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Figure S1. A scatter plot showing variations in RH and T at the two sites across the two deployments. The sites offer substantially diverse
weather conditions. Site D exhibits wide variations in RH and T levels during both deployments. Site M exhibits almost uniformly high RH
levels during the Oct deployment which coincided with the retreating monsoons.

S1 Details of the Deployment Sites

Here we offer some additional details about the two deployment sites.
About Site D: According to Greenpeace India (Times, 2018) and the Niti Aayog, Govt. of India (Aggarwal, 2018), Faridabad

was the second most polluted city in India in 2018. Surrounded by the Aravalli Hills, this is a rapidly growing city and a leading
industrial center suffering from heavy air pollution that mask the city and its neighborhoods routinely during the fall and winter5
seasons. The study site is 5 km away from Delhi and near Delhi-Surajkund Highway. It falls in the Indo-Gangetic Plain, which
registered critical levels of ambient air pollution attributable to a combination of multiple ambient sources, the use of biomass
and coal for household cooking and heating needs, and the stubble or agricultural residue burning (Chowdhury et al., 2019).
The deployment site is affected by vehicular traffic which are likely a dominant source of precursors to O3 formation (NO2

and volatile organic compounds) and of nitric oxide that reacts with O3 to form the pollutant NO2. The reference monitors10
were deployed in a laboratory on the first floor of the building with the low-cost AQ monitoring sensors next to its inlets.

About Site M: This site presents relatively lower pollution levels as it is situated within the IIT Bombay campus between the
Vihar and Powai lakes, and it is adjacent to the Sanjay Gandhi National park. Less that 5 km to its west side passes the Thane
creek (an inlet in the shoreline of the Arabian Sea) that isolates the city of Mumbai from the Indian mainland while the Arabian
sea is at around 10 km to its west. The reference monitors were deployed on the rooftop of the building with the low-cost AQ15
monitoring sensors next to its inlets. All AQ monitoring devices were in a Stevenson box to avoid damage to sensors.

S1.1 Analysis of Raw Data from Deployment Sites

We now take a closer look at raw data from the deployment sites to understand data characteristics better. Our deployment
strategy consisted of two sites at geographically diverse locations and experiencing varying air pollution levels, over two
extended deployments during months experiencing significant variations in RH and T. This and the swap-out experiment were20
aimed at covering a wide range of real-world ambient working conditions (Cross et al., 2017). As we saw in the main paper,
data from such diverse operating conditions is crucial for proper calibration of these sensors in order to not expect drastic
extrapolations from the models during actual deployment.

To illustrate this, refer to Fig. S1 which shows the RH and T ranges observed during the two deployments across the two
sites. It is clear that both sites offer extremely diverse meteorological conditions, with only site M offering somewhat uniformly25
high RH values during the Oct deployment. However, what is also interesting is that the sites also offer RH and T ranges that
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Figure S2. Time series showing the variation in the raw parameters measured using the reference monitors (NO2 and O3 concentrations) as
well as those measured using the SATVAM LCAQ sensors (RH, T, no2op1, no2op2, oxop1, oxop2). Fig. S2(a) considers a 48 hour period
during the Jun deployment (01-02 July 2019) at site D with signal measurements taken from the sensor DD1 whereas Fig. S2(b) considers a
48 hour period during the Oct deployment (20-21 October 2019) at site M with signal measurements taken from the sensor MM5. Values for
site D are available at 1 minute intervals while those for site M are averaged over 15-min intervals which explains why the left plot is more
granular than those in the right plot. Also notice that site D experiences higher levels of both NO2 and O3 as compared to site M.

are often non-overlapping. For instance, Fig. S1 shows that the ranges for site D (Oct) and site M(Jun) experience little overlap,
indicating the extreme diversity in this data.

We also present in Fig. S2, time series over 48 hour periods from two deployments at the two sites. The reference data
for the site D Jun deployment indicates that O3 levels exhibit a diurnal trend with a midday peak mainly at around 1500 hrs,30
while NO2 levels tend to peak usually in the morning and in the evening to midnight, suggesting nearby roadways could be
a predominant source of pollution. Site M on the other hand presents far lower O3 levels. Ambient RH and T values were
observed to vary inversely to each other at site D in both deployments and site M during the Jun deployment. However, site
M experienced a near continuous 100% RH level during the Oct deployment. The sensor voltages (no2op1, no2op2, oxop1,
oxop2) can be seen to have good correlation in the plots.35

Fig. S2 shows that the two sites and deployments exhibit significant diversity with respect to absolute concentrations. The
reference NO2 levels from site M (available at 15 minute intervals) ranged from 0.01-44.13 ppb in the Jun deployment and
from 0.01-58.44 ppb in the Oct deployment, respectively. At the same time, the reference NO2 levels from site D ranged
from 0.70-65.49 ppb and from 0.86-159.55 ppb during the Jun and Oct deployments, respectively. Similarly, reference O3

levels also differ significantly across the sites with site M levels ranging from 0.70-65.49 ppb and 0.86-160.41 ppb during the40
Jun and Oct deployments respectively and those for site D ranging from 0.70-141.47 ppb and from 0.80-180.00 ppb for the
same deployments. In general, Site D experienced higher concentration levels, as well as peaks, than site M. Furthermore,
concentration levels were found to go up for both sites during the Oct deployment as compared to the Jun deployment. Such
diversity in concentration levels are expected to empower calibration models to offer accurate predictions across wide ranges
of operating conditions.45

As deployments experienced several cloudy days, peaks of observed O3 levels are not consistent throughout the deployments.
Such influence of meteorological parameters on pollutant levels is well recognized in past literature (Gaur et al., 2014; Tiwari
et al., 2015; Simmhan et al., 2019) with effects such as scavenging of PM and gaseous pollutants that occur due to rain that may
result in lower concentration peaks of PM2.5 levels (not considered in this study) and lower mixing ratio of NO2, or higher
range of concentrations of same pollutants during winter, being observed.50
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Figure S3. Normalized frequency histograms and distributions for various data series. All figures show histograms to indicate the frequency
of occurrence of various values (as indicated by the bars) as well as fit a kernel density estimator to show a smoothed distribution of those
values (as indicated by the dotted lines). Figures in the first row i.e. Fig. S3(a,b,c,d) demonstrate how the air quality levels (reference values
of NO2 and O3) varied at the same site across the two seasons. Figures in the second row i.e. Fig. S3(e,f,g,h) demonstrate how the air quality
levels varied in the same season across the two sites. Figures in the third row i.e. Fig. S3(i,j,k,l) explore cross site variations in the sensor
voltage values (no2diff and oxdiff) recorded by the sensors DM2 and MD6 in the two seasons. Recall that both sensors participated in the
swap-out experiment.

In order to better understand global trends in cross-site and cross-deployment variations, Fig. S3 plots histograms indicating
the statistical distribution of reference values as well as sensor voltage readings for various sites and deployments. Fig. S3
(a,b,c,d) tell us that for both sites, the Oct deployment offers larger concentration levels as compared to the Jun deployment.
On the other hand, Fig. S3 (e,f,g,h) tell us that site D experiences appreciably greater levels for both NO2 and O3. This is
understandable since site M is located in a coastal city whereas site D is situated at a more arid location.55

Fig. S3 (i,j,k,l) show us that the distribution of the voltage differentials (no2diff, oxdiff) can differ significantly when the
same sensor is relocated to a different site during a different season. It is notable that the sensor readings exhibit concentration
and are often well approximated by a Gaussian distribution. However, reference values do not exhibit these trends and tend to
exhibit heavier tails and multiple modes.

S2 Revisiting Notation and Error Metrics60

We revisit the notation and then proceed to give details of the error metrics used in our experiments.
Notation. For every time-stamp t, the vector xt ∈ R8 denotes the 8-dimensional vector of signals recorded by the LCAQ

sensors for that time-stamp, namely (RH, T, no2op1, no2op2, oxop1, oxop2, no2diff, oxdiff), while the vector yt ∈ R2 will de-
note the 2-tuple of the reference values of O3 and NO2 for that time step. However, this notation is unnecessarily cumbersome
since we will build separate calibration models for O3 and NO2. Thus, to simplify the notation, we will instead use yt ∈ R to65
denote the reference value of the gas being considered (either O3 or NO2). The goal of calibration will then be to learn a real
valued function f : R8→ R such that f(xt)≈ yt for all time-stamps t (the exact error being measured using metrics such as
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MAE, MAPE, etc described in Sect S2). Thus, we will learn two functions, say fNO2
and fO3

to calibrate for NO2 and O3

concentrations respectively. Since several of our calibration algorithms will involve the use of some statistical estimation or
machine learning algorithm, we will let N (resp. n) denote the number of training (resp. testing) points for a given dataset and70
split thereof. Thus, we will let {(xt,yt)}Nt=1 denote the training set for that dataset and split with xt ∈ R8 and yt ∈ R.

Error Metrics: calibration performance was measured using four popular metrics, mean averaged error (MAE), mean
absolute percentage error (MAPE), root mean squared error (RMSE), and the coefficient of determination (R2) (see below).
Here n denotes the number of test points for a given dataset and split thereof, the variable t runs over all time-stamps in
the testing set, yt denotes the reference value (either O3 or NO2) at the t-th time-stamp, ŷt denotes the corresponding value75
predicted by the calibration model, and ȳ denotes the mean reference value i.e. ȳ = 1

n

∑n
t=1 y

t.

MAE =
1

n

n∑
t=1

|yt− ŷt|

MAPE =
1

n

n∑
t=1

|yt− ŷt|
yt

× 100%

RMSE =

√√√√ 1

n

n∑
t=1

(yt− ŷt)2

R2 = 1−
∑n

t=1(yt− ŷt)2∑n
t=1(yt− ȳ)2

80

S3 Description of Baseline Calibration Algorithms

Below we describe the baseline parametric and non-parametric calibration algorithms used in our study.

S3.1 Parametric Calibration Models

We first consider parametric calibration models that use an affine function to perform calibration i.e. f is of the form f(x) =
w>x+ b wherew ∈ R8 is the model vector and b ∈ R is the bias term. The model and bias are usually inferred from data. We85
describe several such calibration models below.

S3.1.1 Alphasense Models

The manufacturers of the Ox-B421 and NO2-B42F sensors used in the SATVAM devices themselves provides four different
calibration algorithms which are described below. The four models are meant to reflect different operating conditions for these
sensors, based on the ambient temperature range. In the following, α,β,γ,α′,β′ are constants unique to individual units i.e.90
two sensors placed in two different SATVAM devices would have different values for these constants. These constants are
provided by the manufacturer, based on their factory calibration.

p1(a,b) = ((a−α) + 0.6 · (b−β))/γ

p2(a,b) = ((a−α) +α′/β′ · (b−β))/γ

p3(a,b) = ((a−α) + (b−β)− (α′−β′))/γ95

p4(a,b) = (a−α)/γ

The AS1, AS2, AS3 and AS4 models: The above present the four different calibration models and can be directly used to
calibrate for NO2 concentrations as follows. For any k ∈ 1 . . .4, the k-th calibration model for NO2 is proposed to be

fkNO2
= pk(no2op1, no2op2)

4



Note that the model disregards RH and T information and uses only the no2op1, no2op2 voltage values to perform calibration100
for NO2. Now, it turns out that the O3 sensor is sensitive to the sum of NO2 and O3 concentrations. To account for this, the
k-th calibration model for O3 is proposed to be

fkO3
= pk(oxop1, oxop2)− fkNO2

(no2op1, no2op2)

= pk(oxop1, oxop2)− pk(no2op1, no2op2)

In our experiments, none of the four Alphasense calibration models offered satisfactory performance. We note that similar105
equations were recently used by (Chatzidiakou et al., 2019) for calibration of NOx, O3 and CO concentrations although the
constants in their models are learnt from data from actual deployment rather than factory deployment.

S3.1.2 Linear Models

We implemented linear regression techniques to fully explore the calibration power of predictive power of affine functions. We
recall that Alphasense calibration models are essentially affine functions of the feature vector x ∈ R8.110

Least Squares (LS): The standard least squares formulation seeks to learn a model vector and bias value that minimizes the
(squared) RMSE error by solving the following optimization problem over training data:

(wLS, bLS) = arg min
w∈R8

b∈R

N∑
t=1

((w>xt + b)− yt)2

Least Squares on reduced features (LS(MIN)): To assess the effect of the RH and T features as well as the augmented fea-115
tures oxdiff and no2diff, we performed least squares regression on a reduced feature set which did not contain the augmented
features and RH and T features.

Sparse linear regression (LASSO): The LASSO formulation (Tibshirani, 1996) seeks to learn a sparse model i.e. a model
vector w such that one or more coordinates of w are zero. LASSO can be effective at feature selection i.e. indicating which120
of the 8 input features are most relevant for a particular calibration task. To do so, LASSO solves the following regularized
optimization problem over training data:

(wLASSO, bLASSO) = arg min
w∈R8

b∈R

λ · ‖w‖1 +

N∑
t=1

((w>xt + b)− yt)2,

where ‖w‖1 =
∑8

j=1 |wj | and | · | denotes the absolute value operator. The regularization parameter λ was tuned over a fine
grid spanning five orders of magnitude [0.0001,0.0002, . . . ,10,20,50] using held-out validation.125

S3.2 Nonparametric Calibration Models

We also consider several baseline calibration models based on non-parametric regression techniques, including standard mod-
els such as regression trees, and several variants of kernel regression.

S3.2.1 Regression Trees (RT)130

Regression trees are a form of space partitioning data structure that recursively subdivide the feature space (in our case R8)
into small regions. Initially, all training data points reside at the root node of the tree which represents the entire feature space
R8. Then, a simple rule based on a single feature, for instance whether no2diff = no2op2 - no2op1 ≤ 17.5 or not (see Fig. S4
(top) for this example) is used to split this node into two child nodes. Thus, training data points at this node that satisfy this

5
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Figure S4. The first three levels of regression trees learnt for O3 (top) and NO2 (bottom) calibration for the DD1(Jun) dataset. Each internal
node in the tree describes what rule was used to split that node, the number of training data points that reached that node, and the average
value of the true (i.e. reference) concentrations of the gas (O3 or NO2) within the training data points that reached that node. The shade of
color of each node is indicative of the magnitude of the average reference value of training data points at that node. Notice the diversity of
the splitting rules used at various nodes in terms of using RH, T as well as electrode potential values (e.g. no2op1, oxop2 etc) to perform the
splits.

rule go to one child and data points that do not satisfy this rule go to the other child. Once the nodes are small enough, i.e. they135
contain fewer training data points than a set threshold, the average reference value of the training data points at that node is
used to perform prediction on all (testing) data points that reach that node.

The splitting rules at various nodes are learnt using an exhaustive search to ensure that the child nodes getting created as a
result of that rule are as pure as possible. In our case, the purity of a node was measured in terms of variance. Specifically, let
{i1, . . . , ts} ⊆ [N ] be the s training data points at a certain node. Then the purity of this node is measured as 1

s

∑s
k=1(ytk− ȳ)2140

where ȳ = 1
s

∑s
k=1 y

tk is the average reference value of data points at that node.
A standard implementation of a regression tree was used with nodes being asked to be split into two children till the num-

ber of training data points at a node fell below a threshold min_data points. This threshold was tuned across a fine grid of
[2,4,6,8,10,15,20] using held-out validation. Fig. S4 gives examples of actual regression trees learnt on the DD1(Jun) dataset
for NO2 and O3 calibration.145

S3.2.2 Classical k−NN Regression Variants

The k-nearest neighbor algorithm is a local proximity-based learning algorithm that makes predictions on test data points
based on which are the training data points that most resemble the test data point. Resemblance is usually calculated us-
ing a metric such as the Euclidean metric. We implement several k-nearest neighbor variants including our proposed variants
that use metric learning which we will describe later. Algorithm S1 gives a unified pseudo code that describes all these variants.150
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Algorithm S1 Variants of KNN based calibration

Require: training data points {(xt,yt)}Nt=1, neighborhood size k, weighing rule, choice of metric
Ensure: based on weighing rule and choice of metric, a prediction from the KNN, KNN-D, KNN(ML) or KNN-D(ML) models

{KNN, KNN-D use Euclidean metric. KNN(ML), KNN-D(ML) use a learnt metric.}
if metric == Euclidean then

Σ← I8 {The 8× 8 Identity matrix}
else if metric == learnt then

Σ← use training data points to learn a Mahalanobis metric using the technique from (Weinberger and Tesauro, 2007)
end if
Receive feature vector x̃ ∈ R8 for a test data point
Find the k training data points (say xi1 , . . . ,xik ) that are closest to x̃ in terms of the learnt Mahalanobis distance dMaha(·, ·;Σ)
{KNN, KNN(ML) use uniform weighing. KNN-D, KNN-D(ML) use distance weighing.}
if weighing rule == uniform then

ŷ =
1

k

k∑
l=1

ytl

else if weighing rule == distance weighted then
For all l = 1 . . .k, let αl = (dMaha(x̃,xil ;Σ))−1

ŷ =

∑k
l=1α

l · ytl∑k
l=1α

l

end if
return Calibrated value ŷ for the test data point

KNN with Euclidean Distance (KNN): The vanilla k-nearest algorithm (KNN) predicts on a test data point, the average
reference value in the k nearest training data points. The Euclidean distance was used to compute neighbors and the neighbor-
hood size k was tuned over the fine grid [2,4,6,8,10,15,20] using held-out validation. Standard implementation of kd-trees
were used to accelerate the process of discovering the nearest neighbors for a test data point.155

Distance weighted KNN (KNN-D): We also implemented a distance-weighted version of this algorithm wherein closest
neighbors for particular test data point are weighted according to their Euclidean distance to the test point with closer points
getting more weightage. We found this to favorably improve calibration performance.

S3.2.3 Classical Kernel Regression Variants160

In statistics and machine learning, the notion of a kernel refers to a function that assigns a similarity value to two vectors (Mur-
phy, 2012). Thus, in our setting a kernel would be a function of the form K : R8×R8→ R which, when given two vectors
x1,x2 ∈ R8, assigns a value K(x1,x2) ∈ R denoting how similar are these vectors. A popularly used kernel is the Gaus-
sian kernel (aka the RBF kernel) that calculates this similarity as K(x1,x2) = exp(−γ · ‖x1−x2‖22) where ‖ · ‖2 denotes the
Euclidean norm and γ is a bandwidth parameter that controls the scale at which similarity values go down. Note that even165
kernels, and by extension kernel regression algorithms, make use of notions of distance, e.g. the Euclidean distance to perform
computations. This observation will come in handy later. The Nadaraya-Watson estimator and kernel ridge regression are two
popular forms of kernel regression algorithms. A closely related cousin is Gaussian-process regression. Below we describe the
Nadaraya-Watson estimator as it is useful in the developement of our proposed technique. Kernel ridge regression is described
in the Supporting Information document.170

Nadaraya-Watson (NW): Given a training set {(xt,yt)}Nt=1, the NW estimator (Nadaraya, 1964; Watson, 1964) makes a
prediction on a new (testing) data point x ∈ R8 as follows

fNW(x) =

∑N
t=1 y

t ·K(xt,x)∑N
t=1K(xt,x)

7



The intent of this estimator is clear – the final prediction is a weighted sum of reference values yt in the training set with
the weight of a training data point t ∈ [N ] being proportional to K(xt,x) i.e. how similar is that training data point to the175
test data point. Notice also the similarity between NW and KNN-D in the way they make predictions. NW almost behaves
like a “smoothed” version of KNN-D by performing weighing using kernel values instead of inverse Euclidean distances and
considering all training data points instead of just the neighbors. This observation will also be useful later. Apart from the
Nadaraya-Watson method, we also consider kernel ridge regression and its accelerated version as baseline methods which are
described below.180

Kernel Ridge Regression (KRR): The KRR algorithm generalizes NW to learn a parameter value {αt}Nt=1,α
t ∈ R for

every training data point. These values are intended to denote the relative importance of various training data points in offering
an accurate prediction. Let α= [α1, . . . ,αN ] ∈ RN denote the vector of these values. Given a feature vector x ∈ R8, KRR
makes a prediction as follows:

fKRR(x;α) =
N∑
t=1

αt ·K(xt,x),185

These parameters learnt so as to minimize the (regularized) RMSE error on the training set as shown below. Let G ∈ RN×N

denote the Gram matrix of kernel values among the training points i.e. Gij =K(xi,xj).

αKRR = arg min
α∈RN

λ ·α>Gα+

N∑
t=1

(fKRR(x;α)− yt)2,

The regularization hyperparameter λ was tuned over a fine grid spanning 5 orders of magnitude [0.0001,0.0002, . . . ,10,20,50]
using held-out validation. The bandwidth parameter of the Gaussian kernel γ was tuned to the inverse of a certain per-190
centile of the pairwise Euclidean distances between the training feature vectors. This percentile was tuned over the fine grid
[0.1,0.2, . . . ,0.9] using held-out validation. This range is popularly held as a reasonable range within which a near-optimal
bandwidth value can be discovered (Caputo et al., 2002).

Nystroem Method (NYS): Despite its representational power, KRR is known to be slow at training and prediction. To speed195
up prediction times, which must happen in real time, we implemented the Nystroem method (Williams and Seeger, 2001) which
is a scalable kernel approximation technique. We omit a detailed description of this method for sake of brevity.

S3.2.4 Metric Learning for Calibration (NW(ML), KNN(ML), KNN-D(ML))

As mentioned in the main paper, regression and calibration algorithms using KNN-style algorithms pose a challenge to metric
learning. However, we make use to two earlier observations to overcome this problem. Specifically, we note that200

1. Kernels such as the Gaussian kernel do internally use a Euclidean distance term to compute similarity.

2. There do exist techniques Weinberger and Tesauro (2007) to learn a good Mahalanobis metric to replace the Euclidean
distance within the expression for the Gaussian kernel, when being used alongwith the NW algorithm

3. The NW algorithm resembles KNN-style algorithms and hence a metric suitable for NW should be well suited for KNN
algorithms as well.205

The modification required to execute NW(ML) with a learnt metric is straightforward – we simply start using an alternate
kernel given by

KMaha(x1,x2;Σ) = exp(−(dMaha(x1,x2;Σ))2)

We note that this alternate kernel does not require an explicit bandwidth parameter since any such parameter can be absorbed
into the matrix Σ itself. The method proposed by Weinberger and Tesauro (2007) learns this metric by attempting to minimize210
the leave-one-out RMSE over the training data points. We call the variants of NW, KNN and KNN-D when used with a learnt
metric, respectively NW(ML), KNN(ML) and KNN-D(ML). Algorithm S1 presents pseudo-code for these variants.
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Figure S5. (Interpreting violin plots) Two violin plots based on synthetic error data. The left figure offers a symmetric violin plot on a single
data source (NO2 calibration in this synthetic example). The right figure offers a split violin plot that considers two data sources together
(NO2 and O3 calibration in this synthetic example).

S4 Supplementary Results

We first present a helpful discussion on interpreting violin plots and then, for sake of convenience to the reader, revisit the
discussion on how to interpret the statistical tests.215

S4.1 Interpreting Violin Plots

Fig. S5 shows two sample violin plots based on synthetic error data (i.e. the data does not correspond to any actual model).
Violin plots display numeric data by showing a rotated kernel density plot to show the distribution of the data (see Fig. S5
(left)). The white dot in middle represents the median of the data. The thick vertical line in the middle represents the inter-
quartile range between the 0.25 and 0.75 quartiles, commonly known as Q1 and Q3. The thinner vertical line in the middle220
represents Tukey’s fences and the upper and lower adjacent values, calculated as Q3 + 1.5∆ and Q1 - 1.5∆ respectively where
∆ = Q3 - Q1 is the interquartile range. Violin plots may also be split to simultaneously display two sources of data for ease
of comparison (see Fig. S5 (right)). For split violin plots, the median, quartiles, and Tukey’s fences were calculated on the
combined data from the two sources by our seaborn plotting library.

S4.2 Interpreting Two-sample Tests225

As mentioned earlier, we used the paired Wilcoxon signed ranked test to compare two algorithms on the same dataset. Given
that there are 12 datasets and 10 splits for each dataset, for ease of comprehension, we provide globally averaged statistics
of wins scored by an algorithm over another. For example, say we wish to compare KNN-D(ML) and NW(ML) as done in
Tab S5. We perform the test for each individual dataset and split. For each test, we either get a win for NW(ML) (in which case
NW(ML) gets a +1 score and KNN-D(ML) gets 0), or a win for KNN-D(ML) (in which case KNN-D(ML) gets a +1 score230
and NW(ML) gets 0) or else the null hypothesis is not refuted (in which case both get 0). The average of these scores is then
shown. For example, in Tab S5 (left), row 3 column 5 records a value of 0.02 implying that in 2% of these tests, NW(ML)
won over KNN-D(ML) in case of O3 calibration, whereas row 5 column 3 records a value of 0.62 implying that in 62% of the
tests, KNN-D(ML) won over NW(ML). In the balance (1 - 0.02 - 0.62 = 0.36) i.e. 36% of the tests, neither algorithm could be
declared a winner.235

S4.3 The Effect of Metric Learning

The main paper discussed the need for metric learning in order to place appropriate emphasis on various features, such as RH
and T that are known to hugely influence calibration, when calculating distances between data points in algorithms such as
KNN or KRR. To assess whether metric learning is indeed discovering such emphasis, we try to understand the action of a
Mahalanobis metric better. Recall that a Mahalanobis metric is characterized by a positive semi-definite matrix Σ ∈ R8×8 and240
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Table S1. The linear transformation Σ
1
2 learnt for NO2 calibration on the dataset DD1(Jun). Note the large emphasis the transformation

places on RH and T and no2op1, no2op2, no2diff, increasing their importance while calculating the Mahalanobis distance and placing
relatively less importance on the oxop1, oxop2 and oxdiff features which is understandable since this metric was learnt for NO2 calibration.

T RH no2op1 no2op2 oxop1 oxop2 no2diff oxdiff

T 10.19 3.29 -1.95 -2.12 3.73 4.29 -0.66 -1.44
RH 3.52 13.22 1.43 1.46 -2.32 -2.60 -0.25 0.49
no2op1 -0.17 -0.69 6.92 6.20 -3.65 -3.93 0.27 -0.12
no2op2 -0.27 -0.81 5.66 6.96 -2.94 -3.20 0.51 0.11
oxop1 1.27 -0.19 1.94 2.11 1.51 0.50 0.74 0.27
oxop2 0.89 -0.81 3.34 3.58 -0.86 0.03 0.86 0.24
no2diff -0.74 -0.68 -4.01 -3.94 6.89 7.12 2.82 1.88
oxdiff 2.71 3.45 -7.03 -7.36 7.95 8.54 -0.32 1.32

calculates the distance between any two points as follows

dMaha(x1,x2;Σ) =
√

(x1−x2)>Σ(x1−x2)

Let Σ
1
2 denote the Cholesky decomposition of Σ such that (Σ

1
2 )>Σ

1
2 = Σ

1
2 and denote vi = Σ

1
2xi for i= 1,2. Then it is not

difficult to see that dMaha(x1,x2;Σ) = ‖v1−v2‖2 i.e. the Mahalanobis distance between x1 and x2 is simply the Euclidean
distance between the transformed vectors v1 and v2. Thus, the transformation Σ

1
2 is crucial in reorganizing features of x so so245

that the resulting distances, when used by the kNN algorithm, give better performance. Tab S1 shows the linear transformation
Σ

1
2 corresponding to the Mahalanobis metric learnt by NW(ML) for NO2 calibration on the DD1(Jun) dataset which gives us

in some sense optimal reorganization of features found by the metric learning technique. In particular, note that it places heavy
emphasis on the RH and T features. This means that the optimal Mahalanobis metric identifies that a high importance should
be placed on RH and T features when computing distances for use by kNN. We point out the following aspects of the matrix250
by concentrating on the diagonal entries.

1. The diagonal entries corresponding to no2op1, no2op2 and no2diff have much higher values that those for oxop1, oxop2
and oxdiff. This makes sense since this metric was being learnt for NO2 calibration.

2. The diagonal entries corresponding to RH and T are by far the largest. This implies that the method did find it crucial to
put more emphasis on these two features while calculating distances.255

S4.4 Detailed Calibration Results

Here we present detailed outcomes of the calibration studies comparing algorithms within certain families e.g. Alphasense,
linear, non-parametric etc. We recall that the main paper only included a summary of these results.

S4.4.1 Alphasense Family of Models

We evaluated the four Alphasense algorithms described in Sect. S3.1.1 on all datasets. Since there is no training required for260
these models, we directly applied them to the test data for all the splits. All four algorithms exhibit extremely poor perfor-
mance across all metrics on all datasets, offering extremely high MAE and low R2 values. Two-sample tests confirmed this by
declaring all four AS algorithms as losers when compared to any other algorithm (e.g. LS or KNN). This was true for every
split of every dataset. However AS3 was the better among the four algorithms and Table S2 presents various error metrics for
this variant on two datasets across the two sites and deployments to illustrate the performance level of these algorithms. With265
the error scales being so huge, violin plots for these algorithms fail to convey useful information and are omitted.
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Table S2. Performance of AS3 on data collected by the DD1 and DM2 sensor across the Jun and Oct deployments. All AS models offered
extremely poor calibration performance on all datasets. Note the negative R2 values and the extremely large MAE, MAPE and RMSE values
across sites and deployments.

DD1(Jun) DM2(Oct)

O3 NO2 O3 NO2

MAE 251.8±0.27 107.7±0.11 13.6±1.0 354.6±2.3
RMSE 253.6±0.27 108.2±0.12 22.7±2.2 356.0±2.3
MAPE 1341.9±120.9 1954.6±51.8 142.4±6.5 8785.4±4607.4
R2 -178.7±3.9 -95.5±3.5 -0.12±0.0 -1617.7±104.6

Previous studies (Lewis and Edwards, 2016; Jiao et al., 2016; Simmhan et al., 2019) corroborate this poor performance of
the AS calibration algorithms. It was suggested that this is likely due to changing levels of confounding effects at the study
sites (Kumar et al., 2015; Mijling et al., 2018; Simmhan et al., 2019; Chatzidiakou et al., 2019). In particular, Chatzidiakou
et al. (2019) reported that the electrochemical sensors lose sensitivity at higher temperatures in field. Models that do take into270
account RH and T as explicit features were found to perform much better. Given the extremely poor performance of these
models, we do not consider them in our analyses anymore.

S4.4.2 Linear Parametric Family of Models

Among the linear parametric algorithms LS(MIN), LASSO and LS, we found LS to offer the best performance. Tab S3 shows
that the paired Wilcoxon test awarded LS a win over the other two algorithms a majority of the time over the 12 datasets and 10275
splits of each dataset (see Table S3). A visual inspection of the distribution of absolute errors offered by the three algorithms
(see Fig. S6) confirm that the larger number of features (augmented as well as RH and T) offered to the LS algorithm do offer
it an advantage. This also confirms that including RH and T as features during the calibration process is essential.

Table S3. Results of the pairwise Wilcoxon signed rank tests on linear parametric models (see Sect. S4.2 for a key). LS wins over both
LS(MIN) and LASSO a majority of the times and is not defeated by any of them more than marginally often. The overall ranking of the
algorithms in terms of performance is indicated to be LS > LS(MIN) > LASSO

O3

LS(MIN) LASSO LS

LS(MIN) 0 0.83 0.05
LASSO 0.01 0 0.01

LS 0.65 0.91 0

NO2

LS(MIN) LASSO LS

LS(MIN) 0 0.61 0.07
LASSO 0.23 0 0

LS 0.76 0.79 0

S4.4.3 Kernel Regression Family of Models

We confirmed that the Nystroem method does indeed offer competitive calibration performance as compared to kernel ridge280
regression (KRR). In around 47% of the tests, KRR was found to beat the Nystroem method whereas in around 35% of the
tests, Nystroem beat KRR. 18% of the tests were inconclusive in declaring a winner. The violin plots for the two algorithms
(see Fig. S7) can be used to visually confirm that the algorithms do indeed offer comparable performance. However, as Tab S4
shows, the prediction time offered by the Nystroem method can be more than 4× faster in terms of prediction time than KRR.
This highlights the utility of the Nystroem method as an accurate but accelerated approximation for KRR.285
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Figure S6. The violin plots on the left and right depict the distribution of absolute errors incurred by various linear parametric calibration
models on respectively, the MM5(Jun) and MM5(Oct) datasets. LS offers visibly superior performance on the MM5(Oct) dataset.

Table S4. Prediction time speedups offered by the Nystroem method over the KRR algorithm on both sites and deployments. Notice that the
speedup is generally higher for larger datasets.

Test time per data point (ms)

# Train Data Points KRR NYS Speedup

Site D
Jun 23626.5±1299.1 0.39±0.24 0.07±0.042 4.4×

Oct 6682.8±1013.7 0.09±0.08 0.02±0.011 3.9×

Site M
Jun 1647.5±229.3 0.14±0.02 0.02±0.007 5.9×

Oct 742.7±173.0 0.009±0.006 0.005±0.002 1.5×

S4.5 KNN and Metric Learning Family of Models

Among the KNN family of algorithms, the distance weighted KNN algorithm that uses a learnt metric i.e. KNN-D(ML) was
found to offer the best accuracies across all datasets and splits. Table S5 reports the results of the paired Wilcoxon tests
comparing all algorithms. In general, KNN-D(ML) was awarded a win over other variants a majority of the time. Some other
trends evident from this analysis are the following290

1. using a learnt metric always improves performance (KNN-D(ML) wins over KNN-D 76% and 70% of the time w.r.t O3

and NO2 calibration, and KNN(ML) wins over KNN 76% and 70% of the time as well).

2. distance-weighing always improves performance (KNN-D(ML) wins over KNN(ML) 81% and 86% of the time, and
KNN-D wins over KNN 79% and 85% of the time).

Tab S6 additionally presents various error metrics for these algorithms on the DD1(Jun) and MM5(Oct) datasets. We avoid295
presenting a violin plot in this case since the plots are not readily discernible.
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Figure S7. The violin plots on the left and right depict the distribution of absolute errors incurred by KRR and the Nystroem method on
respectively, the DD1(Jun) and DD1(Oct) datasets. Both algorithms can be seen to offer comparable performance on both datasets.

Table S5. Results of the pairwise Wilcoxon signed rank tests on KNN and metric learning models (see Sect. S4.2 for a key). KNN-D(ML)
beats every other algorithm a large fraction of the time and is scarcely ever beaten. The overall ranking of the algorithms is indicated to be
KNN-D(ML) > KNN(ML) > KNN-D > NW(ML) > KNN although, as Tab S6 indicates, in terms of error metrics, KNN(ML), KNN-D and
NW(ML) are competitive as well.

O3

KNN KNN-D NW(ML) KNN(ML) KNN-D(ML)

KNN 0 0.01 0.46 0.01 0
KNN-D 0.79 0 0.5 0.03 0

NW(ML) 0.29 0.25 0 0.12 0.02
KNN(ML) 0.76 0.64 0.59 0 0

KNN-D(ML) 0.86 0.76 0.62 0.81 0

NO2

KNN KNN-D NW(ML) KNN(ML) KNN-D(ML)

KNN 0 0 0.3 0 0
KNN-D 0.85 0 0.34 0.03 0.01

NW(ML) 0.34 0.27 0 0.18 0.06
KNN(ML) 0.7 0.58 0.56 0 0

KNN-D(ML) 0.81 0.7 0.58 0.86 0

Table S6. A comparison of various KNN and metric learning algorithms on the DD1(Jun) and MM5(Oct) datasets with respect to the MAE
and R2 metrics. The best algorithms in terms of mean statistics are highlighted in bold.

O3

DD1(Jun) MM5(Oct)

MAE R2 MAE R2

KNN 3.88±0.04 0.909±0.005 3.14±0.19 0.936±0.01
KNN-D 3.82±0.03 0.911±0.004 3.06±0.18 0.940±0.01
NW(ML) 4.23±0.06 0.895±0.005 2.90±0.27 0.943±0.03
KNN(ML) 3.57±0.05 0.921±0.003 3.02±0.28 0.939±0.03
KNN-D(ML) 3.52±0.04 0.923±0.003 2.98±0.27 0.943±0.03

NO2

DD1(Jun) MM5(Oct)

MAE R2 MAE R2

KNN 3.19±0.02 0.757±0.01 2.94±0.21 0.729±0.03
KNN-D 3.13±0.02 0.761±0.01 2.84±0.20 0.744±0.03
NW(ML) 3.49±0.07 0.717±0.02 2.75±0.22 0.751±0.04
KNN(ML) 2.74±0.06 0.808±0.02 2.87±0.26 0.738±0.04
KNN-D(ML) 2.67±0.05 0.819±0.01 2.79±0.26 0.751±0.04
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