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Abstract. Thermodynamic profiles in the planetary bound-
ary layer (PBL) are important observations for a range of
atmospheric research and operational needs. These profiles
can be retrieved from passively sensed spectral infrared (IR)
or microwave (MW) radiance observations or can be more
directly measured by active remote sensors such as wa-
ter vapor differential absorption lidars (DIALs). This paper
explores the synergy of combining ground-based IR, MW,
and DIAL observations using an optimal-estimation retrieval
framework, quantifying the reduction in the uncertainty in
the retrieved profiles and the increase in information content
as additional observations are added to IR-only and MW-
only retrievals.

This study uses ground-based observations collected dur-
ing the Perdigão field campaign in central Portugal in 2017
and during the DIAL demonstration campaign at the Atmo-
spheric Radiation Measurement Southern Great Plains site in
2017. The results show that the information content in both
temperature and water vapor is higher for the IR instrument
relative to the MW instrument (thereby resulting in smaller
uncertainties) and that the combined IR+MW retrieval is
very similar to the IR-only retrieval below 1.5 km. How-
ever, including the partial profile of water vapor observed by
the DIAL increases the information content in the combined
IR+DIAL and MW+DIAL water vapor retrievals substan-
tially, with the exact impact vertically depending on the char-
acteristics of the DIAL instrument itself. Furthermore, there
is a slight increase in the information content in the retrieved
temperature profile using the IR+DIAL relative to the IR-
only; this was not observed in the MW+DIAL retrieval.

1 Introduction

High-temporal-resolution thermodynamic profiles in the
planetary boundary layer (PBL) are needed for a wide
range of research and operational weather forecasting needs
(Wulfmeyer et al., 2015). For example, the vertical distribu-
tion of water vapor and temperature changes markedly over
the diurnal cycle, the passage of synoptic features such as
frontal boundaries and dry lines can cause very rapid changes
in the thermodynamic structure of the PBL and the evolution
of convective weather with evaporation-driven cold pools im-
pacts both the temperature and humidity profiles and feeds
back on the storm’s evolution. Indeed, a large number of
groups have called for improvements in thermodynamic pro-
filing in the PBL, and the establishment of ground-based net-
works to provide these datasets to the atmospheric science
community (e.g., Dabberdt et al., 2005; NRC, 2009).

Progress is being made, albeit perhaps slowly. There are
a large number of case studies using PBL thermodynamic-
profiling systems to gain insight into how the convective
properties of the atmosphere change (e.g., Feltz et al., 2003;
Cimini et al., 2015; Bluestein et al., 2017; Toms et al., 2017;
Mueller et al., 2017), analyses of long time series to show the
capability of these systems (Löhnert and Maier, 2012; Wag-
ner et al., 2008), and utility for improving short-term now-
casts and forecasts (e.g., Cimini et al., 2011; Caumont et al.,
2016; Hu et al., 2019; Coniglio et al., 2019).

In Europe, there are a large number of microwave ra-
diometers that are being characterized and assimilated (ex-
perimentally) into numerical weather prediction models (Ci-
mini et al., 2018; De Angelis et al., 2017). Activities in the
US have focused primarily on field campaigns and the Plains
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Elevated Convection at Night (PECAN; Geerts et al., 2017)
in particular, which deployed a small network of six infrared
spectrometers in the central US. The PECAN observations
are being used to study a range of atmospheric phenomena
both observationally (e.g., Gasmick et al., 2018; Loveless et
al., 2019) and via use in numerical weather prediction mod-
els (Johnson et al., 2018; Degelia et al., 2019).

However, these different ground-based remote sensors
have generally not been collocated, which makes evaluating
the relative differences in the information content of the ob-
servations difficult. This paper takes advantage of two field
campaigns where multiple ground-based remote sensing sys-
tems were collocated to evaluate the relative strengths and
weaknesses of these different observations for thermody-
namic profiling in the PBL. The two campaigns are Perdigão,
which occurred in central Portugal in May–June of 2017
(Fernando et al., 2019), and a campaign at the Department
of Energy’s Atmospheric Radiation Measurement (ARM)
Southern Great Plains site (Sisterson et al., 2016) in May–
June 2017 to compare a newly developed broadband differ-
ential absorption lidar for water vapor profiling with other
instruments (Newsom et al., 2020).

2 Instruments

While there are many different instruments that could be in-
cluded in this analysis, we focus on four instruments that
have been demonstrated to run operationally in unattended
modes for weeks or longer and either already are or will
likely soon become commercially available. Two of these in-
struments are passive remote sensors (i.e., they do not trans-
mit electromagnetic energy to the atmosphere), while two are
active remote sensors.

2.1 Microwave radiometer

One type of passive thermodynamic profiler is a microwave
radiometer (MWR). MWRs used for thermodynamic pro-
filing typically have multiple channels along the high-
frequency side of the 22.2 GHz water vapor absorption line
(i.e., from 22.2 to 31 GHz) and on the low-frequency side
of the 60 GHz oxygen absorption complex (i.e., from 51 to
60 GHz). Height-dependent pressure broadening of the wa-
ter vapor line allows the retrieval of a coarsely resolved wa-
ter vapor profile, whereas temperature profile information is
obtained from the frequency-dependent optical depth. Gen-
erally speaking, the more transparent frequencies provide in-
formation through a deeper portion of the atmosphere, and
the optically thick channels provide information closer to the
MWR. Oxygen is well mixed in the atmosphere, and its con-
centration is known; thus the downwelling radiance observed
in the channels that are primarily sensitive to oxygen can
be used to infer the temperature profile. Water vapor con-
centration profiles can be determined from the channels that

have sensitivity to water vapor after the temperature profile
is known. However, there is some level of absorption due to
oxygen in the 22–31 GHz range and water vapor in the 51–
60 GHz range, so retrieval methods need to account for this
“cross-talk” and provide some estimate of the correlated er-
rors in the retrieved profiles.

For this study, we used a 14-channel Humidity and Tem-
perature Profiling (HATPRO) microwave radiometer (Rose
et al., 2005). This is a fourth-generation system, which is
part of the Collaborative Lower Atmospheric Mobile Profil-
ing System (CLAMPS; Wagner et al., 2019). The instrument
specifications are given in Table 1. The radiometric uncer-
tainty in these observations was determined via a time series
analysis of the observed brightness temperatures when the
atmosphere could be assumed to be quasi-stationary. These
values are provided in Table 1. These radiometric uncertain-
ties are assumed to be uncorrelated between the different
channels.

2.2 AERI

The second passive remote sensor studied here is the Atmo-
spheric Emitted Radiance Interferometer (AERI). The AERI
is a Fourier transform spectrometer designed to measure in-
frared radiation emitted by the atmosphere between 3.3 and
19 µm in wavelength (3000 to 520 cm−1) with a spectral res-
olution of 0.5 cm−1. The AERI was designed specifically
for the Department of Energy’s Atmospheric Radiation Mea-
surement (ARM) program (Knuteson et al., 2004a, b; Turner
et al., 2016a). Its specifications can also be found in Table 1.

The radiometric uncertainty in the AERI observations is
derived from the imaginary component of the AERI’s cali-
bration equation (Revercomb et al., 1988), and thus the noise
spectrum can be derived for each sky observation period.
Turner and Blumberg (2019) have demonstrated that the ra-
diometric noise in the AERI observations is spectrally uncor-
related.

2.3 NCAR water vapor DIAL

Water vapor differential absorption lidar (DIAL) works by
transmitting pulsed laser energy at two wavelengths, one of
which is selected to have markedly higher water vapor ab-
sorption than the other. These two frequencies are typically
referred to as the online and offline frequencies. If the two
wavelengths are spectrally close to each other (e.g., within a
nanometer in wavelength), then many of the terms that de-
scribe the ratio of the strength of the backscattered signals
cancel out. The ratio of the online to offline return signals is
directly related to the water vapor concentration profile.

The National Center for Atmospheric Research (NCAR)
has developed a micropulse water vapor DIAL. The approach
used by this lidar is the so-called “narrowband DIAL” ap-
proach, wherein the laser emits monochromatic pulses of en-
ergy. Thus, because the characteristics of the absorption line
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Table 1. Important specifications of the instruments used in this paper.

Instrument Specifications

MWR
(HATPRO G4)

– Seven frequencies between 22.2 and 31.4 GHz
– Seven frequencies between 51.2 and 58.0 GHz
– Off-zenith data collected at elevations of 18 and 162◦

– Sky average of 1 s, with elevation scans performed every 5 min; retrieval used single spectrum (both zenith
and off-zenith) at desired time (e.g., close to sonde launch time)
– Reference: Rose et al. (2005)

AERI – A total of 324 wavenumbers in these intervals: 612–618, 624–660, 674–713, 713–722, 538–588, 860.1–864.0,
872.2–877.5, 898.2–905.4 cm−1

– Sky average of 15 s every 30 s; retrieval used single spectrum at desired time (e.g., close to sonde launch time)
– Principal component noise filter used to reduce random error (Turner et al., 2006)
– Reference: Knuteson et al. (2004a, b)

nDIAL – Narrowband DIAL, transmitting at 830 nm
– Temporal resolution: 1 min
– Vertical resolution: 75 m
– Minimum height: 500 m; maximum height was approx. 3 km (typical)
– Telescope receiver area (far field): 935 cm2

– Average transmitted pulse power: 5 µJ pulses at 9 kHz (45 mW)
– Reference: Spuler et al. (2015), Weckwerth et al. (2016)

vDIAL – Broadband DIAL, transmitting at 911 nm
– Temporal resolution: 20 min
– Vertical resolution: variable from 100 m at 100 m a.g.l. to 200 m at 1 km
– Minimum height: 50 m; maximum height was approx. 1 km (typical)
– Telescope receiver area (far field): 615 cm2

– Average transmitted pulse power: 5.5 µJ pulses at 8 kHz (44 mW)
– Reference: Newsom et al. (2020)

are well known, the method is self-calibrating, and no exter-
nal calibration source is needed. Narrowband DIAL systems
require extremely high spectral purity in the outgoing laser
as subtle changes in the wavelength (especially for the on-
line channel), even for a small number of laser pulses in the
averaging window, can introduce biases in the derived water
vapor profile because the incorrect absorption cross-section
is used in the derivation.

The laser in the NCAR DIAL, henceforth called the
nDIAL, emits low pulse energies at a high pulse repetition
rate (Spuler et al., 2015). The outgoing laser beam is ex-
panded by a portion of the primary telescope, which makes
the lidar system eye-safe. The nDIAL system has its ori-
gins at Montana State University (MSU), wherein commer-
cially available laser diodes developed for telecommunica-
tions were used as the laser source (Nehrir et al., 2012), and
MSU continues to collaborate with the NCAR to advance the
nDIAL technology. A single photon counting detector is used
to detect the backscattered signals in both the online and of-
fline channels. High-transmission, narrowband interference
filters are used to reject energy (e.g., solar background) out-
side the desired frequency range of the desired signals. The
technical details of this system are provided in Table 1.

The signal-to-noise ratio (SNR) in DIAL systems is
strongly dependent upon the strength of the backscattering
signal as a function of range. Aerosol particles provide an
efficient scattering source, and because aerosol concentra-
tion decreases markedly above the top of the PBL, the SNR
also drops sharply above this level. However, the actual range
wherein the lidar makes good water vapor measurements is
a function of the pulse energy, the efficiency of the detec-
tor system (e.g., size of the telescope, transmission of the
detection optics, sensitivity of the detector), and the vertical
profiles of both the aerosol and water vapor concentrations.
For this study, the backscattered-photon data were co-added
(i.e., photons were accumulated) for 1 min before deriving
the water vapor profile.

Virtually all lidar systems have difficulties accurately mea-
suring atmospheric properties close to the lidar itself. Ulti-
mately, this is due to a mismatch between the outgoing laser
beam and the detector and leads to a systematic error that
varies with height. This systematic error reduces to zero at
some range, and the region where the error is nonzero is re-
ferred to as the “overlap” region. For many lidar systems,
an empirically determined correction can be applied to re-
duce the maximum range of the nonzero overlap error. For
the current version of the nDIAL, approximately the lowest
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500 m suffers from a varying overlap correction (S. Spuler,
personal communication, 2019) and thus is not used in this
analysis.

The uncertainty in the nDIAL observations is directly cal-
culated by assuming that the detected backscatter signal fol-
lows a Poisson distribution and propagating the uncertainty
in the backscatter profile through the DIAL equation. A sim-
ilar approach was used for the Southern Great Plains (SGP)
Raman lidar, and the noise estimate derived from Poisson
statistics agrees with that derived using an autocovariance
analysis (Turner et al., 2014).

The nDIAL has been deployed in a number of different
field campaigns. In particular, the water vapor profile ob-
served by the nDIAL has been compared to water vapor pro-
files measured by radiosondes and independently retrieved
from collocated AERI and MWR systems (Weckwerth et
al., 2016). These comparisons demonstrate that the nDIAL
agrees well with these other sensors (e.g., the bias error rela-
tive to radiosondes is less than 0.3 g m−3) and has no signif-
icant day vs. night differences in sensitivity (e.g., due to so-
lar background). In 2018, NCAR constructed four additional
units (bringing the total number of nDIAL systems to five),
which were deployed in a network configuration at the De-
partment of Energy’s Atmospheric Radiation Measurement
(ARM) SGP site (Sisterson et al., 2016) from April through
July 2019.

2.4 Vaisala water vapor DIAL

Vaisala is also developing a micropulse water vapor DIAL
(henceforth called the vDIAL). This lidar system is based
upon the CL51 ceilometer design, a ceilometer used oper-
ationally around the world. Unlike the nDIAL, the vDIAL
transmits a spectrally broad pulse of laser energy that encom-
passes several water vapor absorption lines (“online chan-
nel”) and in a nearby spectral window with no absorption
lines (“offline”). This approach is less technically demand-
ing on the laser specifications (e.g., the requirement for high
spectral purity is much smaller), but the tradeoff is that the
measurement is no longer self-calibrating (Newsom et al.,
2020). For this particular broadband DIAL implementation,
the reference measurement is a well-calibrated surface-level
in situ sensor integrated into the DIAL, and measurements
from this sensor are used in an iterative-retrieval approach to
derive the water vapor profile (Newsom et al., 2020).

The vDIAL actually consists of two independent broad-
band DIAL systems integrated together. The first system has
a wide field of view, thereby resulting in a very small over-
lap region and allowing the lidar to profile water vapor down
to 50 m a.g.l. (above ground level). However, this wide field
of view results in additional solar background photons, and
the SNR decreases very rapidly with range. The second sys-
tem has a much narrower field of view, which results in a
deeper overlap region but also enables the lidar to profile wa-
ter vapor much higher. Cross-talk between the two indepen-

dent systems is eliminated by operating one system for 5 s
and then operating the other for the next 5 s. The water vapor
profiles are derived independently for the wide and narrow
field-of-view systems, and then they are merged linearly be-
tween 300 and 400 m. Additional details on this system are
provided in Newsom et al. (2020).

The vDIAL system uses analog detection, and thus the un-
certainties in the backscatter do not follow a Poisson distri-
bution like in the nDIAL. Instead, the uncertainties in the
vDIAL water vapor profile are estimated by deriving water
vapor profiles every 2 min and computing the standard devi-
ation from these data at each height across a 20 min window
to provide the uncertainty in the standard 20 min average wa-
ter vapor profile.

The vDIAL system was deployed to the ARM SGP in
May–June 2017, where it was compared against water va-
por profiles observed by the ARM Raman lidar (Turner et
al., 2016b; Turner and Goldsmith, 1999) and radiosondes and
retrieved from the AERI.

3 Retrieval algorithm

Passive spectral radiometers, such as MWRs and AERIs,
measure radiance, and thermodynamic profiles must be re-
trieved from these observations. However, this is an ill-posed
problem as there could exist multiple solutions (e.g., differ-
ent thermodynamic profiles) that would yield the observed
radiance. Thus, the retrieval algorithm must incorporate ad-
ditional information to constrain the solution to a potentially
valid solution. Here, we have elected to use the optimal-
estimation approach (Rodgers, 2000; Maahn et al., 2020),
which is a one-dimensional variational method. We have
modified the AERIoe optimal-estimation retrieval algorithm
(Turner and Löhnert, 2014) to use AERI and/or MWR data,
together with an a priori dataset that specifies how temper-
ature and humidity covary with height, as input. This algo-
rithm has already been modified to include additional obser-
vations, such as water vapor lidars (Turner and Blumberg,
2019), and thus in these cases the retrieval is finding the tem-
perature and humidity profiles that satisfy both the observed
radiance and the (partial) profile of water vapor observed by
the DIAL simultaneously.

We desire to retrieve the thermodynamic profile X,
i.e., both the temperature and humidity profile, so X =[[
T1,T2, . . .,Tp

]T
,
[
q1,q2, . . .,qp

]T ], where Ti and qi are the
temperature and water vapor mixing ratio in the ith vertical
bin. We refer to Xn as the state vector on the nth iteration.
The observations from the AERI, MWR, and DIALs form the
observation vector Y . A forward model F is used to compute
a pseudo-observation F (X), which is then compared with Y .
If they disagree, then the state vector is modified to provide
a new estimate (Xn+1) following
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Xn+1 =Xa+
(
γ S−1

a +K
T
n S
−1
ε Kn

)−1
KT
n S
−1
ε

(Y −F (Xn)+Kn (Xn−Xa)) , (1)

where K is the Jacobian of F , Xa is the mean a priori, and Sa
is the covariance matrix of the a priori dataset (see Sect. 3.2).
Sε denotes the combined forward model and observation er-
ror covariance matrix. The observation error for the single
instruments is considered as described in the subsection of
Sect. 2, and the forward model uncertainty is discussed in
Sect. 3.1. The superscripts T and −1 denote matrix trans-
pose and matrix inverse, respectively. Because F is moder-
ately non-linear in X, optimal estimation is formulated as an
iterative method, where the subscript n indicates the iteration
number; for our studies, we typically start with X0 =Xa.
The scalar γ is used to stabilize the retrieval when n is small
to improve the convergence rate and decreases to unity as
n increases; the description of how γ is used is explained in
Turner and Löhnert (2014). Note that due to the non-linearity
of the forward models applied for the microwave and infrared
radiative transfer, the Jacobians are required to be recom-
puted for each iteration. We continue to iterate Eq. (1) until

(F (Xn+1)−F (Xn))
T
(
KnSaK

T
n + Sε

)−1

(F (Xn+1)−F (Xn))� m, (2)

where m is the dimension of Y .

3.1 Forward models

As shown by Eq. (1), a forward model is needed to transform
the current state vector Xn into the observational domain so
it can then be compared to the observation vector Y . In this
study, four different forward models are used (one for each
instrument).

For the passive radiometers, the forward models are
line-by-line radiative transfer models. The monochromatic
MonoRTM radiative transfer model (Clough et al., 2005;
Payne et al., 2011) is used to simulate MWR observa-
tions, and the line-by-line radiative transfer model LBLRTM
(Clough and Iacono, 1995; Mlawer and Turner, 2016) is used
to simulate the AERI. In the latter, the monochromatic spec-
tra are convolved with a top hat function in the time domain
and then transformed to the spectral domain via a Fourier
transform; this applies the AERI’s line shape function to the
calculation. The vertical grid used in these calculations is
specified by the a priori data. The pressure profile is com-
puted from the temperature and humidity data from the cur-
rent state vector using the hypsometric equation. The spectral
regions used in the retrieval are given in Table 1. In the in-
frared, many trace gases have absorption bands, and while
the spectral regions used in the retrieval are primarily sen-
sitive to water vapor and carbon dioxide (where the latter

provides the sensitivity to temperature), there are minor con-
tributions to the downwelling radiance by other gases. We
utilize the US Standard Atmosphere to provide profiles of
these other trace gases for this study, but our results are in-
sensitive to this choice.

To incorporate the DIAL data into Eq. (1), a forward
model is needed for each lidar also. The purest forward
model would simulate the profiles of backscatter energy that
would be observed in both the on and offline channels for a
given water vapor profile. We could have also used the profile
of differential optical depth between range bins as our obser-
vation. However, we have elected to use the derived water va-
por concentration from each lidar in the observation vector.
This results in a trivial forward model for each lidar: essen-
tially, the forward model just converts water vapor mixing
ratio to water vapor number concentration for the nDIAL.
The output of the vDIAL is water vapor mixing ratio so that
forward model is just the unity function.

3.2 The a priori dataset

There has been only one campaign that had an AERI, HAT-
PRO, and water vapor DIAL collocated with each other: the
Perdigão campaign that was held in Portugal from 1 May
to 15 June 2017 (Fernando et al., 2019). We specified a
48-level vertical grid for the retrievals, starting at 0 m a.g.l.
with the next level at 10 m a.g.l., and each subsequent height
bin is 10 % thicker than the previous one. Although ∼ 150
radiosondes were launched during Perdigão, these are not
enough to accurately compute the level-to-level covariance
for the 96-element state vector (i.e., X has 48 levels for tem-
perature and 48 for water vapor). Therefore, we used 1571
radiosondes launched in the months of April, May, June, and
July over the last decade by the Portuguese weather service
at Lisbon to compute Xa and Sa. This a priori information
was used in all of the retrievals shown here.

The vDIAL was not part of the Perdigão deployment, so
we use AERI and vDIAL data collected between 15 May and
12 June 2017 at the SGP site instead. Both the Perdigão and
SGP datasets used here were collected in the spring, but the
SGP climatology is different than that in Portugal, necessi-
tating the use of a different a priori dataset. We have used
over 2000 radiosondes launched at SGP during the months
of April, May, and June over the past decade to derive the a
priori information for this site.

3.3 Characterizing the information content in the
retrieved profile

One advantage of the optimal-estimation framework is that
the uncertainties in the retrieval, which include contributions
from both the uncertainties in the observations and a priori
as well as the sensitivity of the forward model, are a direct
output of the framework. If the “optimal” solution is Xop,
which is the solution after both γ = 1 and Eq. (2) indicate
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that the solution has converged after nc iterations, then the
covariance of the optimal solution is given by

Sop =
(
S−1

a +K
T
ncS
−1
ε Knc

)−1
. (3)

We look at the square root of the diagonal elements of Sop
to quantify how the 1σ uncertainties in the retrieved profiles
change as different instrument combinations are used in the
observation vector.

A second advantage of this method is that the averaging
kernel A provides a direct estimate of the sensitivity of the
retrieved profile at each height to perturbations at that height.
This matrix is computed as

A=
(
S−1

a +K
T
ncS
−1
ε Knc

)−1
KT

ncS
−1
ε Knc = I− SopS

−1
a . (4)

The diagonal components of A provide the degrees of free-
dom for signal (DFS; Rodgers, 2000) for each height in the
retrieved profile. If the observations had very high informa-
tion content at each level of the retrieved profile, then the
diagonal elements of Sop would be small relative to the diag-
onal elements of the a priori, and thus the trace of A would
approach the dimension of X. The total DFS, which are equal
to the trace of A, provide a metric for how many independent
pieces of information exist in the observation.

For this study, we recognize that the matrices A, Sop, and
Sa really have four equal-sized quadrants that correspond to[
(T ,T ) (T ,q)

(q,T ) (q,q)

]
.

We look at the portions of A and Sop that correspond to
(T ,T ) and (q,q) independently. Furthermore, as we can see,
the DFSs are typically much smaller than unity, so we look at
the profile of the cumulative DFS (cDFS) as this allows us to
quickly determine how many independent levels are below
some specified height, which is advantageous when talking
about where in the vertical the different instruments provide
sensitivity to changes in temperature and water vapor.

We want to highlight that even though lidars make explic-
itly range-resolved measurements, their information content
in the derived water vapor profile is not the same as the num-
ber of range bins. The actual information content at height z
depends strongly on the noise level of the observation there.
Even direct derivations of water vapor from lidar signals
would benefit from being cast into a retrieval framework sim-
ilar to what we have specified in Eq. (1) because then the a
priori information could be used to constrain the derived wa-
ter vapor when the instrument’s SNR decreases (e.g., Sica
and Haefele, 2016).

4 Results

Several studies have demonstrated that ground-based ther-
modynamic retrievals in the PBL using only AERI observa-
tions have 2–4 times larger total DFS in both temperature

and water vapor than retrievals that use only microwave data
(Löhnert et al., 2009; Blumberg et al., 2015; Wulfmeyer et
al., 2015). However, what is not known is how the infor-
mation content changes when partial profiles of water va-
por from a differential absorption lidar (since the DIAL ob-
servations extend only from the top of the region, where
full overlap is achieved, to a height where its SNR becomes
small) are included in a retrieval considering the synergy of
AERI, MWR, and nDIAL or vDIAL. For example, does in-
cluding a partial water vapor profile in the retrieval result in
AERI+DIAL and MWR+DIAL having equivalent cDFS
for water vapor? Does including a partial water vapor profile
in a simultaneous retrieval of T (z) and q(z) (as we are doing
here in Eq. 1) improve the temperature profile in any way?

In order to answer these questions, we performed eight sets
of retrievals using data from the Perdigão field campaign in
Portugal (Table 2): four were using passive-only measure-
ments (MWRz, MWRzo, AERI, and AERI+MWRz), and
four included the nDIAL together with those passive mea-
surements. “MWRz” denotes the case when only zenith-
pointing MWR brightness temperature observations were
used in the retrieval, whereas “MWRzo” denotes the case
when both zenith and off-zenith (i.e., “oblique” elevation
scans) are used. Crewell and Löhnert (2007) demonstrated
that adding elevation scan observations at frequencies where
the atmosphere is optically thick and assuming horizontal
homogeneity of the PBL resulted in a marked increase in
the information content and hence accuracy of the retrieved
temperature profile. However, only observations made at fre-
quencies above 55 GHz are used in these elevation scans.
Even at low elevation angles, frequencies below 55 GHz are
too transparent, and thus the assumption of horizonal homo-
geneity fails very frequently (Crewell and Löhnert, 2007).

As the vDIAL will soon be the first commercially available
DIAL instrument for water vapor profiling (H. Winston, per-
sonal communication, 2019), a major objective is to evalu-
ate how including this lidar dataset with passive observations
changes the information content in the retrieved profiles. In
addition, we show the impact of the vDIAL relative to the
nDIAL on our retrievals. However, vDIAL (ARM SGP) and
nDIAL (Perdigão) observations are only available at differ-
ent locations with different a priori datasets. In order to over-
come this issue, the comparisons were carried out in relation
to the AERI instruments, which operated at both sites. The
comparison of the AERI-only from ARM SGP and Perdigão
allows us to characterize the impact of the prior on the re-
trievals since the two AERI instruments deployed in Portu-
gal and at the SGP site have similar error characteristics (not
shown). Ultimately, we have looked at the differences be-
tween the AERI-only and AERI+ xDIAL retrievals (where
x is either “v” or “n”) at the two sites.
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Table 2. Average uncertainty values (derived from Sop) at three levels for temperature and humidity for the different instrument combinations
used in this study. The passive-only retrievals are highlighted in gray, whereas the active+ passive are in white. The values in parentheses
at 3 km show the 10th and 90th percentile at that height, thereby providing a measure of the amount of variability in these statistics for each
retrieval.

Temperature uncertainty (◦C) Water vapor uncertainty (g kg−1)

500 m 1000 m 3000 m 500 m 1000 m 3000 m

MWRz-only 1.1 1.6 1.4 (1.3,1.4) 1.1 1.4 0.9 (0.8,0.9)
MWRzo-only 1.1 1.5 1.4 (1.3,1.4) 1.1 1.3 0.9 (0.8,0.9)
AERI-only 0.6 0.9 1.0 (0.9,1.2) 0.7 1.0 1.0 (0.8,1.1)
AERI+MWRz 0.6 0.9 0.9 (0.8,1.3) 0.7 1.0 0.7 (0.6,0.8)
MWRz+ nDIAL 1.0 1.4 1.3 (1.3,1.4) 0.7 0.7 0.7 (0.5,0.9)
MWRzo+ nDIAL 1.0 1.3 1.3 (1.3,1.4) 0.7 0.7 0.7 (0.5,0.8)
AERI+ nDIAL 0.5 0.8 0.9 (0.8,1.2) 0.6 0.6 0.7 (0.5,1.1)
AERI+MWRz+ nDIAL 0.5 0.8 0.9 (0.8,1.2) 0.6 0.6 0.6 (0.4,0.8)
AERI-only (SGP) 0.4 0.6 1.0 (0.8,1.4) 0.7 1.0 1.8 (0.9,1.5)
AERI+ vDIAL (SGP) 0.4 0.6 1.0 (0.8,1.4) 0.4 0.7 1.1 (0.8,1.4)

Figure 1. The retrieved profiles of temperature (a) and water vapor (b), with the uncertainties in these profiles (c, d, respectively), for the
passive-only retrievals with the MWRzo-only (red), AERI-only (green), and AERI+MWRzo (blue) on 05:07 UTC on 15 May 2017 during
Perdigão. The collocated radiosonde temperature and water vapor profiles are shown in black in (a) and (b), respectively. The water vapor
observed by the DIAL and its uncertainty are included in the figure, although it is not used in any of these retrievals. The dotted black lines
in (a) and (b) are the mean prior profiles

4.1 Case study example

To illustrate the differences between the various passive-only
and passive+ active retrievals, we selected a case during
Perdigão on 15 May 2017 at 05:07 UTC. This is a clear-sky
event and is representative of the retrieval quality during the
entire field campaign. Figure 1 shows the retrieved tempera-
ture (Fig. 1a) and water vapor mixing ratio (WVMR; Fig. 1b)
and the associated 1σ uncertainties in each (Fig. 1c and d, re-
spectively), derived from the square root of the diagonal of
the retrieval error covariance Sop. The black line in Fig. 1a
and b denote the coincident radiosonde, whereas the other
colors denote the different passive-only retrievals.

All three passive-only retrievals (MWRzo, AERI, and
AERI+MWRzo) identify the surface-based inversion, al-
though the retrievals that include the AERI capture it more
accurately (Fig. 1a). Furthermore, the retrievals that include

the AERI are able to better match the radiosonde temper-
ature observations above 1.5 km, whereas the MWRzo re-
trieval shows a bias at those altitudes. None of the three
retrievals are able to capture the small-scale variability in
the vertical observed by the radiosonde due to the relatively
coarse vertical resolution of the retrievals. The uncertainties
in the MWRzo temperature retrievals are about 50 % larger
(or more) over the lowest 3 km relative to the AERI retrievals
(Fig. 1c), which agrees qualitatively with the differences to
the radiosonde seen in Fig. 1a.

The water vapor retrievals (Fig. 1b) show two basic
vertical patterns: the MWRzo retrieval is markedly drier
than the radiosonde below 1 km, whereas the AERI and
AERI+MWRzo retrieval starts dry, then becomes too wet
(between 500 and 1000 m), and then becomes drier than the
radiosonde above 1500 m. Interestingly, the nDIAL water va-
por profile is also drier than the radiosonde below 1500 m
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and agrees better with the MWRzo profile. However, the re-
trievals that use the AERI data have markedly smaller uncer-
tainties than the MWRzo below 1.5 km; above that height,
the uncertainty in the MWRzo is smaller than the AERI, al-
though the AERI+MWRzo retrieval has the smallest uncer-
tainties over the entire lowest 3 km, as would be expected for
a variational retrieval method.

Including the nDIAL data above 500 m in the retrieval,
thus finding a solution that simultaneously fits both the ob-
served radiance and the partial WVMR profile of the DIAL
within their uncertainties, yields the results shown in Fig. 2.
The largest impact, not surprisingly, is on the retrieved wa-
ter vapor profile (Fig. 2b). The inclusion of the nDIAL data
forces the retrievals that also include the AERI to reduce
the amount of water vapor between 500 and 1000 m (where
the AERI-based retrievals were too wet in Fig. 1b), which
has the impact of increasing the amount of water vapor
in the AERI retrievals below 500 m (Fig. 2b), resulting in
the AERI+ nDIAL and AERI+MWRzo+ nDIAL agreeing
much better with the radiosonde. Between 800 and 1500 m,
the MWR+ nDIAL-retrieved profile is essentially the same
as the nDIAL profile, suggesting that the MWR does not add
any significant information to the DIAL’s observation. The
impact of the nDIAL data on the water vapor uncertainty pro-
files can clearly be seen in Fig. 2d, where all retrievals have
a similar uncertainty above about 800 m, where the DIAL
data are being used. Including the DIAL data in the retrievals
has a minor impact on the retrieved temperature profiles as
all three seem to agree a bit better qualitatively with the ra-
diosonde above 1000 m (comparing Fig. 2a with Fig. 1a), and
the 1σ uncertainties in temperature are slightly smaller (com-
paring Fig. 2c with Fig. 1c).

4.2 Comparing mean uncertainty profiles

While the case study above may be representative, the quality
of a retrieval (i.e., its uncertainty and information content) is
case-specific. To provide a more complete picture of how the
different passive-only and active+ passive retrievals com-
pare, we computed the mean 1σ uncertainty profiles from all
of the retrievals performed during Perdigão as a wide range
of environmental conditions (e.g., the surface temperature
ranged from approximately 9 to 33 ◦C and the precipitable
water vapor from 1.1 to 3.1 cm) were observed during the 5-
week campaign. Figure 3 shows these mean uncertainty pro-
files for temperature (left) and water vapor (right) for the dif-
ferent passive-only (solid lines) and active+ passive (broken
lines), and Table 2 provides the mean values at three different
heights.

Considering the passive-only retrievals, combining the
AERI and MWR together has little impact on the resulting
temperature retrieval in the lowest 3 km or on the water vapor
retrieval below 1.5 km compared to the AERI-only retrieval.
However, the MWRz and MWRzo outperform the AERI for
water vapor above 2 km. Most strikingly, the benefit of the

passive-retrieval synergy can be seen for water vapor above
1.5 km, where the improvement is up to 30 % compared to
the single-sensor retrievals. Adding the elevation scanning
data to the MWR retrieval (i.e., the MWRzo vs. MWRz) re-
sults in a smaller uncertainty in the temperature profile, es-
pecially below 400 m.

Including the nDIAL data in the retrievals greatly reduces
the 1σ uncertainty in the water vapor profiles for all ac-
tive+ passive retrievals (relative to the passive-only results)
and results in a slight decrease in the temperature uncer-
tainty also. The addition of the nDIAL data to either the
MWR- or AERI-based retrievals results in smaller uncertain-
ties in water vapor than either the lidar by itself (dotted black
line) or the passive-only retrievals (Fig. 3, right). The AERI-
based retrievals show smaller uncertainties than the MWR-
based retrievals, with the exception of the water vapor re-
trievals above 2 km, where the MWR-based retrieval has a
smaller uncertainty than the AERI retrieval. The uncertainty
in the AERI+ nDIAL water vapor retrieval between 500 m
and 2 km, where the nDIAL data are used, is slightly smaller
than the uncertainty in the MWRz+ nDIAL retrieval, sug-
gesting that the AERI is adding more information to the
DIAL observations than the MWR. However, above 2 km the
combination of all sensors has distinguishably the best per-
formance, indicating that all instruments are contributing to
the sensor synergy. In quantitative numbers, the WVMR can
be retrieved via sensor synergy with accuracies between 0.4
and 0.6 g kg−1 in the lowest 3 km, which between 1 and 2 km
(the region where DIAL shows its optimal performance) is an
uncertainty reduction of up to 50 % compared to the passive-
retrieval synergy.

4.3 Comparing bias profiles

Figure 4 shows the bias profiles in temperature and humid-
ity relative to radiosondes launched during Perdigão. The ra-
diosondes were launched within 100 m of the remote sensors,
and 169 individual comparisons are included in these bias
profiles.

The temperature bias profiles (Fig. 4, left) demonstrate that
the retrievals that include AERI data have markedly smaller
biases than the retrievals that did not. The inclusion of the
nDIAL observations with the AERI (i.e., AERI+ nDIAL,
AERI+MWRz+ nDIAL) did not markedly change the bias
relative to the AERI-only and AERI+MWRz. However, for
the retrievals that use the MWR data and not the AERI, the
inclusion of the nDIAL data did result in smaller temperature
biases above approximately 1 km.

The water vapor mixing ratio bias profiles (Fig. 4, right) il-
lustrate that the MWRz-only and MWRzo-only profiles had
markedly larger magnitudes than the retrievals that included
AERI data. Including nDIAL data in these MWR-based re-
trievals (i.e., the MWRz+ nDIAL and MWRzo+ nDIAL)
resulted in smaller mixing ratio biases above 500 m (recall
the nDIAL data below 500 m were not used in this analysis
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Figure 2. Same as Fig. 1, except that the retrievals combine active and passive data with the MWRzo+DIAL (red), AERI+DIAL (green),
and AERI+MWRzo+DIAL (blue). The water vapor observed by the DIAL and its uncertainty are included in the retrievals. See text for
more details.

Figure 3. The mean uncertainty in temperature (left) and water vapor mixing ratio (right) for passive-only (solid lines) and active+ passive
(broken lines) retrievals during Perdigão. The black dotted line is the mean uncertainty from the nDIAL.

due to known systematic issues), but the water vapor bias be-
low 600 m was largely unchanged. Similarly, including the
nDIAL data in the AERI-based retrievals also reduced the
size of the water vapor bias above 1 km, although the impact
of this additional dataset was smaller because the accuracy
in the water vapor retrievals above 1 km is better for AERI-
only retrievals relative to MWRz-only and MWRzo-only re-
trievals.

4.4 Comparing mean cDFS profiles

The optimal-estimation framework used in this study uses
the a priori to help constrain the ill-posed retrieval, thereby
allowing the algorithm to converge to a realistic solution
more frequently. Looking at the DFS profile, especially when
summed with altitude from the surface (called here the cu-
mulative DFS profile), enables one to understand where the
independent data in the observations are located vertically.
Figure 5 shows the mean cumulative DFS profiles for the
different retrievals; mean values at three specific heights are
provided in Table 3.

There are several important features in this figure. First,
adding the elevation scanning data to the MWR retrieval (i.e.,

comparing the MWRz-only vs. MWRzo-only) increases the
total DFS for temperature at 3 km by 0.4 (from 2.15 to 2.57),
with almost all of this increase in the first 500 m. (Note, how-
ever, that we have only included a single additional eleva-
tion angle in the MWRzo (Table 1), and the inclusions of
additional elevation angles would result in a slight increase
in the cDFS for temperature.) The AERI-only temperature
retrieval has more information (3.87) in the lowest 500 m
than the MWRzo-only retrieval has in the lowest 3 km (2.57).
Most of the information in the temperature retrievals is be-
low 1.5 km as the cDFS profiles become relatively constant
above that level; this suggests that these passive-only and ac-
tive+ passive temperature retrievals will have limited ability
to retrieve the structure of the temperature profile above that
height.

The passive-only retrievals of water vapor show less total
DFSs (using the value at 3 km height) during Perdigão rel-
ative to datasets at other field campaigns (e.g., Turner and
Löhnert 2014; Blumberg et al., 2015). This is likely due to
the spread in the covariance of the prior because if the prior
had (hypothetically) negligible spread then the derived infor-
mation content from the observations would be vanishingly
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Figure 4. The bias in temperature (left) and water vapor mixing ratio (right) for passive-only (solid lines) and active+ passive (broken lines)
retrievals relative to radiosondes during Perdigão.

Figure 5. The mean cDFS profiles for temperature (left) and water vapor mixing ratio (right) for passive-only (solid lines) and active+ passive
(broken lines) retrievals during Perdigão. Note that the water vapor cumulative DFS profiles for MWRz and MWRzo retrievals are virtually
identical (see Table 3) and hence overlap.

small. Nonetheless, we can still use this prior to demon-
strate how the addition of the DIAL data to the retrievals
changes the information content. The cDFS profiles for the
water vapor retrievals clearly show the impact of including
the nDIAL data above 500 m as the cDFS profiles for the ac-
tive+ passive retrievals are markedly larger above that height
than the passive-only retrievals (i.e., with values between 6
and 7 compared to between 2 and 3 at 3 km). The additional
information on water vapor in the AERI below 500 m rela-
tive to the MWR is clearly seen. However, the lidar does not
always provide data at the same altitude, and its noise lev-
els can depend on atmospheric conditions (e.g., if there is a
cloud above the lidar or not), and thus the spread in the cu-
mulative DFS profiles was quite large (e.g., from 2.0 to 9.4
for the MWRz+ nDIAL at 3 km height; Table 3).

4.5 Impact of clouds

One of the often-stated advantages of MWR-based retrievals,
relative to infrared-based retrievals, is the ability to profile
through clouds because the optical thickness of the cloud is
markedly smaller in the microwave relative to the infrared

for a given liquid water path (LWP). Figure 6 shows cDFS
profiles from the MWRz-only and AERI-only temperature
and water vapor retrievals during a 2 h period when the sky
transitioned from virtually clear sky to overcast. Three pro-
files with different LWP amounts (2, 10, and 60 g m−2, where
the infrared is essentially opaque for the last; Turner, 2007)
are shown. The cloud base was at 1100 m and was assumed
to be 100 m thick (there was no way to determine cloud top
from other observations at the site). First, notice that as the
cloud becomes optically thicker, the retrievals have more in-
formation about the temperature at the cloud base. Second,
the cloud becomes opaque in the infrared quickly; hence the
cumulative DFS profile becomes essentially constant (espe-
cially for water vapor) above the cloud as the LWP values ap-
proach 60 g m−2. Meanwhile, the cloud is semi-transparent
in the microwave for all LWP values, which is seen by the
increasing cDFS profile (especially for water vapor) above
the cloud. However, there is still only a small amount of in-
formation in the observations at heights above 1 km in the
MWR (see left-hand panel of Fig. 5), and thus the increase
in the information content in the MWR retrieval above the
cloud is relatively limited.
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Table 3. Average cDFS values at three levels for temperature and humidity for the different instrument combinations used in this study. The
passive-only retrievals are highlighted in gray, whereas the active+ passive are in white. The values in parentheses at 3 km show the 10th
and 90th percentile at that height, thereby providing a measure of the amount of variability in these statistics for each retrieval.

Temperature cDFS value (unitless) Water vapor cDFS value (unitless)

500 m 1000 m 3000 m 500 m 1000 m 3000 m

MWRz-only 1.5 1.8 2.2 (2.1,2.2) 0.9 1.1 1.9 (1.7,2.0)
MWRzo-only 1.9 2.2 2.6 (2.6,2.6) 0.9 1.1 1.9 (1.7,2.0)
AERI-only 3.9 4.6 5.5 (5.0,5.7) 1.5 1.8 2.7 (1.9,3.4)
AERI+MWRz 3.9 4.6 5.6 (5.2,5.7) 1.5 2.0 3.2 (2.7,3.8)
MWRz+ nDIAL 1.5 1.8 2.2 (2.1,2.2) 1.1 2.6 6.2 (2.0,9.4)
MWRzo+ nDIAL 1.8 2.2 2.6 (2.5,2.6) 1.1 2.6 6.2 (2.0,9.4)
AERI+ nDIAL 3.9 4.5 5.5 (5.3,5.6) 1.7 3.3 7.0 (2.8,10.1)
AERI+MWRz+ nDIAL 3.9 4.5 5.5 (5.3,5.6) 1.7 3.3 7.2 (3.2,10.2)
AERI-only (SGP) 4.8 5.5 6.6 (5.4,7.2) 1.7 2.1 3.0 (1.9,3.8)
AERI+ vDIAL (SGP) 4.8 5.5 6.6 (5.5,7.1) 2.5 4.2 5.5 (2.4,8.4)

Figure 6. Profiles of cumulative degrees of freedom of signal from
MWRz-only (dashed curves with dots) and AERI-only (solid curves
with squares) temperature (left) and water vapor (right) retrievals
for three samples between 03:00 and 05:00 UTC on 27 May 2017
during Perdigão. The different colors correspond to different LWP
path values in the overhead cloud, whose height is indicated with the
horizontal gray bar. The solid symbols indicate heights that would
be assimilated if the first level started at 50 m a.g.l., and each level
was separated by a unit of DFSs. See the text for more details.

The accurate understanding of where the information ex-
ists vertically is useful in order to properly assimilate these
profiles into a numerical weather prediction model. There is
often significant level-to-level correlation in the uncertain-
ties in profiles retrieved from passive remote sensors (e.g.,
see Fig. 10 of Turner and Blumberg, 2019), and most data
assimilation systems are not yet configured to handle corre-
lated error in the observations. Coniglio et al. (2019) used
the cDFS profile to identify the heights that should be assim-
ilated to minimize the amount of correlated error from the
retrieved profiles. Starting at a specified height (e.g., 50 m),
they identified heights where the cDFS had increased by 1
above that height, and this process continued until they ei-

ther were unable to identify any other points or had reached
the maximum height that they wanted to assimilate. This is
illustrated by the dots on the profiles in Fig. 6, with the first
height taken at 50 m. For the AERI-retrieved profiles, three
levels would be assimilated below the cloud, with an addi-
tional level at the cloud base or just above; the height of all
of the temperature levels is pretty consistent for these three
profiles. For the MWR, only two levels would be assimilated
due to the lower information content in the microwave obser-
vations, with the height of the second point changing dramat-
ically due to how the cloud influences the vertical distribution
of the DFS profile. Again, we remind the reader that the total
DFS seen in this example are lower than what is seen using
this same retrieval framework in other field campaigns; we
attribute this to the lack of spread in the a priori dataset used
at Perdigão.

4.6 Sensitivity to the nDIAL vs. vDIAL

The impact of adding any new observation depends partially
on its error covariance matrix as observations with larger un-
certainties will add less information to the retrieved profile
than observations with smaller uncertainties. For many li-
dars, co-adding photon counting data in either time or alti-
tude reduces the random errors and thus would increase the
information content and impact of using these lidar data in
retrievals such as these. However, other features of the ob-
servations are also important. For example, during Perdigão,
the lowest range gate that was considered useful from the
nDIAL was at 500 m; data below that level suffered from sys-
tematic errors associated with the overlap function of the li-
dar (S. Spuler, personal communication, 2019). However, the
vDIAL was designed to make good measurements at 50 m
above the surface, although generally speaking its maximum
range is much less (on the order of 1 km; Newsom et al.,
2020) than the nDIAL system (which frequently makes good
water vapor measurements at altitudes well above 2 km).
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Figure 7. The mean uncertainty in temperature (left) and water vapor mixing ratio (right) for AERI-only (solid lines) and AERI+ xDIAL
(broken lines) retrievals during Perdigão (black) and SGP (purple), where the former used nDIAL data, and the latter used vDIAL data. Note
that different priors were used for the two locations; this impact is seen in the AERI-only retrievals as the noise levels of the two AERIs were
similar.

A natural question is how the results already shown would
change if the vDIAL system were used instead of the nDIAL

Unfortunately, this is not straightforward to answer as the
vDIAL was not collocated with the other Perdigão instru-
ments. Instead, we use the 6-week deployment of the vDIAL
at the ARM SGP site (Newsom et al., 2020), which has
an AERI with similar noise characteristics as the AERI de-
ployed at Perdigão, as a surrogate. However, different a priori
datasets were used for the retrievals at the two sites, which
impacts the retrievals and hence the analysis. To help adjust
for the contribution of the two priors, we performed AERI-
only retrievals and AERI+ vDIAL retrievals at the SGP so
that we could look at the difference between the two and
compare that to the difference between the AERI-only and
AERI+ nDIAL retrievals at Perdigão (Fig. 7).

The impact of the vDIAL data on the water vapor re-
trieval is most significant between 300 and 1500 m and
reaches relative values of up to 50 % uncertainty reduc-
tion compared to the AERI-only retrieval. Above 1500 m,
the AERI+ vDIAL WVMR uncertainties increase quickly
with height and approach the AERI-only uncertainties at
3 km. The AERI+ nDIAL uncertainties are very similar
to the AERI-only below 500 m (because the nDIAL data
are not available at those levels) but are approximately 2
times smaller than the AERI-only for all heights between
500 m and 3 km. Further, the change in the cDFS between
500 m and 3 km is larger for the nDIAL system relative to
the vDIAL (Table 3). Thus, the ability of the nDIAL to
see deeper into the troposphere than the vDIAL is clearly
shown. Interestingly, the water vapor uncertainty in the
AERI+ vDIAL is smaller than the AERI+ nDIAL in the
500–900 m range; however, this could easily be changed by
adjusting how the DIAL data were co-added in the nDIAL
(which had 1 min temporal resolution relative to the 20 min
temporal resolution of the vDIAL; see Table 1).

Perhaps most noteworthy is the relative impact of the two
DIALs on the retrieved temperature profile. The addition of
the vDIAL data has almost no impact on the uncertainty or

the cDFS profile relative to the AERI-only (Fig. 7, Tables 2
and 3), whereas the nDIAL has a marked impact on the re-
trieved temperature profile in the range from 500 m to 2.5 km,
with a reduction in the uncertainty of up to 0.25 K compared
to the AERI-only retrieval. Here, the instrument synergy is
obtained through a more exact determination of the water va-
por profile by the nDIAL, which enables the AERI to reach
a higher DFS value for temperature.

5 Conclusions

Many applications require profiles of temperature and hu-
midity in the PBL. However, the accuracy and information
content from different ground-based remote sensing instru-
ments is not the same. Previous work (e.g., Löhnert et al.,
2009; Blumberg et al., 2015) demonstrated that there is more
information content in both temperature and water vapor
from spectral infrared measurements (such as those made by
the AERI) than in spectral microwave radiometer measure-
ments. These results depend strongly on the characteristics
of the instrument systems being used; for example, if future-
generation MWRs are improved to have smaller random er-
rors, then the information content in the observations would
increase. The online python modules provided by Maahn et
al. (2020) can be used to explore how the information con-
tent would change for different assumed random error levels
in the MWR.

This study investigated the impact of ground-based sen-
sor synergy for PBL thermodynamic profiling and in partic-
ular how the information content and random errors would
change if an active remote sensor such as a water vapor DIAL
were included in the retrieval. An open question going into
this research was whether the inclusion of the water vapor
DIAL observations with MWR radiance observations would
have the same information content as retrievals that used the
DIAL with the AERI observations. An important aspect of
this study is that the same a priori data and retrieval frame-
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work were used for all of the different retrievals shown in
this paper, which is crucial to truly quantify the differences
as different retrieval frameworks can result in markedly dif-
ferent retrievals (Maahn et al., 2020). Furthermore, the 2017
NASA Decadal Survey recommended an increased focus on
thermodynamic profiling of the atmospheric boundary layer
from space (National Academies, 2018), and coupling pas-
sive microwave and infrared with active DIAL remote sens-
ing is one possible solution. We have shown that including
the DIAL data increases the water vapor information con-
tent and reduces water vapor errors in both the AERI+DIAL
and MWR+DIAL retrievals, relative to the passive-only re-
trievals. However, the AERI+DIAL continues to have more
information on water vapor than the MWR+DIAL. The best
retrieval performance is observed when all three instruments
are combined in one retrieval. Improvements are shown that
decrease the uncertainty by 50 % compared to passive-only
retrievals between 1 and 2 km. At Perdigão, the AERI is
shown to dominate retrieval accuracy in the lowest 500 m,
from 500 m to 2 km it is the DIAL that primarily determines
the accuracy, and above 2 km the three instruments comple-
ment each other optimally to obtain the best solution. Fur-
thermore, the addition of the water vapor DIAL observations
(slightly) improves the information content in temperature
retrievals from the AERI+DIAL but has no impact on the
temperature profiles for the MWR+DIAL.

Passive ground-based remote sensors are relatively com-
mon as these technologies are more mature, have been com-
mercially available for several decades, and have been op-
erated in networks (e.g., Caumont et al., 2016; Geerts et
al., 2017; Yang and Min, 2018). The recent advances in
water vapor DIAL (e.g., Spuler et al., 2015; Newsom et
al., 2020) are leading to the possibility that the two DI-
ALs used in this study could be commercially available in
the next several years, which is why they formed the focus
of this study. There are other thermodynamic-profiling ac-
tive remote sensors that could be combined with MWRs and
AERIs: for example, Raman lidar and radio acoustic sound-
ing systems (RASSs). Studies have been conducted combin-
ing Raman lidar with both MWR data (e.g., Barrera-Verdejo
et al., 2016; Foth and Pospichal, 2017) and AERI data (e.g.,
Turner and Blumberg, 2019); however, these studies were
in different environments using different a priori datasets,
which makes quantitatively comparing their accuracy and in-
formation content problematic. There are currently efforts
underway to evaluate the impact of RASS virtual tempera-
ture profile observations on both AERI and MWR observa-
tions. Developing improved synergistic retrievals and sensor
synergy are the goals of many groups, including the PRO-
filing of the atmospheric Boundary layer at European scale
(PROBE; Cimini et al., 2020).

Sensor synergy does not have to just involve ground-based
sensors. Ground-based MWR and AERI observations can
also be combined with satellite observations to improve in-
formation content and accuracy, especially in the middle-

and upper troposphere. Feltz et al. (2003) showed the impact
on AERI retrievals and how these improved profiles could
be used for evaluating thermodynamic structure near storms,
while Ebell et al. (2013) performed a more classical informa-
tion content study. Additional efforts (e.g., such as Toprov
and Löhnert, 2020) are needed which show the impact of
the high-temporal- and high-spectral-resolution geostation-
ary infrared sounders with ground-based remote sensing sys-
tems and the impact on stability indices and other parameters.

It is possible that readers will consider this study to be a
suggestion about the optimal ground-based solution for ther-
modynamic profiling, especially for future operational net-
works. This paper provides insights into only one aspect of
the cost–benefit solution (i.e., the relative differences in in-
formation content); considerations as to ease of use, dura-
bility and hardiness, calibration stability, and other scientific
traits (e.g., whether the instrument provides information on
macro- or microphysical cloud properties, aerosol properties,
trace gases, etc.) also need to be considered.

Code availability. The retrieval code used in this study is available
from the first author by request. It is currently being ported from
IDL to python, after which it will be available via GitHub.
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