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Abstract. We evaluate vertical profile retrievals of CO2 from
0.02 cm−1 resolution ground-based near-infrared solar ab-
sorption spectra with the GFIT2 algorithm, using improved
spectroscopic line lists and line shapes. With these improve-
ments, CO2 profiles were obtained from sequential retrievals
in five spectral windows with different vertical sensitivities
using synthetic and real spectra. A sensitivity study using
synthetic spectra shows that the leading source of uncertainty
in the retrieved CO2 profiles is the error in the a priori tem-
perature profile, even with 3-hourly reanalysis a priori pro-
files. A 2 ◦C error in the temperature profile in the lower tro-
posphere between 0.6 and 0.85 atm causes deviations in the
retrieved CO2 profiles that are larger than the typical verti-
cal variations of CO2. To distinguish the effect of errors in
the a priori meteorology and trace gas concentration profiles
from those in the instrument alignment and spectroscopic pa-
rameters, we retrieve CO2 profiles from atmospheric spectra
while using an a priori profile built from coincident AirCore,
radiosonde, and surface in situ measurements at the Lamont,
Oklahoma (USA), Total Carbon Column Observing Network
station. In those cases, the deviations in retrieved CO2 pro-
files are also larger than typical vertical variations of CO2,
suggesting that remaining errors in the forward model limit
the accuracy of the retrieved profiles. Implementing a tem-
perature retrieval or correction and quantifying and model-

ing an imperfect instrument alignment are critical to improve
CO2 profile retrievals. Without significant advances in mod-
eling imperfect instrument alignment, and improvements in
the accuracy of the temperature profile, the CO2 profile re-
trieval with GFIT2 presents no clear advantage over scaling
retrievals for the purpose of ascertaining the total column.

1 Introduction

Carbon dioxide (CO2) is the most abundant well-mixed
greenhouse gas in the atmosphere and the main driver of
the increase in global mean surface temperatures since the
start of the industrial era (Ciais et al., 2013; Myhre et al.,
2013). A yearly global carbon budget has been produced by
the Global Carbon Project since 2012 (Friedlingstein et al.,
2019; Le Quéré et al., 2013, 2014, 2015b, a, 2016, 2018b,
a). It presents current knowledge of CO2 emissions to inform
policies that aim to reduce the emissions of greenhouse gases
into the atmosphere. The project uses ensembles of mod-
els and inventories, as well as CO2 surface measurements,
to estimate different components of the global emissions of
CO2. It also uses CO2 fluxes obtained from atmospheric in-
versions (Chevallier et al., 2005; van der Laan-Luijkx et al.,
2017; Rödenbeck et al., 2003; Saeki and Patra, 2017) as a
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semi-independent validation tool for these estimates; most of
the CO2 measurements used in these inversions come from
surface networks. Since 2014, the project makes mention of
the potential of inversions using space-based measurements
of total column CO2 to provide additional constraints on
sources and sinks of CO2.

Column-averaged dry-air mole fractions of CO2 (XCO2),
are retrieved from solar absorption spectra measured from
space by the Atmospheric InfraRed Sounder (AIRS, Au-
mann et al., 2003), the Greenhouse gases Observing SATel-
lite (GOSAT and GOSAT-2) (Kuze et al., 2009, 2016; Naka-
jima et al., 2012), the Orbiting Carbon Observatory (OCO-2
and OCO-3) (Crisp, 2008, 2015; Eldering et al., 2019), and
Tansat (Liu et al., 2018). CO2 fluxes obtained from inver-
sions assimilating OCO-2 observations over land are now
becoming as reliable as those obtained from inversions using
surface air sampling networks (Chevallier et al., 2019). Mea-
surements of XCO2 by satellites can be made with unprece-
dented spatial coverage. Inversions using CO2 total columns
over land are less sensitive to transport errors than inversions
using surface CO2 (Basu et al., 2018; Rayner and O’Brien,
2001), which require accurate modeling of the planetary
boundary layer height and vertical mixing, both of which
are a major source of uncertainty in inversions (Parazoo et
al., 2012). However, even small (< 1 ppm) spatially coherent
biases in column measurements can have a large impact on
inversions assimilating XCO2 (Chevallier et al., 2007), and
efforts must be made to characterize and minimize such bi-
ases (Kiel et al., 2019; O’Dell et al., 2018).

The Total Carbon Column Observing Network (TCCON)
is a ground-based network of high-resolution (0.02 cm−1)
ground-based Fourier transform infrared (FTIR) spectrome-
ters that record shortwave IR (SWIR) solar absorption spec-
tra (Wunch et al., 2011b). TCCON produces retrievals of
XCO2 which are widely used to validate satellite observa-
tions and to study the carbon cycle (Wunch et al., 2011a,
2017; Keppel-Aleks et al., 2012, 2013). New versions of the
TCCON retrieval algorithm (GGG) are released every few
years, and each new version is designed to improve the qual-
ity of the data.

GGG2014 (Wunch et al., 2015) is the current version of
the GGG software used by TCCON to transform measured
interferograms into spectra, and then to retrieve trace gas
mixing ratios from those spectra. Central to this process is
GFIT, a non-linear least-squares spectral fitting algorithm.
A forward model computes an atmospheric transmittance
spectrum for a given observation geometry using a priori
knowledge of atmospheric conditions and assuming a per-
fectly aligned instrument. An inverse method then compares
the measured spectrum with the resulting calculation and ad-
justs the retrieved parameters to obtain the best fit. In GFIT,
these parameters include volume mixing ratio scaling fac-
tors (VSFs) for the different fitted gases. GFIT performs pro-
file scaling retrievals: for each retrieved trace gas, a single
VSF scales the entire a priori concentration profile at all alti-

tude levels simultaneously and therefore the retrieved profile
shape is unchanged from the a priori profile shape. Techni-
cally, GFIT handles the scaling retrieval by weakly constrain-
ing the fitted VSF factor. The approach is equivalent to per-
forming an optimal estimation of the VSF, assigning a value
of unity to the a priori VSF and a value of 106 as its expected
range of variability. XCO2 can be retrieved with a 2σ pre-
cision and accuracy of 0.8 ppm (Wunch et al., 2010). GFIT
minimizes the spectral fit residuals: the difference between
the measured and calculated spectra. The measurement noise
is not required to be accurately known; all retrievals from
TCCON CO2 windows use an assumed signal-to-noise ratio
(SNR) of ∼ 200. This assumption has only a small effect on
the result because for CO2 the absorption line depths and the
spectral fitting residuals far exceed the measurement noise.

Even though TCCON XCO2 observations are precise and
accurate, they explicitly lack information about the vertical
distribution of CO2 in the atmosphere, which is of interest for
the validation of satellite measurements and model simula-
tions and could improve the ability of atmospheric inversions
to resolve emissions at regional scales (Keppel-Aleks et al.,
2011). The most precise and accurate sources of information
on CO2 vertical profiles are provided by air samples collected
at different altitudes using weather balloons or aircraft, but
these observations are sparse in space and time. Aircraft ver-
tical profiles are used as validation tools for inversion studies
(Peters et al., 2007; Stephens et al., 2007; Pickett-Heaps et
al., 2011), which requires them to remain independent from
the inversion systems (Chevallier et al., 2019). Obtaining re-
liable CO2 profile information from ground-based direct-sun
measurements could significantly augment the number of ob-
servations available for verification and assimilation in atmo-
spheric inversions, and would allow TCCON to be used for
validation of thermal infrared satellite products, e.g., from
AIRS and GOSAT/2, and vertically resolved NIR GOSAT
and OCO-2 experimental products. Vertical profile informa-
tion derived from ground-based absorption spectra cannot be
as accurate as aircraft-based vertical profiles, and would also
be spatially sparse, but would provide a higher temporal sam-
pling.

CO2 profile retrievals from ground-based SWIR spectra
have been calculated using the band centered at 1.6 µm with a
Voigt line shape (Kuai et al., 2012), and in the band centered
at 2.06 µm with the PROFFIT optimal estimation software
package (Hase et al., 2004) fitted with a Voigt line shape with
line mixing (Dohe, 2013). In our approach, we use the GFIT2
software package initially described by Connor et al. (2016),
which is a profile retrieval algorithm based on the GGG soft-
ware suite, but modified such that it allows the profile shape
to vary during the retrieval process. Instead of retrieving a
single VSF value that scales the whole a priori profile, a VSF
value is retrieved for each atmospheric level. The algorithm
thus has much more freedom to fit the observed spectra but
is also more sensitive to uncertainties in the forward model
calculations such as errors in the atmospheric temperature
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profile, spectroscopic errors, and instrument misalignment,
for example.

Connor et al. (2016) showed that CO2 profile retrievals
in the CO2 band centered at 1.6 µm are very sensitive to er-
rors in spectroscopy. GFIT2 was first developed using the
GGG2014 version of the GGG suite (Wunch et al., 2015),
which uses a Voigt line shape to compute absorption coef-
ficients. In this study, we use the GGG2020 version, which
will be released in early 2021. This version of the code im-
plements quadratic speed-dependent Voigt line shapes with
line mixing (qSDV+LM) for CO2 (Mendonca et al., 2016)
and CH4 (Mendonca et al., 2017) bands, and qSDV line
shapes for O2 in the band centered at 1.27 µm (Mendonca et
al., 2019). The line mixing coefficients are derived with the
first-order Rosenkranz approximation (Rosenkranz, 1975).
This leads to significantly better spectral fits, especially in
the strong CO2 band centered at 2.06 µm, and smaller vari-
ations of gas amount with air mass. Other improvements to
the forward model include (1) updates to the spectroscopic
line list (Toon, 2015) (2) a solar-gas stretch fitted to ac-
count for Doppler-driven differences between solar and tel-
luric wavenumber scales (in GGG2014 only the stretch in
the telluric wavenumber scale was fitted), and (3) improved
a priori profiles as described in Sect. 2.2.

This study assesses the quality of CO2 profile retrievals
with GFIT2 implemented in GGG2020. Section 2 describes
the retrieval algorithm and our methodology. Section 3
presents a sensitivity study using synthetic spectra, followed
by retrievals using real measured spectra. Finally, Sect. 4
presents a summary of the results and conclusions.

2 Methods

In this study, GFIT2 is used to retrieve CO2 profiles from the
two original TCCON retrieval windows and three new win-
dows that possess a large range of opacities, and therefore
vertical sensitivities. These windows are presented in Table 1
and Fig. 1. The TCCON1 window (centered at 6220 cm−1)
and TCCON2 window (centered at 6339.5 cm−1) are used to
derive XCO2 in the public TCCON data products, because
the spectral absorption line opacities are close to 1 and are
therefore equally sensitive at most altitudes. The CO2 line
intensities in the weak windows are 10 times smaller than
in the standard TCCON windows, providing more sensitiv-
ity to CO2 variations aloft. The CO2 lines in the “Strong”
window are 15 times stronger than those in the standard TC-
CON windows, providing more sensitivity to CO2 variations
near the surface. All windows have an average lower-state
energy (E′′) of roughly 240 cm−1, rendering the retrieved to-
tal column of CO2 highly independent of the assumed tem-
perature (< 0.1 % K−1). The derivation of XCO2 as calcu-
lated in GGG is described in Appendix A. XCO2 is the ratio
of the CO2 column to the column of dry air, and the col-
umn of dry air is expressed as the retrieved O2 column (from

Figure 1. Contributions of different absorbing gases to the calcu-
lated transmittance spectrum on a dry winter day at a solar zenith
angle of 60.6◦ for each of the spectral windows used to retrieve
CO2.

the window centered at 7885 cm−1; see Table 1) divided by
0.2095 (Wunch et al., 2011b). OCO-2/3 and GOSAT/2 use
two windows comparable to the TCCON1 and Strong win-
dows to retrieve CO2 and use the O2 A-band (centered near
13158 cm−1).

A qualitative representation of the vertical sensitivity
due to the range of different line opacities is presented
in Fig. 2, which shows the normalized CO2 Jacobian
for typical absorption lines in the Strong window (cen-
tered at 4852.87 cm−1), the “Weak1” window (centered
at 6074 cm−1), and the TCCON1 window (centered at
6220 cm−1). The strong saturated lines of the Strong window
are more sensitive to levels below 5 km than in the TCCON1
window, but the Strong window also contains lines of inter-
mediate absorption strength that provide more uniform sensi-
tivity up to∼ 10 km, and that extend the window’s sensitivity
to up to 30–40 km. The saturated lines in the Strong win-
dow correspond to the 20013–00001 band, while the lines
of intermediate strength around 4820 cm−1 come from the
R branch of the 21113–01101 band. The TCCON1 window
has more uniform sensitivity up to ∼ 10–15 km and contains
weak lines which contain information on CO2 above 15 km.
The Weak1 window is less sensitive below 10 km and has
more uniform sensitivity between 10–20 km. Figure 2 also
shows little to no sensitivity to levels above ∼ 30 km in all
windows.

2.1 Retrieval algorithm

The GFIT2 retrieval algorithm is described in detail in Ap-
pendix B and follows the formulation of Rodgers (2000).
Currently, GGG has no option to simultaneously retrieve in-
formation about a gas from spectral windows that are not
contiguous in wavenumber. Therefore, we retrieve trace gas
information from each window separately. We see no ad-
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Table 1. CO2 spectral windows used with GFIT2. Interfering absorbers labeled “solar” are due to absorption by heavy metal ions (e.g., Fe,
Si, Ca, Ni) in the solar photosphere. Also shown are the strength-weighted averages of the lower-state energy (E′′) and of the line strengths
(S) over all the CO2 lines in each window. The column of O2, retrieved with scaling retrievals from the O2 window, is used to compute
XCO2.

Window Center Center Width Primary interfering E′′ S

name (µm) (cm−1) (cm−1) absorbers (cm−1) (cm−1 (molecule cm−2)−1)
×10−23

TCCON1 1.61 6220 80 solar, H2O 245.3 1.14
TCCON2 1.58 6339.5 85 solar, H2O 254.6 1.14
Weak1 1.65 6074 70.8 CH4, solar, H2O 223.5 0.118
Weak2 1.54 6499.1 69.8 solar, H2O, HDO 229.3 0.130
Strong 2.06 4852.87 86.26 H2O, 13CO2, solar 243.8 17.8
O2 1.27 7885 240 solar, H2O, HF, CO2 203.4 0.00518

Figure 2. CO2 absorption lines (black line) overlaid on heat maps of the CO2 Jacobian for lines of (a) the Strong window, (b) the Weak1
window, and (c) the TCCON1 window. The color bar represents the normalized Jacobian where 1 corresponds to the maximum amongst all
the CO2 Jacobians from the five CO2 windows. Lines of the Weak2 and TCCON2 windows are not shown as they look like the Weak1 and
TCCON1 windows, respectively.

vantage to fitting non-contiguous windows simultaneously,
rather than separately, and then combining the results. In TC-
CON post-processing, the total columns retrieved from dif-
ferent retrieval windows (CO2 from the TCCON1 and TC-
CON2 windows, for example) are averaged after removing
window-dependent multiplicative biases, using retrieval er-
rors as weights. Table 2 summarizes the components of the
state vector used in GFIT2. A total of 51 VSFs are retrieved
(one for each atmospheric level) for the primary target gas,
while only 1 VSF is retrieved for each of the interfering

species profiles (non-12C16O2 species included in Fig. 1, ex-
cept for “solar” and “other”; other CO2 isotopologues are
only retrieved as interfering species in the Strong window).
Aside from the retrieved gases, other fitted parameters are
part of the state vector. Orthogonal continuum basis func-
tions are used to fit the shape of a spectrum’s continuum, with
different orders of curvature. An overall frequency stretch is
retrieved for all lines, and a second “solar-gas” stretch is re-
trieved to correct for differences between the solar and tel-
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Table 2. Components of the state vector in GFIT2 profile retrievals.
These are all the retrieved parameters.

State vector parameter Number of elements

Main target gas (CO2) 51 (number of atmospheric
levels)

Interfering species 3–6 (scaling retrievals)

Continuum basis functions N (5 in the Strong window, 3
in the other windows)

Continuum level 1
Continuum tilt 1
Continuum curvature N − 2

Frequency stretch 1

Solar-gas stretch 1

Zero-level offset 0 (1 in the Strong window)

luric wavenumber scales. A zero-level offset is also retrieved
in the Strong window that makes use of saturated lines.

In principle, a CO2 profile retrieval should have little sen-
sitivity to errors in the a priori CO2 profile (differences from
the true profile) since it can adjust for differences between
measured and calculated spectra caused by erroneous prior
profile shapes (Connor et al., 2016). However, the retrieval
may also conflate errors due to other sources, such as incor-
rect spectroscopic parameters, incorrect modeling of the in-
strument line shape, or errors in the a priori meteorology and
profiles of interfering species, with these errors in the a priori
CO2 profile.

2.2 Datasets

CO2 and CH4 a priori profiles were built by combining the
balloon-borne AirCore (Karion et al., 2010) profiles with sur-
face in situ measurements, adding the GGG2020 a priori pro-
file above the maximum altitude sampled by AirCore. These
composite profiles will be referred to as “truth”. The CH4
profile is included because CH4 is an interfering gas in the
Weak1 window. AirCore is a sampling system that consists
of a long, coiled stainless-steel tube initially filled with a dry
calibrated gas. As a balloon carries it up, the fill gas evacu-
ates. When the AirCore descends from the stratosphere, am-
bient air enters the tube through the open end. Upon landing,
the AirCore is quickly retrieved for subsequent laboratory
analysis, wherein the sample is pushed through a continu-
ous gas analyzer. The first gases to come out were the last
to enter, and vice versa, allowing the preserved atmospheric
trace gas concentration profiles to be derived. This method
has precision similar to, or better than, discrete gas flask sam-
ples, with a repeatability of 0.07 ppm for CO2 concentrations
(Karion et al., 2010). The balloons reach ∼ 30 km altitude,
with profiles retrieved to∼ 25km, and therefore sample 98 %

Table 3. AirCore launch dates and number of coincident spectra
within ±1 h of the AirCore last sampling time and within ±1.5 h of
the closest a priori time. The range of solar zenith angles covered
by the coincident spectra is also shown.

Launch date Coincident Solar zenith
spectra angles (◦)

14 January 2012 65 60.6–73.8
15 January 2012 48 65.6–77.9
23 July 2013 44 20.8–36.5
26 February 2014 61 46.6–59.0
27 February 2014 41 46.2–53.3
17 September 2014 48 37.9–51.1
19 October 2016 31 47.1–50.3
11 April 2017 33 31.2–39.2

of the mass of the atmosphere. In Sect. 3.2, AirCore profiles
from the v20181101 dataset were used as “truth” to assess
the quality of GFIT2 profile retrievals. We used all AirCore
profiles measured over the Lamont TCCON station that had
coincident ground-based measurements within ±1 h of the
AirCore landing and within ±1.5 h of the closest a priori
time. All figures showing profiles use the average of profiles
retrieved from the coincident spectra. The launch dates of
the eight AirCore profiles used are presented in Table 3. An
iMet-1 radiosonde carried by the same balloon as the Air-
Core provides in situ temperature and relative humidity pro-
files.

Instead of the diagonal prior covariance used in Sect. 3.1,
a more realistic CO2 prior covariance matrix was built for re-
trievals with real spectra in Sect. 3.2. The difference between
GGG2020 a priori CO2 profiles and aircraft profiles (Biraud
et al., 2013) over Lamont from NOAA’s ObsPack (Sweeney
et al., 2017) between 500 and 5000 m were computed for 382
aircraft profiles and for each month between 2008 and 2016.
The mean difference profile plus 1 standard deviation of the
month with the largest differences, August, was used to build
the diagonal of the a priori covariance matrix. The a priori
CO2 uncertainty can be expressed as

σ i = 3.99e−0.92xi + 0.98, (1)

where x is the altitude of the ith atmospheric level in kilome-
ters. The a priori covariance is expressed as

zi,j = xi, (2)

(1z)i,j =
∣∣∣zi,j − zTi,j

∣∣∣ , (3)

(Sa)i,j =
(
σ T σ

)
i,j
× e−

(1z)i,j
h , (4)

where z is a matrix with each row containing the altitude pro-
file,1z is the matrix of absolute altitude differences between
each level, Sa is the a priori covariance matrix, and h is the
length scale of interlayer correlations. The length scale was
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Figure 3. A priori uncertainty profiles for each of the 10 dates pre-
sented in Table 3. These are defined by Eq. (1). Since σ is defined
on an altitude grid, it varies slightly with pressure.

set to 2 km based on the width of the rows of correlation ma-
trices built from the ensemble of aircraft vertical profiles.

The vertical grid used in the retrievals presented in this
study has 51 levels between 0 and 70 km, and the spacing be-
tween levels increases with altitude (see Appendix A). Fig-
ure 3 shows the a priori uncertainty as a function of pressure
for each of the eight a priori states used to process the Lam-
ont spectra presented in Table 3.

Since the AirCore profiles do not extend down to the sur-
face or above about 25 km, other sources are used to com-
plete the “true” CO2 profile. The TCCON spectrometer used
in this study is located at the US Department of Energy At-
mospheric Radiation Measurement program (ARM) central
facility in Lamont, Oklahoma. The facility hosts a suite of in-
struments for remote and in situ measurements of the atmo-
sphere. When available within 5 h of the last AirCore sam-
pling time, surface CO2 and CH4 measurements from preci-
sion gas systems were used (Biraud and Moyes, 2001). When
they were not available, measurements from discrete flask
samples were used (on 23 July 2013, 27 February 2014, and
17 September 2014) (Biraud et al., 2002). Surface pressure,
temperature, and relative humidity were obtained from in situ
measurements at the Lamont central facility.

GGG2020 uses 3-hourly a priori profiles of the atmo-
spheric state. For each spectrum in the retrievals, GGG uses
the nearest a priori profile in time. The a priori meteorol-
ogy and H2O profiles are obtained from analyses of the
Global Modeling and Assimilation Office (GMAO) God-
dard Earth Observing System Version 5 Forward Process-
ing for Instrument Teams (GEOS5-FPIT) (Lucchesi, 2015).
The CO2 a priori profiles are constructed from the desea-
sonalized NOAA Mauna Loa and Samoa flask data (Dlugo-
kencky et al., 2019) by determining the transport lag between
the measurement site and each level of the a priori profile
(Laughner et al., 2021a, b). In the troposphere, this is done
with an age-of-air formula and an effective latitude that ac-
counts for synoptic motion of air. In the stratosphere, this is

obtained from an age climatology derived from a chemical
Lagrangian model (McKenna, 2002) of the stratosphere us-
ing equivalent latitude to account for air motion. The strato-
spheric priors also account for turbulent mixing with age
spectra (Andrews et al., 2001). A seasonal cycle parametriza-
tion is then applied, and the resulting CO2 profiles are cor-
rected to match the CO2 latitudinal gradients observed by the
High-Performance Instrumented Airborne Platform for En-
vironmental Research (HIAPER) Pole-to-Pole Observations
(HIPPO) (Wofsy, 2011) and by the Atmospheric Tomogra-
phy (ATom) mission (Wofsy et al., 2018).

2.3 Information content and degrees of freedom

The information content in the profile retrieval can be quan-
tified using the averaging kernel matrix A (Rodgers, 2000).
The information content H is defined as

H =−
1
2

ln(|I−A|) , (5)

where “ln” is the natural logarithm and |I−A| is the deter-
minant of the difference between the identity matrix and the
averaging kernel matrix. The degrees of freedom for signal
(DOFs) can be expressed as

DOFs= tr(A) . (6)

The DOFs can be divided into the CO2 profile DOFs and
the DOFs corresponding to the rest of the state vector ele-
ments. The profile DOFs can be interpreted as the number of
independent pieces of information that improve the retrieved
CO2 profiles compared to the a priori profile. The DOFs are
shown in Figs. 4–7 and 9–10.

3 Results

In Sect. 3.1, we investigate the sensitivity of the profile re-
trievals to different sources of error using synthetic spectra
produced by running the GGG forward model with a given
set of atmospheric conditions. The resulting spectra were
then used as input to the profile retrieval algorithm using
the same set of atmospheric conditions, except for a pertur-
bation in either the CO2, temperature, or H2O profiles, or
in the spectroscopic parameters of CO2 lines (air- and self-
broadened half-width coefficients and their temperature de-
pendence). In these retrievals, the SNR of the spectrum to
be fitted is set to 1000 and the CO2 a priori covariance ma-
trix is diagonal with 5 % (∼ 20 ppm) uncertainty at all levels.
No noise is added to the calculated spectra, but the assumed
1000 : 1 SNR is used to build the measurement covariance
matrix and affects the relative weight of the measurement and
the a priori profile. The weak prior constraint and high SNR
serve to highlight the sources of variability in the retrieved
profiles.

In Sect. 3.2, CO2 profile retrievals are tested with atmo-
spheric solar absorption spectra measured at the TCCON site
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in Lamont, Oklahoma (USA). If the forward model were per-
fect and the a priori state equal to the true state of the atmo-
sphere, the retrieved scale factor at each level would be equal
to 1. However, errors in the forward model (including spec-
troscopy, a priori meteorological information, radiative trans-
fer, and instrument line shape) cause the retrieved scale fac-
tors to deviate from 1. To isolate the effect of instrument mis-
alignment and errors in spectroscopic parameters from errors
in a priori meteorology, we build a priori profiles of H2O,
temperature, CO2, and CH4 using in situ measurements. In
Sect. 3.2 we also use an a priori covariance matrix with off-
diagonal elements based on comparisons between the a priori
profile and aircraft profiles, as described in Sect. 2.2.

3.1 Synthetic spectra

In this section, we attempt to identify the main sources of
error in the retrieved CO2 profiles. To do this we use syn-
thetic spectra that are calculated with GFIT’s forward model
for a given set of inputs (atmospheric conditions and spec-
troscopic parameters). These “perfect” synthetic spectra are
then used as measurements to be fitted in retrievals with one
perturbed input. Thus, when the perturbed input is not the
a priori CO2 profile itself, the a priori CO2 profile is the
“truth”. In Sect. 3.1.1, we look at the ability of the retrieval
algorithm to retrieve CO2 when it is the only unknown.

Over the course of a day, the water vapor profile can vary
by 40 % and the temperature profile can vary by more than
10 ◦C in the lowest troposphere, and therefore 3-hourly a
priori meteorological information could differ from the true
atmospheric state by several degrees Celsius for tempera-
ture and by 10 % for water vapor. In Sect. 3.1.2, we perturb
the a priori H2O profile, the main interfering absorber. In
Sect. 3.1.3, we perturb the temperature profile, as the inten-
sity and width of all absorption lines depend on temperature.
Finally, in Sect. 3.1.3 we perturb spectroscopic line parame-
ters themselves to within their uncertainties.

The total retrieval random error for the retrievals presented
in this section is ∼ 4.5 % (∼ 18 ppm), and the contribution
of random noise is ∼ 0.8 % (∼ 3 ppm); see Appendix D for
definitions of total and measurement noise errors. When the
deviations from the truth are larger than the a priori uncer-
tainty (∼ 20 ppm), it means the perturbation applied has a
severe effect on the retrieval. Of course this can be mitigated
by using a stronger a priori constraint or a measurement co-
variance matrix that reflects expected systematic errors, and
not just random noise, but always at the cost of reduced sen-
sitivity to CO2 too. The goal here is to estimate the relative
effect of different kinds of expected systematic errors on re-
trieved profile shapes. Stronger constraints can only reduce
the amplitude of the deviations from the truth, but the same
structures would remain. When the perturbation to a param-
eter other than CO2 results in deviations from the truth much
larger than those presented in Sect. 3.1.1, it means that errors

in that parameter will dominate the variability in the retrieved
CO2 profiles regardless of the retrieval constraints.

3.1.1 Perturbed CO2 profile

With a perturbed CO2 prior profile, the algorithm can retrieve
the true profile shape very well in all windows, even with an
a priori profile vastly different from the truth as shown in
Fig. 4. In Fig. 4a, when using the same prior that generated
the synthetic spectrum, the retrieved profiles do not align ex-
actly with the prior profile. This is due to small imperfections
in the synthetic spectra, but these result in differences of less
than 1 ppm at any altitude. In Fig. 4c the standard GGG2020
a priori profile is used as the a priori profile, while the “true”
CO2 profile used to generate the synthetic spectrum was built
from a composite “true” profile as described in Sect. 2.2.
In each window the retrieved profile is within 2 ppm of the
truth. In Fig. 4e a constant CO2 profile with 380 ppm at all
levels is used as the a priori profile. Again, the retrieved pro-
files are within 2 ppm of the truth except at the bottom and
top of the profile where most of the information comes from
the a priori profile. This self-consistency test shows that the
GFIT2 algorithm works as expected and can accurately re-
trieve CO2 when the a priori CO2 profile is the only source
of uncertainty.

3.1.2 Perturbed H2O profile

Figure 5 shows the effect of a+10 % perturbation to the H2O
vapor profile below 5 km for a dry winter day and a wet sum-
mer day. It leads to 2 ppm deviations from the CO2 a priori
profile in the Strong window under dry conditions and up to
15 ppm under wet conditions. In both cases, the deviations
from the truth in the CO2 profiles retrieved from the other
windows were within 2 ppm.

3.1.3 Perturbed temperature profile

A +5 ◦C perturbation to the temperature profile below 5 km
(0.5 atm<P < 1.0 atm), as in Fig. 6a, leads to deviations
from the truth in the retrieved CO2 profiles of up to 50 ppm
in the Weak and TCCON windows, and up to 100 ppm in
the Strong window. In that case the fit residuals can ex-
ceed 1 % in the Strong window and 0.5 % in the TCCON
windows. For the retrievals used to obtain the profiles in
Fig. 6a the SNR was set to 100 in the Strong window, 200
in the TCCON windows, and 1000 in the Weak windows.
In Fig. 6c and e the SNR is set to 1000 in all windows.
In Fig. 6c, a +2 ◦C perturbation is applied between 8 and
13 km (0.2 atm<P < 0.35 atm). The amplitude of deviations
in the TCCON windows and in the Strong window is close
to 50 ppm at ∼ 0.9 atm and 100 ppm at ∼ 0.2 atm. In the
two Weak windows, the deviation amplitude is ∼ 10 ppm at
∼ 0.9 atm and ∼ 20 ppm at 0.2 atm. In Fig. 6e, a +2 ◦C per-
turbation is applied above 15 km. In the Strong window, the
resulting deviation at pressures > 0.6 atm has the smallest
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Figure 4. The left-hand panels show CO2 profiles retrieved using
synthetic spectra. In (a), we use the AirCore profile, which was
used to generate the synthetic spectra, as the a priori profile. In (c),
we use the GGG2020 a priori CO2 profile as the a priori profile.
In (e), we use a constant CO2 a priori profile. Panels (b), (d), and
(f) show the difference between the retrieved profiles and AirCore,
corresponding to (a), (c), and (e) respectively.

amplitude amongst the five windows, within 4 ppm, and the
deviation at∼ 0.2 atm is∼ 20 ppm. In the TCCON windows,
the deviation at pressures > 0.6 atm is reduced to ∼ 10 ppm
while the deviation at pressures > 0.6 atm is comparable to
that in Fig. 6b. In the two Weak windows, the deviation at
∼ 0.9 atm is unchanged when to compared to Fig. 6b and the
deviation at ∼ 0.2 atm is reduced from ∼ 15 to ∼ 10 ppm.

From the results in Sect. 3.1.1, 3.1.2, and 3.1.3, we ob-
serve that CO2 profile retrievals do not need accurate prior
knowledge of the CO2 profile but require accurate knowl-
edge of the prior temperature and water vapor profiles. More-
over, these results suggest that errors in the temperature pro-
file are the main source of deviations from the truth in re-
trieved CO2 profiles. Retrievals using the two Weak windows
are the least affected by biases in the prior temperature and
water vapor profiles. The need for accurate a priori water va-
por profile could be alleviated by retrieving H2O profiles si-
multaneously with CO2 profiles, but this was not tested with
GFIT2, which currently can only retrieve the main target gas
in a window with profile retrievals. In addition, H2O profile
retrievals would also be affected by temperature errors.

Figure 5. The left-hand panels show CO2 profiles retrieved using
synthetic spectra. 10 % is added to the H2O profile below 5 km for
(a) dry conditions on 14 January 2012 and for (c) wet conditions on
23 July 2013. Panels (b) and (d) show the difference between the
retrieved profiles and AirCore, corresponding to (a) and (c) respec-
tively.

3.1.4 Perturbed line parameters

The line list used by GGG is a compilation of different ver-
sions of the HITRAN line lists (Gordon et al., 2017; Roth-
man et al., 2005, 2009, 2013; Toon, 2015; Toon et al., 2016).
GGG2020 has the option to use either the qSDV+LM line
shape or the Voigt line shape for some windows and gases
(Mendonca et al., 2016, 2017, 2019). The reference line lists
and the uncertainties on air- and self-broadened Lorentz half-
width coefficients, as well as their temperature dependence,
are summarized in Table 4. The qSDV+LM line shape is only
implemented for the CO2 lines of the two TCCON windows
and the Strong window, for the CH4 lines of the Weak1 win-
dow, and for the O2 lines of the oxygen window centered at
7885 cm−1. The qSDV+LM line shape is not implemented
for the CO2 lines of the Weak1 and Weak2 windows, but
these weak lines are minimally affected by line mixing, and
they lack laboratory measurements of speed-dependent line
parameters. The effect of errors in the half-width coefficients
on the retrieved CO2 profiles was tested by increasing both
the self- and air-broadened Lorentz half-width coefficients
by 0.1 % for all CO2 lines as shown in Fig. 7a. This per-
turbation corresponds to the median uncertainty of these pa-
rameters in the Strong and TCCON windows as shown in
Table 4. This caused deviations of up to 10 ppm in the Strong
window, 5 ppm in the TCCON windows, and 2 ppm in the
Weak windows. Similar deviations are obtained by perturb-
ing the temperature dependence of the half-width coefficients
by −1 % as shown in Fig. 7b. In this case, the deviations ap-
pear symmetric with the a priori profile compared to Fig. 7a.
The shape of deviations in both cases is similar; it is also
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Figure 6. The left-hand panels show CO2 profiles retrieved using
synthetic spectra for (a) +5 ◦C added to the a priori temperature
profile below 5 km, (c) +2 ◦C between 8 and 13 km, and (e) +2 ◦C
above 15 km. Panels (b), (d), and (f) show the difference between
the retrieved profiles and AirCore profile, corresponding to (a), (c),
and (e) respectively. Note the difference in the horizontal axis range
between the panels. Here 5 km corresponds to ∼ 0.55 atm, 8–13 km
to ∼ 0.36–0.17 atm and 15 km to ∼ 0.125 atm.

similar to the shape obtained in Fig. 6 from perturbing the
temperature profiles. This is because all those perturbations
ultimately lead to an altered line width and all cause residu-
als patterns that cannot be distinguished from each other, as
illustrated in Fig. 8. This implies that errors in the a priori
temperature profile, water vapor profile, and spectroscopic
widths are difficult to disentangle in the current GFIT2 pro-
file retrieval. A simultaneous temperature (hence pressure)
and CO2 profile retrieval would be necessary to overcome
these issues.

A factor of 10 increase in the perturbations applied to the
width coefficients or their temperature dependence also leads
to a factor of 10 increase in the amplitude of deviations in the
retrieved CO2 profiles. Figure 7a and b use perturbations cor-
responding to uncertainties in the line parameters when using
qSDV+LM for the TCCON windows and the Strong window.
The same perturbations were applied for all five windows.
However, in the Weak1 and Weak2 windows, these pertur-
bations are 10 times smaller than realistic uncertainties as
reported in Table 4 for the Voigt line shape. Therefore, for

Figure 7. The left-hand panels show CO2 profiles retrieved using
synthetic spectra. In (a) the air- and self-broadened half-width co-
efficients of all CO2 lines is increased by 0.1 %. In (c) the temper-
ature dependence of these coefficients is decreased by 1 %. In (e),
the synthetic spectrum used as “measurement” is generated with the
speed-dependent Voigt line shape with line mixing, but profiles are
retrieved using a Voigt line shape. Panels (b), (d), and (f) show the
difference between the retrieved profiles and AirCore, correspond-
ing to (a), (c), and (e) respectively.

the Weak windows, we can expect deviations from the truth
10 times larger than in Fig. 7, within ∼ 10–20 ppm.

In Connor et al. (2016), the authors used a Voigt line shape.
Figure 7e shows the effect of fitting with a Voigt line shape
a synthetic spectrum that was generated using qSDV+LM.
In that case the fit residuals in the Strong window can ex-
ceed 1 % and the residuals in the TCCON windows can ex-
ceed 0.5 %. For these retrievals, the SNR is set to 100 in the
Strong window, 200 in the TCCON windows, and 1000 in
the Weak windows. The profiles retrieved from the Strong
window present deviations from the truth within 60 ppm. In
the two TCCON windows, the deviations from the truth are
within 30 ppm. In the Weak1 window, the deviations from the
truth are within 10 ppm, because qSDV+LM was not used to
calculate the CO2 line absorptions themselves, but only for
the relatively strong CH4 lines in that window. In the Weak2
window, there is no difference between the two line lists or
line shape, and thus the retrieved profile does not differ from
the a priori profile. Therefore, even if we assume perfect a
priori meteorology, the deviations in the CO2 profiles re-

https://doi.org/10.5194/amt-14-3087-2021 Atmos. Meas. Tech., 14, 3087–3118, 2021



3096 S. Roche et al.: Retrieval of atmospheric CO2 vertical profiles from ground-based near-infrared spectra

Table 4. The 1σ relative errors of the air- and self-broadened Lorentz half-width coefficients (b) and of their temperature dependence (n).
The values from Benner et al. (2016) and Devi et al. (2007a, b) use the median 1σ uncertainty for the whole band, from the Appendix or
supplemental files of these studies. The values for the Voigt line shape use the error codes reported in the HITRAN2016 line list (Gordon et
al., 2017).

Line shape Window (band) b (air) n (air) b (self) n (self) Reference
(%) (%) (%) (%)

Voigt

TCCON1

≥ 1 and < 2

–

≥ 1 and < 2
–

Toth et al. (2008)
TCCON2

Weak1 From < 10 Lamouroux et al. (2015),

Weak2 to < 1 Gordon et al. (2017)

Strong

qSDV+LM

TCCON1 (30013–00001) 0.13
–

0.07 Devi et al. (2007a)

TCCON2 (30012–00001) 0.14 0.07 Devi et al. (2007b)

Strong (20013–00001) 0.03 0.12 0.09 0.33
Benner et al. (2016)

Strong (21113–01101) 0.25 1.47 0.49 2.27

trieved from the TCCON1 window observed by Connor et
al. (2016) when fitting real spectra could be entirely due to
the use of the Voigt line shape.

The effect of the errors in the a priori water vapor and tem-
perature profiles and in the spectroscopic parameters cannot
be mitigated by adjusting the measurement covariance, for
example by using a variable SNR. Figure 8 shows an exam-
ple of spectral residuals from fits to synthetic spectra from
the Strong window using scaling retrievals, but with differ-
ent perturbations applied. Showing residuals from scaling re-
trievals reveals systematic features that the profile retrieval
will attempt to suppress. Figure 8b presents residuals from
fitting a synthetic spectrum using the same a priori profile
that was used to generate the synthetic spectrum. It shows
small (< 0.05 %) residuals, caused by the use of a constant
ILS across the window for a faster convolution of the spec-
trum with the ILS. The corresponding profiles are shown in
Fig. 4a. In Fig. 8c, a 2 ◦C offset is applied to the a priori
temperature profile between 8 and 13 km before fitting the
synthetic spectrum. In Fig. 8d, a constant a priori CO2 pro-
file is used to fit a synthetic spectrum that was generated with
an AirCore CO2 profile as an a priori profile. In Fig. 8e, the
air- and self-broadened Lorentz half-width coefficients are
increased by 0.1 % compared to the parameters used to gen-
erate the synthetic spectrum. In Fig. 8f, the temperature de-
pendence of the air- and self-broadened Lorentz half-width
coefficients is decreased by 1 % compared to the parame-
ters used to generate the synthetic spectrum. In Fig. 8g, the
GGG2020 a priori meteorology and trace gas profiles are
used as a priori profiles instead of the a priori profiles con-
structed with AirCore profiles used to generate the synthetic
spectrum.

In all panels of Fig. 8 except panels (c) and (g), all the
residual features correspond to CO2 absorption lines. In
Fig. 8c, with a perturbation to the a priori temperature pro-
file, there is an added contribution of temperature errors on
interfering species. Furthermore, the residuals in Fig. 8g re-
sult from a combination of errors in the a priori meteorology
and trace gas profiles but are dominated by temperature er-
rors. Perturbations in the temperature profile, CO2 profile, or
CO2 line width coefficients all cause residuals with the same
shape because they all affect the width of CO2 lines. It is
not possible to de-weight the effect of any of those errors by
adjusting the measurement error without also losing the abil-
ity to correct for residuals caused by CO2 errors. Residuals
caused by realistic temperature errors as shown in Fig. 8c are
of the same magnitude as those caused by unrealistically high
errors in the a priori CO2 profile shape as shown in Fig. 8d.

3.1.5 Synthetic spectra: discussion

For retrievals on synthetic spectra, the “measurement” SNR
is set to 1000, which is high compared to most solar spec-
tra measured by TCCON. So in profiles retrieved from real
spectra, we can expect a greater influence of the a priori CO2
profile: the deviations will be smaller, and the degrees of free-
dom for signal will be lower than those shown in the figures
of Sect. 3.1. This is not a desirable outcome; the a priori CO2
covariance is meant to nudge the retrieval such that the so-
lution lies close to realistic ensembles of CO2 profiles, not
to constrain deviations caused by temperature errors. Tun-
ing the a priori or measurement covariances is not the right
approach until profile deviations caused by typical errors in
spectroscopy or meteorology are smaller than typical verti-
cal variations in CO2 profiles. Figure 4 shows that the profile
retrieval algorithm works well and could be a powerful tool
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Figure 8. Panel (a) shows an example of calculated lines in the Strong CO2 window. The other panels show residuals from fits to a synthetic
spectrum, using the same inputs used to generate the synthetic spectrum except for (b) no perturbation; (c) +2 ◦C perturbation to the a priori
temperature between 8 and 13 km; (d) a CO2 prior profile set to 380 ppm at all levels, corresponding to∼ 15 ppm offset from the unperturbed
prior; (e) air- and self-broadened Lorentz half-width coefficients increased by 0.1 %; (f) temperature dependence of the half-width coefficients
decreased by 1 %; and (g) using the a priori profiles that would be used by TCCON operational processing, instead of that constructed from
in situ measurements, resulting in a combination of different errors in the a priori profiles such as H2O, temperature, and CO2. Note the
vertical scale of panels (b), (e), and (f) is 5 times smaller than that of panels (c), (d), and (g).

to derive information about the vertical distribution of CO2,
even with ill-defined a priori CO2 profiles. Panels (a) and (b)
of Fig. 7 show that profile information could still be retrieved
to within∼ 5 ppm given realistic errors in line width parame-
ters. But as shown with Fig. 6, a temperature retrieval, or cor-
rection, is critical to producing reliable CO2 profile retrievals.
This study does not show the effect of typical instrument mis-
alignment errors on the retrieved profiles. GFIT2 currently
has no capacity to fit the instrument line shape (ILS) of a
misaligned instrument given specific angular and shear mis-
alignments and instead always assumes a perfect ILS. This is
an area of future development for the program. The effect of
an error in the instrument’s internal field of view and the ef-
fect of a zero-level offset are presented in Appendix F; both
should lead to minor deviations from the truth, within less
than 3 ppm.

In Sect. 3.2, GFIT2 is tested with real spectra using an a
priori profile built from in situ measurements. In that case,
the deviations from the truth in the retrieved CO2 profile
caused by errors in the a priori meteorology (temperature,
pressure, and water vapor profiles) are minimized, and the re-
maining deviations are caused by errors in the spectroscopic
line parameters, in the radiative transfer, in the instrument
line shape, or in the pointing of the sun tracker.

3.2 Real spectra

Here the algorithm is tested with real spectra measured at
Lamont as described in Sect. 2.2. A scaling retrieval is per-
formed before each profile retrieval and the root mean square
of the residuals from the scaling retrieval is used as measure-
ment uncertainty for the profile retrieval. Since the residuals
from the scaling retrieval include systematic features larger
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Figure 9. CO2 profiles retrieved from spectra measured at the La-
mont TCCON site on 14 January 2012, at 61–74◦ solar zenith an-
gle, coincident with AirCore measurements using (a) the AirCore
“truth” as a priori profiles and (c) the GGG2020 a priori profiles.
In (b) and (d) the difference of the retrieved profiles minus the Air-
Core profile is shown, corresponding to (a) and (c), respectively.
The points represent the 51 levels of the vertical grid. The DOFs for
each retrieval window are indicated in (b) and (d).

than the random noise in the measurement, the root mean
square is a conservative estimate of the noise. In Sect. 3.2.1,
we present CO2 profiles retrieved from real spectra and we
attempt to isolate the effect of errors in instrument line shape,
in spectroscopic parameters, and in pointing, from the effect
of errors in meteorology. In Sect. 3.2.2, we present an anal-
ysis of the information content and altitude sensitivity of the
retrieval. Finally, in Sect. 3.2.3, we compare XCO2 derived
from the scaling retrieval to XCO2 derived from the profile
retrieval.

3.2.1 Profiles

Figures 9 and 10 show CO2 profiles retrieved from real spec-
tra measured from Lamont, OK, on 14 January 2012 and
11 April 2017, respectively. In each figure, panel (a) shows
profiles retrieved using in situ profiles (the “truth”) as the
a priori profiles. In those cases, we assume that deviations
from the truth caused by errors in a priori meteorology (pres-
sure, temperature, and water vapor profiles) are minimized,
and the remaining deviations can be attributed to the combi-
nation of instrument misalignment (ILS), pointing errors, or
errors in spectroscopic parameters. Panel (c) shows profiles
retrieved using the GGG2020 a priori profiles. A first com-
plication for obtaining a satisfactory CO2 profile retrieval is
that the a priori CO2 profiles in GGG2020 already compare
well with in situ profiles, typically within 5 ppm over Lam-
ont. In Figs. 9c and 10c, the profile that most closely matches
the AirCore is the a priori profile.

Figure 10. Same as Fig. 9 but for spectra measured on 11 April
2017 at 28–39◦ solar zenith angle.

Even with ideal prior knowledge of the meteorology and
trace gas profiles, the CO2 deviations from the truth can be as
large as 50 ppm as shown in Figs. 9a and 10a. When synthetic
spectra were perturbed with realistic errors in line width pa-
rameters, profile deviations remained within 5 ppm for pro-
files retrieved from the Strong window and within 10 ppm for
the TCCON windows. This suggests that the main cause of
deviations in Figs. 9a and 10a is not due to errors in spec-
troscopic parameters. The assumption that there is no con-
tribution from temperature errors in the radiosonde profile is
supported by the CO2 profile deviation being smallest in the
Strong window, which is the most sensitive to temperature
errors. Although the effect of typical perturbations in the in-
strument field of view, zero-level offset, and spectroscopic
parameters is relatively small compared to the effect of tem-
perature errors, the cumulative effect of these errors could
explain the deviations from the truth in Figs. 9a and 10a.

Figure 11 shows the difference between the GGG2020 a
priori temperature profile, used in Figs. 9c and 10c, and the
radiosonde temperature profile used in Figs. 9a and 10a. In
both cases, we replace the a priori surface temperature with
the measured surface temperature. On 14 January 2012, the
radiosonde temperature profile is about 1 ◦C higher than the
GGG2020 a priori profile at pressures < 0.6 atm. The shape
of the Strong window CO2 profile deviations in Fig. 9c is
consistent with the sensitivity tests using synthetic spectra in
Sect. 3.1.3. In Fig. 6a, a +5 ◦C offset below 5 km results in
+500 ppm CO2 error at ∼ 0.9 atm, while in Fig. 10, a −1 ◦C
offset in the lower troposphere leads to a −50 ppm error at
∼ 0.9 atm. The deviations are smoother in Figs. 9 and 10
than in Fig. 6 because the SNR of real spectra is between
200 and 500 instead of 1000, and because of the smooth-
ing effect of the off-diagonal elements of the a priori co-
variance used in this section. The off-diagonal elements of
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Figure 11. Temperature profile difference for the GGG2020 a priori
minus radiosonde on 14 January 2012 and 11 April 2017. The ra-
diosonde profile is included in the a priori profiles used in panel (a)
of Figs. 9 and 10, and the GGG2020 a priori profiles are used in
panel (b) of Figs. 9 and 10. In situ temperature measurements are
used for both cases at the surface. The dashed line marks the average
difference, with the value indicated in the legend.

the a priori covariance introduce inter-layer correlations that
reduce large differences between levels over a given length
scale (see Sect. 2.2). Retrievals on real spectra after applying
a +5 ◦C offset to the radiosonde temperature profile below
5 km lead to a +100 ppm offset at ∼ 0.9 atm. The CO2 pro-
files in Fig. 10c differ less with those in Fig. 10a than do
the profiles in Fig. 9a and c. In Fig. 11, the difference be-
tween the GGG2020 and radiosonde temperature profile on
11 April 2017 is ∼ 3 ◦C for the first two levels above the sur-
face, but the average difference between 0.85 and 0.6 atm is
−0.15 ◦C compared to −1.05 ◦C on 14 January 2012.

In aircraft profiles over Lamont between 2008 and 2018
from NOAA’s ObsPack, the steepest vertical gradients in
CO2 profiles are ∼ 5 ppm km−1 between the surface and
∼ 3 km. In its current state, CO2 profile retrieval with GFIT2
cannot distinguish these vertical variations from CO2 devia-
tions caused by errors in the forward model, even with very
accurate a priori meteorology. Typical errors in the a priori
temperature profiles will prevent operational use of CO2 pro-
file retrieval without a scheme for retrieving or correcting the
temperature profiles.

3.2.2 Information content and averaging kernel

Table 5 presents the average values of the Shannon infor-
mation content, H , and of the CO2 profile DOFs, from all
profile retrievals performed on Lamont spectra when using
the GGG2020 a priori profiles. It also includes the ratio of
residuals (RR) of the spectral fits (see Appendix B, Eq. B10),
which represents the residuals of the profile retrievals as a
fraction of the residuals of the scaling retrievals. The same
quantities are plotted in Fig. 12 for each spectrum. The RR
is always smaller than 1 because the profile retrieval has
more freedom to adjust the calculated spectrum and so can
never produce larger residuals than scaling retrievals. Fig-
ure 12 also shows XCO2 obtained from the scaling retrievals

Table 5. Shannon information content (H ), degrees of freedom for
signal (DOFs) for the CO2 profile, and ratio of residuals (RR) aver-
aged over all 492 profile retrievals from near-infrared TCCON spec-
tra measured at Lamont and coincident within ±1 h of the AirCore
last sampling time. The standard deviation is also shown.

Window H DOFs RR
name

TCCON1 5.4± 0.6 2.7± 0.2 0.988± 0.014
TCCON2 5.4± 0.6 2.7± 0.2 0.992± 0.009
Weak1 2.3± 0.7 1.7± 0.3 0.996± 0.002
Weak2 2.5± 0.9 1.8± 0.4 0.994± 0.008
Strong 6.8± 1.0 3.0± 0.4 0.957± 0.038

subtracted to XCO2 obtained from profile retrievals for each
window.

Figure 13 shows the sums of the rows of the partial col-
umn averaging kernel matrix over different altitude ranges.
The sum from 0 to 70 km is the total column averaging ker-
nel (see Appendix C). The total column averaging kernel is
close to 1 at all levels in all windows, indicating good sensi-
tivity to changes in the CO2 total column. The partial column
kernels show that most of this sensitivity comes from alti-
tudes below 15 km. That the total column averaging kernel is
close to 1 at all levels is not inconsistent with the large de-
viations we observe in the retrieved CO2 profiles. If the total
column averaging kernel is exactly one at each level, adding
N molecules of CO2 anywhere in the atmosphere will lead
to N more molecules in the retrieved total column. However,
in the presence of a priori temperature errors, for example,
the retrieved value can be biased. The averaging kernel indi-
cates that without the effect of these errors, the CO2 profile
retrieval would have excellent sensitivity to CO2 and would
be able to provide information about CO2 in two distinct lay-
ers. Here, the vertical representation is not a concern. Using
51 vertical levels only affects the speed of the retrieval. The
retrieved profiles can then be reduced to a number of partial
columns corresponding to the DOFs. This was not done here
because it is evident that large deviations due to temperature
errors could easily bias the resulting partial columns. The
reduction into a subset of layers also requires an arbitrary
choice: in Fig. 13 the altitude ranges were set such that the
DOFs of the first two partial columns would be roughly close
to 1 in each window. We could also have chosen two regions
with approximately equal DOFs from 0–7 and 7–70 km. The
partial column averaging kernels overlap with each other, so
the partial columns are not completely uncorrelated even if
their respective DOFs are higher than 1. The DOFs are not
exactly independent pieces of information, as it is impossible
to obtain independent partial column amounts from direct-
sun measurements on the ground (see Appendix C), but an ar-
bitrary criterion can be defined to identify distinct layers, for
example if the peaks in their partial column averaging kernels
are separated by a given fraction of their widths in altitude.
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Figure 12. Shannon information content (top left), degrees of freedom for signal for the CO2 profile (top right), and ratio of residuals (bottom
left), and profile minus scaling retrieval XCO2 (bottom right) for all Lamont spectra coincident within ±1 h of the AirCore last sampling
time for AirCores launched on the dates indicated on the right. Each new date is marked by a vertical dashed line.

Figure 13. Sum of the rows of the partial column averaging kernel
matrix over different altitude ranges as indicated by the legend, for
each of the five CO2 windows. The sum between 0–70 km is the
total column averaging kernel. The numbers in each panel are the
DOFs corresponding to each of the altitude ranges.

Additional analysis of the vertical sensitivity of the retrieval
is presented in Appendix D, as well as a decomposition of the
retrieval error into the interference, measurement noise, and
smoothing errors as shown in Fig. D8. The interference error
is the smallest (< 0.5 %) contribution but does not include
the effect of temperature errors. The measurement noise error
decreases from ∼ 1 % at the surface to ∼ 0.2 % at pressures
less than 0.6 atm (> 5 km), and the smoothing error domi-
nates and decreases roughly from∼ 3 % at the surface to 1 %
at the top of the atmosphere.

3.2.3 XCO2

The XCO2 derived from profile and scaling retrievals using
the GGG2020 a priori profiles was compared to XCO2 de-
rived from the CO2 profile built from the AirCore CO2 pro-
file, in situ surface measurements of CO2, and the GGG2020
a priori CO2 above the maximum altitude sampled by the
AirCore. The results are shown in Fig. 14 for the 8 days we
have AirCore profiles that are coincident with measurements
at the Lamont TCCON station. Despite the large deviations
observed in retrieved profiles, the XCO2 derived from profile
retrievals compares well to the AirCore XCO2, but it does not
present a clear improvement over the XCO2 derived from the
scaling retrievals. The effect of temperature errors on XCO2
derived from scaling and profile retrievals is relatively small
because the spectral windows utilize the entire (fundamental)
band. Across a wide window, the residuals due to tempera-
ture errors show alternating positive and negative residuals,
because of the different temperature sensitivities of absorp-
tion lines. Collectively, these lines have a small net tempera-
ture sensitivity. The scaling retrieval, which can only add or
remove CO2 at all levels simultaneously, is limited in its abil-
ity to fit out such residuals across a wide window by adjust-
ing the CO2 scale factor. For profile retrievals, although large
deviations are observed in the retrieved profile, they compen-
sate each other when deriving the total column. These devia-
tions compensate due to the wide windows including a range
of spectral lines with different temperature sensitivities. If a
narrow window over only a few lines were used instead, we
would expect more localized errors in the retrieved CO2 pro-
files, and total columns sensitive to temperature errors.
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Figure 14. XCO2 derived from scaling (dashed lines and squares)
and profile (solid lines and circles) retrievals for each CO2 window
when using the GGG2020 a priori profiles, compared to XCO2 de-
rived from smoothed AirCore profiles (see Appendix C). The black
dotted line marks the 1-to-1 line. When comparing with scaling
retrievals, the AirCore profile is smoothed using the total column
averaging kernel of the scaling retrieval, and when comparing to
profile retrievals the AirCore profile is smoothed using the averag-
ing kernel matrix of the profile retrieval. The legend indicates the
slopes and squared Pearson correlation coefficients of fits to lines
passing through the origin, assuming that in the absence of CO2 the
retrieval would return a CO2 value of zero.

3.2.4 Real spectra: discussion

Profile retrievals that use real spectra and an a priori profile
built from coincident in situ measurements show CO2 pro-
file deviations up to 40–50 ppm. Even when the errors due to
the a priori meteorology are minimized, deviations from the
truth due to instrument misalignment, radiative transfer, sun-
tracker pointing, or uncertainties in line parameters are larger
than the steepest vertical CO2 gradients (∼ 5 ppm km−1) ob-
served in the ensemble of aircraft profiles from NOAA’s Ob-
sPack.

When performing retrievals on the same spectra but re-
placing the AirCore a priori profile with a standard a pri-
ori profile, small errors in the a priori temperature profile
cause large deviations in the retrieved CO2 profile. Despite
the large deviations in the retrieved profiles, the retrieval still
shows high sensitivity to XCO2 but does not present a clear
improvement over XCO2 obtained from scaling retrievals.
Introducing a temperature retrieval or correction, as well as
the ability to model an imperfect instrument line shape, is
the best avenue to improve the CO2 profile retrieval results.
Appendix E presents an attempt at applying empirical cor-

rections to reduce the effect of systematic imperfections in
the forward model.

4 Summary and conclusions

In this study we investigated the use of CO2 profile re-
trievals from near-infrared solar absorption spectra measured
by TCCON. The performance of CO2 profile retrieval was
reassessed after improvements were implemented in the for-
ward model of GGG. Retrievals were performed using five
CO2 windows with significantly different optical opacities.

We first use retrievals on synthetic spectra to check the
self-consistency. Typical errors in the a priori H2O profile,
which is retrieved with a scaling retrieval, caused limited de-
viations from the truth in the CO2 profile, within 5–10 ppm
in the Strong window, and within 2 ppm in the other win-
dows. Perturbing the CO2 air- and self-broadened Lorentz
half-width coefficients and their temperature dependence to
within their estimated uncertainties led to CO2 deviations
from the truth of less than 5 ppm. The implementation of a
non-Voigt line shape is a significant improvement to CO2
profile retrievals; errors in spectroscopic parameters are no
longer the leading source of uncertainty in retrieved profiles.
We observed deviations from the truth of up to 100 ppm in
profiles retrieved with typical temperature errors. The tem-
perature profile is an important retrieval input but is not re-
trieved; thus spectral residuals caused by errors in the a priori
temperature profile are free to be suppressed by adjustments
to the CO2 scale factors. The implementation of a temper-
ature profile retrieval, or correction, is critical to improve
CO2 profile retrieval results. In GGG2020, 3-hourly a pri-
ori temperature profiles are used, but temperatures can still
vary by several degrees between 3-hourly profiles and can
still be wrong even without any time mismatch. Temperature
could be retrieved from CO2 windows and from windows
with temperature-sensitive water vapor absorption lines.

We then perform retrievals with atmospheric TCCON
spectra collected at the Lamont site, which were coincident
with AirCore profiles, including radiosonde profiles of tem-
perature and relative humidity; these were considered as the
true state of the atmosphere. When running retrievals with
the truth as the a priori profiles, the deviations due to errors
in the a priori meteorology are minimized and the resulting
deviations are caused by instrument misalignment, errors in
spectroscopy, or sun tracker pointing. We observed CO2 de-
viations of up to 40 ppm in that case. Even with ideal knowl-
edge of the a priori meteorology, the CO2 deviations are
larger than the largest expected vertical CO2 variations and
no useful profile information can be inferred from the pro-
file retrieval. Stricter alignment requirements, which can be
challenging to achieve in practice, or the ability to model an
imperfect instrument line shape are needed to improve profile
retrieval results. The sensitivity study of Sect. 3.1 could then
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be extended to assess the effect of specific misalignments on
the retrieved profiles.

In these retrievals, we used a full a priori covariance ma-
trix, with off-diagonal elements, based on comparisons be-
tween the GGG2020 a priori and aircraft vertical profiles
from NOAA’s ObsPack over the Lamont TCCON site. Be-
fore tuning the a priori covariance and considering stronger
regularizations, it must be shown that CO2 deviations caused
by typical errors in the a priori meteorology are smaller than
typical variability in real CO2 profiles. Because it is more
computationally expensive, and because it requires stronger
constraints on the a priori statistics than scaling retrievals, a
profile retrieval must present clear advantages over a scaling
retrieval to justify its operational use. And with each new im-
provement to the CO2 a priori profiles, requirements for pro-
file retrieval to be better than scaling retrieval become more
stringent.

A method to combine the profiles obtained from sequen-
tial retrievals in different spectral windows still needs to be
developed. Alternatively, the ability to perform simultaneous
retrievals using multiple spectral windows could be imple-
mented in GFIT2.
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Appendix A: Vertical columns

The vertical grid for the retrievals presented in this study has
51 levels from 0 to 70 km, with spacing increasing with alti-
tude and following:

zi = i× (0.4+ 0.02× i) , (A1)

where zi is the altitude in kilometers of the ith level. Each
level is associated with an effective vertical path distance vp:

vpi ≈ 0.4+ 0.04× i. (A2)

The total column of air in molecules per square meter can be
obtained as

columnAir =

N∑
i=1

vpi × di, (A3)

where d is the air number density in molecules of air per
cubic meter. N is the number of atmospheric levels. If the
prescribed grid contains layers below the altitude of the site
considered, their effective vertical path will be 0. The layer
containing the site altitude will be truncated. The total col-
umn of CO2 is

columnCO2 =

N∑
i=1

sfi × vmri × di × vpi, (A4)

where sf is the retrieved scaling factor and vmr is the a pri-
ori CO2 wet mole fraction (molecules of CO2 per molecules
of air). In the forward model, the retrieval grid is not verti-
cal, but along the slant path from the instrument towards the
sun, the scaling factors retrieved for the slant layers are used
with the corresponding vertical layers to compute the vertical
column. The a priori profiles used by GFIT are built on the
prescribed altitude grid directly above the site. This should
contribute to an unknown error, largest at high solar zenith
angles when the projection of the sun ray on the ground can
reach a few hundred kilometers; in that case the a priori slant
profiles of temperature and H2O could be significantly dif-
ferent from the vertical profile directly above the instrument.

The column-averaged dry-air mole fraction of CO2
(XCO2) is the ratio of the column of CO2 to the column of
dry air, where the column of dry air is expressed as the col-
umn of O2 divided by 0.2095 (Wunch et al., 2011b):

XCO2 = 0.2095×
columnCO2

columnO2

, (A5)

where the O2 column is retrieved from a spectral window
centered at 7885 cm−1. For the official TCCON products,
columnCO2 is a weighted average of the columns retrieved
from the TCCON1 and TCCON2 windows.

Appendix B: GFIT2 algorithm

To find the state vector with maximum a posteriori probabil-
ity given a measurement, the cost function J is minimized,

J = (y− f (x))T S−1
y (y− f (x))

+ (xa− x)
TR(xa− x) , (B1)

by iteratively solving for the state update 1x in the least
square problem:(

KT
i S−1

y Ki +R+ γD
)
1x =KT

i S−1
y (y− f (xi))

+R(xa− xi) . (B2)

Here, y is the measured transmittance spectrum, f is the for-
ward model that computes a transmittance spectrum from the
state vector x, Sy is the measurement covariance matrix, xa
is the a priori state vector, and the regularization matrix R is
taken to be the inverse of the a priori covariance matrix Sa.
K is the Jacobian matrix, and each column of K contains the
derivative of the spectrum with respect to an element of the
state vector, K= ∂f (x)

∂x
. The Levenberg–Marquardt parame-

ter γ is applied to a scaling matrix D, which is also taken to
be S−1

a . The Levenberg–Marquardt parameter affects the size
of the state update so that smaller steps may be taken when
the linearization of the forward model is not satisfactory.

The expected χ2 of the maximum a posteriori probability
solution should be

χ2 (x̂− x)= (x̂− x)T (KT S−1
y K+S−1

a

)(
x̂− x

)
≈ n, (B3)

where n is the number of state vector elements. A solution
is accepted when the ratio of the squared state update to the
estimated variance is a negligible fraction of the expected χ2:

1x
(

KT S−1
y (y− f (xi))+S−1

a (xa− xi)
)
� n. (B4)

In an algorithm, “� n” must use a specific limit, and in
GFIT2, “< n/10” was used. If the inequality check is made
with a parameter that is too large, like “< n”, the algorithm
may take fewer iterations to converge but will take the same
steps at each iteration, often leading to a retrieved profile
closer to the a priori profile. The inequality check should be
done with a small enough fraction of n that reducing it further
does not significantly affect the solution.

If convergence is not reached in the ith iteration, an al-
gorithm determines if the Levenberg–Marquardt parameter
needs to be adjusted for the next iteration (Fletcher, 1971).
Three different cost functions are used:

Jold = (y− f (xi))T S−1
y (y− f (xi))

+ (xa− xi)
T S−1

a (xa− xi) , (B5)

Jnew = (y− f (xi +1x))T S−1
y (y− f (xi +1x))

+ (xa− xi −1x)
T S−1

a (xa− xi −1x) , (B6)

https://doi.org/10.5194/amt-14-3087-2021 Atmos. Meas. Tech., 14, 3087–3118, 2021



3104 S. Roche et al.: Retrieval of atmospheric CO2 vertical profiles from ground-based near-infrared spectra

Jpred = (y− f (xi)−K1x)T S−1
y (y− f (xi)−K1x)

+ (xa− xi −1x)
T S−1

a (xa− xi −1x) , (B7)

where Jold is the cost function using the state vector at the
beginning of the ith iteration, Jnew is the cost function using
the updated state vector at the end of the ith iteration, and
Jpred is the cost function using the state vector update and
the linear approximation:

f (x+1x)∼= f (x)+K1x. (B8)

The ratio r is then evaluated:

r =
Jnew− Jold

Jpred− Jold
. (B9)

This is the relative change in the cost function produced by
a state vector update when using the forward model and a
linear approximation of the forward model. The Levenberg–
Marquardt parameter is then adjusted as follows:

– r > 0.75. The linearization of the forward model is sat-
isfactory and γ is reduced to allow larger steps.

– γ =
γ
2

– r ≥ 0.25. Intermediate case, make no change to γ and
reset the number of consecutive divergences.

– ndiv= 0

– r < 0.25. The linearization of the forward model is not
satisfactory, increment the number of consecutive diver-
gences, γ is increased to take smaller steps.

– ndiv= ndiv+ 1

– if γ = 0 then γ =1

– if γ > 0 then γ = 10γ

If ndiv reaches some specified maximum number, there will
not be another iteration. When r < 0.25, it means that the
linearization of the forward model is not good enough. In
GFIT2, this was not allowed to happen more than twice in
a row. Increasing γ will lead to a smaller step for the state
vector update, increasing the chance that the linearization of
the forward model at the next step will be better and r ≥ 0.25.

In GFIT2 r > 0.75 in most cases, and if γ is not initially
set to 0 it will tend towards zero until the convergence crite-
rion is met; thus the initial value of γ was set to 0. However,
the increase of the parameter is often triggered when fitting
noisier spectra and can give the algorithm a chance to con-
verge when it would otherwise need more iterations or fail
without γ .

After the last iteration, the goodness of the retrieval is
checked by evaluating the reduced χ2 of the spectral residu-
als.

χ2
red (y− f (x))=

1
N

N∑
i=1

(
yi − f (x)i
ynoise

)2

, (B10)

where ynoise is the measurement uncertainty, and N is the
number of spectral points. Profile retrievals from real spectra
are presented in Sect. 3 where the root mean square of the
residuals from a scaling retrieval is used as ynoise. In that case
Eq. (B10) is the average ratio of residuals (RR) between the
profile and scaling retrieval.

The retrieval covariance matrix is

Ŝ=
(

KT S−1
y K+S−1

a

)−1
. (B11)

The square root of its diagonal elements is used as the uncer-
tainty in the retrieved scaling factors.

Appendix C: Averaging kernel

The state vectors of GFIT and GFIT2 contain scaling factors
to be applied to a priori mole fractions. The averaging kernel
matrix is

A=
(

KT S−1
y K+S−1

a

)−1
KT S−1

y K. (C1)

It is a change in the retrieved state for a change in the state
vector elements.

(ASF)i,j =
δx̂i

δxj
(C2)

Even though the averaging kernel is dimensionless, its units
can be written as, for example, “ppm per ppm” to indicate
that it is the change at a given level for a change at a different
level.

To obtain the averaging kernel in ppm per ppm,

(Avmr)i,j = (ASF)i,j
vmri
vmrj

, (C3)

where vmr is the a priori mole fraction at the ith and j th
levels and the partial column averaging kernel matrix in
molecules cm−2 per molecules cm−2 is

(Acol)i,j = (ASF)i,j
vmri × di × spi
vmrj × dj × spj

, (C4)

where sp denotes the widths of the slant layers along the sun
ray that correspond to the altitude levels of the prescribed
vertical grid. The total column averaging kernel vector can
be obtained from the partial column averaging kernel matrix:

aj =
nlev∑
i=1

(Acol)i,j . (C5)

It represents the change in the total column (molecules cm−2)
caused by a change in the partial column of the j th layer.
It should ideally be equal to 1 at each level, meaning that
adding N target molecules anywhere in the atmosphere will
lead to N more molecules in the retrieved total column.
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The averaging kernel matrix would ideally be an identity
matrix, meaning that adding N molecules in the j th layer
would lead toN more molecules retrieved in that layer. How-
ever, adding N molecules in the j th layer will lead to an in-
crease in the width of CO2 absorption lines of a spectrum
observed from the ground. As illustrated for CO2 in Fig. 2,
each wavenumber is affected by the CO2 concentration over
a range of altitudes, because the spectrum observed on the
ground is the product of all the spectra that would be ob-
served at each altitude. Even if that change in line widths
was the only change in the spectrum and could be fitted per-
fectly, it would be impossible to exactly attribute that change
to a specific level. Although the total column averaging ker-
nel could be exactly 1 at each level, the averaging kernel ma-
trix can never be exactly the identity matrix for direct-sun
measurements from the ground.

The column averaging kernel matrix can be used to de-
grade higher-resolution profiles before comparing them to
retrieved profiles (Rodgers and Connor, 2003).

cs = Acol (c− ca)+ ca, (C6)

where cs is the smoothed partial column profile, c is the par-
tial column profile to be smoothed, and ca is the a priori par-
tial column profile. Or, using the total column averaging ker-
nel,

ctot
s = c

tot
a + aT (c− ca) , (C7)

where aT is the transpose of a, and the “tot” superscript in-
dicates a total column:

ctot
a =

nlev∑
i=1

cai . (C8)

Appendix D: Information content and error analysis

The singular value decomposition of the CO2 Jacobian ma-
trix can provide information on the relative precision with
which different vertical patterns are measured. The Jacobian
matrix K is decomposed into

K(nmp,nlev)= U(nmp,nlev)L(nlev,nlev)

×VT (nlev,nlev) , (D1)

where nmp is the number of measured spectral points, nlev
is the number of atmospheric levels, U is the matrix of left
singular vectors, L is the diagonal matrix of singular values,
and VT is the transpose of the matrix of right singular vec-
tors. The right singular vectors of K associated with the eight
largest singular values are shown in Figs. D1 to D5 for each
CO2 band on 14 January 2012. The right singular vectors rep-
resent independently measured vertical patterns with a preci-
sion indicated by their corresponding singular values shown
above each panel. The singular values are also shown as a

Figure D1. Right singular vector of the Jacobian associated with the
eight largest singular values for profile retrievals from the Strong
CO2 window on 14 January 2012. The singular values are shown
above each panel, and the singular value normalized to the largest
singular value is shown in parenthesis.

Figure D2. Same as Fig. D2 but for the TCCON1 window.

fraction of the largest singular value in parenthesis. The sin-
gular vectors all show an increasing number of oscillations
with decreasing singular value. In each window, the first sin-
gular vector is close to a uniform weighting at all altitudes
and has 3 to 10 times more sensitivity than the second pat-
tern. The singular vector in panel (d) has a structure like that
of the CO2 profile deviations observed in the sensitivity tests
of Sect. 3.1.

The retrieval covariance matrix Ŝ can be expressed as a
sum of the null space covariance SN and the measurement
noise covariance Sm (Rodgers, 1990):

SN =
(

S−1
a +KT S−1

y K
)−1

S−1
a

(
S−1

a +KT S−1
y K

)−1
, (D2)

Sm =
(

S−1
a +KT S−1

y K
)−1

KT S−1
y

×K
(

S−1
a +KT S−1

y K
)−1

. (D3)

The error patterns of these matrices hold information on ver-
tical structures in the CO2 profiles that the retrieval cannot
resolve, due to the smoothing effect of the a priori covariance
matrix Sa in the case of SN, and due to the effect of measure-
ment noise in the case of Sm, as the measurement error co-
variance matrix Sy only represents random errors in the mea-
sured radiances. The error patterns of a matrix are defined as
its eigenvectors multiplied by the square root of their cor-
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Figure D3. Same as Fig. D1 but for the TCCON2 window.

Figure D4. Same as Fig. D1 but for the Weak1 window.

responding eigenvalue. The error patterns of SN associated
with the four largest eigenvalues are shown in Fig. D6, and
those of Sm are shown in Fig. D7. In both cases, the largest
error pattern peaks at the surface and falls to 0 at ∼ 0.9 atm;
these peaks in the error patterns correspond to a minimum in
the singular vectors of the CO2 Jacobian. The large errors in
the retrieved CO2 profiles are explained by the larger a pri-
ori uncertainty in the lower troposphere, and by the relatively
larger effect of errors at wavenumbers strongly weighted at
low altitudes. This is because “sensitivity” is determined by
the Jacobian; the retrieval will simply preferentially adjust
CO2 at levels where a given change in CO2 causes a larger
change in radiance. At pressures larger than ∼ 0.9 atm, the
error patterns of SN represent vertical scales that cannot be
resolved in the retrieval, with a vertical scale of 0.3 atm or
less.

The uncertainty in the retrieved CO2 profile is taken to be
the square root of the diagonal elements of Ŝ even though the
retrieval covariance is not diagonal. It is presented in Fig. D8
as a percentage of the a priori uncertainties. The retrieval er-
ror is always smaller than the a priori covariance by construc-
tion in optimal estimation, so this alone gives no indication
of a successful retrieval. But the retrieval is more sensitive
to altitudes where the retrieval uncertainty is a smaller frac-
tion of the a priori uncertainty. The error from the diagonal
of SN and Sm is also shown. In addition to SN, the smooth-
ing contribution from state vector elements other than CO2
scale factors is shown as Si , the interference error covariance

Figure D5. Same as Fig. D1 but for the Weak2 window.

(Rodgers and Connor, 2003):

Si = AxeSa,eATxe, (D4)

where Sa,e is the part of the a priori covariance matrix that
corresponds to “extra” state vector elements other than CO2
scale factors. With N total state vector elements and nlev at-
mospheric levels, Sa,e has dimensions (N -nlev,N -nlev). Axe
is the subset of the averaging kernel matrix that character-
izes the smoothing effect of the extra state vector elements
on the CO2 profiles, with dimensions (nlev,N -nlev). The in-
terference error is the smallest contribution to the total error
and most of the error comes from the smoothing effect of
the a priori CO2 covariance, followed by the contribution of
measurement noise which oscillates between ∼ 10 %–25 %
of the a priori CO2 uncertainty. If temperature were retrieved,
for example with a temperature offset or with a scale factor
added to the extra state vector elements, we would expect the
interference error to increase.

Appendix E: Empirical corrections

In Sect. 3 we saw that CO2 profile retrievals have high sensi-
tivity to CO2 in the absence of errors in the a priori meteorol-
ogy and systematic errors in instrument line shape. Here we
investigate the possibility of empirically removing the effect
of those errors by de-weighting systematic spectral fitting
residuals using empirical orthogonal functions (EOFs). EOFs
have been used, for example, with retrievals from GOSAT
and OCO-2 measurements (O’Dell et al., 2018).

E1 Empirical orthogonal functions

To reduce the effect of systematic residuals on retrieved pro-
files, EOFs of the spectral fitting residuals were derived to
find and remove systematic patterns in the residuals related to
temperature errors, instrument line shape, and other effects.
The residuals divided by air mass from a set of retrievals cov-
ering a wide range of observational conditions are stored in
a matrix M(m,n), with n the number of spectra and m the
number of spectral points. Then a singular value decompo-
sition is performed on this matrix. The columns of the ma-
trix of left singular vectors are orthogonal basis vectors of
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Figure D6. The four largest error patterns of the null space covariance matrix for a Lamont spectrum measured on 14 January 2012.

Figure D7. Same as Fig. D6 but for the measurement noise covariance matrix.

Figure D8. Panel (a) shows the square root of the diagonal elements
of the retrieval total error covariance matrix Ŝ, the null space covari-
ance matrix SN, the interference error covariance matrix Si , and the
measurement noise error covariance matrix Sm expressed as a frac-
tion of the a priori uncertainty σ a. Each line is the average from
the set of 8 days with AirCore measurements over Lamont, and the
bands indicate the standard deviation. Panel (b) shows the a priori
uncertainty.

the residuals and those associated with the largest singular
values represent the main patterns in the residuals, while the
corresponding right singular vectors can provide information
on the temporal frequency of these patterns.

We use a linear combination of left singular vectors. Each
singular vector is associated with a scaling factor. The scal-
ing factor is part of the state vector and adjusted during
the retrieval using 100 % uncertainty. Before each inversion
step, the spectrum “c” calculated with the forward model be-
comes:

c = c+

N∑
i=1

aiui, (E1)

whereN is the number of EOFs to use, ordered with decreas-
ing singular value. The first EOF, associated with the highest
singular value, is like the scaled average residual from all the
spectral residuals in the matrix M. Our implementation dif-
fers from that described by O’Dell et al. (2018) in that here
the EOFs are derived from a set of residuals obtained using
scaling retrievals, and not using profile retrievals. Since they
are meant to remove systematic errors in the calculated spec-
tra before the retrieval adjusts the CO2 scaling factors, the
EOFs should be derived from a large set of residuals obtained
with scaling retrievals to have a significant effect on the pro-
file retrieval. If they are derived from residuals obtained with
profile retrievals, these mainly include systematic error pat-
terns corresponding to interfering species, which are not the
main source of deviations in retrieved CO2 profiles. When
using scaling retrieval residuals, each EOF includes different
error patterns corresponding to CO2 absorption lines. These
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Figure E1. Fraction of the variability in the spectral residuals ac-
counted for by each empirical orthogonal function in each CO2 win-
dow. The EOF numbers are shown in decreasing order of singular
value. Panel (b) highlights the blue rectangle inside panel (a).

error patterns may be attributed to systematic errors for the
first EOF, such as errors in spectroscopy, or in the instrument
line shape, or a persistent bias in meteorology. The error pat-
terns can also correspond to errors in the a priori meteorol-
ogy. The temporal frequency of each error pattern is con-
tained in the corresponding right singular vector. The right
singular vectors could help diagnose, for example, biases in a
priori temperature profiles on different timescales. The right
singular vectors can also be used to find correlations between
each spectral residual pattern and other quantities measured
in time, such as differences between a priori and measured
meteorology.

If the residual patterns corresponding to CO2 lines have
the same shape as residuals caused by errors in the a priori
CO2 profile shape, adjustments to the CO2 scaling factors
will compete with adjustments to the EOF scaling factors in
the retrieval. Because higher-order EOFs are associated with
residuals with different time periodicity, they can also intro-
duce errors that do not exist in calculated spectra. We chose
to only include the first EOF, which represents residual pat-
terns common to most spectra. The leading EOF can explain
40 % to 52 % of the variability in the residuals, depending on
the window, as shown in Fig. E1. The fraction of variability
is obtained as the singular value of a given EOF divided by
the sum of all singular values. The first 10 EOFs in each win-
dow are above the noise level of singular values and account
for over 90 % of the variability in the residuals.

E2 Results

One year of measurements from the East Trout Lake (SK,
Canada) TCCON station were processed in three ways: with
scaling retrievals, with profile retrievals, and with profile re-
trievals including the first EOF derived from residuals ob-
tained with the scaling retrievals. The residuals used to de-
rive the EOFs are filtered such that spectra that would not
pass the TCCON quality checks are not included. To avoid
isolated spectra with large residuals having a disproportion-
ate impact on the singular value decomposition of the ma-
trix of residuals, all the spectra are ordered by increasing so-
lar zenith angle and filtered based on the root mean square
of the residuals: the 500-point rolling median is computed,
and the median of the 500-point rolling standard deviation
is used as an estimate of the standard deviation σ ; then only
spectra within 1σ of the rolling median for all windows are
used to derive the EOFs. The matrix of residuals resulting
from this filtering includes 42 037 out of 64 245 total spec-
tra. XCO2 was retrieved from each window separately. The
statistics on the retrieved XCO2 error are shown in Table E1
for each retrieval type and for each window. In all win-
dows but the Strong window, the changes in XCO2 error
between the different retrieval methods are small, less than
0.05 ppm. This is 8 times smaller than the reported TCCON
1σ single-measurement precision of 0.4 ppm. However, the
mean XCO2 error is∼ 55 % larger in the strong window with
profile retrievals compared to scaling retrievals.

Figures E2 to E6 show quantities derived from each type
of retrieval for an example day and for each window. In each
window, the profile retrieval with the first EOF appears as an
intermediate case between the profile retrieval and the scal-
ing retrieval. In each case, the root mean square of the resid-
uals is smaller for profile retrieval with the first EOF, but the
XCO2 error is not necessarily smaller.

In Fig. E7a, XCO2 differences are shown between profile
and scaling retrievals, and between profile retrievals includ-
ing the first EOF and scaling retrievals in Fig. E7b. We have
seen that differences in XCO2 error between the different re-
trieval types are within 0.05 ppm. However, differences in
XCO2 between profile and scaling retrievals can be several
times larger than the XCO2 error, indicating different sources
of bias between profile and scaling retrievals. In the Weak1
window, the median of the XCO2 absolute differences are
∼ 4 times larger than the median XCO2 error and ∼ 3 times
larger in the Strong window. In the TCCON1, TCCON2,
and Weak2 windows, the median of the XCO2 absolute dif-
ference is smaller than the median XCO2 error. In all but
the Weak1 window, the XCO2 differences are 25 % to 35 %
smaller between August and November than for the rest of
the year. In Fig. E7b, the XCO2 differences between the pro-
file retrievals with EOF and the scaling retrievals are smaller
and more consistent between windows than in Fig. E7a. And
the median of the XCO2 absolute differences is smaller than
the median XCO2 error in all windows. Including the leading
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Table E1. Statistics on the retrieved XCO2 error for one year of measurements at the East Trout Lake TCCON station. “SD” indicates the
standard deviation.

XCO2 error Scaling retrieval Profile retrieval Profile retrieval with
(ppm) the first EOF

Window Mean Median SD Mean Median SD Mean Median SD

Strong 0.51 0.38 0.37 0.79 0.63 0.60 0.78 0.61 0.59
Weak1 0.89 0.64 0.68 0.91 0.67 0.66 0.90 0.66 0.66
Weak2 0.80 0.56 0.64 0.81 0.61 0.56 0.80 0.61 0.56
TCCON1 0.74 0.48 0.66 0.79 0.51 0.70 0.79 0.51 0.70
TCCON2 0.69 0.45 0.61 0.74 0.47 0.66 0.74 0.47 0.66

Figure E2. Quantities derived from retrievals on East Trout Lake
measurements on 29 March 2018 for the Strong window. The re-
trieval type is indicated by the legend. Panel (a) shows the column-
integrated CO2 scale factor. Panel (b) shows XCO2 and panel (c)
shows the XCO2 error. Panel (d) shows the root mean square of the
residuals as a fraction of the continuum level.

EOF in a profile retrieval reduces the XCO2 differences be-
tween the scaling and profile retrievals, but the XCO2 of the
profile retrieval with EOF is more strongly correlated with
the XCO2 of the profile retrieval than that of the scaling re-
trieval as shown in Table E2.

When compared to preliminary data from aircraft mea-
surements, the deviations in the CO2 profiles obtained with
profile retrievals are larger than the vertical variations in the
aircraft measurement. When the retrieved profiles present

Figure E3. Same as Fig. E2 but for the TCCON1 window.

Table E2. Squared Pearson correlation coefficient for XCO2 be-
tween the scaling and profile retrievals (SCL–PRF), and between
the profile retrieval with the first EOF and the profile retrieval
(EOF–PRF).

R2 SCL–PRF EOF–PRF

Strong 0.9368 0.9929
Weak1 0.9633 0.9951
Weak2 0.9586 0.9814
TCCON1 0.9922 0.9995
TCCON2 0.9931 0.9999
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Figure E4. Same as Fig. E2 but for the TCCON2 window.

Figure E5. Same as Fig. E2 but for the Weak1 window.

Figure E6. Same as Fig. E2 but for the Weak2 window.

large deviations typical of temperature errors like that in
Fig. 9b, the CO2 profile obtained from profile retrieval with
the first EOF reduces the amplitude of the deviations, but the
shape persists. This is expected as the first EOF represents
the average residuals, which should not include residual fea-
tures caused by temperature errors, unless the temperature
errors were always biased in the same way. We would expect
the first EOF to reduce deviations like that in Fig. 9a. In such
cases, the CO2 profiles obtained from profile retrieval with
the first EOF are smoother than profile retrievals but present
no clear advantage over scaling retrievals.
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Figure E7. In panel (a), the XCO2 obtained from the scaling retrieval is subtracted from the XCO2 obtained from the profile retrieval.
In panel (b), the XCO2 obtained from the scaling retrieval is subtracted from the XCO2 obtained from the profile retrieval with EOF. In
panel (c), the XCO2 error from the scaling retrieval is shown, with the median values as dashed lines. In the top two panels, the horizontal
dashed lines show the median values of absolute differences in XCO2.

Appendix F: Synthetic spectra, perturbed field of view
and zero-level offset

The saturated lines of the Strong window allow a zero-level
offset to be fit. Figure F1 shows the zero-level offset retrieved
from the Strong window using real spectra for each of the
days with Lamont data used in Sect. 3. The median abso-
lute value is at most 0.001 on 23 July 2013. The effect of
a zero-level offset on retrieved profiles was tested with syn-
thetic spectra. Figure F2a and b are the same as Fig. 4a and b
and show profiles retrieved from synthetic spectra in the ref-
erence case, when no perturbation is applied. Figure F2e and
f show the effect of a +0.002 perturbation to the zero-level
offset, without retrieving it in the Strong window. This has a
large effect in the profile retrieved from the Strong window,
with deviations from the truth within 30 ppm, and a smaller
effect in the other bands with deviations up to 10 ppm.

In Fig. F2c and d we also consider the effect of one type of
ILS error by perturbing the internal field of view by +7 %,
which leads to a widening of the ILS. The unperturbed in-
ternal field of view of the spectrometer is 2.4 mrad. The de-
viations from the truth are within 1 ppm for P > 0.5 atm and
within 3 ppm for P < 0.5 atm.

This sensitivity test shows the effect of zero-level offsets
will not be a major source of variability in the retrieved pro-
files. If the zero-level offset retrieved from the Strong win-
dow is added to the TCCON and Weak windows before the
retrieval, the change in the retrieved profiles is less than

Figure F1. Zero-level offset retrieved from the Strong CO2 window
for the Lamont spectra coincident within ±1 h of the last AirCore
sampling time and within±1.5 h of the closest a priori time on each
of the days indicated by the legend. The dashed lines mark the me-
dian value for each date.

3 ppm at all altitudes as shown in Fig. F3 using days with
AirCore profiles at Lamont.
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Figure F2. The left-hand panels show CO2 profiles retrieved using
synthetic spectra. In (a), we use the AirCore profile, which was used
to generate the synthetic spectra, as the a priori profile. In (c), the
internal field of view is perturbed by +7 %, increasing the width of
the ILS. In (e), the zero-level offset is perturbed by +0.002 and is
not retrieved in the Strong window. Panels (b), (d), and (f) show the
difference between the retrieved profiles and AirCore, correspond-
ing to (a), (c), and (e) respectively.

Figure F3. Using real Lamont spectra with the AirCore profile as
the a priori profile, the zero-level offset was first retrieved from the
Strong window and then added in the Weak and TCCON windows.
The difference in the retrieved profiles with and without the added
offset is shown for each window and for all the days with AirCore
profiles over Lamont. In the Strong window, where the offset is re-
trieved, the differences are less than 0.001 ppm.
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Code availability. It is our intention to make the profile retrieval
code available as part of a future version of GGG and hence publicly
available through TCCON; until then it can be made available upon
request to the corresponding author.

Data availability. The data used in this study consist of synthetic
spectra generated with GGG2020 and measured spectra from
the Lamont and East Trout Lake TCCON stations. Scaling re-
trieval products from those sites using the GGG2014 algorithm
(https://doi.org/10.14291/tccon.ggg2014.lamont01.r1/1255070,
Wennberg et al., 2016; https://doi.org/10.14291/tccon.ggg2014.
easttroutlake01.r1, Wunch et al., 2018) are available pub-
licly through CaltechDATA (https://tccondata.org, last access:
13 November 2020). Measured solar absorption spectra can be
obtained by contacting the TCCON site PIs.
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