ◦C wet-bulb isotherm
and the estimated ML are computed. Figure 8 shows the re-
sults for a 60 min window, i.e. the height of the 0 ◦C wet-
bulb isotherm is assumed constant 30 min before and after
the timestamp of the radiosonde.

Figure 8 shows the capabilities of all polarimetric vari-
ables for the detection of the ML. In Fig. 8a, the variable n
profiles is an indicator of the number of profiles that, accord-
ing to the algorithm, contain peaks strong enough to be re-
lated to the melting layer. This variable can only be validated
by a visual inspection of the algorithm outputs, as some vari-
ables may incorrectly classify some peaks as being melting
layer related. Overall, Fig. 8 shows that the combinations that
include Z∗H, [1−ρ∗HV] or [1−gradV ∗] improve the accuracy
of the MLA, e.g. P9, P11 or P26, as the correlation, and the er-
rors are relatively low for these combinations. After a visual
assessment of the performance of each combination and sup-
ported by the statistics computed above, we determine that
the profile combination P26 = [Z

∗
H ·(1−ρ

∗
HV) ·(1−gradV ∗)]

is the best predictor of the ML. Then, several time windows
are set to assess the accuracy of the MLA over 1 year of
radar data, as shown in Fig. 9. This analysis confirms the
good performance of the combination P26 on the ML detec-
tion, even when increasing the time window, as the RMSE
and MAE are close to 200 m and r equals 0.95. Another in-
dicator taken into account in the visual inspection of the al-
gorithm output was the detection of the melting layer bottom

Figure 8. Errors in the ML detection for VPs using a ±30 min win-
dow. In panel (a), the bar length represents the MAE (in kilometres),
and colour represents the number of vertical profiles with strong
signatures detected by every polarimetric combination; in panel (b),
the bar length represents the RMSE (in kilometres) for every polari-
metric combination, and colour represents the Pearson correlation
coefficient.

and its steadiness regarding the ML. Examples of the detec-
tion of the melting layer for stratiform and convective events
using the profile P26 are shown in Fig. 10. Figure 10a and
b show the output of the MLA using the combination P26
in both stratiform or convective events. The algorithm shows
a good performance, especially for stratiform events where
the ML height and the rain zone are accurately defined. For
the convective event, the ML is correctly identified, although
the bottom of the melting layer is not entirely detected. This
is a drawback when using the algorithm based on VPs and
highlights the problems when low-altitude melting layers are
present.

5.3 ML detection from QVP

The MLA is applied to QVPs generated from scans at three
different elevation angles (4, 6 and 9◦). After several tri-
als on the parameters k and w in the algorithm implemen-
tation, only the highest elevation produced satisfactory ML
estimation results. The explanation of this has its foundation
in Fig. 3c, where QVPs from lower elevation angles display
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Figure 9. Heights of the 0 ◦C wet-bulb isotherm versus ML detected
by the algorithm using the combination P26 for several time win-
dows. The 1 : 1 line is shown in blue. MAE and RMSE are shown
in kilometres.

Figure 10. Comparison of the MLA outputs based on the variable
P26 at 90◦ elevation angle for two different rain events. Panel (a)
shows the detection of the melting layer for a stratiform event dis-
played over a height versus time plot ofZH, and panel (b) shows the
performance for a convective event displayed over a height versus
time plot of gradV .

shapes that complicate the implementation of the algorithm.
For instance, the profile of ρHV exhibits a peak related to
the ML, but above this peak, the values of ρHV decrease
sharply, while the profile of ZH exhibits smoother peaks, and
when the normalisation process is carried out, the parameter

Figure 11. Errors in the ML detection for QVPs using a ±30 min
window. In panel (a), the bar length represents the MAE (in kilome-
tres), and colour represents the number of QVPs with strong signa-
tures detected by every polarimetric combination; in panel (b), the
bar length represents the RMSE (in kilometres) for every polari-
metric combination, and colour represents the Pearson correlation
coefficient.

k cannot correctly filter gradients related to the ML. Thus,
after several trials, and supported by the analysis presented
in Sect. 5.1, we decided not to use the lower elevation an-
gles (4 and 6◦). Using the same windows as in the VPs, we
computed several performance metrics (r , MAE and RMSE)
between the 0 ◦C wet-bulb isotherms and detected MLs. The
performance of the algorithm using different profiles and a
time window of 60 min (i.e. using radar profiles 30 min be-
fore and after the radiosonde timestamp) is shown in Fig. 11.

Figure 11a shows that the number of profiles covered by
the time window is somewhat greater than the number of
profiles covered in the implementation of the VPs. This is
expected because the coverage area of the PPIs from where
the QVPs were constructed is greater than the vertical scans.
Overall, the four indicators in Fig. 11 stress the influence of
ZH and ρHV in the estimation of the ML height and reveal
that adding the combination Z∗DR to the analysis, i.e. P12, P14
or P15, improves the delimitation of the ML, given that these
combinations exhibit high values of correlation (r), and the
errors are below 250 m. Based on these results, and combined
with a visual assessment of the outputs of the algorithm over
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Figure 12. Heights of the 0 ◦C wet-bulb isotherm versus ML esti-
mated by the algorithm for several time windows using QVPs from
9◦ elevation scans. The 1 : 1 line is shown in blue. MAE and RMSE
are given in kilometres.

1 whole year of precipitation profiles, we concluded that the
profile that combines Z∗H, Z∗DR and (1− ρ∗HV), i.e. P14 pro-
vides the best detection of the ML. The performance of the
algorithm using this combination is shown in Fig. 12.

Figure 12 shows that error and correlation coefficient de-
crease as the time interval increase. Given that the errors
are close to 250 m for short time windows, this combina-
tion proves to be accurate for the ML detection, making al-
lowance for the original resolution of the scans (600 m). A
total of two examples of the outputs of the algorithm, using
the profile P14, are shown in Fig. 13 for the same stratiform
and convective events as in Sect. 5.2. The combination P14
shows that the ML is correctly detected, and the delineation
of the rain region is well executed. For the convective event
of Fig. 13b, the outputs of the algorithm are accurate for the
ML estimation, although some gaps are present due to the
filtering of profiles in the first part of the algorithm.

6 Discussion

We constructed VPs and QVPs of polarimetric variables to
explore precipitation events and their features. As shown in
Fig. 2, both types of profiles display differences influenced
by the scan elevation angle and the methods used to construct
the profiles. Regarding the latter, there are several points
worth discussing.

i. It is possible to generate time-averaged QVPs to smooth
the effects related to local storm structures; the averag-
ing process over the radar domain, combined with tem-
poral averaging, reduces the signal noise, and it may
help to discard profiles with signatures not related to the
melting layer. However, the duration of the rain events
and other factors raises a question about the correct

Figure 13. Comparison of the MLA outputs based on the variable
P10 for QVPs constructed from 9◦ elevation angle scans. Panel (a)
shows the detection of the melting layer for a stratiform event dis-
played over a height versus time plot of ZH; panel (b) shows the
performance for a convective event displayed over a height versus
time plot of ZDR.

time window length. After several attempts with dif-
ferent time windows, we observed that the signatures
of the melting layer are often easier to discern in pro-
files related to stratiform events. However, for convec-
tive events, the main variables that detect the ML, e.g.
ZDR or ρHV, are affected by the temporal averaging,
blurring the melting layer signatures. Thus, we present
examples of instantaneous QVPs; however, we kept this
matter in mind for the MLA design.

ii. The spatial variation in the rain events is a limitation
of both VPs and QVPs. The former captures the storm
structure only directly above the radar location. More-
over, for the data sets used in this work, scans taken
at 90◦ elevation present limitations when reading data
on the first kilometre due to technical restrictions; this
situation restrains the observation of rainfall features at
relatively lower altitudes. On the other hand, the PPIs
from where the QVPs are constructed may contain sec-
tors with non-homogeneous echoes, e.g. a combination
of mixed precipitation is possible at ranges far from the
radar because the beam is considerably bigger. More-
over, at certain stages of the storm evolution, the radar
echoes are insufficient to generate QVPs with clear sig-
natures of the melting layer or even valid QVPs. This
horizontal heterogeneity introduces uncertainty into the
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QVPs, as stated by Ryzhkov et al. (2016). These limita-
tions on the generation of the QVPs require further in-
vestigation and are out of the scope of this work, since
our main objective is to detect the melting layer signa-
tures.

iii. Due to the averaging process on the construction of the
profiles, the BB shape and height do not exactly match
profiles found in previous studies, especially from pro-
files generated from measurements collected using ver-
tical cross sections. For instance, Brandes and Ikeda
(2004), in their Fig. 1, showed that the BB peak in ZH
is higher in altitude compared to the BB peak in ZDR,
whereas, in our Fig. 3a and b, the peaks are at similar
heights due to the azimuthal averaging. Our data sets
show similar signatures to those shown by Brandes and
Ikeda (2004) (figures not shown) when the profiles are
extracted from slant ranges. Although the BB peaks are
not the same in our VPs (or QVPs) due to the azimuthal
averaging, the BB boundaries are on average at similar
altitudes and are, hence, not a major problem for imple-
menting the MLA.

After this, we analysed the different signatures of the melt-
ing layer in the VPs and QVPs. We observed thatZH is a vari-
able susceptible to the different types of precipitation on both
VPs and QVPs, allowing the characterisation of the rain pro-
files, as previously explored by Fabry and Zawadzki (1995),
Kitchen et al. (1994) and Klaassen (1988). Nevertheless, this
also accentuates the trouble of detecting the ML based only
on the reflectivity profiles. This emphasises the need to in-
corporate other polarimetric variables into the analysis.

Regarding ZDR, this variable raises several questions
about its potential for detecting the ML. ZDR is a polarimet-
ric variable prone to calibration errors (Vivekanandan et al.,
2003), and our data sets are not the exception, as shown in
Fig. 2c. We decided not to carry out a calibration process at
this point because knowledge of the melting layer boundaries
is necessary, as suggested by Gorgucci et al. (1999), Gourley
et al. (2009) and Park et al. (2005). Moreover, the values of
ZDR vary regarding the elevation angle, as shown in Fig. 2c
and d and proved by Ryzhkov et al. (2005), where they found
that ZDR decreases with elevation angles for weather targets.
Regardless of these drawbacks, the profiles of ZDR prove to
be sensitive to the hydrometeor characteristics (as shown in
Fig. 3b), improving the detection of the ML when using a
normalised version.

On the other hand, ρHV stands out as a tell-tale sign of the
ML, on both QVPs and VPs, as shown in Figs. 2e–f and 3c.
This agrees with the findings of Brandes and Ikeda (2004),
Matrosov et al. (2007), Shusse et al. (2011), Tabary et al.
(2006) and Wolfensberger et al. (2016), who included ρHV
into their algorithms. Also, we analysed the quality of the
radar data sets on several rain events based on this variable
and found that ρHV in the rain medium is around 0.99, so the
quality of this variable is reliable for further processing.

For our data sets, 8DP profiles show complex signatures
that are difficult to classify, as shown in Fig. 3d. Since the
elevation angles used for the construction of the QVPs are
below 10◦, the peaks in 8DP related to the melting layer are
weak and not well defined. However, when using higher el-
evation angles, the peak in 8DP should increase, as shown
by Trömel et al. (2014). Other peaks are also present at the
top of the QVPs, but these peaks may be related to the den-
dritic growth layer, as explored by Kaltenboeck and Ryzhkov
(2017). Additionally, the VPs of 8DP presented in Fig. 3d
differ from the profiles showed by Brandes and Ikeda (2004)
as, in their Fig. 1,8DP increases on the ML, but for our VPs,
there is an inverse peak caused by the ML. Once again, this is
related to the averaging process when constructing our pro-
files.

Finally, the vertical radial velocity V profiles prove to be
a great tool for monitoring the development of precipitation
events, as this variable describes the increase in the fall ve-
locity of hydrometeors. Height versus time plots of these
profiles show an area where the velocity is nearly zero, de-
scribing the shift between ice, snow and melting particles, as
shown in Fig. 2i. However, it is not easy to incorporate this
variable into an automated peak detection algorithm. Hence,
we propose computing the derivative of the profile (gradV )
as a simple but effective way of incorporating this variable
into the analysis. The proposed method transforms the profile
into a similar shape to the rest of the polarimetric variables
to enable its incorporation into an automated peak detection
algorithm, as can be seen in Figs. 2j and 3e (dotted line).

Based on the signatures triggered by the melting layer
described above, we designed an algorithm that detects the
strong gradients within a profile resulting from the combina-
tion of several radar measurements. The algorithm is based
on the method proposed by Wolfensberger et al. (2016), but
it was modified to include all the combinations of polarimet-
ric variables and evaluate their capabilities for detecting the
melting layer boundaries. Also, we propose a simple method
to enhance the peaks within the profiles to refine the ML
detection. This method differs from previous studies where
the melting layer and its boundaries are detected by complex
methods that compute second-order statistics of polarimetric
profiles (Baldini and Gorgucci, 2006), assume idealised pro-
files (Brandes and Ikeda, 2004) and use a curvature detection
method (Fabry and Zawadzki, 1995) or methods that rotate
the coordinate system to locate the melting layer boundaries
(Rico-Ramirez and Cluckie, 2007).

The results of the MLA were validated by comparing them
with heights of 0 ◦C wet-bulb isotherms. Using these data,
we demonstrated the potential of each one of the polarimet-
ric variables for detecting the ML by presenting performance
metrics of the computed profiles and their combinations, as
shown in Sect. 5.2 and 5.3. For the VPs, we demonstrated
that the proposed profile gradV is helpful for the detection
of the ML (see Fig. 8), especially in combination with other
variables, e.g. P26 = [Z

∗
H·(1−ρ

∗
HV)·(1−gradV ∗)] accurately
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outlines the melting layer, regardless if it was applied to con-
vective or stratiform events. Regarding the melting layer bot-
tom, it is important to stress that only a visual assessment
enables the validation of the performance of the algorithm
on this matter, but as shown in Fig. 10, the proposed variable
steadily demarcates the boundaries of the melting layer.

On the other hand, when applying the algorithm to QVPs,
addingZDR to the analysis provided valuable information for
identifying the ML. Hence the combination P14 is selected as
the best predictor of the ML. As shown in Fig. 11, the accu-
racy improves compared to profiles that only include Z∗H and
1− ρ∗HV. Also, this variable adequately delimits the melting
layer, especially for stratiform events, and also detects the
melting layer signatures in convective events, as shown in
Fig. 13.

Therefore, we selected these two profiles P14 and P26,
for QVPs and VPs, respectively, as the combinations that
achieve the higher accuracy on the detection of the ML and,
at a certain degree, the melting layer characterisation. These
combinations proved to be accurate, with an average error
close to the resolution of the radar and the mismatch in time
and space. The proposed algorithm produces errors within
200 m in the ML estimation, consistent with previous work
by Brandes and Ikeda (2004), Baldini and Gorgucci (2006),
Kitchen et al. (1994) and Wolfensberger et al. (2016). Finally,
it is worth noting that the algorithm enables the detection of
the ML based on radar measurements only, without relying
on data generated from NWP model runs. This allows the im-
plementation of radar rainfall correction schemes based on
radar measurements only.

Finally, we assessed the consistency between QVPs and
VPs of ZH to ensure that the low-elevation angles avail-
able in our data sets are useful for computing reliable QVPs.
Ryzhkov et al. (2016) suggested that QVPs should be built
from data collected at higher elevation angles that exceed
20◦, and the results for the lower elevation angles (4 and 6◦)
agree with their findings, proving that decreasing the antenna
elevation degrades the resolution of the QVPs. However, the
QVPs collected at 9◦ elevation angles are still in good agree-
ment with the VPs of ZH; overall, there is a good agreement
between data sets in stratiform events as the correlation coef-
ficient is close to 0.7, but in convective events, the differences
between the profiles increase, as can be seen in Figs. 6 and 7.
Therefore, we conclude that the QVPs can be generated from
elevation scans of 9◦ as the effects of beam broadening and
horizontal inhomogeneity are not as pronounced as expected,
and this enables the use of these QVPs of polarimetric vari-
ables for the ML detection.

7 Conclusions

In this paper, we generated QVPs and VPs of polarimetric
variables collected by an operational C-band radar to explore

the melting layer signatures. A long-term analysis of the VPs
and QVPs revealed several findings summarised herein.

– We observed that the melting layer produces a finger-
print in each of the polarimetric profiles, portraying a
diversity of microphysical processes of the hydromete-
ors. These fingerprints (or signatures) shape the profiles
in a very particular way, improving the detection of the
melting layer.

– We proposed a profile (gradV ), generated from radial
velocities taken at vertical incidence, which proved to
be a helpful variable for the ML estimation.

– We performed a numerical comparison of the VPs and
QVPs of reflectivity to demonstrate the consistency of
the measurements involving the elevation angle of the
scans. The analysis shows that QVPs generated using
elevation angles at 9◦ exhibit good agreement with VPs
(r ∼ 0.7), while lower elevations increase the discrep-
ancy between QVPs and VPs, and therefore, QVPs at
lower elevations are not suitable for the detection of the
ML.

– We developed a robust, operational MLA that detects
the signatures of the melting layer using polarimetric
QVPs and VPs. The fundamentals of the design of the
MLA are (i) a simple method for detecting peaks and
valleys within the profiles, (ii) the combination of nor-
malised variables and (iii) the incorporation of two pa-
rameters (k and w) that can be calibrated, depending on
the characteristics and type of profiles.

– We showed the capabilities of all the radar variables
and their combinations to detect the ML, providing in-
dividual performance metrics and analysing their per-
formance on convective and stratiform events. For VPs,
the combination P26 that uses the normalised version of
the reflectivity, the correlation coefficient and the gradi-
ent of the velocity, i.e. [Z∗H · (1− ρ

∗
HV) · (1− gradV ∗)],

achieves an accurate detection of the ML. For QVPs, the
combination P14 = [Z

∗
H · (Z

∗
DR) · (1− ρ

∗
HV)] is selected

as the combination that better detects the melting layer
boundaries.

– We demonstrated that the proposed MLA proved to be
accurate as the errors (MAE and RMSE) between the
selected outputs of the MLA and the data collected by
radiosonde are close to 200 m.

Code availability. The melting-level-detection algorithm described
in this work and other radar data visualisation tools used in this
study are available on request from the corresponding author.

Data availability. Chenies C-band rain radar dual polari-
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