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Abstract. The ability to detect convective regions and to
add latent heating to drive convection is one of the most
important additions to short-term forecast models such
as National Oceanic and Atmospheric Administration’s
(NOAA’s) High-Resolution Rapid Refresh (HRRR) model.
Since radars are most directly related to precipitation and
are available in high temporal resolution, their data are
often used for both detecting convection and estimating
latent heating. However, radar data are limited to land
areas, largely in developed nations, and early convection
is not detectable from radars until drops become large
enough to produce significant echoes. Visible and infrared
sensors on a geostationary satellite can provide data that
are more sensitive to small droplets, but they also have
shortcomings: their information is almost exclusively from
the cloud top. Relatively new geostationary satellites, Geo-
stationary Operational Environmental Satellite-16 and
Satellite-17 (GOES-16 and GOES-17), along with
Himawari-8, can make up for this lack of vertical in-
formation through the use of very high spatial and temporal
resolutions, allowing better observation of bubbling features
on convective cloud tops. This study develops two algo-
rithms to detect convection at vertically growing clouds and
mature convective clouds using 1 min GOES-16 Advanced
Baseline Imager (ABI) data. Two case studies are used
to explain the two methods, followed by results applied
to 1 month of data over the contiguous United States.
Vertically growing clouds in early stages are detected using
decreases in brightness temperatures over 10 min. For
mature convective clouds which no longer show much of a
decrease in brightness temperature, the lumpy texture from
rapid development can be observed using 1 min high spatial

resolution reflectance data. The detection skills of the two
methods are validated against Multi-Radar/Multi-Sensor
System (MRMS), a ground-based radar product. With the
contingency table, results applying both methods to 1-month
data show a relatively low false alarm rate of 14.4 % but
missed 54.7 % of convective clouds detected by the radar
product. These convective clouds were missed largely due
to less lumpy texture, which is mostly caused by optically
thick cloud shields above.

1 Introduction

While weather forecast models have improved tremendously
throughout the decades (Bauer et al., 2015), local-scale phe-
nomena such as convection remain challenging (Yano et al.,
2018). Precipitation is especially hard to predict as numer-
ical models struggle with initiating convection in the right
location and at the right intensity. To address this issue in
short-term predictions, many models now assimilate all-sky
radiances and precipitation-related products where available
(Benjamin et al., 2016; Bonavita et al., 2017; Geer et al.,
2017; Gustafsson et al., 2018; Jones et al., 2016; Miglior-
ini et al., 2018; Scheck et al., 2020). In some forecast models
such as the High-Resolution Rapid Refresh (HRRR) model
in the United States, latent heating is added, along with
precipitation affected radiances, to adjust model dynamics
to correspond to the observed convection (Benjamin et al.,
2016). Latent heating is only added in convective regions be-
cause local-scale phenomena tend to develop first by con-
vective clouds before detraining stratiform precipitation. In
order to correctly detect convective regions and add heat-
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ing as accurately as possible, ground-based radars have been
used during the short-term forecast. However, ground-based
radar data are not available over ocean or mountainous re-
gions. Therefore, this study explores whether high-temporal-
resolution data from recent operational geostationary satel-
lite measurements from the Geostationary Operational En-
vironmental Satellites (GOES) R Series can provide similar
information to radar for the location of convection so that
it can be used for initializing forecast models over regions
without ground-based radar.

Convection is classically defined from in-cloud vertical air
motions (Steiner et al., 1995). However, since vertical veloc-
ity is rarely measured directly, the radar community initially
adopted radar reflectivity thresholds to define convection and
distinguish it from stratiform precipitation (Churchill and
Houze, 1984; Steiner et al., 1995). One problem with us-
ing reflectivity threshold is its sensitivity to the selected
threshold for convection. If the threshold is set high, convec-
tive regions where precipitation has just begun are not cap-
tured, while a threshold that is set too low will misclassify
some stratiform regions as convective. To address this issue,
Churchill and Houze (1984) separated precipitation types by
using the horizontal structure of precipitation fields (Steiner
et al., 1995). They classified a grid point as convective if the
grid point had rain rates twice as high as the average taken
over surrounding grid points or had reflectivity over 40 dBZ
(∼ 20 mmh−1). Steiner et al. (1995) refined this method with
three criteria: intensity, peakedness, and surrounding area.
They used the same threshold of 40 dBZ for intensity in
the first step, but grid points with reflectivity greater than
the average reflectivity within a radius of 11 km as well
as surrounding grid points are also classified as convective.
Nonetheless, stratiform regions sometimes can have reflec-
tivity values greater than 40 dBZ. Zhang et al. (2008) used
two reflectivity criteria for convective precipitation – namely
that the reflectivity be greater than 50 dBZ at any height and
greater than 30 dBZ at −10 ◦C height or above. Zhang and
Qi (2010) define a grid point as convective if the vertically
integrated liquid water exceeds a threshold of 6.5 kgm−2. Qi
et al. (2013) developed a new algorithm that combined two
previous methods from Zhang et al. (2008) and Zhang and
Qi (2010). By combining these two methods and modifying
the thresholds, they were able to decrease misclassification of
stratiform regions with strong bright band features, but could
still miss some convective regions in their initial stage due to
a high-reflectivity threshold. The HRRR model uses a much
lower reflectivity threshold of 28 dBZ to detect convective
regions and assigns a heating increment (Weygandt et al.,
2016). While this is significantly lower than the thresholds
discussed above, its primary purpose is to initiate convection
where there is significant echo present, while relying on the
model physics to assign the proper precipitation type.

While radars have been the preferred method for detecting
convection, they are not the only instruments available. Vis-
ible (VIS) and infrared (IR) radiances also contain some in-

formation, although this is largely limited to cloud top prop-
erties. Convection detection algorithms using VIS and IR
sensors exist for both convective initiation (CI) and mature
stages. With the recent growing interest in machine learn-
ing techniques, many studies have applied machine learning
methods in detecting convection (Han et al., 2019; Zhang
et al., 2019; Cintineo et al., 2020), but knowledge in phys-
ical features of convective clouds is still required to con-
struct a model that correctly learns during training. At the
initial stages of convection, cloud tops grow vertically, and a
decrease in brightness temperature (Tb) is observed accord-
ingly. Many algorithms use decreased cloud top temperature
from the growth (related to the in-cloud vertical velocity) to
detect convective regions from various geostationary satel-
lites over the globe such as GOES (Sieglaff et al., 2011;
Mecikalski and Bedka, 2006), Himawari-8 (Lee et al., 2017),
and Meteosat (Autonès and Claudon, 2019). Temporal trends
of Tb are evaluated on several channels around the water va-
por absorption band or longwave infrared window band and
combinations of these channels. Interest fields for CI include
temporal trend of Tb at 10.7 µm (or 11.2 µm) to infer cloud
top cooling rates, (3.9–10.7 µm) to infer changes in cloud
top microphysics, and (6.5–10.7 µm) to infer cloud height
changes relative to the tropopause (Mecikalski and Bedka,
2006). The main differences between the algorithms are the
tracking method of a cloud and the time period used to calcu-
late Tb change of the cloud. Clouds are usually tracked with
atmospheric motion vectors or a simple overlap method, and
temporal trends of Tb are calculated over 15 min.

Convective clouds in their mature stage cannot be detected
by the abovementioned algorithms as their cloud tops do not
grow much in the vertical, and Tb decrease is not a major
feature that is applicable to such clouds. Overshooting top
(OT) is one of the clear indications of mature convective
clouds, and many existing algorithms used the OT feature
in such clouds. There are two common approaches to detect-
ing OTs: the brightness temperature difference method and
the infrared window-texture method (Ai et al., 2017). The
brightness temperature difference method uses a difference
in Tb between the water vapor (WV) channel and IR win-
dow channel (Tb,wv−Tb,IR). Positive values of Tb,wv−Tb,IR
due to the forcing of warm WV from below into the lower
stratosphere are used as an indicator of OTs (Setvak et al.,
2007). However, since the threshold for the difference be-
tween two channels can depend on several factors, Bedka
et al. (2010) suggested another method to detect OTs which
is called the infrared window-texture method. This method
takes advantage of a feature of OT in that it is an isolated
region with cold Tb surrounded by the relatively warm anvil
region (Bedka et al., 2010). This method, unfortunately, can-
not avoid having to choose Tb thresholds that vary accord-
ing to seasons or regions (Dworak et al., 2012). Bedka and
Khlopenkov (2016) tried to minimize the use of fixed detec-
tion criteria. They developed two OT detection algorithms
based on IR and VIS channels, and an OT probability was
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produced through a pattern-recognition scheme. The pattern
that the scheme looks for is protrusion through the anvil
caused by strong updrafts. Another pattern that is obvious in
mature convective clouds with or without OT is a “lumpy sur-
face” from constant bubbling (Mecikalski and Bedka, 2006).
Cloud top texture in VIS and IR channels has been explored
using the Spinning Enhanced Visible and Infrared Imager
(SEVIRI) on the Meteosat-8 satellite in Zinner et al. (2008,
2013), respectively. In addition to evaluating spatial texture,
Müller et al. (2019) explores spatiotemporal gradients of wa-
ter vapor channels in SEVIRI to estimate updraft strength.
This study suggests a different way to calculate spatial gra-
dients of visible channels in GOES-R to detect convection.

The use of VIS and IR sensors in detecting convection
can benefit significantly from the launch of National Oceanic
and Atmospheric Administration’s (NOAA’s) GOES-R Se-
ries which have high-resolution, rapidly updating (i.e., 1 min)
imagery. This study makes use of these new data, namely
the 1 min data available from GOES-16 and GOES-17 in
“mesoscale sectors” to update methods for detecting con-
vection in different stages. Mesoscale sectors are manually
moved around to observe interesting weather events. One is
developed for CI using Tb from an IR channel in GOES-R.
As in previous papers measuring clout top cooling rate, tem-
poral trends of the data were used, but since GOES-R has
high temporal resolution, 10 consecutive data with 1 min in-
tervals were used. It has been challenging to correctly track
convective clouds with 15 or 30 min interval data which have
been used in previous studies due to the changing shape of
convective clouds and merging or splitting of clouds. How-
ever, since clouds do not change as much within 1 min, using
1 min data eliminates some of the errors from cloud move-
ments that needed to be dealt with in some previous studies,
and the cooling rate is calculated applying linear regression
on 1 min data over 10 min, rather than using Tb difference be-
tween 15 min. Another one is developed for mature convec-
tion using both reflectances from a VIS channel and Tb from
IR channels. For this algorithm, lumpy and rapidly chang-
ing surface and high cloud top height from mature convec-
tive clouds were used to detect clouds both with and without
OTs. Lumpiness is calculated using a Sobel operator which is
an edge detection filter in image processing, and the lumpi-
ness is explored at each minute throughout 10 min to look
for regions with continuous bubbling. These two methods
were then combined to provide detection of convection in
all stages. The above methods are not intended to replace
ground-based radars where these are available. Instead, the
focus here is complementing ground-based networks, either
offshore or in other regions lacking coverage.

The datasets that were used to detect convection and vali-
date the results are described in Sect. 2, while the methods
used to identify initial and established convection are ex-
plained in Sect. 3. Section 4 highlights the results of each
method. Two case studies were examined followed by a 1-

month statistical study to quantify the operational accuracy
of the methods.

2 Data

2.1 The Geostationary Operational Environmental
Satellite R Series (GOES-R)

Earth-pointing instruments of GOES-R consist of the Ad-
vanced Baseline Imager (ABI) with 16 channels, and the
Geostationary Lightning Mapper (Schmit et al., 2017).
GOES-16 is the first of the two GOES-R Series satellites
to provide data for severe weather forecast over the United
States and surrounding oceans (Schmit et al., 2017). Both Tb
and reflectance data from the ABI were used to detect con-
vective regions. Mesoscale data with 1 min temporal resolu-
tion were used to fully exploit its high temporal resolution of
the new instrument.

Reflectance at 0.64 µm (Channel 2) and Tb at 6.2 µm
(Channel 8), 7.3 µm (Channel 10), and 11.2 µm (Channel 14)
were used in the study. Channel 2 is a “red” band with the
finest spatial resolution of 0.5 km. This fine spatial resolu-
tion is useful to resolve lumpy or bubbling surfaces of clouds
in their mature stage. Channel 2 reflectance data were nor-
malized by solar zenith angle so that a single threshold can
be used throughout the method regardless of locations of the
sun. Channel 14 is an IR longwave window band, which is a
good indicator of the cloud top temperature for cumulonim-
bus clouds (Müller et al., 2018). High reflectance and texture
of the cloud top seen in Channel 2 and cloud top height in-
ferred from Channel 14 are combined to determine locations
of mature convective clouds.

Channels 8 and 10 are ABI water vapor channels with 2km
spatial resolution. Because Channel 8 sees WV at somewhat
higher altitudes than Channel 10, they can observe WV as-
sociated with updrafts as clouds develop upwards and were
therefore used to detect early convection.

2.2 NEXRAD and MRMS

Multi-Radar/Multi-Sensor (MRMS) data developed at
NOAA’s National Severe Storms Laboratory were used for
validation purposes. MRMS integrates the radar mosaic from
the Next Generation Weather Radar (NEXRAD) with atmo-
spheric environmental data, satellite data, lightning, and rain
gauge observations to produce three-dimensional fields of
precipitation (Zhang et al., 2016). These quantitative precipi-
tation estimation (QPE) products have a spatial resolution of
1 km and temporal resolution of 2 min.

A “PrecipFlag” variable contained in the standard MRMS
product classifies precipitating pixels into seven categories:
(1) warm stratiform rain, (2) cool stratiform rain, (3) con-
vective rain, (4) tropical–stratiform rain mix, (5) tropical–
convective rain mix, (6) hail, and (7) snow. Details of the
classification can be found in Zhang et al. (2016). It is a
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rather sophisticated classification of precipitation type as it
not only uses reflectivity at various heights, but also takes
into account vertically integrated liquid to distinguish con-
vective core from stratiform clouds (Qi et al., 2013). A re-
duced set of these classes was used to validate the convective
classification from GOES ABI data. In this study, warm strat-
iform rain, cool stratiform rain, and tropical–stratiform rain
mix are all assigned a stratiform rain type while grid points
with convective rain, tropical–convective rain mix, and hail
are assigned a convective rain type. Along with the classifica-
tion product, MRMS provides a variable called “Radar QPE
quality index (RQI)”. This product is associated with quality
of the radar data, which is a combination of errors coming
from beam blockages and the beam spreading or ascending
with range (Zhang et al., 2016). This flag is used to mask
out regions with low radar data quality. Only data with RQI
greater than 0.5 are used in this study.

3 Methodology

This study examines methods to detect convective clouds at
each life stage. Convective clouds can be divided into ac-
tively growing clouds and mature clouds. Actively growing
clouds are usually clouds at the initial stage that grow nearly
vertically, while mature clouds are capped but continue to
bubble due to the release of latent heat. They often move
horizontally after they reach the tropopause. The proposed
method to detect actively growing cloud is similar to previ-
ous CI studies mentioned in the introduction in the sense that
the method uses temporal trends of Tb. The high-temporal-
resolution data simplifies the method because the use of de-
rived wind motion in tracking clouds is no longer necessary.
One minute is short enough that cloud motion, at most, is to
the adjacent grid points, and clouds can be easily tracked by
focusing on overlapped scenes.

The method to detect mature convective clouds is simi-
lar to previous studies by Bedka and Khlopenkov (2016) and
Bedka et al. (2019) in terms of using the texture of the cloud
top surfaces to infer strong updrafts. Cloud top surfaces of
mature convective clouds are much bumpier than any other
clouds, and their bumpiness is most evident in VIS images
with the finest resolution. The following method uses a hor-
izontal gradient of reflectance to represent the bumpiness of
cloud tops, and the magnitude of the gradients is used to dis-
tinguish convective cores from their anvil clouds. Cloud top
temperatures from Channel 14 are used to eliminate low cu-
mulus clouds that might appear bubbling.

3.1 Detection of actively growing clouds with
brightness temperature data

In the early stage of convection, updrafts of water vapor
eventually lead to condensation, the release of latent heat,
and convective processes. Operational weather radars cannot

Figure 1. (a) A typical shape of a convective cloud and its Tb dis-
tribution around the convective core (blue line). (b) Schematic rep-
resentation of distributions of the upside down Gaussian matrix
(green) and the Tb matrix (blue) when the cloud is convective.

observe small hydrometeors, but a Tb decrease at water va-
por absorption bands of GOES-ABI is observed when these
small hydrometeors start to develop. During the early con-
vective stages, Tb values that are sensitive to water vapor will
decrease due to condensed cloud water droplets aloft gener-
ated by a strong updraft. Two ABI channels around the water
vapor absorption bands, Channel 8 (6.2 µm) and Channel 10
(7.3 µm), were selected to cover water vapor updrafts at dif-
ferent height levels. These channels were used to find small
regions consistent with developing clouds. If a cloud devel-
ops continuously for 10 min and shows a large decrease in Tb
over 10 min in either channel, the cloud is determined to be
convective.

To compute the Tb decrease in clouds, a window has
to be defined as it is usually difficult to precisely define
the boundary of clouds, especially at the early stages of
convection. Since most of the early convective clouds are
smaller than 10 km in diameter, the window was defined as
a 10 km× 10 km box which is essentially a 5× 5 matrix of
satellite pixels consisting of 25 Tb values with 2 km resolu-
tion. Considering the fact that a convective core usually has
the lowest Tb within its neighborhood, the Tb matrix was
formed around a pixel only if that pixel had the lowest Tb in
the 5× 5 matrix. However, this criterion alone could not dis-
tinguish convective cores from stratiform clouds and cloud
edges which can also exhibit a local minimum. In addition
to the lowest Tb, the shape of convective clouds is therefore
also considered. As shown in the Fig. 1a, convective clouds
not only have the lowest Tb in their cores in all directions, but
also have increasing Tb values away from the core, making
their Tb distributions look like an inverted two-dimensional
(2D) Gaussian distribution. To select Tb matrices that have
this upside down Gaussian shape, an inverted 5 × 5 Gaus-
sian matrix that has mean and standard deviation of the Tb
matrix was created and compared with the Tb matrices. To
focus the comparisons on the shape of the Tb distribution
(Fig. 1b), the maximum Tb found in the 5× 5 matrix was
subtracted from all values, and Tb values were divided by the
difference between maximum and minimum Tb to normalize
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Figure 2. A flow chart to summarize the growing cloud detection method.

the Tb matrix itself. If the Tb matrix has a shape of a develop-
ing cloud (i.e., 2D upside down Gaussian), the absolute value
of the difference between the Tb matrix and the upside down
Gaussian matrix will be small. A threshold of 10 for this ab-
solute value of the difference between Tb matrix and upside
down Gaussian matrix (sum of residuals between normal-
ized Tb and upside down Gaussian) was empirically deter-
mined to exclude non-convective scenes. Tb matrices with
values greater than 10 are removed from the scene. This is
done for all 10 consecutive Tb images that are 1 min apart.
Continuous overlaps of Tb matrices for 10 min imply that the
cloud maintained a convective shape for 10 min, and there-
fore changes in Tb are calculated to assess if the cloud in
the Tb matrices was growing. The minimum Tb values of
the Tb matrices at each time step were linearly regressed
against time to measure a decreasing trend. If the fitted line
at each channel had a slope either smaller than −1 Kmin−1

for Channel 10 or−0.5 Kmin−1 for Channel 8, the grid point
with the lowest Tb at each time step for 10 min as well as the
neighboring eight grid points in the window were classified
as convective. This procedure is summarized in a flow chart
in Fig. 2.

Water vapor channels have different sensitivity to water
vapor, and thus different values for the threshold are cho-
sen for each channel (Channels 8 and 10). Since growth
rate can vary depending on the surrounding environment
and different evolution stages, it is important to find an

appropriate threshold that best represents the growth rate
for clouds in their early stages. These thresholds are cho-
sen based on the analysis of 1-month data during July of
2017. The 5× 5 Tb windows that maintained the develop-
ing shape and had a decreasing trend of Tb during 10 min
are collected over the 1-month period. A total of 38293 and
97042 (for Channels 8 and 10, respectively) 5× 5 windows
that show a decrease in Tb were collected, and precipitation
types from MRMS were assigned for each window. Future
MRMS convective flags up to 20 min after the detection pe-
riod were included in the analysis because some time de-
lays were observed in MRMS product when assigning con-
vective flags, especially for early convection. When compar-
ing GOES products to future MRMS products, future loca-
tions of GOES products were calculated assuming convec-
tion moves at the same speed at which clouds moved during
the initial 10 min. Tables 1 and 2 show results applying differ-
ent thresholds ranging from −0.1 to −2.0 Kmin−1. For each
row, 5 pixel× 5 pixel windows that show a larger tempera-
ture decrease than the corresponding threshold are collected,
and they are analyzed for potential convection. Numbers in
the table represent the number of 5× 5 windows that MRMS
precipitation flags were assigned to either non-convective or
convective at the corresponding 10 min time window, as well
as pixels that were flagged as convective by MRMS in the
next 10 and 20 min to account for the fact that GOES can de-
tect convection before the radar sees precipitation. However,
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Table 1. Number of non-convective, convective, convective within 10 min, and convective within 20 min for using different threshold values
(Channel 8).

Threshold value Non-convective Convective Convective Convective Overall accuracy
(Kmin−1) within 10 min within 20 min (%)

−0.1 3634 2911 250 89 47.2
−0.2 740 2264 154 40 76.8
−0.3 277 1831 117 28 87.7
−0.4 153 1504 87 21 91.3
−0.5 104 1266 87 16 92.8
−0.6 67 1051 44 10 94.3
−0.7 49 851 30 7 94.8
−0.8 32 691 27 5 95.8
−0.9 22 576 21 4 96.5
−1.0 12 477 19 3 97.7
−1.1 7 396 16 3 98.3
−1.2 5 321 14 2 98.5
−1.3 4 267 9 1 98.6
−1.4 3 222 9 0 98.7
−1.5 2 180 8 0 98.9
−1.6 1 134 7 0 99.3
−1.7 1 105 7 0 99.1
−1.8 1 89 6 0 99.0
−1.9 1 74 4 0 98.7
−2.0 1 54 2 0 98.2

Table 2. Number of non-convective, convective, convective within 10 min, and convective within 20 min for using different threshold values
(Channel 10).

Threshold value Non-convective Convective Convective Convective Overall accuracy
(Kmin−1) within 10 min within 20 min (%)

−0.1 21900 5041 1339 511 23.9
−0.2 9225 3982 854 277 35.7
−0.3 4357 3284 611 163 48.2
−0.4 2241 2722 429 109 59.3
−0.5 1234 2268 310 71 68.2
−0.6 759 1954 233 40 74.6
−0.7 479 1661 184 28 79.6
−0.8 318 1430 139 22 83.3
−0.9 22 576 21 4 86.1
−1.0 147 1050 75 14 88.6
−1.1 103 893 64 11 90.4
−1.2 77 758 56 10 91.5
−1.3 55 657 42 9 92.8
−1.4 41 556 34 5 93.6
−1.5 28 461 29 5 94.6
−1.6 17 393 25 3 96.1
−1.7 14 340 24 3 96.3
−1.8 11 297 21 2 96.7
−1.9 9 255 19 2 96.8
−2.0 5 207 19 1 97.8
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not all the detection by the method is done early since MRMS
can also sometimes assign early convection as convective be-
fore it produces high reflectivity. The overall accuracy in the
last column is calculated by dividing the number of win-
dows that were convective within 20 min (sum of convec-
tive, convective within 10 min, and convective within 20 min)
by the total number of the windows (sum of non-convective,
convective, convective within 10 min, and convective within
20 min). Some convective clouds in the early stage show
a smaller decreasing trend than the thresholds, but using a
smaller value for the threshold can introduce clouds that do
not grow into deep convective clouds in the end. Clouds that
develop into deep convective clouds are eventually captured
by these thresholds in later times as they show rapid inten-
sification sooner or later. However, choosing a large cooling
rate for the threshold will lead to less detection of convec-
tive clouds as not a lot of windows show a large cooling rate.
Therefore, thresholds of −0.5 and −1.0 Kmin−1 for Chan-
nels 8 and 10, respectively, are chosen so that reasonable
amounts of convections are detected. The cooling rate ob-
served at Channel 8 is smaller than Channel 10 due to higher
absorption at Channel 8. Channel 8 senses moisture at higher
altitude, and thus when water vapor starts to condensate at
lower levels, it is less affected, and its Tb does not decrease
as much as in Channel 10. The matrix does not have to be
detected at both channels, but using two channels tends to
find the same vertically growing clouds over time by detect-
ing the cloud using Channel 8 first and then using Channel 10
later. This method will be called the growing cloud detection
method hereinafter.

Furthermore, it is interesting to note that some clouds
did not produce precipitation even with rapid growth over
−2.0 Kmin−1 (for Channel 10). This would be due to mix-
ing between convective cells and their dry environment or the
highly non-linear nature of chances of precipitation.

3.2 Detection of mature convective clouds with
reflectance data

Mature convective clouds consist of convective cores and
stratiform or cirrus regions where clouds have detrained from
the core. The lack of discrete boundaries between differ-
ent types of clouds makes it difficult to separate convective
grid points from surrounding stratiform regions. Overshoot-
ing tops and enhanced-V pattern are well-known features in
mature convective clouds, but these do not appear until their
strongest stage and not in all convective clouds. Using such
features associated with the deepest convective cores will
create a detection gap between early and mature stages of
convection. The method described here tries to minimize the
gap, while still accurately detecting convective clouds.

Before evaluating the texture, only the grid points that are
potentially parts of deep convection are selected using sim-
ple threshold values of VIS (ABI Channel 2; 0.65 µm) and IR
(ABI Channel 14; 11.2 µm) channels. Channel 2 reflectance

is highly correlated with the cloud optical depth (Minnis and
Heck, 2012) while Channel 14 brightness temperature is re-
lated to cloud top temperature (Müller et al., 2018). These
channels are used in GOES-R baseline product retrieval of
cloud optical depth and cloud top properties, respectively.
Any grid points with reflectance less than 0.8 or Tb greater
than 250 K during 10 time steps (10 min) are removed since
they generally represent thin or low clouds such as cirrus or
growing clouds that can be identified by the CI method de-
scribed earlier. These thresholds are chosen rather generously
to include some convective clouds that have not grown into
deep convection yet, while still avoiding the misclassifica-
tion of low cumulus clouds and thin anvil clouds as convec-
tive. The threshold of 250 K is much warmer than typical val-
ues used in detecting deep convective features such as over-
shooting tops (Bedka et al., 2010) or enhanced V (Brunner
et al., 2007). A warmer threshold is intentionally chosen so
that the method considers warmer convective clouds without
those features in the next step when evaluating lumpiness of
the cloud top. The choice of these thresholds is discussed in
more detail in Sect. 4.3.

Once cold, highly reflective scenes are identified, regions
with bubbling cloud top are found. Bubbling cloud top is
a distinct feature that appears in convective clouds, even in
their early stages. The lumpiness of cloud tops can be nu-
merically represented by calculating horizontal gradients in
the reflectance field with the Sobel–Feldman (Sobel) oper-
ator which is commonly used in edge detection. The hori-
zontal gradient is calculated at each pixel. The Sobel opera-
tor convolves the target pixel and its surrounding eight grid
points with two kernels given in Eq. (1) to produce gradients
in the horizontal and vertical direction.

Gx =

+1 0 −1
+2 0 −2
+1 0 −1

 Gy =

+1 +2 +1
0 0 0
−1 −2 −1

 (1)

By using Eq. (2), gradients in each direction are combined
to provide the absolute magnitude of the gradient at each
point.

Magnitude of gradient=
√

G2
x +G2

y (2)

Flat surfaces will have low gradients while cloud edges or
lumpy surfaces will have high gradients. This lumpy feature
is most evident in a VIS channel with the finest spatial reso-
lution of 0.5 km. IR fields are not very useful as the bright-
ness temperature variations in these lumpy surfaces tend to
be quite small due to their relatively lower spatial resolution,
and only cloud edges stand out.

The average of the horizontal gradients over the 10 1 min
time steps is calculated for each grid point, and grid points
are removed if the average was less than 0.4 or greater than
0.9. Values below 0.4 or above 0.9 generally imply either
stratiform region with a flat surface or cloud edges with
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Figure 3. (a) GOES-ABI 0.65 µm visible channel imagery (0.5 km) at 19:30 UTC on 28 June 2017 over Iowa. Numbers on the color bar rep-
resent reflectances. The red box indicates regions where two convective cells are detected by the growing cloud detection method. (b) GOES-
ABI 0.65 µm visible channel imagery at 21:30 UTC on 28 June 2017. (c) MRMS Seamless Hybrid Scan Reflectivity (SHSR) at 19:30 UTC
on 28 June 2017. (d) MRMS PrecipFlag at 19:30 UTC 28 June 2017. Pink represents convective while green represents stratiform.

very high gradients, respectively. The thresholds are chosen
to produce relatively low false alarms comparing results us-
ing other thresholds. Results using other thresholds are also
shown in Sect. 4.3 for a comparison. The remaining grid
points were then interpolated into 1 km maps to be consistent
with the spatial resolution of the MRMS dataset. Neighbor-
ing grid points were grouped to form clusters, and only the
clusters with more than five grid points were assigned as a
mature convective cloud to remove noise. This method will
be called the mature cloud detection method hereinafter.

4 Results and discussion

4.1 28 June 2017

Supercell thunderstorms developed in Iowa and produced
several tornado touchdowns. In Fig. 3a, deep convection
had already developed over central Iowa at 19:30 UTC, and
two convective cells in the red box started to develop in
southwest Iowa, although they do not stand out from sur-
rounding low clouds in the VIS image. These two convec-
tive clouds became parts of major storm system that formed
around 21:30 UTC, producing the tornadoes (Fig. 3b) in the
area. MRMS Seamless Hybrid Scan Reflectivity (SHSR),
which gives reflectivity at the lowest possible vertical level,
is shown in Fig. 3c, and the MRMS PrecipFlag product is
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Figure 4. (a) GOES-ABI 7.3 µm infrared channel imagery (K) at 19:27 UTC on 28 June 2017. Blue box denotes regions where two convective
clouds start to grow. (b) Same as (a), but at 19:36 UTC. (c) Tb matrices obtained from Channel 10 (7.3 µm) that have the Gaussian shape
at 19:27 UTC on 28 June 2017. Blue box denotes the same region as the blue box in (a). Note that the scale of the color bar is adjusted
from (a, b) to better observe convective initiation. (d) Same as (c), but at 19:36 UTC.

shown in Fig. 3d. Convection is colored in pink and strati-
form in green. Although deep convections over the central
and northeast part of Iowa were assigned as convective in
MRMS at 19:30 UTC, the two growing clouds in the red
box in Fig. 3a were not assigned a convective flag until
19:48 UTC.

Figure 4a shows brightness temperatures for ABI Chan-
nel 10 (7.3 µm) at 19:27 UTC. The two growing convective
cells in the blue box are shown in barely visible yellow sur-
rounded by high Tb values. The one on the left was detected
using 10 min data from 19:25 UTC, but since both clouds
were detected together starting at 19:27 UTC, a scene from
19:27 UTC was used to demonstrate the method. Figure 4c
and d show Tb matrices that exhibited the correct shape for

developing cells (Gaussian shape) at 19:27 and 19:36 UTC.
However, not all of the matrices in these figures showed the
evolution of the developing cells (decreasing minimum Tb
over 10 K) between the two time steps. The two matrices in
the blue box satisfied both criteria of maintaining the shape
of developing cells and growing vertically over 10 time steps
while other matrices did not satisfy either one of the criteria.
These two matrices contain early convective clouds that grow
into deep convection shown in Fig. 3b, and they are correctly
captured by this method.

Results for the detection of mature convective clouds are
shown in a step-by-step fashion in Fig. 5. Figure 5a is the
same as in Fig. 3a but is mapped using a different color ta-
ble for better comparisons between steps. Figure 5b shows
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Figure 5. (a) Same as Fig. 3a, but using different color table. (b) From the reflectance map in (a), regions that have reflectances over 10 min
less than 0.8 or have Tb values greater than 250 K over 10 min are assigned reflectance of zero, and therefore colored in white. (c) Map of
average gradients of reflectances over 10 min. Regions with average gradient less than 0.4 or greater than 0.9 are colored in white. (d) GOES-
ABI 11.2 µm infrared channel imagery (K) at 19:30 UTC on 28 June 2017. Regions that passed two criteria from (b) and (c) are colored in
white.

the pixels retained after eliminating all the grid points that
did not meet the reflectance and Tb thresholds (minimum re-
flectance over 10 time steps greater than 0.8 and maximum
Tb over 10 time steps less than 250 K). Figure 5c shows the
horizontal gradient values after applying the Sobel opera-
tor. The color bar is set to be within the range of 0.4 and
0.9 to display potential convective regions that passed these
thresholds in colors. White regions are either regions that
have average gradients greater than 0.9 such as cloud edges
or thin cirrus clouds, or regions that have average gradients
less than 0.4 such as clear sky or stratiform regions. Even-
tually, only the regions that meet the criteria in both Fig. 5b
and c are assigned to convection and shown as white shad-

ing in Fig. 5d. Using a reflectance threshold sometimes lim-
its the detection of shaded convective regions that exhibits
lower reflectance than the threshold of 0.8. This is the case
for the small imbedded white regions in the midst of high-
reflectance regions shown in Fig. 5b. However, these regions
are relatively small, and once they are upsampled into 2 km
maps through nearest-neighbor interpolation, some of these
regions are included in the detection as shown in Fig. 5d.

Detection from GOES and MRMS is compared in
MRMS’s resolution of 1 km, and in such high resolution,
the location of a cloud seen from GOES and MRMS can
be slightly different due to parallax displacement. For a bet-
ter comparison between detection from GOES and MRMS,
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Figure 6. Convective regions detected by GOES-16 (white regions
in Fig. 5d) are colored in navy on top of MRMS PrecipFlag at
19:30 UTC on 28 June 2017. (Same figure as Fig. 3d. Pink rep-
resents convective while green represents stratiform.)

parallax correction based on Vicente et al. (2002) is ap-
plied to GOES detection using a constant cloud top height
of 10 km. Convective regions detected by GOES (Fig. 5d)
are plotted with the parallax correction on top of the MRMS
map (Fig. 3d), and it is shown in Fig. 6. When compared to
high-reflectivity regions in Fig. 3c and convective regions in
Fig. 3d, convective regions, while not perfectly aligned due
to a number of dynamic geometric reasons, do have a high
degree of correspondence between the two detection meth-
ods. However, a straight line around 43.7◦ N at the right edge
of Fig. 5d is definitely not a convective region, and it is due
to unrealistically high reflectance in the raw satellite dataset.
These kinds of artifacts were removed later in Sect. 4.3 when
the method was applied to a full month of data. However,
multiple lines are difficult to remove at this stage in the pro-
cessing and will result in false alarm. As quality control pro-
cedures on ABI are improved, this may no longer be a source
of significant errors.

4.2 18 June 2018

Another case was examined to evaluate the methods under
different conditions. Severe storms developed over the Great
Plains in 18 June 2018, producing hail on the ground. At
22:30 UTC, sporadic storms across Kansas and Oklahoma
were observed by GOES-16. This scene contains both grow-
ing and mature convective clouds that are detected by MRMS
during the 22:30–22:40 UTC period. In particular, four ver-
tically growing clouds in this scene show different evolution
and thus allow more elaboration on the growing cloud detec-
tion method. MRMS PrecipFlag for the scene at 22:30 and

22:40 UTC is shown in Fig. 7a and b, respectively. The green
color represents stratiform and the pink color represents con-
vective clouds. Figure 7c and d are Tb maps of the same scene
at 22:30 and 22:40 UTC, respectively. Growing clouds shown
in purple, blue, yellow, and green boxes are detected by the
growing cloud detection method, but all starting from differ-
ent time. Times that each cloud is detected by GOES and
MRMS are shown in Fig. 7a. Time for the growing cloud
detection method is a period as the method uses 10 consec-
utive 1 min data. Convection in the purple box was detected
6 min earlier than MRMS detection considering the last data
used in the growing cloud detection method at 22:28 UTC.
Similarly, a cloud in the green box was detected a little ear-
lier by GOES than MRMS. The growing cloud in the yellow
box was detected at the same time by GOES and MRMS. On
the other hand, the growing cloud in the blue box was de-
tected later than MRMS detection at 22:38 UTC. This cloud
did not grow rapidly enough during 22:30–22:40 UTC pe-
riod as shown in Tb maps of Fig. 7c and d and did not meet
the Tb threshold for Channel 10 at the onset of convection.
However, it was detected by Channel 8 as it grew higher alti-
tudes. This shows that a cloud that initially did not show high
growth rate can have high growth rate as it vertically grows
and can be detected by Channel 8 later in time. These results
show that even though the thresholds for the growing cloud
detection method can miss some convective clouds that grow
slowly in the beginning, the thresholds were adequate for de-
tecting rapidly growing convective storms which are of more
interest during the forecast.

Black regions superimposed on the brightness tempera-
ture map in Fig. 7c represent convective regions identified by
the mature convection method, and Fig. 8 shows a figure of
the black regions overlaid on top of the MRMS PrecipFlag
map (Fig. 7a). There are slight misalignments of detected
convective clouds between MRMS PrecipFlag products and
GOES results possibly due to sheared vertical structures of
the storms. One other thing to note here is that the convec-
tive area detected by the mature cloud detection method is
greater than what is detected in the previous case. This could
be due to the dependency of lumpiness on some geometrical
considerations. Lumpiness is a function of the pixel spatial
resolution, differences in optical depth, and shadows. Spa-
tial resolution decreases away from the Equator, but higher
solar zenith angles (due to altitude or time of day) not only
increases optical depth, they also increase shadows. While
this can of course be dealt with, it was ignored in this study
which serves primarily as a proof of concept, as the method
generally finds the convective core correctly.

4.3 Statistical results with 1-month data

Pixel-based validation of the two methods is conducted us-
ing 1 month of data measured during June 2017. Results are
validated against MRMS data as ground-based radar is used
to detect convective regions during the short-term forecast,
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Figure 7. (a) MRMS PrecipFlag at 22:30 UTC on 18 June 2018. Pink represents convective while green represents stratiform. Times next
to each box represent the times of GOES data used in the growing cloud detection method and time of detection by MRMS. (b) MRMS
PrecipFlag at 22:40 UTC on 18 June 2018. (c) GOES-ABI 11.2 µm infrared channel imagery (K) at 22:30 UTC on 18 June 2018 over the
Great Plains. (d) Same as (c), but at 22:40 UTC.

and precipitation is a rather direct indicator of convection
in all stages. Since MRMS detection comprises convection
in all stages, MRMS data are compared with GOES detec-
tion combining the two methods. Table 3 is a contingency
table applying both methods to 1-month data and comparing
in MRMS’s grids with a spatial resolution of 1 km. C repre-
sents convection detected by either GOES or MRMS, and
NC represents non-convective regions. GOES-C/MRMS-C
is “hits” that both MRMS and GOES methods detected as
convective within 5 km. In the case of the growing cloud de-
tection method, on the other hand, hits are defined if MRMS
assigned convective within 30 min due to earlier detection
by this method. GOES-NC/MRMS-C denotes “misses” that
GOES missed detecting convection while MRMS assigned

as convective. GOES-C/MRMS-NC denotes a “false alarm”
that GOES detected as convective, but MRMS did not.
Lastly, GOES-NC/MRMS-NC denotes a “correct negative
case” that neither MRMS nor GOES detected as convective.
From the contingency table, verification metrics of probabil-
ity of detection (POD) and false alarm rate (FAR) can be
calculated as below.

POD=
hits

hits+misses
FAR=

false alarm
hits+ false alarm

(3)

POD and FAR are useful tools in evaluating detection skill
of a binary problem. POD and FAR calculated from Table 3
are 45.3 % and 14.4 %. Since POD and FAR can vary de-
pending on the thresholds used in each method, choosing dif-
ferent thresholds is examined further.
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Figure 8. Convective regions detected by GOES-16 (in Fig. 7c)
are colored in navy on top of MRMS PrecipFlag at 22:30 UTC on
18 June 2018 (Fig. 7a). Pink represents convective while green rep-
resents stratiform).

Table 3. Contingency table of results applying both of GOES de-
tection methods and validating against MRMS data during June
of 2017. Pixel-based validation is conducted to produce this
table. C and NC represent convective and non-convective, re-
spectively. GOES-C/MRMS-C denotes “hits” that both MRMS
and GOES methods detected as convective within 5 km. GOES-
NC/MRMS-C denotes “misses” that GOES missed detecting con-
vection while MRMS assigned as convective. GOES-C/MRMS-NC
denotes “false alarm” that GOES detected as convective, but MRMS
did not. GOES-NC/MRMS-NC denotes a “correct negative case”
that neither MRMS nor GOES detected as convective. Percentages
in the parenthesis are obtained by dividing each number by the total
number.

MRMS-C MRMS-NC

GOES-C 1 759 878 (2.73 %) 297 291 (0.46 %)
GOES-NC 2 125 739 (3.30 %) 60 244 716 (93.51 %)

Most of the detection is from the mature cloud detec-
tion method as mature convective clouds account for a much
larger area. The mature cloud detection method alone has
FAR of 14.2 % and POD of 43.7 %. FAR and POD of the
growing cloud detection method including 30 min data are
22.2 % and 3.9 %, respectively. Relatively small FAR com-
pared to FAR from Tables 1 and 2 (1− overall accuracy val-
ues) would be because Tables 1 and 2 are obtained based
on each cloud while FAR and POD are calculated based on
each grid point. Two PODs from the two methods (43.7 %
and 3.9 %) do not add up to 45.3 % (POD calculated from
Table 3) due to overlapped detection. Since the mature cloud
detection method resort to several thresholds, results using

Figure 9. Plot of probability of detection (POD) and false alarm
ratio (FAR) using different texture thresholds of the mature cloud
detection method. The Tb and reflectance thresholds are kept con-
stant with 250 K and 0.8, respectively.

different combinations of the three thresholds (reflectance
at Channel 2 and Tb at Channel 14 to remove shallow and
low clouds, and horizontal gradients of reflectance at Chan-
nel 2 to remove cloud edges as well as clouds with flat
cloud top surfaces) are presented to show how they differ
from the chosen thresholds. Two thresholds for cloud top tex-
ture, which are essentially horizontal gradients of reflectance,
are evaluated first. The upper threshold does not change re-
sults much (not shown), and cloud edges are effectively re-
moved by the threshold of 0.9. The lower bound of the texture
thresholds are varied, keeping the upper threshold and the
Tb and reflectance thresholds constant. Resulting FAR and
POD are shown in Fig. 9. Using 0.5 (yellow) misses signifi-
cant amounts of convective regions while using lower values
(blue and red) substantially misclassifies stratiform regions
with flat cloud tops as convective, although their PODs are
much higher. Using 0.2 gives the closest results from the
pixel-based validation in Zinner et al. 2013 using lightning
data. However, FAR of 45.6 % when using 0.2 is no differ-
ent from a random chance of 50 % that it is no longer useful,
while POD of 29.9 % when using 0.5 will not give much in-
formation. Therefore, values of 0.4 and 0.9 (green diamond
in Fig. 9) were chosen as a reasonable compromise between
POD and FAR.

POD and FAR using different combinations of Tb and re-
flectance thresholds are plotted in Fig. 10, and this time tex-
ture thresholds are kept constant with 0.4 and 0.9. The Tb
threshold is varied from 230 to 250 K, and the reflectance
threshold is varied from 0.7 to 0.9. There is a trade-off be-
tween detecting more convective clouds that are transition-
ing into a mature stage and incorrectly assigning cumulus
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Figure 10. Plot of probability of detection (POD) and false alarm
ratio (FAR) for different combinations of Tb and reflectance thresh-
olds. The texture threshold of 0.4 and 0.9 are kept constant.

clouds as convective clouds. Having lower values for the Tb
threshold or higher value for the reflectance threshold leads
to small FAR, but also leads to small POD. To make this
method effective and reduce FAR as much as possible for its
potential use in the short-term forecast, 250 K for the Tb and
0.8 for the reflectance threshold (black diamond in Fig. 10a)
are chosen. In data assimilation, it is preferable to provide no
constraints than to provide the model with the incorrect lo-
cation of convection. A value of 240 K and 0.7 (orange) also
showed similar results, but 250 K and 0.8 were chosen due to
lower FAR.

Despite its FAR being relatively small, the method misses
significant amounts of convective areas observed by MRMS.
Therefore, regions that were missed are evaluated further
to investigate which threshold contributed most to missing
those regions. Figure 11 shows histograms of Tb, reflectance,
and texture in the convective regions that were missed by the
above method. It is clear from the figure that the largest num-
ber of misses were due to low texture values (87.6 % of all
missed regions has lower gradients than 0.4). There are many
reasons why convective regions appear to have flat cloud top
surfaces. Anvil or thick cirrus clouds above convective re-
gions can smooth out or cover bubbling cloud tops, and there
is simply no way to avoid this problem. Another reason may
be the nature of the classification method. Since classifica-
tion by MRMS is determined by rain rate, even if convective
clouds are in a decaying mode and do not bubble anymore,
clouds can still continue to precipitate considerable amounts,
which would lead to convective category in the MRMS prod-
uct. It is also possible that it is due to a misclassification of
trailing stratiform regions using radars. There is indeed ongo-
ing research in the radar community since a better convective

and stratiform classification scheme improves QPE retrieval
(Qi et al., 2013; Petković et al., 2019).

As shown from these results, there are no perfect thresh-
olds that can separate convective and stratiform clouds. Nev-
ertheless, threshold values were chosen in line with our main
objective – to avoid high FAR as much as possible and have
decent POD comparable to radar products. Avoiding FAR is
a higher priority than reaching higher POD as giving false in-
formation is most detrimental during data assimilation. Low
FAR of 14.4 % is achieved, and among those misclassified
pixels, 96.4 % of them are at least raining. Since the main
objective of data assimilation is to have good initialization
of precipitation, applying these methods during data assim-
ilation can still be beneficial in case the forecast model did
not produce precipitation. Unfortunately, significant amounts
of convective areas assigned by the radar product are missed.
As shown in Fig. 11, most of the missed regions are excluded
due to the flat surface, and this is an intrinsic problem of us-
ing VIS and IR bands. If a convective cloud is developing in
a less cloudy scene, it can be detected by the method most of
the time. However, in case of a hurricane where cloud tops
are rather flat, or multi-layer clouds where cloud top informa-
tion is decoupled from what is underneath, convection will be
missed by the detection method. Furthermore, flat cloud top
regions close to bubbling area might still be convective by
MRMS due to high reflectivity, leading those regions to be
classified as missed. The thresholds can be adjusted for other
applications that may require higher POD.

5 Conclusion and summary

This study explores two methods to detect convective clouds
in two different stages using GOES-R ABI data with 1 min
intervals. Using such high-temporal-resolution data facili-
tates cloud tracking in a more effective way and helps re-
duce uncertainties coming from cloud tracking when calcu-
lating decreases in Tb of the same cloud. Convective clouds
in the early stage were detected using Tb values of ABI chan-
nels 8 and 10. These channels were used to find cloud scenes
with the developing shape of convective clouds. They were
then used again to calculate the Tb decrease for those which
maintained the developing shape for 10 min. A cloud scene
that had a consistent developing shape and a large decrease in
Tb over 10 min was classified as convective by this method.
Mature convective clouds were detected by masking out re-
gions with high Tb in ABI Channel 14 and low reflectance
in ABI Channel 2 and finding regions with high horizontal
gradients of reflectance over the course of 10 min. Results
from this mature cloud detection method were mostly con-
sistent with the radar-derived products, although this method
is limited to daytime use only. Nevertheless, it detects a wide
range of convective area, not just regions with overshooting
tops. Both methods are provided as a testing concept with
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Figure 11. Histograms of Tb, reflectance, and texture values if a pixel was assigned to be convective by MRMS, but not detected by the
mature cloud detection method due to each of the thresholds.

several thresholds, and these thresholds can be tuned for an
operational use if needed.

These methods work well for well-structured convective
clouds, but there are limitations to this method, as with most
algorithms using IR and VIS sensors. Cirrus cloud shields are
the biggest problem as they block Tb decreases underneath
and smooth out lumpy reflectance surfaces. However, these
methods can still be useful for defining convection for as-
similation into models where radar data are not available. Be-
cause regions identified as convective are most likely convec-
tive (∼ 85 % accuracy; 100 %− (FAR of 14.4 %)), this can
easily be assimilated while setting cloudy regions to “miss-
ing” since the accuracy of detecting convection under large
cirrus shields is poor. Furthermore, results using a Sobel op-
erator, which is commonly used in image processing, implies
that applying machine learning can be beneficial if the model
can be set up to learn lumpy texture of convective clouds dur-
ing training.

Data availability. NEXRAD reflectivity data were obtained
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