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Abstract. Low-cost sensors offer an attractive solution to
the challenge of establishing affordable and dense spatio-
temporal air quality monitoring networks with greater mo-
bility and lower maintenance costs. These low-cost sensors
offer reasonably consistent measurements but require in-
field calibration to improve agreement with regulatory instru-
ments. In this paper, we report the results of a deployment
and calibration study on a network of six air quality moni-
toring devices built using the Alphasense O3 (OX-B431) and
NO2 (NO2-B43F) electrochemical gas sensors. The sensors
were deployed in two phases over a period of 3 months at
sites situated within two megacities with diverse geographi-
cal, meteorological and air quality parameters. A unique fea-
ture of our deployment is a swap-out experiment wherein
three of these sensors were relocated to different sites in the
two phases. This gives us a unique opportunity to study the
effect of seasonal, as well as geographical, variations on cal-
ibration performance. We report an extensive study of more
than a dozen parametric and non-parametric calibration al-
gorithms. We propose a novel local non-parametric calibra-
tion algorithm based on metric learning that offers, across de-
ployment sites and phases, an R2 coefficient of up to 0.923
with respect to reference values for O3 calibration and up to
0.819 for NO2 calibration. This represents a 4–20 percent-

age point increase in terms of R2 values offered by classi-
cal non-parametric methods. We also offer a critical analysis
of the effect of various data preparation and model design
choices on calibration performance. The key recommenda-
tions emerging out of this study include (1) incorporating
ambient relative humidity and temperature into calibration
models; (2) assessing the relative importance of various fea-
tures with respect to the calibration task at hand, by using an
appropriate feature-weighing or metric-learning technique;
(3) using local calibration techniques such as k nearest neigh-
bors (KNN); (4) performing temporal smoothing over raw
time series data but being careful not to do so too aggres-
sively; and (5) making all efforts to ensure that data with
enough diversity are demonstrated in the calibration algo-
rithm while training to ensure good generalization. These re-
sults offer insights into the strengths and limitations of these
sensors and offer an encouraging opportunity to use them
to supplement and densify compliance regulatory monitor-
ing networks.
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1 Introduction

Elevated levels of air pollutants have a detrimental impact
on human health as well as on the economy (Chowdhury
et al., 2018; Landrigan et al., 2018). For instance, high levels
of ground-level O3 have been linked to difficulty in breath-
ing, increased frequency of asthma attacks and chronic ob-
structive pulmonary disease (COPD). The World Health Or-
ganization reported (WHO, 2018) that in 2016, 4.2 million
premature deaths worldwide could be attributed to outdoor
air pollution, 91 % of which occurred in low- and middle-
income countries where air pollution levels often did not
meet its guidelines. There is a need for accurate real-time
monitoring of air pollution levels with dense spatio-temporal
coverage.

Existing regulatory techniques for assessing urban air
quality (AQ) rely on a small network of Continuous Ambient
Air Quality Monitoring Stations (CAAQMSs) that are instru-
mented with accurate air quality monitoring gas analyzers
and beta-attenuation monitors and provide highly accurate
measurements (Snyder et al., 2013; Malings et al., 2019).
However, these networks are established at a commensu-
rately high setup cost and are cumbersome to maintain (Sahu
et al., 2020), making dense CAAQMS networks impractical.
Consequently, the AQ data offered by these sparse networks,
however accurate, limit the ability to formulate effective AQ
strategies (Garaga et al., 2018; Fung, 2019).

In recent years, the availability of low-cost AQ (LCAQ)
monitoring devices has provided exciting opportunities for
finer-spatial-resolution data (Rai et al., 2017; Baron and
Saffell, 2017; Kumar et al., 2015; Schneider et al., 2017;
Zheng et al., 2019). The cost of a CAAQMS system that
meets federal reference method (FRM) standards is around
USD 200 000, while that of an LCAQ device running com-
modity sensors is under USD 500 (Jiao et al., 2016; Simmhan
et al., 2019). In this paper, we use the term “commodity” to
refer to sensors or devices that are not custom built and in-
stead sourced from commercially available options. The in-
creasing prevalence of the Internet of things (IoT) infrastruc-
ture allows for building large-scale networks of LCAQ de-
vices (Baron and Saffell, 2017; Castell et al., 2017; Arroyo
et al., 2019).

Dense LCAQ networks can complement CAAQMSs to
help regulatory bodies identify sources of pollution and
formulate effective policies; allow scientists to model in-
teractions between climate change and pollution (Hagan
et al., 2019); allow citizens to make informed decisions,
e.g., about their commute (Apte et al., 2017; Rai et al., 2017);
and encourage active participation in citizen science initia-
tives (Gabrys et al., 2016; Commodore et al., 2017; Gillooly
et al., 2019; Popoola et al., 2018).

1.1 Challenges in low-cost sensor calibration

Measuring ground-level O3 and NO2 is challenging as they
occur at parts-per-billion levels and intermix with other pol-
lutants (Spinelle et al., 2017). LCAQ sensors are not de-
signed to meet rigid performance standards and may gen-
erate less accurate data as compared to regulatory-grade
CAAQMSs (Mueller et al., 2017; Snyder et al., 2013; Miskell
et al., 2018). Most LCAQ gas sensors are based on ei-
ther metal oxide (MOx) or electrochemical (EC) technolo-
gies (Pang et al., 2017; Hagan et al., 2019). These present
challenges in terms of sensitivity towards environmental con-
ditions and cross-sensitivity (Zimmerman et al., 2018; Lewis
and Edwards, 2016). For example, O3 electrochemical sen-
sors undergo redox reactions in the presence of NO2. The
sensors also exhibit loss of consistency or drift over time.
For instance, in EC sensors, reagents are spent over time and
have a typical lifespan of 1 to 2 years (Masson et al., 2015;
Jiao et al., 2016). Thus, there is a need for the reliable cali-
bration of LCAQ sensors to satisfy performance demands of
end-use applications (De Vito et al., 2018; Akasiadis et al.,
2019; Williams, 2019).

1.2 Related works

Recent works have shown that LCAQ sensor calibration
can be achieved by co-locating the sensors with regulatory-
grade reference monitors and using various calibration mod-
els (De Vito et al., 2018; Hagan et al., 2019; Morawska
et al., 2018). Zheng et al. (2019) considered the problem
of dynamic PM2.5 sensor calibration within a sensor net-
work. For the case of SO2 sensor calibration, Hagan et al.
(2019) observed that parametric models such as linear least-
squares regression (LS) could extrapolate to wider concentra-
tion ranges, at which non-parametric regression models may
struggle. However, LS does not correct for (non-linear) de-
pendence on temperature (T ) or relative humidity (RH), for
which non-parametric models may be more effective.

Since electrochemical sensors are configured to have
diffusion-limited responses and the diffusion coefficients
could be affected by ambient temperature, Sharma et al.
(2019), Hitchman et al. (1997) and Masson et al. (2015)
found that at RH exceeding 75 % there is substantial error,
possibly due to condensation on the potentiostat electronics.
Simmhan et al. (2019) used non-parametric approaches such
as regression trees along with data aggregated from multi-
ple co-located sensors to demonstrate the effect of the train-
ing dataset on calibration performance. Esposito et al. (2016)
made use of neural networks and demonstrated good calibra-
tion performance (with mean absolute error < 2 ppb) for the
calibration of NO2 sensors. However, a similar performance
was not observed for O3 calibration. Notably, existing works
mostly use a localized deployment of a small number of sen-
sors, e.g., Cross et al. (2017), who tested two devices, each
containing one sensor per pollutant.
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1.3 Our contributions and the SATVAM initiative

The SATVAM (Streaming Analytics over Temporal Vari-
ables from Air quality Monitoring) initiative has been devel-
oping low-cost air quality (LCAQ) sensor networks based on
highly portable IoT software platforms. These LCAQ devices
include (see Fig. 3) PM2.5 as well as gas sensors. Details on
the IoT software platform and SATVAM node cyber infras-
tructure are available in Simmhan et al. (2019). The focus of
this paper is to build accurate and robust calibration models
for the NO2 and O3 gas sensors present in SATVAM devices.
Our contributions are summarized below:

1. We report the results of a deployment and calibration
study involving six sensors deployed at two sites over
two phases with vastly different meteorological, geo-
graphical and air quality parameters.

2. A unique feature of our deployment is a swap-out exper-
iment wherein three of these sensors were relocated to
different sites in the two phases (see Sect. 2 for deploy-
ment details). This allowed us to investigate the efficacy
of calibration models when applied to weather and air
quality conditions vastly different from those present
during calibration. Such an investigation is missing
from previous works which mostly consider only local-
ized calibration.

3. We present an extensive study of parametric and non-
parametric calibration models and develop a novel local
calibration algorithm based on metric learning that of-
fers stable (across gases, sites and seasons) and accurate
calibration.

4. We present an analysis of the effect of data preparation
techniques, such as volume of data, temporal averag-
ing and data diversity, on calibration performance. This
yields several take-home messages that can boost cali-
bration performance.

2 Deployment setup

Our deployment employed a network of LCAQ sensors and
reference-grade monitors for measuring NO2 and O3 concen-
trations, deployed at two sites across two phases.

2.1 Deployment sites

SATVAM LCAQ sensor deployment and co-location with
reference monitors was carried out at two sites. Figure 1
presents the geographical locations of these two sites.

1. Site D. Located within the Delhi (hence site D) National
Capital Region (NCR) of India at the Manav Rachna In-
ternational Institute of Research and Studies (MRIIRS),
Sector 43, Faridabad (28.45◦ N, 77.28◦ E; 209 m a.m.s.l.
– above mean sea level).

2. Site M. Located within the city of Mumbai (hence
site M) at the Maharashtra Pollution Control Board
(MPCB) within the university campus of IIT Bombay
(19.13◦ N, 72.91◦ E; 50 m a.m.s.l.).

Figure 2 presents a snapshot of raw parameter values pre-
sented by the two sites. We refer readers to the supplemen-
tary material for additional details about the two deployment
sites. Due to increasing economic and industrial activities, a
progressive worsening of ambient air pollution is witnessed
at both sites. We considered these two sites to cover a broader
range of pollutant concentrations and weather patterns, so as
to be able to test the reliability of LCAQ networks. It is no-
table that the two chosen sites present different geographical
settings as well as different air pollution levels with site D
of particular interest in presenting significantly higher mini-
mum O3 levels than site M, illustrating the influence of the
geographical variability over the selected region.

2.2 Instrumentation

LCAQ sensor design. Each SATVAM LCAQ device contains
two commodity electrochemical gas sensors (Alphasense
OX-B421 and NO2-B42F) for measuring O3 (ppb) and NO2
(ppb) levels, a PM sensor (Plantower PMS7003) for measur-
ing PM2.5 (µg m−3) levels, and a DHT22 sensor for measur-
ing ambient temperature (◦C) and relative humidity RH (%).
Figure 3 shows the placement of these components. A no-
table feature of this device is its focus on frugality and use
of the low-power Contiki OS platform and 6LoWPAN for
providing wireless-sensor-network connectivity.

Detailed information on assembling these different
components and the interfacing with an IoT network is
described in Simmhan et al. (2019). These sensors form a
highly portable IoT software platform to transmit 6LoWPAN
packets at 5 min intervals containing five time series data
points from individual sensors, namely NO2, O3, PM2.5
(not considered in this study), temperature and RH. Given
the large number of devices spread across two cities and
seasons in this study, a single border-router edge device was
configured at both sites using a Raspberry Pi that acquired
data, integrated them and connected to a cloud facility using
a Wi-Fi link to the respective campus broadband networks.
A Microsoft Azure Standard D4s v3 VM was used to host
the cloud service with four cores, 16 GB RAM and 100 GB
SSD storage running an Ubuntu 16.04.1 LTS OS. The Pi
edge device was designed to ensure that data acquisition
continues even in the event of cloud VM failure.

Reference monitors. At both the deployment sites, O3 and
NO2 were measured simultaneously with data available at
1 min intervals for site D deployments (both Jun and Oct)
and 15 min intervals for site M deployments. O3 and NO2
values were measured at site D using an ultraviolet photo-
metric O3 analyzer (Model 49i O3 analyzer, Thermo Sci-
entific™, USA) and a chemiluminescence oxide of nitrogen
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Figure 1. A map showing the locations of the deployment sites. Panels (b) and (c) show a local-scale map of the vicinity of the deployment
sites – namely site D at MRIIRS, Delhi NCR (b), and site M at MPCB, Mumbai (c), with the sites themselves pointed out using bright green
dots. Panel (a) shows the location of the sites on a map of India. Credit for map sources: (a) is taken from the NASA Earth Observatory with
the outlines of the Indian states in red taken from QGIS 3.4 Madeira; (b) and (c) are obtained from © Google Maps. The green markers for
the sites in all figures were added separately.

Figure 2. Panels (a, b) present time series for raw parameters measured using the reference monitors (NO2 and O3 concentrations) as well
as those measured using the SATVAM LCAQ sensors (RH, T , no2op1, no2op2, oxop1, oxop2). Panel (a) considers a 48 h period during the
June deployment (1–2 July 2019) at site D with signal measurements taken from the sensor DD1 whereas (b) considers a 48 h period during
the October deployment (20–21 October 2019) at site M with signal measurements taken from the sensor MM5 (see Sect. 2.3 for conventions
used in naming sensors e.g., DD1, MM5). Values for site D are available at 1 min intervals, while those for site M are averaged over 15 min
intervals. Thus, the left plot is more granular than the right plot. Site D experiences higher levels of both NO2 and O3 as compared to site M.
Panel (c) presents a scatterplot showing variations in RH and T at the two sites across the two deployments. The sites offer substantially
diverse weather conditions. Site D exhibits wide variations in RH and T levels during both deployments. Site M exhibits almost uniformly
high RH levels during the October deployment which coincided with the retreating monsoons.

(NOx) analyzer (Model 42i NOx analyzer, Thermo Scien-
tific™, USA), respectively. Regular maintenance and multi-
point calibration, zero checks, and zero settings of the in-
struments were carried out following the method described
by Gaur et al. (2014). The lowest detectable limits of ref-
erence monitors in measuring O3 and NO2 were 0.5 and
0.40 ppb, respectively, and with a precision of ± 0.25 and
± 0.2 ppb, respectively. Similarly, the deployments at site M
had Teledyne T200 and T400 reference-grade monitors in-

stalled. These also have a UV photometric analyzer to mea-
sure O3 levels and use chemiluminescence to measure NO2
concentrations with lowest detectable limits for O3 and NO2
of 0.4 and 0.2 ppb, respectively, and a precision of ± 0.2 and
± 0.1 ppb, respectively. For every deployment, the reference
monitors and the AQ sensors were time-synchronized, with
the 1 min interval data averaged across 15 min intervals for
all site M deployments since the site M reference monitors
gave data at 15 min intervals.
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Figure 3. Primary components of the SATVAM LCAQ (low-cost
air-quality) sensor used in our experiments. The SATVAM device
consists of a Plantower PMS7003 PM2.5 sensor, Alphasense OX-
B431 and NO2-B43F electrochemical sensors, and a DHT22 RH
and temperature sensor. Additional components (not shown here)
include instrumentation to enable data collection and transmission.

Figure 4. A schematic showing the deployment of the six LCAQ
sensors across site D and site M during the two deployments. The
sensors subjected to the swap-out experiment are presented in bold.
Credit for map sources: the outlines of the Indian states in red
are taken from QGIS 3.4 Madeira with other highlights (e.g., for
oceans) and markers being added separately.

2.3 Deployment details

A total of four field co-location deployments, two each at
sites D and M, were evaluated to characterize the calibration
of the low-cost sensors during two seasons of 2019. The two
field deployments at site D were carried out from 27 June–
6 August 2019 (7 weeks) and 4–27 October 2019 (3 weeks).
The two field deployments at site M, on the other hand, were
carried out from 22 June–21 August 2019 (10 weeks) and 4–
27 October 2019 (3 weeks). For the sake of convenience, we
will refer to both deployments that commenced in the month
of June 2019 (October 2019) as June (October) deployments
even though the dates of both June deployments do not ex-
actly coincide.

A total of six low-cost SATVAM LCAQ sensors were
deployed at these two sites. We assign each of these sensors
a unique numerical identifier and a name that describes its

deployment pattern. The name of a sensor is of the form
XYn where X (Y) indicates the site at which the sensor
was deployed during the June (October) deployment and n
denotes its unique numerical identifier. Figure 4 outlines the
deployment patterns for the six sensors DD1, DM2, DD3,
MM5, MD6 and MD7.

Swap-out experiment. As Fig. 4 indicates, three sensors were
swapped with the other site across the two deployments.
Specifically, for the October deployment, DM2 was shifted
from site D to M and MD6 and MD7 were shifted from site
M to D.

Sensor malfunction. We actually deployed a total of seven
sensors in our experiments. The seventh sensor, named DM4,
was supposed to be swapped from site D to site M. However,
the onboard RH and temperature sensors for this sensor were
non-functional for the entire duration of the June deployment
and frequently so for the October deployment as well. For
this reason, this sensor was excluded from our study alto-
gether. To avoid confusion, in the rest of the paper (e.g., the
abstract, Fig. 4) we report only six sensors, of which three
were a part of the swap-out experiment.

3 Data analysis setup

All experiments were conducted on a commodity laptop with
an Intel Core i7 CPU (2.70 GHz, 8 GB RAM) and running
an Ubuntu 18.04.4 LTS operating system. Standard off-the-
shelf machine-learning and statistical-analysis packages such
as NumPy, sklearn, SciPy and metric-learn were used to im-
plement the calibration algorithms.

Raw datasets and features. The six sensors across the June
and October deployments gave us a total of 12 datasets.
We refer to each dataset by mentioning the sensor name
and the deployment. For example, the dataset DM2(Oct)
contains data from the October deployment at site M of the
sensor DM2. Each dataset is represented as a collection of
eight time series for which each timestamp is represented
as an 8-tuple (O3, NO2, RH, T , no2op1, no2op2, oxop1,
oxop2) giving us the reference values for O3 and NO2
(in ppb), relative humidity RH (in %) and temperature
T (in ◦C) values, and voltage readings (in mV) from the
two electrodes present in each of the two gas sensors,
respectively. These readings represent working (no2op1
and oxop1) and auxiliary (no2op2 and oxop2) electrode
potentials for these sensors. We note that RH and T values
in all our experiments were obtained from DHT22 sensors in
the LCAQ sensors and not from the reference monitors. This
was done to ensure that the calibration models, once trained,
could perform predictions using data available from the
LCAQ sensor alone and did not rely on data from a reference
monitor. For site D, both the LCAQ sensor and the reference
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Table 1. Samples of the raw data collected from the DM2(June) and MM5(October) datasets. The last column indicates whether data from
that timestamp were used in the analysis or not. Note that DM2(June) data, coming from site D, have samples at 1 min intervals whereas
MM5(October) data, coming from site M, have samples at 15 min intervals. The raw voltage values (no2op1, no2op2, oxop1, oxop2) offered
by the LCAQ sensor are always integer values, as indicated in the DM2(June) data. However, for site M deployments, due to averaging,
the effective-voltage values used in the dataset may be fractional, as indicated in the MM5(October) data. The symbol × indicates missing
values. A bold font indicates invalid values. Times are given in local time.

DM2(June)

Timestamp O3 NO2 T RH no2op1 no2op2 oxop1 oxop2 no2diff oxdiff Valid?

29 Jun 04:21 19.82 20.49 32.7 54.6 212 231 242 209 −19 33 Yes
30 Jun 08:02 46.363 −0.359 36.8 39.6 184 221 234 201 −37 33 No
01 Jul 04:02 24.38 14.73 32.5 69.7 × × × × × × No
08 Jul 07:51 −0.035 17.147 31.5 97.8 209 238 231 216 −29 15 No

MM5(Oct)

Timestamp O3 NO2 T RH no2op1 no2op2 oxop1 oxop2 no2diff oxdiff Valid?

19 Oct 05:45 × × × × 160.46 188.31 158.31 172.38 −27.85 −14.07 No
19 Oct 07:15 5.55 11.52 41.47 99.9 170.4 197.2 167.6 181.93 −26.8 −14.33 Yes
20 Oct 10:45 × × 28.52 99.9 121.8 154.0 119.3 135.3 −32.2 −16.0 No
22 Oct 18:30 8.33 10.91 27.87 99.9 143.2 172.3 146.2 155.47 −29.1 −9.27 Yes

monitor data were available at 1 min intervals. However for
site M, since reference monitor data were only available
at 15 min intervals, LCAQ sensor data were averaged over
15 min intervals.

Data cleanup. Timestamps from the LCAQ sensors were
aligned to those from the reference monitors. For several
timestamps, we found that either the sensor or reference
monitors presented at least one missing or spurious value (see
Table 1 for examples). Spurious values included the follow-
ing cases: (a) a reference value for O3 or NO2 of > 200 ppb
or < 0 ppb (the reference monitors sometimes offered nega-
tive readings when powering up and under anomalous oper-
ating conditions, e.g., condensation at the inlet), (b) a sensor
temperature reading of > 50 ◦C or < 1 ◦C, (c) a sensor RH
level of > 100 % or < 1 %, and (d) a sensor voltage read-
ing (any of no2op1, no2op2, oxop1, oxop2) of > 400 mV or
< 1 mV. These errors are possibly due to electronic noise in
the devices. All timestamps with even one spurious or miss-
ing value were considered invalid and removed. Across all 12
datasets, an average of 52 % of the timestamps were removed
as a result. However, since site D (site M) offered timestamps
at 1 min (15 min) intervals i.e., 60 (4) timestamps every hour,
at least one valid timestamp (frequently several) was still
found every hour in most cases. Thus, the valid timestamps
could still accurately track diurnal changes in AQ parame-
ters. The datasets from June (October) deployments at site D
offered an average of 33 753 (9548) valid timestamps. The
datasets from June (October) deployments in site M offered
an average of 2462 (1062) valid timestamps. As expected,
site D which had data at 1 min intervals offered more times-
tamps than site M which had data at 15 min intervals. For

both sites, more data are available for the June deployment
(that lasted longer) than the October deployment.

3.1 Data augmentation and derived dataset creation

For each of the 12 datasets, apart from the six data features
provided by the LCAQ sensors, we included two augmented
features, calculated as follows: no2diff= no2op1− no2op2,
and oxdiff= oxop1−oxop2. We found that having these aug-
mented features, although they are simple linear combina-
tions of raw features, offered our calibration models a pre-
dictive advantage. The augmented datasets created this way
represented each timestamp as a vector of eight feature val-
ues (RH, T , no2op1, no2op2, oxop1, oxop2, no2diff, oxdiff),
apart from the reference values of O3 and NO2.

3.1.1 Train–test splits

Each of the 12 datasets was split in a 70 : 30 ratio to obtain a
train–test split. For each dataset, 10 such splits were indepen-
dently generated. All calibration algorithms were given the
same train–test splits. For algorithms that required hyperpa-
rameter tuning, a randomly chosen set of 30 % of the training
data points in each split was used as a held-out validation set.
All features were normalized to improve the conditioning of
the calibration problems. This was done by calculating the
mean and standard deviation for each of the eight features on
the training portion of a split and then mean centering and
dividing by the standard deviation all timestamps in both the
training and the testing portion of that split. An exception
was made for the Alphasense calibration models, which re-
quired raw voltage values. However, reference values were
not normalized.
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3.2 Derived datasets

In order to study the effect of data frequency (how frequently
do we record data, e.g., 1 min, 15 min?), data volume (total
number of timestamps used for training) and data diversity
(data collected across seasons or sites) on the calibration per-
formance, we created several derived datasets as well. All
these datasets contained the augmented features.

1. Temporally averaged datasets. We took the two datasets
DD1(Jun) and DM2(Jun) and created four datasets out
of each of them by averaging the sensor and reference
monitor values at 5, 15, 30 and 60 min intervals. These
datasets were named by affixing the averaging inter-
val size to the dataset name. For example, DD1(Jun)-
AVG5 was created out of DD1(Jun) by performing
5 min averaging and DM2(Jun)-AVG30 was created out
of DM2(Jun) using 30 min averaging.

2. Sub-sampled datasets. To study the effect of having
fewer training data on calibration performance, we
created sub-sampled versions of both these datasets
by sampling a random set of 2500 timestamps from
the training portion of the DD1(June) and DM2(June)
datasets to get the datasets named DD1(June)-SMALL
and DM2(June)-SMALL.

3. Aggregated datasets. Next, we created new datasets
by pooling data for a sensor across the two deploy-
ments. This was done to the data from the sensors
DD1, MM5, DM2 and MD6. For example, if we con-
sider the sensor DD1, then the datasets DD1(June)
and DD1(October) were combined to create the dataset
DD1(June–October).

Investigating impact of diversity in data. The aggregated
datasets are meant to help us study how calibration al-
gorithms perform under seasonally and spatially diverse
data. For example, the datasets DD1(June–October) and
MM5(June–October) include data that are seasonally diverse
but not spatially diverse (since these two sensors were lo-
cated at the same site for both deployments). On the other
hand, the datasets DM2(June–October) and MD6(June–
October) include data that are diverse both seasonally and
spatially (since these two sensors were a part of the swap-
out experiment). At this point, it is natural to wonder about
studying the effect of spatial diversity alone (without sea-
sonal effects). This can be done by aggregating data from
two distinct sensors since no sensor was located at both sites
during a deployment. However, this turns out to be challeng-
ing since the onboard sensors in the LCAQ devices, e.g., RH
and T sensors, do not present good agreement across devices,
and some form of cross-device calibration is needed. This is
an encouraging direction for future work but not considered
in this study.

3.2.1 Performance evaluation

The performance of calibration algorithms was assessed
using standard error metrics and statistical hypothesis testing.

Error metrics. Calibration performance was measured using
four popular metrics: mean absolute error (MAE), mean
absolute percentage error (MAPE), root mean squared error
(RMSE), and the coefficient of determination (R2) (please
see the supplementary material for detailed expressions of
these metrics).

Statistical hypothesis tests. In order to compare the perfor-
mance of different calibration algorithms on a given dataset
(to find out the best-performing algorithm) or to compare the
performance of the same algorithm on different datasets (to
find out the effect of data characteristics on calibration per-
formance), we performed paired and unpaired two-sample
tests, respectively. Our null hypothesis in all such tests pro-
posed that the absolute errors offered in the two cases con-
sidered are distributed identically. The test was applied, and
if the null hypothesis was rejected with sufficient confidence
(an α value of 0.05 was used as the standard to reject the
null hypotheses), then a winner was simultaneously identi-
fied. Although Student’s t test is more popular, it assumes
that the underlying distributions are normal, and an appli-
cation of the Shapiro–Wilk test (Shapiro and Wilk, 1965)
to our absolute error values rejected the normal hypothesis
with high confidence. Thus, we chose the non-parametric
Wilcoxon signed-rank test (Wilcoxon, 1945) when compar-
ing two algorithms on the same dataset and its unpaired vari-
ant, the Mann–Whitney U test (Mann and Whitney, 1947)
for comparing the same algorithm on two different datasets.
These tests do not make any assumption about the underlying
distribution of the errors and are well-suited for our data.

4 Baseline and proposed calibration models

Our study considered a large number of parametric and non-
parametric calibration techniques as baseline algorithms. Ta-
ble 2 provides a glossary of all the algorithms including
their acronyms and brief descriptions. Detailed descriptions
of all these algorithms are provided in the supplementary
material. Among parametric algorithms, we considered the
Alphasense models (AS1–AS4) supplied by the manufac-
turers of the gas sensors and linear models based on least
squares (LS and LS(MIN)) and sparse recovery (LASSO).
Among non-parametric algorithms, we considered the re-
gression tree (RT) method, kernel-ridge regression (KRR),
the Nystroem method for accelerating KRR, the Nadaraya–
Watson (NW) estimator and various local algorithms based
on the k nearest-neighbors principle (KNN, KNN-D). In this
section we give a self-contained description of our proposed
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algorithms KNN(ML) and KNN-D(ML).

Notation. For every timestamp t , the vector xt ∈ R8 denotes
the 8-dimensional vector of signals recorded by the LCAQ
sensors for that timestamp (namely, RH, T , no2op1, no2op2,
oxop1, oxop2, no2diff, oxdiff), while the vector yt ∈ R2 will
denote the 2-tuple of the reference values of O3 and NO2
for that time step. However, this notation is unnecessarily
cumbersome since we will build separate calibration mod-
els for O3 and NO2. Thus, to simplify the notation, we will
instead use yt ∈ R to denote the reference value of the gas
being considered (either O3 or NO2). The goal of calibration
will then be to learn a real-valued function f : R8

→ R such
that f (xt )≈ yt for all timestamps t (the exact error being
measured using metrics such as MAE or MAPE). Thus, two
functions will be learned, say fNO2 and fO3 , to calibrate for
NO2 and O3 concentrations, respectively. Since our calibra-
tion algorithms use statistical estimation or machine learning
algorithms, we will let N (n) denote the number of training
(testing) points for a given dataset and split thereof. Thus,
{(xt ,yt )}Nt=1 will denote the training set for a given dataset
and split with xt ∈ R8 and yt ∈ R.

4.1 Proposed method – distance-weighed KNN with a
learned metric

Our proposed algorithm is a local, non-parametric algorithm
that uses a learned metric. Below we describe the design of
this method and reasons behind these design choices.

Non-parametric estimators for calibration. The simplest
example of a non-parametric estimator is the KNN (k
nearest-neighbors) algorithm that predicts, for a test point,
the average reference value in the k most similar training
points also known as “neighbors”. Other examples of
non-parametric algorithms include kernel ridge regression
(KRR) and the Nadaraya–Watson (NW) estimator (please
see the supplementary material for details). Non-parametric
estimators are well-studied and known to be asymptotically
universal which guarantees their ability to accurately model
complex patterns which motivated our choice. These models
can also be brittle (Hagan et al., 2019) when used in unseen
operating conditions, but Sect. 5.2 shows that our proposed
algorithm performs comparably to parametric algorithms
when generalizing to unseen conditions but offers many
more improvements when given additional data.

Metric learning for KNN calibration. As mentioned above,
the KNN algorithm uses neighboring points to perform pre-
diction. A notion of distance, specifically a metric, is required
to identify neighbors. The default and most common choice
for a metric is the Euclidean distance which gives equal im-
portance to all eight dimensions when calculating distances
between two points, say x1,x2

∈ R8. However, our experi-
ments in Sect. 5 will show that certain features, e.g., RH and

T , seem to have a significant influence on calibration perfor-
mance. Thus, it is unclear how much emphasis RH and T
should receive, as compared to other features such as volt-
age values, e.g., oxop1, while calculating distances between
two points. The technique of metric learning (Weinberger
and Saul, 2009) offers a solution in this respect by learning a
customized Mahalanobis metric that can be used instead of
the generic Euclidean metric. A Mahalanobis metric is char-
acterized by a positive semi-definite matrix 6 ∈ R8×8 and
calculates the distance between any two points as follows:

dMaha(x1,x2
;6)=

√
(x1− x2)>6(x1− x2).

Note that the Mahalanobis metric recovers the Euclidean
metric if we choose 6 = I8, i.e., the identity matrix. Now,
whereas metric learning for KNN is popular for classifica-
tion problems, it is uncommon for calibration and regres-
sion problems. This is due to regression problems lack-
ing a small number of “classes”. To overcome this prob-
lem, we note that other non-parametric calibration algo-
rithms such as NW and KRR also utilize a metric indirectly
(please see the supplementary material) and there exist tech-
niques to learn a Mahalanobis metric to be used along with
these algorithms (Weinberger and Tesauro, 2007). This al-
lows us to adopt a two-stage algorithm that first learns a
Mahalanobis metric well-suited for use with the NW algo-
rithm and then uses it to perform KNN-style calibration. Al-
gorithm 1 describes the resulting KNN-D(ML) algorithm.

5 Results and discussion

The goals of using low-cost AQ monitoring sensors vary
widely. This section critically assesses a wide variety of cal-
ibration models. First we look at the performance of the al-
gorithms on individual datasets, i.e., when looking at data
within a site and within a season. Next, we look at derived
datasets (see Sect. 3.2) which consider the effect of data vol-
ume, data averaging and data diversity on calibration perfor-
mance.
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Table 2. Glossary of baseline and proposed calibration algorithms used in our study with their acronyms and brief descriptions. The
KNN(ML) and KNN-D(ML) algorithms are proposed in this paper. Please see the Supplement for details.

Parametric algorithms Non-parametric algorithms Non-parametric KNN-style algorithms

AS1, AS2 Alphasense models RT Regression tree KNN k nearest neighbors

AS3, AS4 (From gas sensor manufacturer) KRR Kernel ridge regression KNN-D Distance-weighted KNN

LS Least-squares regression NYS Nystroem method KNN(ML)∗ KNN (learned metric)

LS(MIN) LS with reduced features NW(ML) Nadaraya–Watson (learned metric) KNN-D(ML)∗ KNN-D (learned metric)

LASSO Sparse regression

∗ Proposed in this paper.

Table 3. Results of the pairwise Wilcoxon signed-rank tests across all model types. We refer the reader to Sect. 5.1.1 for a discussion on
how to interpret this table. KNN-D(ML) beats every other algorithm comprehensively and is scarcely ever beaten (with the exception of
NW(ML), which KNN-D(ML) still beats 58 % of the time for NO2 and 62 % of the time for O3). The overall ranking of the algorithms is
indicated to be KNN-D(ML) > NW(ML) > KRR > RT > LS.

NO2 O3

LS RT KRR NW(ML) KNN-D(ML) LS RT KRR NW(ML) KNN-D(ML)

LS 0 0 0 0 0 0 0.01 0 0 0
RT 0.97 0 0.38 0.16 0 0.83 0 0.22 0 0
KRR 1 0.4 0 0 0 1 0.63 0 0.01 0
NW(ML) 1 0.75 1 0 0.07 1 0.97 0.96 0 0.02
KNN-D(ML) 1 1 1 0.58 0 1 1 0.97 0.62 0

5.1 Effect of model on calibration performance

We compare the performance of calibration algorithms in-
troduced in Sect. 4. Given the vast number of algorithms,
we executed a tournament where algorithms were divided
into small families, decided the winner within each family
and then compared winners across families. The detailed per-
family comparisons are available in the supplementary mate-
rial and summarized here. The Wilcoxon paired two-sample
test (see Sect. 3.2.1) was used to compare two calibration al-
gorithms on the same dataset. However, for visual inspection,
we also provide violin plots of the absolute errors offered by
the algorithms. We refer the reader to the supplementary ma-
terial for pointers on how to interpret violin plots.

5.1.1 Interpreting the two-sample tests

We refer the reader to Table 2 for a glossary of algorithm
names and abbreviations. As mentioned earlier, we used the
paired Wilcoxon signed-rank test to compare two algorithms
on the same dataset. Given that there are 12 datasets and 10
splits for each dataset, for ease of comprehension, we pro-
vide globally averaged statistics of wins scored by an algo-
rithm over another. For example, say we wish to compare RT
and KRR as done in Table 3, we perform the test for each
individual dataset and split. For each test, we get a win for
RT (in which case RT gets a +1 score and KRR gets 0) or
a win for KRR (in which case KRR gets a +1 score and RT

gets 0) or else the null hypothesis is not refuted (in which
case both get 0). The average of these scores is then shown.
For example, in Table 3, row 3–column 7 (excluding column
and row headers) records a value of 0.63 implying that in
63 % of these tests, KRR won over RT in the case of O3 cal-
ibration, whereas row 2–column 8 records a value of 0.22,
implying that in 22 % of the tests, RT won over KRR. On
balance (1− 0.63− 0.22= 0.15) i.e., 15 % of the tests, nei-
ther algorithm could be declared a winner.

5.1.2 Intra-family comparison of calibration models

We divided the calibration algorithms (see Table 2 for
a glossary) into four families: (1) the Alphasense fam-
ily (AS1, AS2, AS3, AS4), (2) linear parametric models
(LS, LS(MIN) and LASSO), (3) kernel regression models
(KRR, NYS), and (4) KNN-style algorithms (KNN, KNN-
D, NW(ML), KNN(ML), KNN-D(ML)). We included the
Nadaraya–Watson (NW) algorithm in the fourth family since
it was used along with metric learning, as well as because as
explained in the supplementary material, the NW algorithm
behaves like a “smoothed” version of the KNN algorithm.
The winners within these families are described below.

1. Alphasense. All four Alphasense algorithms exhibit ex-
tremely poor performance across all metrics on all
datasets, offering extremely high MAE and low R2 val-
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ues. This is corroborated by previous studies (Lewis and
Edwards, 2016; Jiao et al., 2016; Simmhan et al., 2019).

2. Linear parametric. Among the linear parametric algo-
rithms, LS was found to offer the best performance.

3. Kernel regression. The Nystroem method (NYS) was
confirmed to be an accurate but accelerated approxi-
mation for KRR with the acceleration being higher for
larger datasets.

4. KNN and metric-learning models. Among the KNN
family of algorithms, KNN-D(ML), i.e., distance-
weighted KNN with a learned metric, was found to offer
the best accuracies across all datasets and splits.

5.1.3 Global comparison of comparison models

We took the best algorithms from all the families (except Al-
phasense models that gave extremely poor performance) and
regression trees (RT) and performed a head-to-head compar-
ison to assess the winner. The two-sample tests (Table 3) as
well as violin plots (Fig. 5) indicate that the KNN-D(ML) al-
gorithm continues to emerge as the overall winner. Table 4
additionally establishes that KNN-D(ML) can be up to 4–
20 percentage points better than classical non-parametric al-
gorithms such as KRR in terms of the R2 coefficient. The
improvement is much more prominent for NO2 calibration
which seems to be more challenging as compared to O3
calibration. Figure 6 presents cases where the KNN-D(ML)
models offer excellent agreement with the reference moni-
tors across significant spans of time.

Analyzing high-error patterns. Having analyzed the cali-
bration performance of various algorithms including KNN-
D(ML), it is interesting to note under what conditions these
algorithms incur high error. Non-parametric algorithms such
as RT and KNN-D(ML) are expected to do well in the pres-
ence of good quantities of diverse data. Figure 7 confirms
this by classifying timestamps into various bins according to
weather conditions. KNN-D(ML) and RT give high average
error mostly in those bins where there were fewer training
points. Figure 7 also confirms a positive correlation between
high concentrations and higher error although this effect is
more pronounced for LS than for KNN-D(ML).

5.2 Effect of data preparation on calibration
performance

We critically assessed the robustness of these calibration
models and identified the effect of other factors, such as tem-
poral averaging of raw data, total number of data available
for training and diversity in training data. We note that some
of these studies were made possible only because the swap-
out experiment enabled us to have access to sensors that did
not change their deployment sites, as well as to those that did
change their deployment site.
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Figure 5. The violin plots on the left (a) show the distribution of absolute errors incurred by various models on the DD1(October)
(MM5(June)) datasets. KNN-D(ML) offers visibly superior performance as compared to other algorithms such as LS and RT.

Figure 6. Time series plotting reference values and those predicted by the KNN-D(ML) algorithm for NO2 and O3 concentration for 48 h
durations using data from the DD1 and MM5 sensors. The legend of each plot notes the gas for which calibration is being reported and
the deployment season, as well as the sensor from which data were used to perform the calibration. Each plot also contains a scatterplot as
an inset showing the correlation between the reference and predicted values of the concentrations. For both deployments and both gases,
KNN-D(ML) can be seen to offer excellent calibration and agreement with the FRM-grade monitor.

5.2.1 Some observations on original datasets

The performance of KNN-D(ML) on the original datasets
itself gives us indications of how various data preparation
methods can affect calibration performance. Table 4 shows
us that in most cases, the calibration performance is better
(with higher R2) for O3 than for NO2. This is another in-
dication that NO2 calibration is more challenging than O3
calibration. Moreover, for both gases and in both seasons,
we see site D offering a better performance than site M. This
difference is more prominent for NO2 than for O3. This in-
dicates that paucity of data and temporal averaging may be

affecting calibration performance negatively, as well as that
O3 calibration might be less sensitive to these factors than
NO2 calibration.

5.2.2 Effect of temporal data averaging

Recall that data from sensors deployed at site M had to be
averaged over 15 min intervals to align them with the refer-
ence monitor timestamps. To see what effect such averaging
has on calibration performance, we use the temporally av-
eraged datasets (see Sect. 3.1). Figure 8 presents the results
of applying the KNN-D(ML) algorithm on data that are not
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Figure 7. Analyzing error distributions of LS, KNN-D(ML) and RT. Panel (a) shows the number of training data points in various weather
condition bins. Panels (b, c, d) show the MAE for NO2 calibration offered by the algorithms in those same bins. Non-parametric algorithms
such as KNN-D(ML) and RT offer poor performance (high MAE) mostly in bins that had fewer training data. No such pattern is observable
for LS. Panels (e, f, g, h) show the diurnal variation in MAE for KNN-D(ML) and LS at various times of day. O3 errors exhibit a diurnal trend
of being higher (more so for LS than for KNN-D(ML)) during daylight hours when O3 levels are high. No such trend is visible for NO2.

Figure 8. Effect of temporal data averaging and lack of data on the calibration performance of the KNN-D(ML) algorithm on temporally
averaged and sub-sampled versions of the DD1(June) and DM2(June) datasets. Notice the visible deterioration in the performance of the al-
gorithm when aggressive temporal averaging, e.g., across 30 min windows, is performed. NO2 calibration performance seems to be impacted
more adversely than O3 calibration by lack of enough training data or aggressive averaging.

averaged at all (i.e., 1 min interval timestamps), as well as
data that are averaged at 5, 15, 30 and 60 min intervals. The
performance for 30 and 60 min averaged datasets is visibly
inferior than for the non-averaged dataset as indicated by the
violin plots. This leads us to conclude that excessive aver-
aging can erode the diversity of data and hamper effective
calibration. To distinguish among the other temporally aver-
aged datasets for which visual inspection is not satisfactory,
we also performed the unpaired Mann–Whitney U test, the
results for which are shown in Table 5. The results are strik-
ing in that they reveal that moderate averaging, for example
at 5 min intervals, seems to benefit calibration performance.
However, this benefit is quickly lost if the averaging window
is increased much further, at which point performance almost
always suffers. NO2 calibration performance seems to be im-

pacted more adversely than O3 calibration by aggressive av-
eraging.

5.2.3 Effect of data paucity

Since temporal averaging decreases the number of data as a
side-effect, in order to tease these two effects (of the tem-
poral averaging and of the paucity of data) apart, we also
considered the sub-sampled versions of these datasets (see
Sect. 3.1). Figure 8 also shows that reducing the number
of training data has an appreciable negative impact on cal-
ibration performance. NO2 calibration performance seems to
be impacted more adversely than O3 calibration by lack of
enough training data.

Atmos. Meas. Tech., 14, 37–52, 2021 https://doi.org/10.5194/amt-14-37-2021



R. Sahu et al.: Robust statistical calibration and characterization of low-cost air quality sensors 49

Table 5. Results of the pairwise Mann–Whitney U tests on the performance of KNN-D(ML) across temporally averaged versions of the DD1
dataset. We refer the reader to Sect. 5.1.1 for a discussion on how to interpret this table. The dataset names are abbreviated, e.g., DD1(June)-
AVG5 is referred to as simply AVG5. Results are reported over a single split. AVG5 wins over any other level of averaging and clarifies that
mild temporal averaging (e.g., over 5 min windows) boosts calibration performance, whereas aggressive averaging, e.g., 60 min averaging in
AVG60, degrades performance.

O3 NO2

DD1(June) AVG5 AVG15 AVG30 AVG60 DD1(June) AVG5 AVG15 AVG30 AVG60

DD1(June) 0 0 0 0 0 DD1(June) 0 0 0 1 1
AVG5 1 0 1 1 1 AVG5 1 0 1 1 1
AVG15 1 0 0 1 1 AVG15 0 0 0 1 1
AVG30 1 0 0 0 1 AVG30 0 0 0 0 1
AVG60 0 0 0 0 0 AVG60 0 0 0 0 0

Table 6. A demonstration of the impact of data diversity and data volume on calibration performance. All values are averaged across 10
splits. The results for LS diverged for some of the datasets for a few splits, and those splits were removed while averaging to give LS an
added advantage. Bold values indicate the better-performing algorithm. The first two rows present the performance of the KNN-D(ML) and
LS calibration models when tested on data for a different season (deployment) but in the same site. This was done for the DD1 and MM5
sensors that did not participate in the swap-out experiment. The next two rows present the same but for sensors DM2 and MD6 that did
participate in the swap-out experiment, and thus, their performance is being tested for not only a different season but also a different site.
The next four rows present the dramatic improvement in calibration performance once datasets are aggregated for these four sensors. NO2
calibration is affected worse by these variations (average R2 in first four rows being −3.69) than O3 calibration (average R2 in first four
rows being −0.97).

KNN-D(ML) LS

O3 NO2 O3 NO2

Train→ test MAE R2 MAE R2 MAE R2 MAE R2

DD1(Jun)→ (Oct) 21.82 0.19 21.86 −0.64 12.88 0.73 12.73 0.22
MM5(Oct)→ (Jun) 8.33 −3.75 15.79 −12.28 10.39 −4.83 17.06 −21.67
DM2(Jun)→ (Oct) 13.04 0.41 9.05 −0.99 9.36 0.68 5.95 0.1
MD6(Jun)→ (Oct) 16.71 −0.72 30.9 −0.85 21.12 −1.29 25.67 −0.23

DD1(Jun–Oct) 3.3 0.956 2.6 0.924 11.7 0.29 13.0 0.38
MM5(Jun–Oct) 2.5 0.902 1.8 0.814 4.28 0.32 5.51 0.67
DM2(Jun–Oct) 3.7 0.916 2.8 0.800 6.13 0.79 6.72 0.26
MD6(Jun–Oct) 1.9 0.989 1.8 0.975 7.01 0.71 6.36 0.91

5.2.4 The swap-out experiment – effect of data
diversity

Table 6 describes an experiment wherein we took the KNN-
D(ML) model trained on one dataset and used it to make pre-
dictions on another dataset. To avoid bringing in too many
variables such as cross-device calibration (see Sect. 3.2), this
was done only in cases where both datasets belonged to the
same sensor but for different deployments. Without excep-
tion, such “transfers” led to a drop in performance. We con-
firmed that this was true for not just non-parametric meth-
ods such as KNN-D(ML) but also parametric models like
LS. This is to be expected since the sites D and M expe-
rience largely non-overlapping ranges of RH and T across
the two deployments (see Fig. 2c for a plot of RH and T
values experienced at both sites in both deployments). Thus,
it is not surprising that the models performed poorly when

faced with unseen RH and T ranges. To verify that this is
indeed the case, we ran the KNN-D(ML) algorithm on the
aggregated datasets (see Sect. 3.1) which combine training
sets from the two deployments of these sensors. Table 6 con-
firms that once trained on these more diverse datasets, the
algorithms resume offering good calibration performance on
the entire (broadened) range of RH and T values. However,
KNN-D(ML) is more superior at exploiting the additional di-
versity in data than LS. We note that parametric models are
expected to generalize better than non-parametric models for
unseen conditions, and indeed we observe this in some cases
in Table 6 where, for DD1 and DM2 datasets, LS generalized
better than KNN-D(ML). However, we also observe some
cases such as MM5 and MD6 where KNN-D(ML) general-
izes comparably to or better than LS.
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6 Conclusions and future work

In this study we presented results of field deployments of
LCAQ sensors across two seasons and two sites having di-
verse geographical, meteorological and air pollution param-
eters. A unique feature of our deployment was the swap-out
experiment wherein three of the six sensors were transported
across sites in the two deployments. To perform highly ac-
curate calibration of these sensors, we experimented with a
wide variety of standard algorithms but found a novel method
based on metric learning to offer the strongest results. A few
key takeaways from our statistical analyses are as follows:

1. Incorporating ambient RH and T , as well as the aug-
mented features oxdiff and noxdiff (see Sect. 3), into the
calibration model improves calibration performance.

2. Non-parametric methods such as KNN offer the best
performance but stand to gain significantly through
the use of metric-learning techniques, which automat-
ically learn the relative importance of each feature, as
well as hyper-local variations such as distance-weighted
KNN. The significant improvements offered by non-
parametric methods indicate that these calibration tasks
operate in high-variability conditions where local meth-
ods offer the best chance of capturing subtle trends.

3. Performing smoothing over raw time series data ob-
tained from the sensors may help improve calibration
performance but only if done over short windows. Very
aggressive smoothing done over long windows is detri-
mental to performance.

4. Calibration models are data-hungry as well as diversity-
hungry. This is especially true of local methods, for in-
stance KNN variants. Using these techniques limits the
number of data or diversity of data in terms of RH, T
or concentration levels, which may result in calibration
models that generalize poorly.

5. Although all calibration models see a decline in perfor-
mance when tested in unseen operating conditions, cal-
ibration models for O3 seem to be less sensitive than
those for NO2 calibration.

Our results offer encouraging options for using LCAQ
sensors to complement CAAQMSs in creating dense and
portable monitoring networks. Avenues for future work in-
clude the study of long-term stability of electrochemical sen-
sors, characterizing drift or deterioration patterns in these
sensors and correcting for the same, and the rapid calibra-
tion of these sensors that requires minimal co-location with
a reference monitor.
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