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Abstract. We evaluate the uncertainties of methane opti-
mal estimation retrievals from single-footprint thermal in-
frared observations from the Atmospheric Infrared Sounder
(AIRS). These retrievals are primarily sensitive to atmo-
spheric methane in the mid-troposphere through the lower
stratosphere (∼ 2 to ∼ 17 km). We compare them to in situ
observations made from aircraft during the HIAPER Pole
to Pole Observations (HIPPO) and Atmospheric Tomogra-
phy Mission (ATom) campaigns, and from the NOAA GML
aircraft network, between the surface and 5–13 km, across a
range of years, latitudes between 60◦ S to 80◦ N, and over
land and ocean. After a global, pressure-dependent bias cor-
rection, we find that the land and ocean have similar biases
and that the reported observation error (combined measure-
ment and interference errors) of ∼ 27 ppb is consistent with
the SD between aircraft and individual AIRS observations.
A single observation has measurement (noise related) uncer-
tainty of ∼ 17 ppb, a ∼ 20 ppb uncertainty from radiative in-
terferences (e.g., from water or temperature), and ∼ 30 ppb
due to “smoothing error”, which is partially removed when
making comparisons to in situ measurements or models in
a way that accounts for this regularization. We estimate a
10 ppb validation uncertainty because the aircraft typically

did not measure methane at altitudes where the AIRS mea-
surements have some sensitivity, e.g., the stratosphere, and
there is uncertainty in the truth that we validate against. Daily
averaging only partly reduces the difference between aircraft
and satellite observation, likely because of correlated errors
introduced into the retrieval from temperature and water va-
por. For example, averaging nine observations only reduces
the aircraft–model difference to ∼ 17ppb vs. the expected
∼ 10 ppb. Seasonal averages can reduce this∼ 17 ppb uncer-
tainty further to∼ 10 ppb, as determined through comparison
with NOAA aircraft, likely because uncertainties related to
radiative effects of temperature and water vapor are reduced
when averaged over a season.

1 Introduction

Advances in remote sensing and global transport modeling
and an increasingly dense network of surface measurements
have led to substantive advances in evaluating the compo-
nents and error structure of the global methane budget and
the processes controlling this budget. For example, Franken-
berg et al. (2005, 2011) showed that total column methane
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estimates could be derived from near-infrared (NIR) radi-
ances at ∼ 1.6 µm measured by the Scanning Imaging Ab-
sorption Spectrometer for Atmospheric Cartography (SCIA-
MACHY). Since then, methane retrievals have also been ap-
plied to NIR radiances from the Greenhouse Gases Observ-
ing Satellite (GOSAT) instrument (e.g., Parker et al., 2011;
Schepers et al., 2012), launched in 2009, and the TROPO-
spheric Monitoring Instrument (TROPOMI; e.g., Hu et al.,
2018), launched in 2017. These data have sufficient accuracy
to map regional surface methane enhancements (e.g., Kort
et al., 2014; Wecht et al., 2014) and point source anomalies
(Varon et al., 2019; Pandey et al., 2019). Estimates of the
free-tropospheric methane concentrations from spaceborne
measurements in the thermal infrared (TIR) at ∼ 8µm were
demonstrated using radiances from the Aura Tropospheric
Emission Spectrometer (TES; Worden et al., 2012, 2013b),
the Atmospheric Infrared Sounder (AIRS; e.g., Xiong et al.,
2013), the Infrared Atmospheric Sounding Interferometer
(IASI, e.g., Razavi et al., 2009; De Wachter et al., 2017; Sid-
dans et al., 2017), the Cross-Track Infrared Sounder (CrIS;
e.g., Smith and Barnet, 2019), and TIR GOSAT measure-
ments (de Lange and Landgraf, 2018). TIR methane mea-
surements have been used to evaluate the role of fires (e.g.,
Worden et al., 2013b, 2017a), Asian emissions, and strato-
spheric intrusions (e.g., Xiong et al., 2009, 2013) in the
global methane budget.

The goal of this paper is to evaluate the uncertainties of
new methane retrievals from AIRS single-footprint, original
(non-cloud-cleared) radiances using aircraft measurements
from the HIAPER Pole-to-Pole Observations (HIPPO) and
Atmospheric Tomography Mission (ATom) campaigns and
National Oceanic and Atmospheric Administration (NOAA)
Global Monitoring Laboratory (GML) aircraft network,
taken between 2006 and 2017. Evaluation of these uncer-
tainties is needed to determine if AIRS methane data can
characterize and improve errors in global chemistry trans-
port models. For example, a recent paper by Zhang et al.
(2018) combined synthetic CrIS and TROPOMI methane re-
trievals and a global inversion system to show that it would
be possible to infer the north–south gradient of OH, the pri-
mary methane sink, to within 10 %, and temporal variations
of OH concentrations. However, knowing the accuracy of the
methane data is important for inferring the uncertainty in the
spatiotemporal variability of OH. Over decadal timescales,
OH can vary by 3 %–5 % (e.g., Turner et al., 2018a, b, 2019;
Rigby et al., 2017). Therefore, to be useful for understanding
OH, monthly or seasonally averaged AIRS data should have
an uncertainty that is less than 3 %–5 % (55–99 ppb).

In this paper we present an evaluation of methane re-
trievals derived from AIRS single-footprint radiances. We
follow an optimal estimation approach (Rodgers, 2000),
based on the heritage of the Aura Tropospheric Emission
Spectrometer (TES) algorithm (Bowman et al., 2006), now
called the MUlti-SpEctra, MUlti-SpEcies, MUlti-Sensors
(MUSES) algorithm (Worden et al., 2006, 2013b; Fu et al.,

2013, 2016, 2018, 2019). The MUSES algorithm uses radi-
ances from one or multiple instruments to quantify and char-
acterize geophysical parameters derivable from those radi-
ances. The optimal estimation method provides the vertical
sensitivity (i.e., the averaging kernel matrix) and estimates
of the uncertainties due to noise and to radiative interfer-
ences such as temperature, N2O, and water vapor. We com-
pare AIRS retrievals with corresponding aircraft data over
a range of latitudes and longitudes in order to evaluate the
calculated uncertainties over ocean and land. Much of the
description of the forward model and retrieval approach is
provided in Worden et al. (2012, 2019). We therefore refer
the reader to these papers for a more in-depth description of
the retrieval approach and only summarize aspects here that
are relevant for comparing the AIRS methane retrievals to
aircraft data.

2 Datasets used in this paper

The quantities of interest that we validate in this paper are (a)
the AIRS CH4 dry volume mixing ratio (VMR) at particu-
lar pressure values between 750 and 300 hPa or (b) the AIRS
CH4 dry VMR partial column XCH4 covering the same pres-
sure range that is measured by the aircraft. We use aircraft
profiles which span the pressure range that contains at least
0.20 degrees of freedom for the AIRS CH4 partial column.
The retrieval estimates AIRS CH4 dry VMR profile. When a
“partial column quantity” is validated, the retrieved CH4 pro-
file is post-processed into partial column XCH4 VMR rela-
tive to dry air, with methodology from Connor et al. (2008)
and Kulawik et al. (2017), where the VMRs at the pressure
levels are weighted according to a pressure weighting func-
tion, resulting in a partial column VMR.

2.1 Description of AIRS

The AIRS instrument is a nadir-viewing, scanning infrared
spectrometer (Aumann et al., 2003; Pagano et al., 2003; Irion
et al., 2018; DeSouza-Machado et al., 2018) that is onboard
the NASA Aqua satellite and was launched in 2002. AIRS
measures the thermal radiance between approximately 3–
12 µm, with a resolving power of approximately 1200. For
the 8 µm spectral range used for the HDO, H2O, and CH4 re-
trievals, the spectral resolution is ∼ 1 wavenumber (cm−1),
with a gridding of∼ 0.5 cm−1, and the signal-to-noise (SNR)
ranges from ∼ 400 to ∼ 1000 over the 8 µm region for a
typical tropical scene. A single footprint has a diameter of
∼ 15 km in the nadir; given the ∼ 1250 km swath, the AIRS
instrument can measure nearly the whole globe in a single
day. The Aqua satellite is part of the A-Train that consists of
multiple satellites and instruments, including TES, in a sun-
synchronous orbit at 705 km with an approximately 01:30
and 13:30 Equator crossing time. In this paper, we use only
daytime data to match the validation observations.
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2.2 Overview of aircraft data

Measurements from the HIPPO (Wofsy et al., 2012) and
ATom (Wofsy et al., 2018) aircraft campaigns provide ex-
cellent datasets for satellite validation, due to their wide lati-
tudinal coverage, the large vertical extent of the profiles (up
to 9–12 km), and the availability of campaigns over a wide
range of months. Each of the five HIPPO campaigns flew
south then north over a period of weeks, often using a differ-
ent path for the northern and southern legs, with campaign
dates in 2009–2011. Atmospheric methane concentrations
were measured with a quantum cascade laser spectrometer
(QCLS) at 1 Hz frequency, with an accuracy of 1.0 ppb and
precision of 0.5 ppb (Santoni et al., 2014). HIPPO methane
data are reported on the WMO X2004 scale and have been
used in several other studies to evaluate satellite retrievals
of methane (e.g., Alvarado et al., 2015; Wecht et al., 2012;
Crevoisier et al., 2013). Comparisons with NOAA flask data
showed a mean positive bias of 0.85 ppb for the QCLS during
the HIPPO campaigns, which is consistent with the estimated
QCLS accuracy of 1.0 ppb (Santoni et al., 2014; Kort et al.,
2011). We used 396 QCLS CH4 profiles from the HIPPO
campaigns. Using coincidence criteria of ±9h and ±50km,
22 271 AIRS observations were processed, of which 5537
passed quality flags. The latitude of the matches ranges from
57◦ S to 81◦ N.

We compare AIRS to observations from the ATom air-
craft campaigns 1–4 (Wofsy et al., 2018). This com-
parison provides validation ∼ 7 years after HIPPO, be-
tween 2016 and 2018. Similar to HIPPO, these observa-
tions include observations in the Pacific Ocean, but ATom
also includes observations in the Atlantic (as seen in Ta-
ble A1 and Fig. 1). ATom methane data are reported on
the WMO X2004A scale. We used 289 profiles from the
ATom campaigns from the NOAA Picarro instrument (Kar-
ion et al., 2013). For more information on the instru-
ment, see https://espo.nasa.gov/sites/default/files/archive_
docs/NOAA-Picarro_ATom1234_readme.pdf (last access:
21 December 2020). Using coincidence criteria of ±9 h
and ±50 km, 21 225 AIRS observations were processed, of
which 4913 passed quality flags. The latitude of the matches
ranges from 65◦ S to 65◦ N.

The NOAA GML aircraft network observations (Coop-
erative Global Atmospheric Data Integration Project, 2019)
are taken twice per month at fixed sites primarily in North
America and also Rarotonga (RTA) at 21◦ S (Sweeney et
al., 2015). NOAA aircraft network methane data are re-
ported on the WMO X2004A scale. Although HIPPO data
are not reported on the same scale as ATom and NOAA
aircraft network data, differences in values of calibration
tanks used for HIPPO (Santoni et al., 2014) on the two
different scales are < 1 ppb. We match AIRS and NOAA
aircraft observations between 2006 and 2017, with coinci-
dence criteria of 50 km and 9 h, finding ∼ 43000 matches,
and 18 000 good-quality matches following the retrieval, to

Figure 1. Location of aircraft profile measurements used for vali-
dation. The upside-down triangles show HIPPO, + symbols show
ATom, and blue stars show NOAA ESRL aircraft validation loca-
tions.

719 aircraft measurements, at sites ACG (67.7◦ N, 164.6◦ E;
401 matches), ESP (49.4◦ N, 126.5◦ E; 2743 matches), NHA
(43.0◦ N, 70.6◦ E; 2682 matches), THD (41.1◦ N, 124.2◦ E;
1551 matches), CMA (38.8◦ N, 74.3◦ E; 3269 matches),
TGC (27.7◦ N, 96.9◦ E; 1944 matches), and RTA (21.2◦ S,
159.8◦ E; 810 matches).

Figure 1 shows the locations of all the aircraft data used for
the comparisons described in this paper. Most of the ocean
measurements are from the HIPPO and ATom campaigns that
span a range of latitudes, whereas most of the land measure-
ments are taken over North America.

3 MUSES-AIRS optimal estimation of CH4 from
single-footprint, original (non-cloud-cleared) AIRS
radiances

Worden et al. (2012, 2019) describe in detail the forward
model and retrieval approach used for estimating methane
from TES and AIRS radiances. The radiative transfer for-
ward model used for this work is the Optimal Spectral Sam-
pling (OSS) fast radiative transfer model (RTM) (Moncet et
al., 2008, 2015). In particular, radiances from the thermal in-
frared bands at 8 and 12 µm are used to quantify profiles of at-
mospheric concentrations of CH4, HDO, H2O, N2O, as well
as temperature, emissivity, and cloud properties. The atmo-
spheric parameters are retrieved as vertical profiles. Since we
use optimal estimation, or OE (e.g., Rodgers, 2000; Bowman
et al., 2006), to estimate these quantities we can characterize
the vertical resolution and uncertainties of these retrievals,
which allows us to compare them to models and indepen-
dent datasets while accounting for the regularization used for
the retrieval. We follow the OE approach for the Aura TES
instrument (e.g., Bowman et al., 2006; Worden et al., 2006,
2012) but with some differences. First, methane retrievals us-
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ing the TES radiances are obtained using only the 8 µm band
because of slight calibration differences between the detec-
tors that measure the 12 and 8 µm bands (e.g., Shephard et
al., 2008; Connor et al., 2011). For the AIRS retrievals, we
use both the 8 and 12 µm bands in order to better constrain
temperature in the troposphere and stratosphere. Secondly,
the TES-based retrieval uses the ratio of a jointly retrieved
N2O profile to the CH4 profile in order to help correct biases
related to temperature variations in the upper troposphere–
lower stratosphere (UTLS; Worden et al., 2012). However,
the N2O correction is not used for the AIRS retrievals be-
cause we can jointly estimate temperature in the UTLS re-
gion using the 12 µm band. We use similar quality flags as
the TES retrievals such as checks on the radiance residual,
residual signal, and cloud optical depth (OD) as discussed in
Kulawik et al. (2006a, b), except that we screen out cloudy
and low-sensitivity cases, resulting in about 1/4 of the data
passing screening. Quality flags are discussed in more detail
in the Aura-TES user’s guide (Herman et al., 2018, pp. 27–
30). The specific flags used for AIRS CH4 are as follows,
which were set by minimizing the SD of small clusters of
retrievals and to standardize the sensitivity.

Here are the recommended cutoffs to select good quality
and sensitivity flagging for AIRS CH4:

– The radiance residual rms is< 1.5. This parameter is the
mean difference between the observed and fit radiance
normalized by the radiance measurement error.

– The absolute value of the radiance residual mean is <
0.15. This parameter screens off the mean difference of
the radiance residual.

– The absolute value of KdotdL is < 0.23. This parame-
ter is the mean difference of the dot product of the Ja-
cobians and the radiance residual normalized by the ra-
diance measurement error, and smaller values indicate
that there is little remaining information in the signal.

– The surface temperature minus the near-surface atmo-
spheric temperature value is < 30 K. This ensures that
the thermal gradient is less than 30 K between the sur-
face and lowest atmospheric temperature.

– Cloud top pressure is> 90hPa. This ensures that the re-
trieved cloud top pressure is in or near the troposphere.

– Cloud optical depth is< 0.3. This ensures that the cloud
is not opaque, and there is fairly uniform sensitivity so
that the bias correction is fairly consistent. The bias vs.
cloud optical depth is shown in the Supplement.

– Cloud variability vs. wavenumber is < 1.5× cloud OD.
This ensures that the cloud optical depth does not vary
too much over the retrieval window.

– The degrees of freedom are > 1.1, defined following
Eq. (2). This ensures a minimum sensitivity so that the
bias correction is fairly consistent.

– The tropospheric degrees of freedom are > 0.7, de-
fined following Eq. (2). This ensures a consistent tro-
pospheric sensitivity, so that the bias correction is fairly
consistent.

– The stratospheric degrees of freedom are< 0.5, defined
following Eq. (2). This ensures that there is a consis-
tent stratospheric sensitivity, so that the bias correction
is fairly consistent.

– The predicted error on the column above 750 hPa is <
53 ppb. The predicted error is the total error from the
linear estimate, Eq. (7b), and is included in the output
product. This ensures that the predicted error, which is
correlated to the actual error, is not too large.

3.1 Retrieval error characteristics

Detailed descriptions of the use of optimal estimation (OE)
to infer trace gas profiles from remote sensing radiance mea-
surements’ retrieval is included in numerous publications
(e.g., Rodgers, 2000; Worden et al., 2006; Bowman et al.,
2006). However, we present a partial description here as it is
relevant for comparing the AIRS methane retrievals and air-
craft profile measurements. As discussed in Rodgers (2000),
the estimate for a trace gas profile inferred (or inverted)
from a radiance spectrum is described by the following linear
equation:

x̂ = xa+A(x− xa)+GKbberror+Gn, (1)

where x̂ is the estimate of log(VMR), xa is the log of the a
priori concentration profile used to regularize the inversion,
G is the gain matrix, and berror represents errors in system-
atic parameters, with Kb the sensitivity of the radiance to
changes in b. We split x into [x,y], where x is the quantity
of interest, the methane profile, and y denotes the jointly es-
timated quantities (such as temperature, water vapor, clouds,
and surface properties), which results in the cross-state error
(Worden et al., 2004; Connor et al., 2008).

x̂ = xa+Axx (x− xa)+GKbberror+Axy
(
y− ya

)
+Gn (2)

For the AIRS (and TES) OE methane retrievals, xa comes
from the MOZART atmosphere chemistry model (e.g.,
Brasseur et al., 1998). The vector x is the “true state”, or
in this case the (log) concentration profile. The matrix A is
the averaging kernel matrix or A= ∂x̂

∂x
and describes the ver-

tical sensitivity of the measurement. Axx describes the de-
pendence of x̂ on the true state x, and Axy describes the de-
pendence of x̂ on the true state y, which is non-zero because
of correlations in the Jacobians, K, for x and y. The matrix
G relates changes in the radiance (L) to perturbations in x,
G= ∂x

∂L
. The vector n is the noise vector, the matrix K is the

sensitivity of the radiance to changes in (log) concentration
K= ∂L

∂x
=

∂L
∂ log(VMR) , and the set of vectors bi represent in-

terference errors not estimated from the observed radiances.
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Figure 2. The rows of an averaging kernel for CH4 for a tropi-
cal scene. The colors help for visualization of the pressure levels
for each row of the averaging kernel. The diamonds indicate the
pressure level corresponding to the row of the averaging kernel, for
pressures 1012, 825, 681, 562, 464, 383, 316, 261, 215, 161, 121,
90, 68, 51 hPa.

The true state, noise vector, and interference errors as de-
scribed here are the “true” values and are therefore not ac-
tually known but are represented in this form so that we can
calculate how their uncertainties affect the estimate x̂. An ex-
ample averaging kernel matrix is shown in Fig. 2 and shows
that AIRS-based estimates of methane are most sensitive to
methane in the free troposphere and lower stratosphere as
demonstrated previously for AIRS and other TIR-based es-
timates of tropospheric methane (e.g., Xiong et al., 2016; de
Lange and Landgraf, 2018).

The degrees of freedom, DOFs, describe the sensitivity
of x̂ to the true state and are equal to the trace of Axx .
The degrees of freedom in the troposphere are equal to the
trace of the averaging kernel corresponding to the tropo-
sphere, and the degrees of freedom in the stratosphere are
equal to the trace of the averaging kernel corresponding to the
stratosphere. The troposphere is defined using the tropopause
height parameter from version 5 of the NASA Global Mod-
eling and Assimilation Office (GMAO) Goddard Earth Ob-
serving System (GEOS-5) model (Molad et al., 2012).

Finally, we look at the quantity of interest, x̂ = hx.
The vector h combines all the necessary operations that
map the (log) concentration profiles to whatever quantity
is needed such as selecting one particular pressure level
(e.g., h= [0,0,0,1,0,0,0, . . .], selecting a column average,
h= pressure weighting function – see Connor et al., 2008,
or Kulawik et al., 2017) or selecting the VMR mean (e.g.,
h[:] = 1/m, where m is the number of pressure levels to av-
erage).

x̂ =hx̂ (3a)

x̂ =hxa+hAxx (x− xa)+hGxKbberror

+hAxy
(
y− ya

)
+hGxn (3b)

In Eq. (3a), the vector x̂ (denoted in bold) is converted to
the scalar of interest, x̂ (non-bold, italic). In our validation
comparisons, h is used to select (1) a specific pressure level
that is measured by the aircraft, (2) the partial column XCH4
VMR within the pressure levels measured by the aircraft, and
(3) the partial column XCH4 between 750 hPa and the top of
the atmosphere.

3.2 Approach for comparing AIRS measurements to
aircraft profiles

A challenge in comparing the satellite-based AIRS measure-
ments to aircraft data is that the aircraft will typically mea-
sure only a section of the atmosphere (e.g., the troposphere),
whereas the AIRS measurements are sensitive, to varying de-
grees (see Fig. 2), to the entire atmosphere. To account for
these differences, we divide the atmosphere into two parts
x = [xc,xs], where xc is the part measured by the aircraft
(denoted c for airCraft), and xs is the part not measured by
the aircraft (denoted s for stratospheric):

x̂c = hcxa+hcAcc
(
xc− x

c
a
)
+hGcKbberror

+hcAcy
(
y− ya

)
+hcAcs

(
xs− x

s
a
)
+hcGcn, (4)

where the term Acs is the cross term in the averaging kernel
that describes the partial derivatives of the aircraft-measured
levels (e.g., the troposphere) to the unmeasured levels (e.g.,
the stratosphere). Equation (4) describes how the AIRS mea-
surement x̂c responds to the true state [xc,xs]. So, if for ex-
ample, the aircraft measured indices [0 : 9] and did not mea-
sure pressure levels [10 : ∗], then Acc = A[0 : 9,0 : 9] and
Acs = A[0 : 9,10 : 65], where A is the full averaging kernel.

We compare our AIRS observation, x̂c in Eq. (4), to our
aircraft observation, xaircraft. To compare this directly to the
aircraft observation (without accounting for AIRS sensitiv-
ity), we would compare it to x̂c

aircraft = hcxaircraft. The ex-
pected total error includes the smoothing error, which is the
covariance of the hcAcc

(
xc− x

c
a
)

(Rodgers, 2000), where
the covariance of

(
xc− x

c
a
)

is the a priori covariance, Sxxa .
The smoothing error is as follows:

Smoothing error= hcAccSxxa ATcch
T
c . (5)

We estimate the smoothing error for the partial column
XCH4 VMR within the pressure levels measured by the air-
craft to be 30 ppb, using Eq. (5). This estimate strongly de-
pends on Sxxa , the a priori covariance, which is the same as in
Worden et al. (2012), briefly 5 % diagonal variability with
correlations in pressure set from the MOZART model. In
Eq. (6a), we apply the AIRS averaging kernel to the aircraft
measurement to fully account for the AIRS sensitivity:

x̂c
aircraft = hcxa+hcAcc

(
xc

aircraft− x
c
a
)

https://doi.org/10.5194/amt-14-335-2021 Atmos. Meas. Tech., 14, 335–354, 2021
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+hcAcs
(
xs

aircraft− x
s
a
)

(6a)
x̂c

aircraft = hcxa+hcAcc
(
xc

aircraft− x
c
a
)
. (6b)

One issue is that we do not actually have aircraft observations
in the “s” part of the atmosphere, xs

aircraft, which is used in the
second term of Eq. (6a). We have aircraft observations in the
“c” part of the atmosphere only, so we apply the averaging
kernel to this part of the atmosphere only. Equation (6a) ac-
counts for all of the AIRS smoothing error, whereas Eq. (6b)
(the equation used in this work, other than Sect. 3.3) only
accounts for the smoothing error from the part of the atmo-
sphere measured by the aircraft profile. The difference from
Eqs. (6a) and (6b) is discussed in Sect. 3.3.

Equation (7a) is the predicted bias between x̂c (the mea-
sured AIRS value) and x̂c

aircraft (the aircraft value with the
AIRS averaging kernel applied) and is the expected differ-
ence of Eqs. (4) and (6b). Equation (7b) is the covariance of
Eq. (7a) and estimates the predicted error:

E(x̂c− x̂
c
aircraft)= hcGcKbE(berror)+hcAcyE(ŷ− ya)

+hcAcsE(x̂s− xs)+hcGcE(nerror) (7a)

E||(x̂c− x̂
c
aircraft)||= hc(GcKbSbba KT

b GT
c +AcySyya ATcy

+AcsSss
a ATcs+Sccm )h

T
c . (7b)

Equation (7a) represents the propagation of mean biases from
(1) non-retrieved parameters and assumptions, e.g., spec-
troscopy (b); (2) jointly retrieved parameters, e.g., temper-
ature (y); (3) “unknown stratospheric true”, describing the
impact of the part of the atmosphere not covered by the air-
craft on the measured part (xs); or (4) measurement errors
(n) into biases of x̂c. The mean bias from Eq. (7a) is dif-
ficult to characterize theoretically and is characterized dur-
ing validation. It is assumed to be primarily from the first
term (e.g., spectroscopy). Equation (7b) is the covariance of
the terms in 7a, where, e.g., the covariance of berror is Sbba .
Equation (7b) represents the “observation covariance”. The
square root of Eq. (7b) is the predicted observation error. Al-
though Eq. (7b) has overall zero bias, it can produce regional
and temporal biases, e.g., as seen in Connor et al. (2016),
where these biases approach zero over long enough spatial
or temporal scales. The error covariances all represent frac-
tional errors, in log(VMR). Because of the retrieved quantity
log(VMR), the error in ppb is approximately the fractional
error times the methane value in ppb.

For the purpose of evaluating the AIRS methane measure-
ment uncertainties and comparing the AIRS methane to air-
craft in situ measurements, we refer to the four terms on the
right side of Eq. (7b) as follows:

1. Sccb is the systematic error due to terms that are not
accounted for in the retrieval state vector, such as
spectroscopy and calibration; these terms are estimated
by comparisons with the aircraft data. A pressure-
dependent bias correction, described in Sect. 3.4, of ap-
proximately −60 ppb is used to correct this systematic
bias.

2. AcySyya ATcy is the cross state, which is included in the
MUSES-AIRS methane estimate product files and is
the propagation of temperature, water vapor, and cloud
errors into AIRS. The errors in the retrieved tempera-
ture and water vapor at nearby location are correlated
over short spatiotemporal scales, as described in Sect. 4,
and so this error does not reduce with averaging nearby
observations. However, monthly or seasonal averages
reduce the cross-state error because systematic errors
from temperature, water, or cloud can be assumed to
vary pseudo-randomly over larger timescales.

3. AcsSss
a ATcs is the “validation uncertainty” due to knowl-

edge uncertainty of the stratosphere, although this may
also contain other levels that are also not measured by
the aircraft. This is the smoothing error which can-
not be removed from the comparisons because the air-
craft does not make measurements at the “s” (“strato-
spheric”) levels. We estimate this validation uncertainty
to be ∼ 10 ppb (estimated in Sect. 3.3). This estimate
depends on the accuracy of the model used to extend
the aircraft profile during the validation process and was
estimated for the model that we used in validation.

4. Sccm is the measurement error, which is included in the
AIRS methane estimate product files. The measurement
error is random and is expected to reduce as the inverse
square root of the number of observations averaged. We
estimate this error to be∼ 18 ppb (using the last term of
Eq. (7b) and shown in Fig. 3) and find it to be a random
error that reduces with averaging.

Figure 3 shows the predicted errors for the AIRS partial
column XCH4 VMR within the pressure levels measured by
the aircraft. The measurement error (light green) is 18 ppb
(from the last term of Eq. 7b), and the total error for a single
observation (including smoothing error) is 41 ppb. A compo-
nent of the total error, the cross-state error, is estimated to be
21 ppb (from Eq. 7b).

3.3 Estimating validation uncertainty due to aircraft
not measuring the stratosphere

A typical aircraft profile will only measure part of the tropo-
sphere and rarely measure into the stratosphere. However, the
AIRS methane profile measurements are sensitive to methane
variations over the whole atmosphere, as shown by the aver-
aging kernel matrix in Fig. 2. Similarly, the true state in the
troposphere influences retrieved values in the stratosphere.
Options for dealing with this are (a) extending the true pro-
file with the AIRS prior or (b) extending the true profile with
a model profile value.

This section estimates this uncertainty by calculating the
difference of xc

aircraft for Eq. (6a) minus Eq. (6b) when ex-
tending the aircraft using two different “true” profiles taken
from two different global atmospheric chemistry models,
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Figure 3. Calculated errors for AIRS measurements shown in this
paper. The total error shown is the smoothing error (Eq. 5) plus the
observation error (Eq. 7b). The measurement error is the last term
of Eq. (7b) and the only fully random error.

Figure 4. Simulated comparison between AIRS and aircraft in
which the LMDz model (a) and GEOS-Chem model (b) are used
for the simulation. This represents uncertainty in the true state that
we validate against.

the Laboratoire de Météorologie Dynamique (LMDz) model
(e.g., Folberth et al., 2006) model and the Goddard Earth Ob-
serving System (GEOS-Chem) model (e.g., Maasakkers et
al., 2019). So, if the model value equaled the AIRS prior in
the stratosphere, this difference would be zero. The differ-
ences for xc

aircraft from the LMDz model and GEOS-Chem
are shown in Fig. 4 for all HIPPO ocean and land data; these
differences show that model–model differences in the strato-
sphere can contribute significantly to the differences between
AIRS and aircraft validation.

These differences provide an estimate for how knowl-
edge error in the stratosphere projects to uncertainties in our
methane retrievals. For example, this uncertainty varies with

latitude, similar to the residual bias between the AIRS esti-
mate and aircraft (next section). Furthermore, the variability
over small latitudinal ranges of 10◦ or less suggests that the
random part of the stratospheric error is smaller than this lat-
itudinal variability. Our estimate for this error is the average
of these two errors, 10 ppb, and places an upper bound on
the ability to validate AIRS CH4. Our estimate for this er-
ror agrees with the 10 ppb estimate for the impact of strato-
spheric uncertainty on column estimates from aircraft pro-
files (Wunch et al., 2010). Appendix A shows further analy-
sis of mean differences of AIRS minus aircraft for different
profile extension choices. The bias varies by ∼ 5 ppb for dif-
ferent profile extension choices when comparing at 700 hPa,
∼ 10 ppb for different profile extension choices when com-
paring at 500 hPa, and ∼ 11 ppb for different profile exten-
sion choices when comparing the column above 750 hPa.

The methane profile has a strong variable negative verti-
cal gradient in the stratosphere. Models in general have a
positive bias in the extratropical stratosphere (Patra et al.,
2011). In GEOS-Chem 4× 5, the column bias is shown
in Fig. 2c of Turner et al. (2015) and further discussed in
Maasakkers (2019), which resolves the bias to the strato-
sphere, and model stratospheric accuracy is an active re-
search area (Ostler et al., 2016; Maasakkers et al., 2019).

3.4 Bias correction

AIRS CH4 shows a persistent high bias of 25 to 90 ppb vs.
aircraft observations in Fig. 5. Previous studies using re-
motely sensed measurements suggest that a bias correction
to the AIRS methane profile measurement must account for
the vertical sensitivity (e.g., Worden et al., 2011). For exam-
ple, in the limit where the AIRS measurement is perfectly
sensitive to the vertical distribution of methane, the bias cor-
rection could be a simple scaling factor. However, in the limit
where the AIRS measurement is completely insensitive (e.g.,
DOFs= 0.0), then the bias correction is zero. We therefore
use the bias correction approach described in Worden et al.
(2011), where a bias profile (which varies by pressure) is
passed through the averaging kernel to account for the AIRS
sensitivity, as seen in Eq. (8). The form of the bias profile,
δbias, is set in Eq. (9).

We use HIPPO-4 observations to set a bias correction
which we then evaluate with the other HIPPO campaigns
and NOAA aircraft network data. HIPPO-4 was selected as
it covers a wide range of latitudes and so that the bias cor-
rection can be set and tested with two independent datasets.
To set the bias, we use Eq. (6b) to estimate the aircraft ob-
servation as seen by AIRS then compare this to AIRS obser-
vations. The result (by pressure level) is shown in Table 1.
Then a bias was applied to AIRS using Eq. (8), with the bias
term δbias in the form of Eq. (9).

x̂corrected = x̂orig+Aδbias, (8)
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Table 1. Bias vs. pressure with and without bias correction. The bias correction was developed on HIPPO-4 and tested on HIPPO-4; HIPPO-1,
HIPPO-2, HIPPO-3, and HIPPO-5; and the NOAA aircraft network.

Pressure AIRS minus After bias After bias correction After bias
(hPa) aircraft_AK correction (all HIPPO except correction

(HIPPO-4) (ppb) (HIPPO-4) (ppb) HIPPO-4) (ppb) (all NOAA) (ppb)

1000 24 −1 −3 1
824 36 0 −4 1
681 48 1 −5 2
562 58 1 −4 2
464 60 −5 −3 3
383 67 −5 −2 2
316 81 1 4 –
261 86 1 4 –
215 89 1 3 –
161 – – 4 –

Figure 5. Comparison of AIRS methane VMR to aircraft for all
HIPPO comparisons over the partial column XCH4 VMR within the
pressure levels measured by the aircraft. Blue shows AIRS ocean
observations, and green shows AIRS land observations.

where x̂ = ln(VMR) because the retrieved quantity is
ln(VMR), δbias is a vector, and A is the averaging kernel ma-
trix for x̂ = ln(VMR). We fit a single bias function for all
AIRS measurements by minimizing the difference between
AIRS and HIPPO-4, with δbias constrained to have a slope
with pressure and two pressure domains. We specify that δbias
cannot jump more than 0.05 (5 %) between the two domains.

δbias = c+ dP (P > Po)

δbias = e+ fP (P < Po) (9)

where P is pressure in hPa. The optimized bias correction pa-
rameters were c = 0.0; d =−6.1×10−5; P0 = 400hPa; e =

Figure 6. Example of the effect of bias correction on the AIRS pro-
file from averaged HIPPO-1, HIPPO-2, HIPPO-3, and HIPPO-5.
The blue lines show the AIRS methane profile before (dotted) and
after (solid) bias correction. The black lines show the HIPPO mea-
surements before (dotted) and after the averaging kernel is applied
(solid).

−0.09; f = 0.00018. These bias correction results are shown
for HIPPO-4; HIPPO-1, HIPPO-2, HIPPO-3, and HIPPO-5;
and NOAA observations in Table 1. The remainder of the pa-
per, unless specified, uses data bias-corrected by Eqs. (8) and
(9).

Figure 6 shows the effect of bias correction on the aver-
age of all HIPPO (1, 2, 3, and 5) AIRS profiles. The bias
correction improves the mean AIRS–aircraft difference and
improves the pressure-dependent skew in the bias (Table 1).
The HIPPO data are shown before and after the AIRS aver-
aging kernel is applied (using Eq. 6b), which has the effect
of bringing the HIPPO observations towards the AIRS prior.
This is to match the imperfect sensitivity of satellite-based
observations, which are similarly influenced by the prior.
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4 Evaluation against aircraft data vs. latitude

4.1 Comparison of aircraft observations with and
without bias correction

Figure 5 shows a comparison between all AIRS measure-
ments within 50 km and 9 h of an aircraft measurement and
the aircraft measurement. The quantity compared is the par-
tial column XCH4 VMR within the pressure levels measured
from the aircraft. There is a mean bias of 57 ppb overall,
∼ 52 ppb for ocean, and ∼ 76 ppb for the land. The rms dif-
ference is ∼ 26 ppb. Furthermore, there appears to be latitu-
dinal variations in the bias. For example, the mean difference
between the AIRS and aircraft over the ocean for latitudes
less than 20◦ S is ∼ 74 ppb, and for latitudes between 20◦ S
and 20◦ N, this bias is ∼ 56 ppb.

Figure 7 shows the same comparisons as Fig. 5 after bias
correction (described in Sect. 3.4). The mean bias is 1 ppb,
and the rms difference is 24 ppb. The overall land bias is
12 ppb, and the overall ocean bias is −2 ppb. The bias calcu-
lated in Fig. 7 weights every point equally. Table A1 shows a
slightly different result for these biases, where the bias is cal-
culated by the campaign then averaged over all campaigns. In
Table A1 the partial column XCH4 VMR within the pressure
levels measured by the aircraft has a bias of 16 ppb for land
and−2 ppb for ocean. Note that the HIPPO land observations
are primarily in Australia, New Zealand, and North Amer-
ica, whereas the ocean comparisons are in the mid-Pacific,
as seen in Fig. 1. We expect the rms difference to be sim-
ilar to the observation error, as the terms that make up the
observation error are the primary source of variability in the
observations (e.g., Worden et al., 2017b). The predicted ob-
servation error from Fig. 3 is 27 ppb and is consistent with the
rms difference seen here, 23 ppb. However, knowledge of the
stratosphere and validation uncertainty is potentially a large
component of the latitudinal variability in the difference seen
in the bottom panel of Fig. 7.

We also compare AIRS CH4 observations to the NOAA
aircraft network and ATom observations and find similar re-
sults as for HIPPO. Figure 8, discussed in Sect. 4.2, shows
ATom results, and Fig. 9, discussed in Sect. 4.2, shows com-
parisons to a NOAA aircraft time series. The biases for dif-
ferent pressure ranges, campaigns, and surfaces are shown
in Table A1. Table A3 shows the SD of AIRS minus valida-
tion by pressure and surface type, for single observations and
daily and seasonal averages.

4.2 Errors in averaged AIRS data

Satellite data are typically averaged in order to improve the
precision of a comparison between data and model. However,
as shown in the previous figure, these data contain errors that
vary with latitude. For example, knowledge error of the true
profile in the stratosphere as well as errors in the jointly re-
trieved AIRS temperature and water vapor retrievals have

Figure 7. Same as Fig. 5 but after bias correction. The ocean has
−2 ppb bias and 23 ppb SD, and the land has 12 ppb bias and 24 ppb
SD.

both a random and a bias component, both of which vary
with latitude. The bias component is approximately the same
for all AIRS methane measurements taken on the same day
within 50 km, as we do not expect large variations in temper-
ature and water vapor errors over these scales, which we pre-
sume to be a driver of these correlated errors. To quantify the
component of the accuracy that cannot be reduced by averag-
ing, we compare averages of AIRS measurements to HIPPO
and ATom measurements. We average over 1 d the AIRS ob-
servations matching a single HIPPO or ATom measurement,
within ±50 km and 9 h of the measurement. We specify that
there needs to be at least nine AIRS observations for each
comparison so that the systematic error, and not the precision
(or measurement error), is the dominant term. These daily
AIRS averages contain, on average, 20 AIRS observations.
Figure 8 shows the predicted error, assuming that the error is
random, which is calculated by dividing the single observa-
tion error (24 ppb rms shown in Fig. 7) by the square root of
the number of observations that are averaged. The mean pre-
dicted error for the averaged data, assuming random errors, is
6 ppb. The actual SD between the averaged AIRS and HIPPO
or ATom data is∼ 17 ppb, which is much larger and indicates
that the errors within 1 d and 50 km are correlated. Note that
the same-colored adjacent points (i.e., adjacent observations
from the same campaign) often show similar biases. Because
this rms difference is much larger than what would be ex-
pected if the errors were purely random, this shows the pres-
ence of systematic errors, either in the AIRS data or in the
validation uncertainty. We therefore report 17 ppb as the lim-
iting error when averaging AIRS data within 1◦ grids and 1 d
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Figure 8. Comparison of daily averaged AIRS to HIPPO measurements (a) and ATom measurements (b) for the partial column observed by
the aircraft. The different colors correspond to the campaigns shown in Fig. 1.

Figure 9. Comparison at TGC (27.7◦ N, 96.9◦ E). (a, b) Comparison of AIRS and co-located NOAA aircraft flights in SE Texas for the
partial column XCH4 VMR within the pressure levels measured by the aircraft. Data are averaged over (a) 1 d, (b) 1 month, and (c) 90 d, and
averaged (d) by month from all years. (c, d) Difference from the aircraft. The predicted error for daily observations is the observation error
(27 ppb) divided by the square root of the number of observations. The predicted monthly or seasonal error is the mean daily error (11.5 ppb)
divided by the square root of the number of days averaged.

for the purpose of comparisons with models or other methane
profiles.

On the other hand, averaging AIRS data seasonally can
reduce the error further because geophysical errors such as
temperature and water vapor vary over longer timescales. We
demonstrate this aspect of the AIRS uncertainties by compar-
ing averaged AIRS data to the NOAA aircraft methane pro-
files taken off the coast near Corpus Christi, Texas (27.7◦ N,

96.9◦W, site TGC). We screen for at least three observations
per day, fewer than the nine observations per day used for
HIPPO and ATom daily averages in order to get enough daily
averages to explore how the errors reduce with monthly and
seasonal averages, since the aircraft make one–two measure-
ments per month. Figure 9 shows daily, monthly, 90 d, and
seasonal averages of the partial column XCH4 VMR within
the pressure levels measured from the aircraft at TGC. The
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seasonal averages are created by converting all AIRS–aircraft
matched pairs to 2012 by adding 5.4 ppbyr−1 multiplied by
the year minus 2012 to account for the mean annual growth
rate. The growth rate of 5.4 ppbyr−1 is the mean increase
during the AIRS record time period (2002–2019) estimated
from the NOAA Global Monitoring Laboratory global sur-
face measurements (https://esrl.noaa.gov/gmd/ccgg/trends_
ch4/, last access: 21 December 2020). Since we are convert-
ing matched pairs of aircraft and AIRS to 2012, the differ-
ences between these matched pairs are unaffected by the ac-
curacy of the conversion to 2012.

4.2.1 Daily average errors at TGC

We look at daily averages vs. aircraft data and find a similar
result to that found with comparisons to ATom and HIPPO:
daily averages have much larger errors than would be pre-
dicted if random errors are assumed. The SD of AIRS minus
aircraft at TGC is 24 ppb, the SD for daily AIRS average mi-
nus aircraft is 11.5 ppb, as seen in Fig. 9a, and the predicted
error for daily averages, assuming randomness in the error,
is 6.0 ppb. Therefore, similarly to ATom and HIPPO, errors
within 1 d and 50 km contain 11.5 ppb correlated error.

4.2.2 Monthly average errors at TGC

The NOAA aircraft measurements are usually taken about
twice per month. The SD of monthly AIRS average minus
aircraft is 8.2 ppb (Fig. 9b) for months containing more than
one aircraft observation. This is compared to the daily error
divided by the square root of the number of days averaged,
8.0 ppb. Therefore, errors for observations ∼ 2 weeks apart
are uncorrelated.

4.2.3 3-month average errors at TGC

We average over 3-month scales, where averages must have
at least 3 d. The SD of 3-month AIRS average minus aircraft
is 6.2 ppb. The predicted error, taking the 11.5 ppb daily er-
ror and dividing it by the square root of the number of days
averaged, is 6.0 ppb. Therefore, errors for 3-month averages
are ∼ uncorrelated.

4.2.4 Seasonal cycle average errors at TGC

We average matched pairs within each month from any year.
AIRS minus aircraft values for these averages have a SD
of 5.9 ppb, whereas the predicted error, from the daily av-
erage divided by the square root of number of observations,
is 4.2 ppb.

4.2.5 Summary of average errors at TGC

To summarize, averaging AIRS observations within 1 d re-
duces the error vs. aircraft, but correlated errors prevent daily
averaged errors from dropping below 11.5 ppb. Averaging

daily averages over 1 or 3 months equals the daily error di-
vided by the square root of the number of days averaged,
indicating that errors are random in this domain. However,
averaging months from multiple years does not reduce the
error below 6 ppb, either due to correlated errors or valida-
tion uncertainty.

4.2.6 Summary of errors at all NOAA aircraft sites

Table A3 in Appendix A shows the single-observation SD
for all NOAA aircraft sites. The ocean vs. land observations
show similar values, with land and ocean SDs within 2 ppb.
A single land observation has a SD vs. aircraft observations
of 23 ppb for the partial column XCH4 VMR within the pres-
sure levels measured from the aircraft, in agreement with the
predicted observation error of 23 ppb. The SD for daily av-
erages is 15.2 ppb. This can be compared to the predicted er-
ror for the daily averages, assuming randomness, of 5.9 ppb.
This indicates that there are correlated (non-random) errors
on the order of 15 ppb when averaging observations within
50 km and 1 d. The monthly SD is 10.9, in reasonable agree-
ment with the predicted of 9.4 ppb (from the daily average
SD divided by the number of observations averaged). The
seasonal cycle average, which is a monthly average of all
matched pairs from all years, has a SD of 7.7 ppb, which is
similar to the predicted error of 6.9 ppb (from the daily av-
erage divided by the square root of number of observations).
We find that estimating the error as the daily SD divided by
the square root of the number of days averaged is a reason-
able estimate of the actual error.

4.2.7 The bias and bias uncertainty

The bias is estimated by calculating the mean bias for each
campaign or station separately then calculating the mean and
SD for all campaigns/stations. The bias vs. HIPPO is 0±
4 ppb. The bias vs. ATom is 3± 4 ppb. The bias vs. NOAA
measurements is 9± 7 ppb.

5 Discussion and conclusions

We validate single-footprint AIRS methane by comparing
27 000 AIRS methane retrievals to 396 aircraft profiles from
the HIPPO campaign, 719 profiles from the NOAA GML
aircraft network, and 289 aircraft profiles from the ATom
campaign, taken across a range of latitudes, longitudes, and
times. The AIRS methane retrievals are derived using the
MUSES optimal estimation algorithm that has previously
been applied to Aura TES radiances (e.g., Fu et al., 2013).
After adjusting the aircraft profile to account for the AIRS
sensitivity (using the averaging kernel and a priori profile),
we compare the mean methane value over the aircraft profile
to the mean methane from the AIRS profile over the same al-
titude (or pressure) range. We use a subset of validation data
to derive a pressure-dependent bias correction on the order
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of −60 ppb and test this on an independent set of validation
data. After the bias correction, we report a bias of 0±10 ppb.
The bias between AIRS and aircraft varies with pressure and
location, as seen in Appendix A.

After applying the bias correction, from Eqs. (8) and (9),
the rms difference between the AIRS and aircraft data of the
partial column XCH4 VMR within the pressure levels mea-
sured by the aircraft of ∼ 22 ppb is consistent with the mean
observation error, composed of random error from noise and
the cross-state errors from jointly retrieved temperature, wa-
ter vapor, clouds, and surface parameters that are projected
onto the AIRS methane retrieval. The extent to which the air-
craft profiles used here can be utilized as “truth” for the pur-
poses of validation is limited by knowledge of the methane
profile above the aircraft profile (referred to here as valida-
tion uncertainty), which limits our knowledge of “truth” to
within about 10 ppb. This uncertainty is consistent with the
location-dependent bias in the satellite–aircraft comparisons
which can vary by ∼ 10 ppb.

We quantify the AIRS minus validation SD for single
observations, daily averages (within 50 km of the valida-
tion location), monthly averages, and seasonal averages for
data bias-corrected using Eqs. (7) and (8). The AIRS minus
validation SDs are 24 ppb (single AIRS footprint), 17 ppb
(daily AIRS averages within 1degree latitude and longitude),
10 ppb (“monthly” AIRS averages), 9 ppb (3-month AIRS
average), and 7 ppb (seasonal cycle average). The errors on
averaged AIRS data are likely an upper bound on the AIRS
error, due to the uncertainty in the validation. The single-
footprint and daily average SDs for different pressure ranges
and surface types are shown in Appendix A. We recommend
using the SDs in this paragraph as the error budget for the
specified averaged quantities.

These results can be compared to AIRS v6 validation by
Xiong et al. (2015), which validated AIRS CH4 retrieved
from cloud-cleared radiances on the nine-footprint 45 km
field of regard. Xiong et al. (2015) found AIRS SDs vs.
HIPPO of 0.9 % (16 ppb) for pressures between 575 and
777 hPa, 1.2 % (18 ppb) SD for pressures between 441 and
575 hPa, and 1.6 % (29 ppb) between 343 and 441 hPa. Xiong
et al. (2015) also found a pressure-dependent bias, with a
−25 ppb bias near the top of the troposphere and a high 5 ppb
bias near the mid-troposphere.
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Appendix A: Biases and SDs for different stations,
campaigns, pressures, and surface types

We characterize the bias vs. validation data by station, cam-
paign, and pressure level. Table A1 shows biases vs. valida-
tion data, after bias correction with Eqs. (8) and (9). In the
HIPPO comparisons, the biases are generally smaller than
about 10 ppb. There is no overall pattern in the bias by sea-
son. The land data are biased higher than ocean for HIPPO
comparisons (about +20 ppb). However, note that the land
observations vs. HIPPO are primarily in Australia and New
Zealand, whereas the ocean comparisons are in the mid-
Pacific.

The NOAA aircraft network comparisons are sorted by
site. Many NOAA aircraft locations are at land–ocean in-
terfaces, allowing a more direct comparison of the land–
ocean biases. On average, the AIRS land observations are
0–5 ppb higher than AIRS ocean observations at the differ-
ent pressures and pressure ranges. The overall bias of AIRS
vs. NOAA aircraft is +7.1 ppb, whereas AIRS vs. HIPPO is
4.4 ppb for the partial column XCH4 VMR within the pres-
sure levels measured by the aircraft. This is consistent with
AIRS land having a high bias vs. ocean of 0–5 ppb. The SD
of the bias for the different campaigns is a useful quantity
as it is an indication of systematic error. The SD of the bias
varies from 4 to 9 ppb for the different vertical quantities.

Table A2 shows the mean bias for AIRS minus NOAA
GML aircraft for land and ocean AIRS observations. The
different rows extend the aircraft using the AIRS prior, the
CarbonTracker model (from https://www.esrl.noaa.gov/gmd/
ccgg/carbontracker-ch4/, last access: 21 December 2020) or
the GEOS-Chem model (both are extended through 2018 us-
ing 2.5 % secular increase). The goal of this table is to ap-
proximate the influence of the profile extension on the vali-
dation accuracy.

Table A3 shows the SD for AIRS observations minus val-
idation data for land–ocean for different pressure ranges for
both single observations and AIRS averages. The mean bias
at each site is subtracted prior to calculating the SD. This
table shows the SDs for single observations and averaged
quantities. The predicted error for the daily average is the
observation error divided by the square root of the number
of observations and is much smaller than the actual SD, indi-
cating correlated errors. The predicted error for the monthly,
3-month, and seasonal cycle averages is the daily SD di-
vided by the square root of the number of days averaged and
∼ agrees with the actual SD for the partial column XCH4
VMR within the pressure levels measured by the aircraft. The
location-dependent biases are subtracted from AIRS prior
to calculating the SD in all but the last two rows. The last
two rows show the SDs without subtracting the location-
dependent biases, which increases the SD from about 8 to
about 9 ppb.
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Table A1. Bias by campaign, station, land–ocean, and pressure.

Station/ Location Time Bias Bias Bias Bias column Bias column
campaign period 700 hPa 500 hPa 300 hPa matching above 750 hPa

(ppb) (ppb) (ppb) aircraft (ppb) (ppb)

HIPPO 1S Pacific Jan, 2009 −6.2 2.4 11.0 4.2 6.3
HIPPO 1N Pacific Jan, 2009 −3.2 3.7 12.5 −0.1 4.8
HIPPO 2S Pacific Nov, 2009 −9.0 −0.4 9.8 −4.4 5.0
HIPPO 2N Pacific Nov, 2009 −4.3 −3.3 −3.1 −4.0 −4.0
HIPPO 3N Pacific Apr, 2010 −8.5 1.1 16.5 −2.6 2.6
HIPPO 4S Pacific Jun, 2011 −0.7 −2.0 9.5 1.8 10.2
HIPPO 4N Pacific Jul, 2011 8.7 11.8 0.7 8.7 7.3
HIPPO 5S Pacific Aug, 2011 1.2 7.6 13.3 4.5 9.3
HIPPO 5N Pacific Sep, 2011 −5.2 0.5 1.2 −2.0 2.2

HIPPO all land – – 10.9 18.2 17.8 16.1 14.8
HIPPO all ocean – – −5.2 −0.9 4.3 −1.7 3.1
HIPPO all (mean) – – −2.9 2.1 7.9 0.7 4.9
HIPPO all (SD) – – 5.9 5.2 6.7 4.4 4.3

ACG 68◦ N, 152◦W – 21.4 – – 18.6 26.7
ESP 49◦ N, 126◦W – 9.7 – – 8.2 13.8
NHA 43◦ N, 71◦W – 15.7 23.8 – 15.7 19.3
THD 41◦ N, 124◦W – 13.6 21.7 – 14.0 21.2
CMA 39◦ N, 74◦W – −0.2 5.7 – 0.9 3.6
TGC 28◦ N, 97◦W – 1.0 7.9 – 2.3 6.5
RTA 21◦ S, 160◦W – 3.7 11.5 – 3.9 12.8

NOAA all land – – 9.2 16.8 – 9.4 14.3
NOAA all ocean – – 9.0 12.8 – 8.7 15.4
NOAA all (mean) – – 9.3 14.1 – 9.1 14.8
NOAA all (SD) – – 8.1 8.2 – 7.1 8.2

ATom 1S Pacific Aug, 2016 −0.2 4.5 7.7 2.0 3.5
ATom 1N Atlantic Aug, 2016 0.2 3.2 13.2 2.8 6.9
ATom 2S Pacific Feb, 2017 −6.8 0.7 8.4 −2.5 5.2
ATom 2N Atlantic Feb, 2017 5.7 12.3 25.3 8.3 12.5
ATom 3S Pacific Oct, 2017 −2.5 3.0 9.1 0.9 5.9
ATom 3N Atlantic/Pacific Oct, 2017 6.5 13.0 21.9 9.3 13.8
ATom 4S Pacific Apr/May, 2018 −0.1 3.9 9.4 2.3 6.0
ATom 4N Atlantic May, 2018 −1.4 5.9 23.4 3.4 13.2

ATom all land – – 16.7 23.6 26.2 17.0 18.2
ATom all ocean – – −3.2 2.4 13.4 0.6 6.5
ATom all (mean) – – 0.1 5.8 14.7 3.2 8.3
ATom all (SD) – – 4.3 4.5 7.5 3.8 4.1

Table A2. Change in the mean bias of the partial column matching the NOAA aircraft observation using different aircraft profile extensions
from the top aircraft measurement to the top of the atmosphere.

Quantity Profile Bias Bias Bias Bias column Bias column
extension 700 hPa 500 hPa 300 hPa matching above 750 hPa

(ppb) (ppb) (ppb) aircraft (ppb) (ppb)

Land NOAA CT 6.0 10.3 – 6.1 3.8
Ocean NOAA CT 4.5 5.7 – 4.3 4.0

Land NOAA prior 9.2 16.8 – 9.4 14.3
Ocean NOAA prior 9.0 12.8 – 8.7 15.4

Land NOAA GEOS-Chem 6.4 11.7 – 6.7 6.4
Ocean NOAA GEOS-Chem 4.4 7.7 – 4.5 6.4
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Table A3. SD of AIRS minus validation for land–ocean observations and different pressures or pressure ranges. Rows 1–2 show the SD for
single observation, rows 3–4 show the predicted observation error, rows 5–8 show the SD for daily averages, rows 9–10 show the predicted
error for daily averages (assuming random error), rows 11–12 show the SD for 3-month averages, rows 13–14 show the SD for seasonal
cycle averages (average the same month of all years), rows 15–16 show the predicted error for the seasonal cycle averages, and rows 17–18
show the SD without bias subtraction. The site-dependent biases from Table A1 are subtracted prior to calculating the SD.

Quantity SD SD SD SD column SD column
700 hPa 500 hPa 300 hPa matching above 750 hPa

(ppb) (ppb) (ppb) aircraft (ppb) (ppb)

Land single 26 29 26 23 25
Ocean single 25 27 26 22 24

Land observation error 26 26 19 23 19
Ocean observation error 28 28 20 24 19

Land daily (≥ 3 obsd−1) 17 21 16 15 20
Ocean daily (≥ 3 obsd−1) 18 21 21 16 20

Land daily (≥ 9 obsd−1) 16 20 16 14 20
Ocean daily (≥ 9 obsd−1) 17 19 21 15 18

Land daily (≥ 9 obsd−1) pred. 9.7 9.9 5.7 8.5 7.0
Ocean daily (≥ 9 obsd−1) pred. 8.4 7.9 4.6 7.0 5.7

Land 3-month (≥ 3 obsd−1, ≥ 3 d) 9.5 13.3 – 8.8 12.9
Ocean 3-month (≥ 3 obsd−1, ≥ 3 d) 9.0 11.8 – 8.3 11.8

Land monthly (average all years) 8.3 11.8 – 7.7 10.7
Ocean monthly (average all years) 8.3 10.4 – 7.5 10.1

Land monthly (average all years) pred. 7.7 9.9 – 6.9 9.3
Ocean monthly (average all years) pred. 8.0 9.8 – 7.2 9.5

Land monthly (average all years)
without bias subtraction

9.9 13.7 – 9.1 12.2

Ocean monthly (average all years)
without bias subtraction

10.4 12.3 – 9.4 11.6
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Data availability. AIRS single-footprint methane data will
be available at NASA GES DISC (https://disc.gsfc.nasa.gov/,
last access: 5 January 2021) starting in January 2021. Note
that the field “original_species” should be used with the bias
correction described in this paper. The specific datasets used
in this work are archived at https://drive.google.com/file/d/
1crNs-QcOzbjiZUiTyRiTEsFORFTbODAW/view?usp=sharing
(Kulawik et al., 2020). The NOAA GML aircraft observa-
tions were obtained from https://doi.org/10.25925/20190108
(Cooperative Global Atmospheric Data Integration Project,
2019). The ATom aircraft data were obtained from
https://doi.org/10.3334/ORNLDAAC/1581 (Wofsy et al., 2018).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/amt-14-335-2021-supplement.
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