
Supplement of Atmos. Meas. Tech., 14, 3131–3151, 2021
https://doi.org/10.5194/amt-14-3131-2021-supplement
© Author(s) 2021. CC BY 4.0 License.

Supplement of

Development of the drop Freezing Ice Nuclei Counter (FINC), intercom-
parison of droplet freezing techniques, and use of soluble lignin as an at-
mospheric ice nucleation standard
Anna J. Miller et al.

Correspondence to: Nadine Borduas-Dedekind (borduas@chem.ubc.ca)

The copyright of individual parts of the supplement might differ from the article licence.



Contents

S1 Freezing detection 3

S2 Pre-treatment of Piko PCR trays 5

S3 Temperature calibration experiments 65

S4 Limit of detection 8

S5 Volume dependence on non-homogeneous freezing 9

S6 Effect of water background contamination 11

S7 Water condensation calculations 12

S8 Well surface area calculations 1310

S9 Effect of bubbles in the well 17

S10Background measurements for FINC, DRINCZ, and LINDA during the intercomparison 19

S11Uncertainties in INP concentrations, ns, and nm 20

S11 .1NX-illite ns error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

S11 .2Aerosol INP concentration error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2015

S11 .3Lignin nm error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

S12Lignin batch specifications 22

S13Lignin solution stability and storage 23

2



S1 Freezing detection

The freezing detection on FINC works with images of the Piko PCR trays, taken every 0.2 ◦C by a camera. Well location20

detection is implemented with the Circular Hough transform algorithm similarly described in David et al. (2019). The automatic

well alignment is shown in Figure S1 . Since the automatic well detection was not always reliable, we also developed a filtered

algorithm output to identify the well positions, as well as the option for a manual well alignment grid by the user selecting two

opposing corner wells. For data visualization, a color map of the freezing temperature is also generated to visually inspect any

well location bias S2 . Freezing temperatures are output as single-column vector, sorted by well position going top to bottom25

and left to right (S1 ).

Figure S1 . Automatic well alignment. The black and white photograph is taken from the camera on FINC of the three PCR trays. The

colored circles overlaying the image are the automatic detected wells of the different trays. Yellow squares show misdirected wells, which is

purely prognostic and does not affect freezing analysis. The yellow arrows indicate the direction of the sorted freezing temperature values by

well position, and the yellow numbers indicate the position of the well in the vector (only 1-4 and 17-20 are shown as an example, and the

well positions continue in this trend).
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Figure S2 . Map of freezing temperatures for each well in a freezing experiment of background water using 20 µL well volumes. Each square

represents the location of the 288 wells. The color scale represents the temperature at which each well froze (red colors for warmer freezing

temperatures, blue colors for colder freezing temperatures).

4



S2 Pre-treatment of Piko PCR trays

Freezing experiments with background water in Piko PCR trays used directly from the package showed irreproducible results

(black markers in Figure S3 ). After pre-treating the trays by heating them in an oven at 120 ◦C for at least one hour, background

water experiments were more reproducible (red markers in Figure S3 ).30
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Figure S3 . Frozen fraction curves of untreated Piko PCR trays and oven-cleaned Piko PCR trays. Each curve represents one 96-well tray.

Untreated trays were used directly from the package (black dots), whereas the oven-cleaned trays were placed in the oven at 120 ˚C for at

least one hour prior to pipetting in sample (red dots). These experiments used 20 µL of molecular biology free reagent water. All temperature

measurements have an uncertainty of ±0.5 ◦C.
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S3 Temperature calibration experiments

A number of tests were conducted to see how the tray number, tray position, and the bath pump speed would affect the tempera-

ture inside the wells of the tray in FINC. We used a multi-channel thermocouple data logger (HH-4208SD, Thermosense). Each

K-type thermocouple was placed inside a well filled with ethanol, and the thermocouples were evenly spaced across the trays

in the bath. For each test, the bath was set to cool from 0 to−30 ◦C at a rate of 1 ◦C min−1, as in a freezing experiment. Figure35

S4 shows results of one of the calibration experiments, with the bath temperature (Tbath) versus the recorded well temperature

(Twell) for the nine thermocouples and a line of best fit. The possible pump speeds in the cooling bath are from 1 to 8, with 8

being the fastest rate of circulation of the coolant. We calculated several parameters to assess the spread of temperatures in the

wells: the slope (m) and intercept (b) of the linear fit of the temperature of the bath (Tbath) versus the averaged temperature of

the 9 thermocouples (Twell,avg), the range of temperatures of the 9 thermocouples at −10 ◦C and −25 ◦C, and the average of40

the standard deviations of the thermocouples for −10 ◦C to −15 ◦C and for −20 ◦C to −25 ◦C. Table S1 shows the various

combinations of parameters that were tested. We concluded that the best option to minimize the temperature spread across the

wells involves using three trays positioned furthest to the right in the bath with the highest pump speed (Table S1 , last row

entry).

Figure S4 . Slope of the Lauda bath temperature calibration experiment. Nine thermocouples were placed in a well filled with ethanol with

an even spread across three Piko PCR trays in the cooling bath. Temperature was ramped from 0 to −30 ◦C at a rate of 1 ◦C min−1. The plot

shows the recorded temperatures in the well (Twell) versus the recorded temperature of the cooling bath (Tbath). A line of best fit is shown in

black, with a slope of 0.96 and a y-intercept of 0.72. A reference y = x line is shown as a grey dashed line.
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Table S1 . Results of testing temperature biases with different number of trays, different tray positions, and varied bath pump speeds. Data

presented are of the slope (m) and y-intercept (b) of the calibration equation, the range of temperatures of the thermocouples in all wells at

two temperatures, and the average of standard deviations of the thermocouple temperatures in two temperature ranges. Values marked with

asterisk (*) are the result of an average of three experiments.

# of trays tray position pump speed
Twell,avg = m ∗Tbath + b range of thermocouples average of standard deviations

m b at−10 ◦C at−25 ◦C −10 ◦ to−15 ◦ −20 ◦ to−25 ◦

4 centered
6 0.92 1.25 4.10 5.70 1.46 1.83

8 0.94 1.01 3.00 4.90 1.11 1.56

3

left 8 0.93 0.83 2.90 6.30 1.34 2.08

middle 8 0.97 1.16 1.20 1.60 0.42 0.49

right 8 0.95* 0.75* 1.13* 1.60* 0.46* 0.55*

3 right

2 0.89 2.14 2.30 3.80 0.82 1.32

4 0.91 0.69 1.20 3.60 0.51 0.98

6 0.92* 0.79* 1.40* 2.83* 0.54* 0.80*

8 0.95* 0.75* 1.13* 1.60* 0.46* 0.55*
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S4 Limit of detection45

The limit of detection is presented here, as an example, using 10 background water experiments of 288-wells each with 5 µL

volume. A mean frozen fraction curve was calculated by taking the sorted well freezing temperatures and finding the mean at

each frozen fraction value from 1 – 288. We then calculated a standard deviation at each frozen fraction to obtain a spread of 1σ

from the mean frozen fraction curve (Fig. S5 ). Thus, a measured sample has a significant ice nucleating signal if the sample’s

freezing occurs warmer than the mean +1σ. We can also suggest showing a boxplot of the mean frozen fraction (Figure S5 ).50

Additionally, a theoretical frozen fraction curve is shown, as predicted by classical nucleation theory (CNT) for a population

of 5 µL spherical droplets. The equations from Wang (2013) allow us to calculate how fast a certain fraction of the population

will freeze at any given temperature. Therefore, to calculate the theoretical frozen fraction curve, we calculated the temperature

at which several fractions (0.00001, 0.05, 0.1, 0.15, 0.25, 0.5, 0.75, 0.85, 0.9, 0.95, 0.99999) became frozen in 1 second, and

plotted those temperatures versus the frozen fraction.55
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Figure S5 . Visual representation of the limit of detection. Top panel shows the mean frozen fraction curve (red dots) with +1 standard

deviation (blue lines) and +3 standard deviations (grey lines). These were calculated using 10 experiments of 288 5-µL aliquots of background

water. For comparison, a theoretical frozen fraction curve is shown (solid black line), which uses classical nucleation theory (CNT) for a

population of spherical 5 µL droplets. The bottom panel shows the mean frozen fraction represented as a boxplot, where the outer edges

of the box are the 25th and 75th percentiles, the middle line is the median freezing temperature (i.e. the T50), the whiskers extend to the

10th and 90th percentiles, the dark red points are the outliers, and the red dot in the box is the mean. All temperature measurements have an

uncertainty of ±0.5 ◦C.
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S5 Volume dependence on non-homogeneous freezing

We measured the water background in FINC with seven different volumes (5, 10, 20, 30, 40, 50 and 60 µL; Figure S6 ).

Table S2 lists the mean and standard deviations of the temperatures at which 10, 50, and 90 % of the droplets froze (T10,

T50, and T90, respectively) for each of the volumes. The 5, 10, and 20 µL volume mean temperatures are calculated from five

experiments, and the 40 µL volumes are calculated from three experiments. In general, the T10, T50, and T90 increases with60

increasing volume, with the exception of the 20 µL volume (Figure S6 ; Table S2 ). We investigated possible differences in

the surface-area-to-volume ratio (SI Section S8 ), any differences in surface area does not correlate with the observed freezing.

The anomalous and variable freezing behavior of the 20 µL volume remains unexplained. We additionally calculated the INP

concentration per liter sample volume for every background water experiment (Figure S7 ). Calculations were done according

to Eq. 4 (see main text Section 4.2).65
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Figure S6 . Effect of sample volume on ice nucleating activity of background water in FINC. Each boxplot represents the frozen fraction of

288 wells, where the middle line is the median (i.e. the T50), the outer edges of the box are the 25th and 75th percentiles, the whiskers extend

to the 10th and 90th percentiles, and the red dot is the mean. Volumes tested in FINC were 5, 10, 20, 30, 40, 50, and 60 µL. All temperature

measurements have an uncertainty of ±0.5 ◦C.
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Table S2 . Mean and standard deviations of the T10, T50, and T90 for each of the volumes of background water in FINC (5, 10, 20, 30, 40,

50, and 60 µL; for 30 and 50 µL there is no standard deviatation because n<3.). Tx refers to the temperature at which x% of droplets are

frozen. All temperature measurements have an uncertainty of ±0.5 ◦C.

5 µL 10 µL 20 µL 30 µL 40 µL 50 µL 60 µL

T (˚C) Mean St. Dev. Mean St. Dev. Mean St. Dev. Mean Mean St. Dev. Mean Mean St. Dev.

T10 −24.0 0.2 −22.2 0.7 −18.9 0.9 −19.5 −21.2 1.5 −19.9 −22.9 1.3

T50 −25.4 0.1 −24.7 0.1 −23.4 0.6 −24.7 −24.4 0.2 −25.2 −25.3 0.1

T90 −26.1 0.1 −25.5 0.1 −25.2 0.1 −25.5 −25.7 0.2 −26.4 −26.4 0.2
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Figure S7 . INP concentration per liter of water of background water (molecular biology-free reagent water) measured on FINC. Seven

volumes were measured: 5 µL to 60 µL (markers ranging from light yellow to dark red, respectively), each containing one to six replicates,

visually representing Figure S6. The suspicious 20 µL experiment is highlighted in black. All temperature measurements have an uncertainty

of ±0.5 ◦C.
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S6 Effect of water background contamination

Sigma Aldrich Nanopure MilliQ
-30

-28

-26

-24

-22

-20

-18

-16

-14

-12

-10

T
e
m

p
e
ra

tu
re

 [
°C

]

243

245

247

249

251

253

255

257

259

261

263

T
e
m

p
e
ra

tu
re

 [
K

]

Unfiltered

0.02 µm Filtered

Figure S8 . Effect of filtering water through a 0.02 µm filter on ice nucleating activity. Filtered water samples include the microbiology-free

reagent water from Sigma Aldrich (left), our lab’s water from the Nanopure system (middle), and our lab’s water from the Milli-Q system

(right). Blue boxplots represent the freezing of unfiltered water samples, and green boxplots represent the freezing of water samples filtered

through a 0.02 µm filter.
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S7 Water condensation calculations

Since we do not use a tray cover film during the measurement, water vapor may possibility condense into the tray as the

temperature cools. Therefore, we estimated the volume of condensable water vapor between the plexiglass cover and the Piko

PCR trays. The volume of air between the plexiglass cover and the trays is 2.704∗10−4 m3 (Eq. S1 ). We consider here a case70

representative of an upper limit volume of water. At 0 ◦C and at 1013 hPa (1 atm), the water vapor pressure at 90% RH is 611.2

Pa (Eq. S2 ), which equated to 1.76 ∗ 10−7 moles of water (Eq. S3 ). These moles of water total a liquid volume of 2 nL (Eq.

S4 ). This volume of water in the slab of air above 288 wells is negligible in comparison to the 5–60 µL sample volumes per

well. We therefore conclude that condensed water from the above air will not affect the freezing measurement.

75

Vair = 0.130 m ∗ 0.130 m ∗ 0.016 m = 2.704 ∗ 10−4 m3 (S1)

Pwater =RH ∗Psat,H2O (S2)

Nmoles water = Pwater ∗Vair/(R ∗T ) (S3)

Vcondensed water =Nmoles water ∗ 12 g/mol ∗ 1 mL/g (S4)

Figure S9 . Figure of the slab of air.
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S8 Well surface area calculations80

The anomalous freezing behavior of 20 µL volumes of water, compared to the other volumes (Fig. S6 ; Table S2 ), led us to

consider a possible effect of the surface-area-to-volume ratio on ice nucleation. The dimensions of the wells of the Piko PCR

tray were in part taken from the technical drawing provided by ThermoFisher (2014), and the missing dimensions (in blue in

Fig. S10 ) were found using image analysis with ImageJ software (Abràmoff et al., 2004). The well shape was estimated as two

truncated cones (Fig. S10 ). Therefore, depending on the volume of the solution in a well different equations were required to85

calculate the surface area of the solution in contact with the well. It is important to note that the presence of the meniscus was

omitted for the following calculations. Firstly, through the use of similar triangles, the radius of the solution in the well (rsol)

for a given height dh in the lower truncated cone could be calculated using:

rsol = dh ∗ (rup − rbase)/hcone + rbase (S5)

where rup, rbase and hcone are the radius of the top and bottom, and the height of the lower truncated cone, respectively. rsol90

was calculated for varying dh until the volume of solution in the lower truncated cone (Vcalc), calculated using Eq. S6 , matched

the volume of solution pipetted into the well.

Vcalc = (π/3) ∗ (r2sol + rsol ∗ rbase + r2base) ∗ dh (S6)

For the solutions of 20 µL and larger, the upper truncated cone needed to be considered. Therefore, the volume of the lower

truncated cone (calculated using Eq. S6 but with the values from Fig. S10 ) was subtracted from the pipetted volume and rsol95

was calculated similarly to as in Eq. S5 except with the dimensions of the upper truncated cone as follows:

rsol = dh ∗ (rtop − rup)/hUcone + rup (S7)

where rtop and hUcone are the radius of the top and the height of the upper truncated cone. Note rup is the same in Eqs. S5

and S7 as the radius of the top of the lower truncated cone is the same as the radius of the bottom of the upper truncated cone.

rsol for increasing heights was calculated until the volume of solution in the upper truncated cone (Eq. S6 with rbase replaced100

by rup) plus the total volume of the lower truncated cone was equal to the pippeted solution in the well. With rsol and dh found

for each volume of pipetted solution, the surface area of solution in contact with the well surface (SAwell) was calculated as

follows for 5 and 10 µL volumes:

SAwell = π ∗ (rsol + rbase) ∗
√

(rsol − rbase)2 + dh2 +π ∗ r2base (S8)

and 20-60 µL volumes:105
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SAwell = π ∗ (rsol + rup) ∗
√

(rsol − rup)2 + dh2 +π ∗ (rup + rbase) ∗
√

(rup − rbase)2 +h2cone +π ∗ r2base (S9)

The surface area of solution exposed to air (SAair) for each pipetted volume was calculated using:

SAair = π ∗ r2sol (S10)

(S11)

The calculated values for rsol, dh, SAwell, SAair, as well as the ratios of surface area exposed to the well and air as a function110

of volume are shown in Table S3 . The values in Table S3 and the volume versus surface area lines in Fig. S11 show that there

is no clear explanation for the anomalous behaviour of the 20 µL solution.

Table S3 . Properties of the 5, 10, 20, 30, 40, 50, and 60 µL solutions in the piko well tray. The radius rsol and height dh of the solution in

the well is shown. Additionally, the surface area of the solution in contact with the well SAwell and air SAair, as well as the surface to volume

SAwell/V and air to volume SAair/V ratios are displayed.

Volume (mm3) rsol (mm) dh (mm) SAwell (mm2) SAair (mm2) SAwell/V (mm−1) SAair/V (mm−1)

5 1.05 2.16 13.07 3.47 2.61 0.69

10 1.27 3.34 21.80 5.07 2.18 0.51

20 1.47 4.95 36.19 6.79 1.81 0.34

30 1.52 6.38 49.60 7.21 1.65 0.24

40 1.56 7.73 62.62 7.62 1.57 0.19

50 1.60 9.01 75.31 8.01 1.51 0.16

60 1.64 10.23 87.69 8.40 1.46 0.14
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Figure S10 . Diagrams showing shape and dimensions of a well in the Piko PCR trays used in FINC. The base diagrams (all black lines and

numbers) are from the technical drawing provided by ThermoFisher (2014) and colored lines and numbers are added from image analysis in

ImageJ to show dimensions needed for calculated surface area.
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Figure S11 . Surface area to the well surface (red) and air (blue) for each solution volume tested (a). The ratio of solution volume to surface

area exposed to the well surface (red) and air (blue) for each solution volume tested (b).
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S9 Effect of bubbles in the well

Figure S12 . Example of air bubbles present in the Piko PCR trays. These bubbles lead to warmer freezing and must be avoided during

experiments. The corresponding frozen fraction curves of each tray are in Figure S13.
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Figure S13 . Frozen fraction curves for the three trays shown in Figure S12. Tray 1 (blue) is the leftmost tray, Tray 2 (red) is the middle tray,
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S10 Background measurements for FINC, DRINCZ, and LINDA during the intercomparison

Figure S15 . Frozen fractions of the water backgrounds of FINC, DRINCZ, and LINDA measured on the day of the intercomparison. All

measurements used water from the same bottle of Sigma Aldrich molecular biology free reagent water. FINC measurements (triplicates; red

circles) were done with 30 µL well volume, DRINCZ measurements (duplicates; black triangles) were done with 50 µL well volume, and

LINDA measurements (duplicates; black circles) were done with 100 µL well volume.
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S11 Uncertainties in INP concentrations, ns, and nm115

S11 .1 NX-illite ns error

The ice-active surface site density ns is calculated for NX-illite by:

ns[m
−2] = −

ln[1− Nfro

N ]

SABET ∗Cillite ∗Vwell
(S12)

where Nfro is the number of frozen droplets at any given temperature, N is the total number of droplets, SABET is the BET-

determined surface area of the NX-illite particles, Cillite is the mass concentration of NX-illite, and Vwell is the volume of the120

droplet in each well.

Uncertainties associated with ns were calculated by propagating the error in each of the variables using the following

equation:

∆ns =

( ∆Nfro

SABET ∗Cillite ∗Vwell ∗ (N −Nfro)

)2

+ ln

(
1− Nfro

N

)2
((

∆Vwell

Cillite ∗SABET ∗V 2
well

)2

+

(
∆Cillite

C2
illite ∗SABET ∗Vwell

)2

+

(
∆SABET

Cillite ∗SA2
BET ∗Vwell

)2
)

1
2

;

(S13)125

where ∆Nfro is the error in number of frozen wells ( ∆Nfro = 1), ∆Vwell is the error with pipette (∆Vwell = 0.01∗Vwell for

DRINCZ, ∆Vwell = 0.08∗Vwell for FINC, and ∆Vwell = 0.005∗Vwell for LINDA, according to pipette manufacturing details),

∆Cillite is the error associated with the mass concentration of NX-illite sample (∆Cillite = 0.01∗Cillite) and ∆SABET is the

error associated with the specific surface are of the NX-illite particles (∆SABET = 0.01 ∗SABET ).

S11 .2 Aerosol INP concentration error130

The INP concentration per L air from an ambient aerosol sample collected with an impinger was calculated by:

nINP[L−1
air ] = −

ln[1− Nfro

N ]

Vwell
∗C; (S14)

C =
DF ∗ v
taq ∗Q

(S15)

where Nfro is the number of frozen droplets at any given temperature, N is the total number of droplets, Vwell is the volume

of the droplet in each well, Q is the flow rate of the impinger, v is the volume of the initial sample volume, DF is the dilution135

factor of the sampled volume,and t is the time sampled.

20



Uncertainties associated with INP concentration were calculated by propagating the error in each of the variables using the

following equation:

∆nINP =

√√√√( ∆Nfro

C ∗Vwell ∗ (N −Nfro)

)2

+ ln

(
1− Nfro

N

)2
((

∆Vwell

C ∗V 2
well

)2

+

(
∆C

C ∗Vwell

)2
)

; (S16)

∆C =

√(
taq ∗∆Q

DF ∗ v

)2

+

(
Q ∗ taq ∗∆v

v2

)2

(S17)140

where ∆Nfro is the error in number of frozen wells ( ∆Nfro = 1), ∆Vwell is the error with pipette (∆Vwell = 0.01 ∗Vwell

for DRINCZ, ∆Vwell = 0.08 ∗Vwell for FINC, and ∆Vwell = 0.005 ∗Vwell for LINDA, according to pipette manufacturing

details), ∆Q is the error associated with the Coriolis impinger flow rate (∆Q= 10Lmin−1), and ∆v is the error in the total

initial volume (∆v = 0.5mL).

S11 .3 Lignin nm error145

The ice-active mass site density nm is calculated for lignin by:

nm[mg−1] = −
ln[1− Nfro

N ]

TOC ∗Vwell
(S18)

where Nfro is the number of frozen droplets at any given temperature, N is the total number of droplets, TOC is the total

organic carbon in the lignin sample, and Vwell is the volume of the droplet in each well.

Uncertainties associated with nm were calculated by propagating the error in each of the variables using the following150

equation:

∆nm =

√√√√( ∆Nfro

TOC ∗Vwell ∗ (N −Nfro)

)2

+ ln

(
1− Nfro

N

)2
((

∆Vwell

TOC ∗V 2
well

)2

+

(
∆TOC

TOC2 ∗Vwell

)2
)

(S19)

(S20)

where ∆Nfro is the error in number of frozen wells (∆Nfro = 1), ∆Vwell is the error with pipette (∆Vwell = 0.01 ∗Vwell

for DRINCZ, ∆Vwell = 0.08 ∗Vwell for FINC, and ∆Vwell = 0.005 ∗Vwell for LINDA, according to pipette manufacturing155

details), ∆ TOC is the error associated with the total organic carbon in the lignin sample (∆TOC = 0.01 ∗TOC).
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S12 Lignin batch specifications

The lignin used in the experiments presented in this study was alkali low-sulfonate kraft lignin (CAS 8068-05-1, Sigma Aldrich,

product code 471003). Three different batches of this product were bought, and their differences in ice nucleating activity were

tested. Table S4 lists the details of the three batches bought, including batch number, production date, carbon content, and160

sulfur content, provided by their respective Certificate of Analyses (Sigma-Aldrich).

Table S4 . Specifications of the three batches of lignin used, including batch number, dates of production, and carbon and sulfur content. All

batches were bought at Sigma Aldrich, product number 471003, and these specifications are provided in their Certificate of Analyses.

Batch Number Produced Carbon % Sulfur %

1 04414PE Nov 2006 50.13 3.33

2 MKCL2371 Nov 2019 47.8 1.7

3 MKCK3344 July 2019 50.8 2.4
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S13 Lignin solution stability and storage

A concentrated lignin solution at 200 mg C L−1 was measured over two weeks to test how the ice nucleating activity changed

over time. After solution preparation, the solution was stored in the fridge. We found no significant difference in freezing

temperatures for the solution measured in FINC over two weeks (Figure S16 ).165

Futhermore, the impact of the storage method of lignin solutions on its ice nucleating activity was tested by comparing

solutions stored in the fridge versus at room temperature (Figure S17 ). Solutions of lignin Batch 2 and Batch 3 (see Section

S12 ) were prepared at 20 mg C L−1 and each split into two containers, one to be stored in the fridge and one on the lab bench

(both stored covered with aluminum foil, protected from light). A bottle of background water was also prepared identically as a

control. The ice nucleating activity of each solution was measured on FINC on the day of preparation and again 24 hours later,170

after storage in their respective locations. We found no significant difference between storage conditions, and no significant

difference between the ice nucleating activity on the day of or the day after solution preparation.
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Figure S16 . Solution stability over 10 days of a 200 mg C L−1 lignin solution (green boxplots). Lignin used was of Batch 2 (corresponds to

batch number MKCL2371, 471003, Sigma Aldrich). Shown for comparison is the background water frozen fraction box plot (grey boxplot).

Each boxplot represents the frozen fraction of the 288 wells of each freezing experiment, where the middle line is the median (i.e. the T50),

the outer edges of the box are the 25th and 75th percentiles, the whiskers extend to the 10th and 90th percentiles, and the red dot is the mean.

All temperature measurements have an uncertainty of ±0.5 ◦C.
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Figure S17 . Lignin solutions and background water freezing temepratures on the day of preparation and one day after preparation, stored

either in the fridge (green boxplots) or on the lab bench (blue boxplots). Lignin used was of Batch 2 and Batch 3 (corresponds to batch

numbers MKCL2371 and MKCK3344 of product number 471003 from Sigma Aldrich). Each boxplot represents the frozen fraction of

the 288 wells of each freezing experiment, where the middle line is the median (i.e. the T50), the outer edges of the box are the 25th and

75th percentiles, the whiskers extend to the 10th and 90th percentiles, and the red dot is the mean. All temperature measurements have an

uncertainty of ±0.5 ◦C.

References

Abràmoff, D. M. D., Magalhães, P. J., and Ram, S. J.: Image Processing with ImageJ, Biophotonics International, 11, 36–42, 2004.

David, R. O., Cascajo-Castresana, M., Brennan, K. P., Rösch, M., Els, N., Werz, J., Weichlinger, V., Boynton, L. S., Bogler, S., Borduas-175

Dedekind, N., Marcolli, C., and Kanji, Z. A.: Development of the DRoplet Ice Nuclei Counter Zurich (DRINCZ): Validation and Appli-

cation to Field-Collected Snow Samples, Atmos. Meas. Tech., 12, 6865–6888, https://doi.org/10.5194/amt-12-6865-2019, 2019.

Sigma-Aldrich: Lignin, Alkali 471003, https://www.sigmaaldrich.com/catalog/product/aldrich/471003.

ThermoFisher: Technical Drawing: Piko PCR Plate, 96-Well, Clear., https://www.thermofisher.com/order/catalog/product/SPL096050#/SPL096050,

2014.180

Wang, P. K.: Physics and Dynamics of Clouds and Precipitation, Cambridge University Press, Cambridge,

https://doi.org/10.1017/CBO9780511794285, 2013.

24

https://doi.org/10.5194/amt-12-6865-2019
https://doi.org/10.1017/CBO9780511794285

