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Abstract. Satellite-based aerosol retrievals provide a timely
view of atmospheric aerosol properties, having a crucial role
in the subsequent estimation of air quality indicators, at-
mospherically corrected satellite data products, and climate
applications. However, current aerosol data products based
on satellite data often have relatively large biases compared
to accurate ground-based measurements and distinct uncer-
tainty levels associated with them. These biases and uncer-
tainties are often caused by oversimplified assumptions and
approximations used in the retrieval algorithms due to un-
known surface reflectance or fixed aerosol models. More-
over, the retrieval algorithms do not usually take advantage
of all the possible observational data collected by the satel-
lite instruments and may, for example, leave some spectral
bands unused. The improvement and the re-processing of
the past and current operational satellite data retrieval al-
gorithms would become tedious and computationally expen-
sive. To overcome this burden, we have developed a model-
enforced post-process correction approach to correct the ex-
isting operational satellite aerosol data products. Our ap-
proach combines the existing satellite aerosol retrievals and
a post-processing step carried out with a machine-learning-
based correction model for the approximation error in the re-
trieval. The developed approach allows for the utilization of
auxiliary data sources, such as meteorological information,
or additional observations such as spectral bands unused by
the original retrieval algorithm. The post-process correction
model can learn to correct for the biases and uncertainties in
the original retrieval algorithms. As the correction is carried
out as a post-processing step, it allows for computationally
efficient re-processing of existing satellite aerosol datasets

without fully re-processing the much larger original radiance
data. We demonstrate with over-land aerosol optical depth
(AOD) and Ångström exponent (AE) data from the Moderate
Imaging Spectroradiometer (MODIS) of the Aqua satellite
that our approach can significantly improve the accuracy of
the satellite aerosol data products and reduce the associated
uncertainties. For instance, in our evaluation, the number of
AOD samples within the MODIS Dark Target expected error
envelope increased from 63 % to 85 % when the post-process
correction was applied. In addition to method description and
accuracy results, we also give recommendations for validat-
ing machine-learning-based satellite data products.

1 Introduction

Climate change is one of the most serious problems hu-
mankind is facing today. Despite the long and active re-
search, the future climate projections still contain signifi-
cant uncertainties, and anthropogenic aerosol forcing cur-
rently comprises the largest source of this uncertainty (IPCC,
2014). More accurate information about the anthropogenic
aerosols would help us improve our understanding of anthro-
pogenic aerosol forcing, leading to a significant reduction of
the uncertainties in future climate projections. Kaufman et al.
(2005) and Yu et al. (2009) developed an algorithm to esti-
mate the anthropogenic aerosol component utilizing MODIS
fine-mode aerosol optical depth (AOD) fraction and correc-
tions to exclude fine-mode natural dust and marine aerosols.
The algorithm was only applicable over oceans due to the low
accuracy of the fine-mode fraction over land, directly linked
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to an inaccurate Ångström exponent (AE). Therefore, any
prospects to improve the satellite-based AE, particularly over
land, could bring fundamental advances in measurement-
based estimates of the global aerosol anthropogenic fraction.
Another major global problem is air quality. In 2017, 2 %–
25 % of all deaths globally were attributable to ambient par-
ticulate matter pollution (GBD 2017 Risk Factor Collabo-
rators, 2018). To better monitor and understand air quality
and pollution sources, near-real-time global observations of
aerosols are needed. In this respect, the only way to get wide
coverage and near-real-time information about atmospheric
aerosols is to use satellite aerosol retrievals.

Satellite aerosol retrieval algorithms retrieve the aerosol
optical properties such as AOD given the satellite ob-
served top-of-atmosphere radiances or reflectances and the
measurement geometry information. Other aerosol optical-
property-related quantities, such as the AE, are often de-
rived from the retrieved aerosol optical properties. Currently,
satellite retrieval algorithms for multiple satellite instruments
have been developed and the satellite aerosol data records
span time series that are over 40 years long (Sogacheva et al.,
2020). One of the most widely used satellite aerosol data
products is based on the Moderate Imaging Spectroradiome-
ter (MODIS) data (Salomonson et al., 1989) and the Dark
Target algorithm (Levy et al., 2013). The MODIS Dark Tar-
get data start from the year 2000 and global data are available
from two satellites: Terra and Aqua. The expected error (EE)
envelope for AOD in Dark Target data over land is estimated
to be ±(0.05+ 15%), resulting in relatively large uncertain-
ties, especially in regions with relatively low AOD. For more
information about the concept of the EE envelope, see, for
example, Sayer et al. (2015).

To improve the existing aerosol datasets, machine-
learning-based solutions have been used in many studies.
Most of the approaches that utilize machine learning em-
ploy a fully learned approach for the solution of a satellite
retrieval. In the fully learned approach, a machine-learning-
based model is trained to predict the values of the un-
known aerosol parameters such as AOD given the mea-
surement data (top-of-atmosphere radiances or reflectances)
and observation geometry as the inputs. Neural-network-
based fully learned aerosol retrievals are assimilated into
NASA’s MERRA-2 re-analysis model (Randles et al., 2017).
In Di Noia et al. (2017), a fully learned AOD retrieval neural
network model is used to retrieve the initial AOD for an iter-
ative retrieval algorithm. In Lary et al. (2009), a fully learned
approach with MODIS-retrieved AOD and the surface type
as an additional input was used for the satellite AOD retrieval
with MODIS data. The results of Lary et al. (2009) were
evaluated using the accurate ground-based Aerosol Robotic
Network (AERONET) data (Holben et al., 1998). With neu-
ral networks the authors were able to reduce the bias of
the MODIS AOD data from 0.03 to 0.01, while with sup-
port vector machines even better improvement was reported
– AOD bias was less than 0.001, and the correlation coef-

ficient with AERONET was larger than 0.99. In the above-
mentioned work, the validation was performed using all the
available AERONET stations both for training and valida-
tion. The split between the training and validation datasets
was carried out using random splits of the pixels. With the
random split of all pixels, the data samples from the same
AERONET station were present in both training and eval-
uation datasets. This may lead to overly optimistic results
as the model learns, for example, the surface properties at
the locations of the AERONET stations and can thus predict
the aerosol properties very accurately at these locations but
may not generalize the results to other regions very well. In
Albayrak et al. (2013), a neural-network-based fully learned
MODIS AOD retrieval model was trained and evaluated. In
their model, in addition to MODIS reflectances and mea-
surement geometry information, they used MODIS-retrieved
AOD and its quality flag as additional auxiliary inputs. The
output of their model was AOD. They found their model to
produce more accurate AOD retrievals than the operational
MODIS Dark Target algorithm. In Lanzaco et al. (2017), a
slightly different type of machine-learning-based approach
was used to improve satellite AOD retrievals. The authors
used MODIS AOD retrievals and local meteorology infor-
mation as inputs to predict the AOD in South America. This
approach that combines the conventional AOD retrievals and
local meteorology information was reported to improve the
AOD accuracy over the operational MODIS AOD. A prob-
lem in fully learned approaches is that they fully rely on
trained data and do not employ physics-based models in the
retrievals. This may cause problems in the capability of the
model to generalize to cases in which the inputs are far out-
side the input space spanned by the training dataset.

Following the philosophy of a post-processing correction
strategy, we have developed a new model-enforced machine
learning approach in which we also exploit the models and
the physics-based satellite-derived aerosol retrieval product.
More specifically, we train the machine learning model for
post-process correction of the approximation error in the re-
sult of the conventional retrieval algorithm. While the post-
process correction approach is new to satellite retrievals, it
has been found to perform better and produce more sta-
ble and accurate results than a fully learned approach in
generation of surrogate simulation models (Lipponen et al.,
2013, 2018) and in medical imaging, where many of the in-
verse imaging problems are mathematically highly similar
to the satellite retrieval problems; see for example Hamil-
ton et al. (2019). The key advantages of the new model-
enforced post-process correction approach are (1) the im-
proved accuracy over the existing data products and existing
fully learned satellite data approaches and (2) the possibility
to post-process-correct existing (past) satellite data products
with no need for full re-processing of the enormous satellite
datasets. A reason why our approach outperforms the cur-
rent state-of-the-art fully learned machine learning retrievals
is that the approximation error is a less complicated function
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for machine learning regression than the full physics-based
retrieval. In our proposed correction approach, we combine
the best aspects of the conventional retrievals and machine
learning to get the full information content out of the satellite
data. Our approach is not limited to aerosols and is generally
applicable to different types of satellite data products as long
as suitable training data for the model are available.

The manuscript is organized as follows. The proposed
post-process correction of satellite aerosol retrievals is pre-
sented in Sect. 2. In Sect. 3, the data and models used to
test our approach are shown. Evaluation of the models is pre-
sented in Sect. 4, and results are shown in Sect. 5. The con-
clusions are given in Sect. 6.

2 Post-process correction of satellite aerosol retrievals

Let y be an accurate satellite aerosol retrieval (e.g., AOD) so
that

y = f (x)

= f̃ (x)+
[
f (x)− f̃ (x)

]
= f̃ (x)+ e(x), (1)

where f is an accurate retrieval algorithm and x contains
all the algorithm inputs including the observation geometry
and satellite observations such as the top-of-atmosphere re-
flectances. An approximative retrieval algorithm is denoted
by f̃ . In reality, due to uncertainties in the atmospheric prop-
erties and computational limitations among other reasons, it
is not possible to construct an accurate retrieval algorithm
f , which is why an approximative algorithm f̃ is used in-
stead. The discrepancy between the accurate and approxima-
tive algorithm retrievals, that is the approximation error cor-
responding to f̃ (x), is denoted by

e(x)= f (x)− f̃ (x). (2)

To compute the corrected retrieval in the model-enforced
post-process correction of satellite aerosol retrievals, we use
both the conventional retrieval algorithm f̃ and a machine-
learning-based model ê(x) to predict the realization of the
approximation error e(x), and Eq. (1). Note that this is dif-
ferent from the fully learned model in which the aim is to
emulate the accurate retrieval algorithm f (x) with a ma-
chine learning model f̂ (x). The approximation error e(x) is
a typically less complicated function for machine learning
regression than the full physics-based retrieval f (x), thus re-
sulting in more accurate and reliable results with the model-
enforced correction than with a fully learned approach. For a
chart of conventional retrieval, fully learned machine learn-
ing, and model-enforced post-process correction approaches,
see Fig. 1. Remark that as the training of the post-process
correction is based on existing satellite data and retrievals,
the implementation can be done in a straightforward manner,

for example, using black-box machine learning code pack-
ages. In addition, the post-process correction model is also
flexible with respect to the choice of the statistical regression
model, and the choice of the regression model can be tailored
to different retrieval problems separately.

3 Data and models

For testing the model-enforced post-process correction, we
use MODIS satellite aerosol retrieval data (AOD and AE)
over land from the Aqua satellite. Both the proposed model
enforced correction model and a fully learned model as a
reference are trained and tested using data from the ground-
based AERONET measurements.

3.1 MODIS Dark Target

MODIS instruments are flying on board NASA’s Terra and
Aqua satellites. Terra was launched in the year 1999, and
the MODIS aerosol products currently span a relatively
long time series of about 20 years. MODIS Dark Target
aerosol data products are among the most widely used satel-
lite aerosol data. In this study, we use the 10 km resolution
MODIS Dark Target over land level 2 Collection 6.1 data of
the Aqua satellite (MYD04_L2) from the years 2014–2018
(Levy et al., 2013). MODIS Dark Target aerosol data are
also available with a spatial resolution of 3 km, but as the
10 km data product is the most widely used we chose to use
this data product in our study. We use the AOD retrievals at
wavelengths 440, 550, and 660 nm to compute the AE with a
least-squares linear fit on a log-log scale. We accept all pix-
els with all quality flags in our datasets in this study. In ad-
dition to aerosol quantities, we use the observation (satellite
acquisition and illumination) geometry, land surface altitude,
and retrieval quality flags as inputs for our models from the
aerosol data products in our study.

3.2 AERONET

AERONET is a global network of sun photometers (Hol-
ben et al., 1998). AERONET has a Direct Sun data prod-
uct which contains both the AOD and Ångström exponent
data that we will use in our study. AERONET data are
most commonly used as an independent data source for
aerosol retrieval validation, and all the data are publicly avail-
able at the AERONET website (http://aeronet.gsfc.nasa.gov/,
last access: 16 May 2020). An extensive description of the
AERONET sites, procedures, and data provided is available
from this website. Ground-based sun photometers provide
accurate measurements of AOD, because they directly ob-
serve the attenuation of the solar radiation without interfer-
ence from land surface reflections. The AOD estimated un-
certainty varies spectrally from ±0.01 to ±0.02 with the
highest error in the ultraviolet wavelengths (Eck et al., 1999).
In this study, we will use the AERONET Version 3, Level 2.0
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Figure 1. (a) Conventional satellite retrieval. (b) Fully learned machine-learning-based satellite retrieval approach. (c) Model-enforced post-
process correction satellite retrieval approach.

Direct Sun data for both model training and validation pur-
poses. The AERONET data are divided in cross-validation
to sets of training stations and validation stations for good
generalization of the machine learning model.

3.3 Fully learned and model-enforced post-process
correction models for aerosol retrievals

In this study, in addition to the model enforced post-process
correction model, we also train a fully learned model for the
aerosol retrieval to be used as a reference. We use the random
forest (RF) regressor (Breiman, 2001) as our machine learn-
ing method to train all the machine-learning-based models.
RF is an ensemble learning algorithm that uses regression
trees as base learners. RFs can learn non-linear functions,
and they are relatively tolerant against overfitting. RFs have
been shown to provide highly accurate results in many appli-
cations, and they are relatively straightforward to train with a
low number of hyperparameters to tune in the training. Train-
ing of the RFs can also be done with relatively low compu-
tational costs, and the trained models are fast to evaluate. We
use Python Scikit-Learn library implementation for the RFs
(Pedregosa et al., 2011). During our work we also carried out
preliminary tests with neural-network-based models trained
with the same data as RFs but due to worse performance did
not use them in the final evaluation.

Before training the final models, we carried out a hyperpa-
rameter optimization for each of the models. In the hyperpa-
rameter optimization, we used an exhaustive 3D grid search
and tested all possible combinations of hyperparameters in
our candidate sets using twofold cross validation with our
training data. In the candidate set, we had three hyperparam-
eters to be optimized.

– The number of trees was 100, 200, and 400.

– The maximum depth of a single tree was 30, 40, 50, and
60.

– The maximum number of features to consider when
building the regression trees (as fraction of number of
features) was 100 %, 80 %, 60 %, and 40 %.

For other hyperparameters, the default values of the Scikit-
Learn library were used. Based on the exhaustive grid search
results, we averaged the hyperparameter values of the 10
best performing models measured with the explained vari-
ance metric. The hyperparameter values obtained by the av-
eraging were used for the training of the final models. See
derived values of the optimized hyperparameters in Table 1.

3.3.1 Fully learned model

The fully learned machine learning model f̂ (x) takes the
MODIS observation geometry information and the top-of-
atmosphere reflectance information as inputs and directly
predicts the AOD at 550 nm and AE. The input variables in
the fully learned models for both AOD and AE are the same,
and they are listed in Table 2. Top-of-atmosphere reflectances
include the mean values and standard deviations of the native
MODIS pixels inside the 10 km MODIS aerosol pixel. The
optimal hyperparameter values found in the hyperparameter
optimization are listed in Table 1.

3.3.2 Model-enforced correction model

The model-enforced correction approach takes the same set
of input variables as the fully learned model together with
some additional Dark Target-related variables to predict the
approximation errors for the AOD at 550 nm and AE. In the
evaluation of the trained model-enforced post-process cor-
rection model, an estimate of the approximation error e(x)

is first computed, and Eq. (1) is used to compute the cor-
rected satellite AOD or AE as f̃ (x)+ ê(x), where ê(x) is the
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Table 1. Hyperparameter values used for training the RF models.

AOD AE

Hyperparameter Fully learned Model enforced Fully learned Model enforced

Number of trees 360 320 400 360
Maximum depth of a tree 47 47 46 52
Maximum number of features in a split 68 % 44 % 84 % 68 %

Table 2. Input parameters of the fully learned and model-enforced post-process correction aerosol retrieval models.

Fully learned retrieval model Model enforced post-process correction model

Top-of-atmosphere reflectances at 470, Top-of-atmosphere reflectances at 470,
550, 650, 860, 1240, 1630, and 2110 nm 550, 650, 860, 1240, 1630, and 2110 nm

Sensor zenith and azimuth angles Sensor zenith and azimuth angles

Solar zenith and azimuth angles Solar zenith and azimuth angles

Scattering angle Scattering angle

Land topographic altitude Land topographic altitude

Dark Target-retrieved surface reflectances
at 470, 660, and 2130 nm

Dark Target-retrieved AOD at 470, 550, and 660 nm

Dark Target Ångström exponent based on AOD
retrieved at 470, 550, and 660 nm

Dark Target retrieval quality flag

Dark Target fine aerosol model used for land
retrieval

machine-learning-based estimate of the approximation error
e(x). The input variables in the model-enforced models for
both AOD and AE are the same, and they are listed in Table 2.
Top-of-atmosphere reflectance inputs include the mean val-
ues and standard deviations of the native MODIS pixels in-
side the 10 km MODIS aerosol pixel. The wavelengths used
for the Dark Target-related variables are those that are deliv-
ered in the operational data product files. More information
on the specific details of the Dark Target-related variables
can be found from the Algorithm Theoretical Basis Docu-
ment (ATBD) (Levy et al., 2009). The optimal hyperparame-
ter values found in the hyperparameter optimization are listed
in Table 1.

4 Evaluation of the models

To evaluate the model-derived aerosol data products, we first
collocate the MODIS and AERONET observations. In the
MODIS–AERONET collocation, we follow a similar com-
parison protocol as in Petrenko et al. (2012). For collocated
MODIS pixel and AERONET observation we require

– the distance from the center of a MODIS pixel to an
AERONET stations to be less than 25 km.

– each MODIS pixel to correspond to at least three
AERONET observations within ±30 min from the
satellite overpass.

We use the AERONET AOD at 500 nm and the AE 440–
870 nm to compute the median AERONET AOD at 550 nm
corresponding to the collocated satellite pixels. In the con-
struction of the training dataset, all MODIS pixels fulfill-
ing the above criteria are used. In the construction of the
validation dataset, we compute spatial median values for
the MODIS and temporal median values for the AERONET
AOD and AE values corresponding to a single satellite over-
pass and fulfilling the above criteria. We use medians instead
of averages as recommended in Sayer and Knobelspiesse
(2019) to obtain more representative and outlier-tolerant re-
sults.

To get realistic estimates for the accuracy of the models,
validation is carried out with cross-validation. In our two-
fold cross-validation, we randomly divide AERONET sta-
tions into two groups and use one group of AERONET sta-
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Figure 2. Locations of AERONET stations used in training and testing of the models. Red and blue colors indicate the random grouping of
the stations used in the cross-validation.

tions for training and the other group for validation. To take
full advantage of the data and get a global estimate for the
accuracies of the models, the training and testing are car-
ried out two times with both combinations of the two groups.
The AERONET stations and their groups used in this study
are shown in Fig. 2. We also considered using a conven-
tional cross-validation in which the full dataset would have
been randomly divided into training and validation groups
as is done for example in Lary et al. (2009). In the con-
ventional cross-validation approach, however, the validation
dataset pixels would have almost always contained remark-
ably similar pixels in the training dataset corresponding to
the same AERONET station (e.g., two adjacent pixels). This
would have resulted in overly optimistic results. We tested
the conventional cross-validation approach and obtained al-
most perfect retrievals with the coefficient of determination
R2
= 0.99 for both the fully learned and model-enforced

models. This is a similar result as reported in Lary et al.
(2009). However, to get realistic estimates for the model ac-
curacies, we decided to divide the training and validation
datasets based on AERONET stations so that an AERONET
station is only present in either training or validation datasets
but not in both.

Our goal is to get globally applicable results, and we use
the coefficient of determination R2 based on correlation co-
efficient, root-mean-squared error (RMSE), and median bias
as the metrics to compare the datasets. For AOD datasets, we
also compute the ratio of samples that are inside the Dark
Target over a land EE envelope of ±(0.05+ 15%). In addi-
tion to AOD and AE, we will also evaluate the aerosol index
(AI) that is defined as

AI= AOD ·AE.

AI has been considered a better proxy for cloud condensation
nuclei (CCN) than AOD (e.g., Gryspeerdt et al., 2017), since
AI is more sensitive than AOD to the accumulation mode

aerosol concentration. However, as the AE has not been reli-
able over the land regions (Levy et al., 2010), the AI over
land has not been properly usable either in satellite-based
studies of aerosol–cloud interactions.

5 Results

The developed model-enforced post-process correction
method was tested with MODIS Aqua satellite data over
land. We compare the post-process-corrected datasets to the
operational Dark Target data over land and to a conven-
tional fully learned machine learning retrieval. The number
of samples and AERONET stations in training and validation
datasets are shown in Table 3.

Figure 3 shows the MODIS–AERONET AOD comparison
for the MODIS Dark Target, fully learned regression-based
MODIS data and model-enforced post-process-corrected
Dark Target AOD. The model-enforced correction model is
clearly the most accurate dataset measured with the samples
inside the Dark Target EE envelope (85 %), R2

= 0.87, and
RMSE= 0.08. With both machine-learning-based datasets, a
similar median AOD bias of about 0.01 is obtained while in
the MODIS Dark Target, the median AOD bias is 0.02. The
MODIS Dark Target data also show the non-physical neg-
ative AOD retrievals whereas the fully learned and model-
enforced machine-learning-based datasets do not have sam-
ples with negative AOD. In the fully learned model with a
RF regressor that cannot extrapolate values outside the train-
ing set, the non-negativity of retrieved AOD was expected
as AERONET AOD is always non-negative. As the model-
enforced correction model, however, uses the MODIS Dark
Target AOD as a starting point, this is a very good result as
the model regardless of the negative Dark Target AOD values
learns to predict only non-negative AOD values.
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Table 3. Number of samples and AERONET stations in training and validation dataset groups.

Group 1 Group 2 Total

Training Number of data samples 1 488 482 1 638 409 3 126 891
Number of AERONET stations 278 277 555

Validation Number of data samples 45 365 49 253 94 618
Number of AERONET stations 262 265 527

Figure 3. Comparison of AERONET and MODIS AOD at 550 nm. (a) MODIS Dark Target over land. (b) MODIS fully learned random
forest (RF) regression model. (c) MODIS Dark Target with RF regression-based model-enforced post-process correction. The solid black
line indicates the 1 : 1 line. The dashed black lines show the MODIS Dark Target expected error (EE) envelope.

Figure 4 shows the AE validation results. The results show
that the satellite-based AE over land is clearly a less accu-
rate quantity than the AOD. MODIS Dark Target is clearly
the worst performing retrieval with a low information con-
tent and high uncertainty. Furthermore, the Dark Target AE
values are mostly concentrated around three different values.
This is a clear indication of relatively poor performance of
the Dark Target mixing of fine and coarse aerosol models
over land, which is the reason why there is no operational
Dark Target AE product (Mielonen et al., 2011). Both of
the machine-learning-based models result in a relatively sim-
ilar performance. The model-enforced post-process correc-
tion has the best performance in all the metrics we use.

Figure 5 shows the results for the AI datasets. The accu-
racy of the AI datasets is generally similar to AOD datasets.
Measured with R2 and RMSE the post-process-corrected
dataset has the best accuracy. The machine-learning-based
models have a median bias of 0.02, and the MODIS Dark
Target is free of bias. The MODIS Dark Target AOD has a
positive bias and AE a negative bias, thus resulting in bias-
free AI.

Figure 6 shows the AOD and AE error distributions for
each dataset for four different AOD and AE ranges. For
AOD, the model-enforced post-process-corrected model is
clearly the best performing model for AOD < 0.5. For AOD
larger than 0.5, the machine-learning-based models have
negative bias, but the range of error values is clearly smaller
than in the Dark Target. The samples with AOD > 0.5, how-
ever, represent only about 5 % of all data samples, so more
data are needed for more accurate assessment of the ac-
curacy of the models with large AOD. For AE, AE > 1.0
that corresponds to fine particles clearly results in smaller
bias for machine-learning-based datasets than AE < 1.0.
Generally, the error distribution is certainly narrower with
machine-learning-based datasets than with Dark Target. With
AE < 1.0, Dark Target results in a smaller median bias than
the other datasets.

We also evaluate our datasets by comparing the AOD and
AE with a grouping based on the dominant aerosol types of
the AERONET stations (Sogacheva et al., 2020). Figure 7
shows the error distributions for AOD and AE for AERONET
stations dominated by background aerosol, fine aerosol, and
coarse aerosol. The seasonal classification from Sogacheva
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Figure 4. Comparison of AERONET and MODIS Ångström exponent (AE). (a) MODIS Dark Target over land AE 440–660 nm. (b) MODIS
fully learned random forest (RF) regression model AE 440–870 nm. (c) MODIS Dark Target AE 440–660 nm with RF regression-based
model-enforced post-process correction. The solid black line indicates the 1 : 1 line.

Figure 5. Comparison of AERONET and MODIS aerosol index (AI). (a) MODIS Dark Target over land. (b) MODIS fully learned random
forest (RF) regression model. (c) MODIS Dark Target with RF regression-based model-enforced post-process correction. The solid black
line indicates the 1 : 1 line.

et al. (2020) is used for the classification of the AERONET
stations according to the prevailing aerosol type. The results
for both AOD and AE show that for aerosol stations domi-
nated by background aerosol and fine aerosol the machine-
learning-based datasets clearly perform better than the Dark
Target. The background-aerosol-dominated data form the
clear majority of the data (80 % of all samples), and the
model-enforced post-process-corrected dataset is clearly the
best performing dataset for these AERONET stations. For
coarse-aerosol-dominated AERONET stations, the Dark Tar-

get has a smaller bias in the data than other datasets. Coarse-
aerosol-dominated AERONET station data, however, have
only about 3 % of all the samples in both training and valida-
tion, and thus more data are needed for further assessment of
the results with coarse aerosol data and for better training of
the machine learning methods.

To analyze the possible reasons for the improvements in
the AOD accuracy, we also examined the correlations be-
tween the improvement in the AOD accuracy and some post-
process correction model inputs and training parameters. In
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Figure 6. Error distribution in AOD at 550 nm (a) and Ångström exponent (AE) (b) in different validation datasets. The data are grouped to
four different groups based on AERONET AOD and AE. The numbers at the top of the figure indicate the number of validation samples in
each group. The box shows the 25 %–75 % quartiles of the datasets. The whiskers extend to display the rest of the distribution, except for
points that are determined to be outliers. The notch in the box shows the 95 % confidence interval around the median.

Figure 7. Error distribution in AOD at 550 nm (a) and Ångström exponent (AE) (b) in different validation datasets. The data are grouped
based on dominant aerosol type of AERONET stations based on Sogacheva et al. (2020). The numbers at the top of the figure indicate the
number of validation samples in each group. The box shows the 25 %–75 % quartiles of the datasets. The whiskers extend to display the rest
of the distribution, except for points that are determined to be outliers. The notch in the box shows the 95 % confidence interval around the
median.
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this analysis, we used seasonal averages of the improvements
in the mean absolute error of AOD from each AERONET
station. The input variables used for the AOD improvement
correlation test included the measurement-geometry-related
variables such as solar zenith angle, sensor zenith angle, and
relative azimuth angle, AERONET AOD, AERONET station
elevation, Dark Target fine aerosol model, and the number
of training data samples used to train the post-process cor-
rection model. We also analyzed the geographic locations of
the AERONET stations for which the post-process correc-
tion model performed best and worst by visual inspection. In
these correlation analyses, we did not find a clear pattern to
explain AOD accuracy improvements.

The results of the post-process-corrected aerosol dataset
show that it is highly beneficial to combine both the physics-
based retrieval algorithm and machine-learning-based post-
process correction.

6 Conclusions

A model-enforced post-process correction method for the
satellite aerosol retrievals was developed. In the correction
method, a machine-learning-based model is trained to pre-
dict the approximation error in the conventional aerosol re-
trievals, and the estimate of the error is used to correct the
retrievals. The proposed post-process correction approach is
computationally efficient and processing of the existing satel-
lite aerosol datasets does not require the much larger radiance
datasets. The proposed approach is also generic in the sense
that it does not require modifications to the original retrieval
algorithm. The approach is also flexible with respect to the
machine learning model (e.g., neural network, random for-
est), which can be chosen case specifically for each satellite
dataset.

We found that the post-processing correction method re-
sulted in significantly improved accuracy of the MODIS
AOD and AE retrievals over land. With the proposed cor-
rection we obtained AOD bias smaller than the accuracy of
the accurate ground-based AERONET AOD. Furthermore,
the correction approach resulted in better accuracy retrievals
than the conventional fully learned machine-learning-based
models in which the satellite observations are used to directly
predict the accurate retrievals. In many applications, even a
small improvement in the aerosol characterization accuracy
and precision could be translated into a significant gain, e.g.,
in remote sensing of land-surface-derived products such as
solar-induced fluorescence or surface-reflectance-based in-
dices within the visible and near-infrared parts of the spec-
trum. However, due to the small number of cases available
with high AOD values, further studies would be required to
better assess the post-process correction method’s accuracy
in high-AOD scenarios.

Compared to the Dark Target algorithm performance, the
improved AOD and AE retrievals derived from the post-

processing correction lead to a significant gain in the compu-
tation of the aerosol index (AI) over land. The accurate AI re-
trievals, especially for the small AI values, are highly impor-
tant, for example, for the aerosol–cloud interaction studies
in which AI is commonly used as a proxy for the CCN con-
centration. Here we observe that with the machine-learning-
based retrievals there are a significantly lower number of
highly biased AI retrievals, especially corresponding to small
AI values. Improvement of small AI retrievals is highly ben-
eficial, especially for the aerosol–cloud interaction studies.
For the land satellite remote sensing community, any im-
provement in the aerosol characterization is translated into
an important gain in terms of the achieved satellite-derived
surface reflectance accuracy. In this regard, the use of the
post-processing approach opens up the possibility to easily
re-correct the long satellite-based land surface property time
series.

We also found that the conventional cross-validation, in
which the pixels of the full dataset are randomly divided into
training and validation datasets, may lead to overly optimistic
results in machine-learning-based algorithms for satellite re-
trievals. This is because too similar pixels corresponding to
the same AERONET station are in both training and valida-
tion datasets. In our study, if we carried out this conventional
cross-validation we would have obtained almost perfect re-
trievals with coefficient of determination R2

= 0.99. This is
a similar result that can be found in some publications eval-
uating machine-learning-based approaches for satellite re-
trievals. We tackled the cross-validation issue by dividing the
data into training and validation datasets by AERONET sta-
tion.

Even though we tested the proposed approach with satel-
lite aerosol data, our approach is not limited to aerosols only
and is generally applicable to different types of satellite data
products as long as suitable training data are available. In
addition to observational data, simulated data could be suit-
able for training the post-process correction models in some
applications. As we use an ensemble method random forest
for the correction, it could be possible to use the spread of
the ensemble members outputs to obtain pixel-based uncer-
tainty estimates for the corrected retrievals. Furthermore, a
sensitivity study for the post-process correction models could
provide us valuable information on the weak parts of the con-
ventional retrieval algorithms, and they could be used as a
tool to assess the retrieval sensitivity.
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