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Abstract. In recent years, the concept of multistatic meteor
radar systems has attracted the attention of the atmospheric
radar community, focusing on the mesosphere and lower
thermosphere (MLT) region. Recently, there have been some
notable experiments using such multistatic meteor radar sys-
tems. Good spatial resolution is vital for meteor radars be-
cause nearly all parameter inversion processes rely on the ac-
curate location of the meteor trail specular point. It is timely
then for a careful discussion focused on the error distribu-
tion of multistatic meteor radar systems. In this study, we
discuss the measurement errors that affect the spatial reso-
lution and obtain the spatial-resolution distribution in three-
dimensional space for the first time. The spatial-resolution
distribution can both help design a multistatic meteor radar
system and improve the performance of existing radar sys-
tems. Moreover, the spatial-resolution distribution allows the
accuracy of retrieved parameters such as the wind field to be
determined.

1 Introduction

The mesosphere and lower thermosphere (MLT) is a tran-
sition region from the neutral to the partially ionized atmo-
sphere. It is dominated by the effects of atmospheric waves,
including planetary waves, tides and gravity waves. It is also

a relatively poorly sampled part of the Earth’s atmosphere
by ground-based instruments. One widely used approach to
sample this region is the meteor radar technique. The ab-
lation of incoming meteors in the MLT region, i.e., ∼ 80–
110 km, creates layers of metal atoms, which can be observed
from the ground by photometry or lidar (Jia et al., 2016; Xue
et al., 2013). During meteor ablation, the trails caused by
small meteor particles provide a strong atmospheric tracer
within the MLT region that can be continuously detected
by meteor radars regardless of weather conditions. Conse-
quently, the meteor radar technique has been a powerful tool
for studying the MLT region for decades (Hocking et al.,
2001; Holdsworth et al., 2004; Jacobi et al., 2008; Stober
et al., 2013; Yi et al., 2018). Most modern meteor radars are
monostatic, and this has two main limitations in retrieving
the complete wind fields. Firstly, limited meteor rates and rel-
atively low measurement accuracies necessitate that all mea-
surements in the same height range are processed to calculate
a “mean” wind. Secondly, classic monostatic radars retrieve
winds based on the assumption of a homogenous wind in the
horizontal and usually zero wind in the vertical direction.

The latter conditions can be partly relaxed if the count
rates are high and the detections are distributed through a
representative range of azimuths. If this is the case, a version
of a velocity–azimuth display (VAD) analysis can be applied
by expanding the zonal and meridional winds using a trun-
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cated Taylor expansion (Browning and Wexler, 1968). This
is because each valid meteor detection yields a radial veloc-
ity in a particular viewing direction of the radar. The radar
is effectively a multi-beam Doppler radar where the “beams”
are determined by the meteor detections. If there are enough
suitably distributed detections in the azimuth in a given ob-
serving period, the Taylor expansion approach (using Carte-
sian coordinates) yields the mean zonal and meridional wind
components (u0,v0), the horizontal divergence

(
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)
,

and the stretching
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and shearing
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)
de-

formations of the wind fields from an analysis of the radial
velocities. However, because the radar can only retrieve the
wind projection in the radial direction as measured from the
radar, the vorticity

(
∂v
∂x
−
∂u
∂y

)
of the wind fields is not avail-

able. This is common to all monostatic radar systems, and a
discussion of measurable parameters in the context of multi-
ple fixed-beam upper-atmosphere Doppler radars is given by
(Reid, 1987). Even when relaxing the assumption of a ho-
mogeneous wind fields and using the more advanced volume
velocity processing (VVP) (Philippe and Corbin, 1979) to
retrieve the wind fields, the horizontal gradients of the wind
fields cannot be recovered due to the lack of vorticity infor-
mation. To obtain a better understanding of the spatial varia-
tion of the MLT region wind fields, larger area observations
(and hence higher meteor count rates) and sampling of the
observed area from different viewing angles are needed. An
extension of the classic monostatic meteor technique is re-
quired to satisfy these needs.

To resolve the limitations outlined above, the concept of
multistatic meteor radar systems, such as MMARIA (mul-
tistatic and multifrequency agile radar for investigations
of the atmosphere) (Stober and Chau, 2015) and SIMO
(single-input multiple-output) (Spargo et al., 2019), MIMO
(multiple-input multiple-output radar) (Chau et al., 2019;
Dorey et al., 1984) have been designed and implemented
(Stober et al., 2018). Multistatic systems can utilize the for-
ward scatter of meteor trails, thus providing another perspec-
tive for observing the MLT. Multistatic meteor radar sys-
tems have several advantages over classic monostatic me-
teor radars, such as obtaining higher-order wind field infor-
mation and covering wider observation areas. There have
been some particularly innovative studies using multistatic
meteor radar systems in recent years. For example, by com-
bining MMARIA and the continuous wave multistatic radar
technique (Vierinen et al., 2016), Stober et al. (2018) built
a five-station, seven-link multistatic radar network cover-
ing an approximately 600 km× 600 km observing region
over Germany to retrieve an arbitrary non-homogenous wind
field with a 30 km× 30 km horizontal resolution. Chau et al.
(2017) used two adjacent classic monostatic specular meteor
radars in northern Norway to obtain horizontal divergence
and vorticity. Other approaches, such as coded continuous-
wave meteor radar (Vierinen et al., 2019) and the compressed

sense method in MIMO sparse-signal recovery (Urco et al.,
2019) are described in the corresponding references.

Analyzing spatial resolution limits is a fundamental but
difficult topic for meteor radar systems. Meteor radar sys-
tems transmit and then receive radio waves reflected from
meteor trails using a cluster of receiving antennas, commonly
five antennas, as in the Jones et al. (1998) configuration. By
analyzing the cross-correlations of the signals received on
several pairs of antenna, the angle of arrival (AoA) of each
return can be determined. The AoA is described by the zenith
angle θ and azimuth angle φ. By measuring the wave prop-
agation time from the meteor trail, range information can be
determined. Most meteor radar systems rely on specular re-
flections from meteor trails. Thus, by combining the AoA
and the range information and then using geometric analysis,
the location of a meteor trail can be determined. Accurately
locating the meteor trail specular point (MTSP hereinafter) is
important since atmospheric parameter retrieval (such as the
wind field or the temperature) depends on the location infor-
mation of meteor trails. The location accuracy, namely the
spatial resolution, determines the reliability of the retrieved
parameters. For multistatic meteor radar systems that can re-
lax the assumption of a homogenous horizontal wind field,
the location accuracy becomes a more important issue be-
cause the horizontal spatial resolution affects the accuracy of
the retrieved horizontal wind field.

Although meteor radar systems have developed well ex-
perimentally in recent years, the reliability of the retrieved
atmospheric parameters still requires further investigation
for both the monostatic and multistatic meteor radar cases.
In an attempt to investigate errors in two radar techniques,
Wilhelm et al. (2017) compared 11 years of MLT region
wind data from a partial reflection (PR) radar with colocated
monostatic meteor radar winds and determined the “correc-
tion factors” required to bring the winds into agreement.
Spargo et al. (2019) reported a similar study for two loca-
tions for data obtained over several years. While the com-
parisons are interesting, partial reflection radars operating in
the medium-frequency (MF) band and lower high-frequency
(HF) band produce a height-dependent bias in the measured
winds (see, e.g., Reid, 2015), which limits the ability to es-
timate errors in the meteor winds by comparing them. How-
ever, the PR radar technique is one of very few that provides
day and night coverage and data rates in the MLT comparable
to that of meteor radars.

Meteor radars have largely replaced PR radars for MLT
studies and are generally regarded as providing reference-
quality winds. It is essential then to know the reliability of
atmospheric parameters determined by meteor radars, and to
do this some quantitative error analyses are necessary.

A number of recent studies have discussed AoA measure-
ment errors for meteor radars (Kang, 2008; Vaudrin et al.,
2018; Younger and Reid, 2017). These studies focus on the
phase errors in receiver antenna pairs; see Younger and Reid
(2017) for the monostatic case and Vaudrin et al. (2018)
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Figure 1. Schematic diagram of the simplified bistatic configuration used in Hocking’s vertical resolution analysis (Hocking, 2018). The
two receiving antennas and the transmitting antenna are collinear. The analysis is in a two-dimensional vertical section through the baseline
joining the antennas. The radio wave is scattered from a few Fresnel zones that are several kilometers in length around the specular point on
the meteor trail and are received by the receiving antennas. The cross-correlation analysis between the receiving antennas can be used to solve
for the AoAs. Because the radio wave is reflected from a region a few Fresnel zones in length, the measured phase difference between the
receiver antenna pairs to deviates from the ideal phase difference. This deviation from the ideal phase difference is one of the error sources
in the PDME. In this work, we solve for the ideal phase difference associated with the AoA directed to the MTSP.

for a more general case that included multistatic meteor
radars. Hocking (2018) used another approach and developed
a vertical resolution analysis method for the two-dimensional
bistatic case. The Hocking method (HM hereinafter) simpli-
fies the error propagation process in the receiving antennas
and puts emphasis on how a bistatic meteor radar configu-
ration affects the vertical resolution in a vertical section. It
does not consider the radial distance measuring error. In this
paper, we consider the more general three-dimensional case
and determine the spatial distribution of both the horizontal
and vertical resolution uncertainties.

We analyze the multistatic meteor radar resolution distri-
bution in a three-dimensional space for both vertical and hor-
izontal resolution for the first time. This spatial resolution is
a prerequisite for evaluating the reliability of retrieved atmo-
spheric parameters, such as the wind field and the tempera-
ture.

2 Analytical method

2.1 Brief introduction

The HM will be introduced briefly here to help the reader
understand our generalization. In the HM, measurement er-
rors that affect the vertical resolution can be classified into
two types: one caused by the zenith angle measuring error
δθ and one caused by the pulse length effect on the verti-
cal resolution. The receiving array is a simple antenna pair

that is collinear with the baseline (Fig. 1). The HM calculates
the vertical resolution in a two-dimensional vertical section
that passes through the baseline. The receiver antenna pair is
equivalent to one receiver arm in a Jones configuration that is
comprised of three collinear antennas usually with a 2λ\2.5λ
spacing. The phase difference of the received radio wave be-
tween the receiving antenna pair is denoted as 19. In me-
teor radar systems, there is generally an “acceptable” phase
difference measuring error (PDME hereinafter) δ(19). A
higher value of δ(19)means that more detected signals will
be judged as meteor events but with more misidentifications
and bigger errors as well. δ(19) is set to approximately 30◦

(Hocking, 2018; Younger and Reid, 2017) in most meteor
radar systems. In the HM, the zenith angle measuring error
δθ is due to δ(19) and δ(19) is a constant. Therefore, the
error propagation in the receiver is very simple, and δθ is
inversely proportional to the cosine of the zenith angle.

We now introduce our analytical method. Our method con-
siders a multistatic system with multiple transmitters and
one receiving array in three-dimensional space as shown in
Fig. 2. The receiving array is in the Jones configuration, that
is, “cross-shaped”, but it may also be “T-shaped” or “L-
shaped”. The five receiver antennas are in the same hori-
zontal plane and constitute two orthogonal antenna arms. To
avoid a complex error propagation process in the receiving
array and to place emphasis on multistatic configurations, the
PDMEs in the two orthogonal antenna arms (δ(191) and
δ(192)) are constants. Therefore, the AoA measuring er-
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Figure 2. Schematic diagram of a multistatic meteor radar system using SIMO (single-input and multi-output). There are three transmitters
(T1, T2 and T3) and one receiver (RX) in the picture. The transmitter–receiver distance is typically 100–200 km. X0, Y0 and Z0 represent the
east, north and up directions of the receiving antenna. Over 90 % of the received energy comes from about 1 km around the specular point of
the meteor trail, which is slightly less than the length of the central Fresnel zone (Ceplecha et al., 1998).

rors (including the zenith and azimuth angle measuring errors
δθ , δφ, respectively) can be expressed as simple functions of
zenith and azimuth angle. The radial distance is the distance
between the MTSP and the receiver, which is denoted as Rs.
Rs can be determined by combining the AoA, baseline length
di and the radio wave propagation path length R (Stober and
Chau, 2015). The geometry is shown in Fig. 4a. α is the an-
gle between the baseline (i.e.,Xi axis) and the line from the
receiver to the MTSP (denoted as point A). If α, di and R are
known, Rs can be calculated easily using the cosine law as
follows:

Rs =
R2
− d2

i

2(R− di cosα)
. (1)

A multistatic configuration will influence the accuracy of
Rs (denoted as δRs). This is because α, d and R are deter-
mined by the multistatic configuration. We consider the error
term δRs in our method, which is ignored in the HM. δRs is
a function of the AoA measuring errors (δθ and δφ) and the
radio wave propagation path length measuring error (denoted
as δR). δR is caused by the measuring error of the wave prop-
agation time δt , which is approximately 21 µs (Kang, 2008).
Thus, δR can be set as a constant and the default value in
our program is δR = cδt = 6.3km. It is worth noting that the
maximum unambiguous range for pulse meteor radars is de-
termined by the pulse repetition frequency (PRF) (Hocking
et al., 2001; Holdsworth et al., 2004). For multistatic meteor
radars utilizing forward scatter, the maximum unambiguous
range is c/PRF (where c is the speed of light). For the area
where R exceeds the maximum unambiguous range, δR is
set to positive infinity.

2.2 Three kinds of coordinate systems and their
transformations

To better depict the multistatic system configuration, three
kinds of right-hand coordinate systems need to be estab-
lished, as shown in Fig. 3. These are X0Y0Z0, XiYiZi and
XYZ. X0Y0Z0 is the ENU (east–north–up) coordinate sys-
tem where the X0, Y0 and Z0 axes represent the east, north
and up directions, respectively. Another two coordinate sys-
tems are established to facilitate different error propagations.
All types of errors need to be transformed to the ENU coor-
dinate systemX0Y0Z0 in the end. Coordinate systemXYZ is
established to depict the spatial configuration of the receiv-
ing array and has its the origin of XYZ there, as shown in
Fig. 3. The z axis is collinear with the antenna boresight and
perpendicular to the horizontal plane on which the receiving
array lies. The x and y axes are collinear with the arms of the
two orthogonal antenna arrays. AoAs will be represented in
XYZ for convenience. Inspection of Fig. 4 indicates that it
is convenient to analyze the range information in a plane that
goes through the baseline and the MTSP. Thus, a coordinate
system XiYiZi is established for a transmitter Ti . The coor-
dinate origins of XiYiZi are all on the receiving array. We
stipulate that the Xi axis points to transmitter i (Ti). Each
pair Ti and receiver RX constitute a radar link, which is re-
ferred to as Li . The range-related information for each Li
will be calculated in XiYiZi . Different types of errors need
to propagate to and be compared inX0Y0Z0, which is conve-
nient for retrieving wind fields.

We stipulate that clockwise rotation satisfies the right-
hand corkscrew rule. By rotating ψX,ix , ψY,iy and ψZ,iz about
the x, y and z axes, respectively, one can transform XYZ to
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Figure 3. (a) Schematic diagram of the three coordinate systems used in this work. XiYiZi is a class of coordinate systems whose Xi axis
points to transmitter i, with i = 1,2,3. X0Y0Z0 is the ENU coordinate system to which all errors are compared. (b) Magnified plot of the
receiving array. XYZ is fixed on the receiver horizontal plane. The x and y axes are collinear with the two arms of the antenna array.

Figure 4. (a) Schematic diagram of the forward-scatter geometry for the radar link between Ti and RX . Point A is the MTSP. (b) Magnified
plot of specular point A. The red line represents a radio wave pulse, and S is the half-pulse length. kb is the Bragg vector, which halves the
forward-scatter angle β. (c) Schematic diagram of E1 in XYZ, which can be decomposed into three orthogonal vectors.

XiYiZi . It is worth mentioning thatXiYiZi is non-unique be-
cause any rotation about Xi axis can obtain another satisfac-
tory XiYiZi . Hence, ψX,ix can be set to any value. Similarly,
by rotating ψ i,0

x , ψ i,0y and ψ i,0z about the x, y and z axes, re-
spectively, one can transform XiYiZi to X0Y0Z0. To realize
the coordinate transformation between these three coordinate

systems, a coordinate rotation matrix AR(ψx,ψy,ψz) is in-
troduced. Using AR, one can transform the coordinate point
or vector presentation from one coordinate system to another.
The details of the coordinate rotation matrix AR(ψx,ψy,ψz)
can be found in Appendix A.
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2.3 Two types of measuring errors

The analytical method of the spatial resolution for each radar
link is the same. The difference between these radar links is
only the value of the six coordinate rotation angles (ψX,ix ,
ψ
Y,i
y and ψZ,iz ;ψ

i,0
x , ψ i,0y and ψ i,0z ) and the baseline dis-

tance di . The spatial-resolution-related measurement errors
that will cause location errors of the MTSP can be classified
into two types: E1 is caused by measurement errors at the
receiver, and E2 is due to the pulse length. These two errors
are mutually independent. Hence, the total error (Etotal) can
be expressed as follows:

E2
total = E

2
1 +E

2
2 . (2)

E1 is related to three indirect measuring errors. They are
zenith, azimuth and radial distance measuring errors, denoted
as δθ , δφ and δRs, respectively. In XYZ, E1 can be de-
composed into three orthogonal error vectors using δθ , δφ
and δRs (see Fig. 4c), which we now explain in more detail.
PDMEs, i.e., δ(191) and δ(192), are caused by some prac-
tical factors, such as phase calibration mismatch and the fact
that the specular point is not actually a point but is a few Fres-
nel zones in length. A meteor radar system calculates phase
differences between different pairs of antenna through cross-
correlation and then fits them to get the most likely AoAs.
Therefore, the system needs to be assigned a tolerance value
of δ(191) and δ(192). Different meteor radar systems have
different AoA fit algorithms and thus different AoA measur-
ing error distributions. To analyze the spatial resolution for
a SIMO meteor radar system as generally as possible and
to avoid tedious error propagation at the receiving array, we
start the error propagation from δ(191) and δ(192) and set
them as constants. AoA measuring errors δθ and δφ can then
be expressed as follows:

δθ =
λ

2πD1

cosφ
cosθ

δ(191)+
λ

2πD2

sinφ
cosθ

δ(192), (3)

δφ =
λ

2πD2

cosφ
sinθ

δ(192)−
λ

2πD1

sinφ
sinθ

δ(191), (4)

where λ is the radio wavelength,D1 andD2 are the length of
the two orthogonal antenna arms, and θ and φ are the zenith
angle and the azimuth angle, respectively. The details can
be found in Appendix A. It is worth noting that δθ and δφ
are not mutually independent. The expectation value of their

product is not identical to zero unless E
(
δ2(191)

)
D2

1
is equal to

E
(
δ2(192)

)
D2

2
. δRs can be expressed as a function of δR, δθ and

δφ as follows:

δRs = F(δR,δθ,δφ)

= fR(θ,φ)δR+ fθ (θ,φ)δθ + fφ(θ,φ)δφ. (5)

fR(θ,φ),fθ (θ,φ) and fφ(θ,φ) are the weighting functions
of δRs. The details about the weighting function and deduc-

tion can be found in Appendix A. Inspection of Fig. 4c in-
dicates that E1 can be decomposed into three orthogonal er-
ror vectors in coordinate XYZ, denoted as δRs, Rsδθ and
Rssinθδφ. These three vectors can be expressed in XYZ as
follows:

δRs = δRs(sinθ cosφ,sinθ sinφ,cosθ)T, (6)

Rsδθ = Rsδθ(cosθ cosφ,cosθ sinφ,−sinθ)T, (7)

Rssinθδφ = Rs sinθδφ(−sinφ,cosφ,0)T. (8)

E2 is related to the radio wave propagation path. A pulse
might be reflected anywhere within a pulse length (see
Fig. 4b). This causes a location error in the MTSP, repre-
sented as an error vector DA. D is the median point of the
isosceles triangle1ABC’s side BC. The representation of the
error vectorDA can be solved in XiYiZi by using geometri-
cal relationships as follows:

DA=

(
(2− a1− a2)xi + di(a2− 1)

2
,
(2− a1− a2)yi

2
,

(2− a1− a2)zi

2

)T

, (9)

where S is the half-pulse length and a1 =
Rs−S
Rs

. a2 =
Ri−S
Ri

.
di is the baseline length. (xi,yi,zi) is the coordinate value of
a MTSP (point A in Fig. 4) in XiYiZi . More details can be
found in Appendix A.

2.4 Transformation to ENU coordinates

Thus far, two types of errors in different coordinate sys-
tems have been introduced. Now they need to be trans-
formed to ENU coordinates X0Y0Z0 in order to compare
different radar links and to analyze the wind fields. E1-
related error vectors, which are three orthogonal vectors
δRs, Rsδθ , and Rssinθδφ, are represented in XYZ as
Eqs. (6)–(8) and need to be transformed from XYZ to
X0Y0Z0 to project δRs, Rsδθ and Rssinθδφ towards the
X0Y0Z0 axis, respectively, and reassemble them to form
three new error vectors in theX0Y0Z0 axis. Using the coordi-
nate rotation matrix AR

(XYZ,X0Y0Z0) = AR(ψ
i,0
x ,ψ

i,0
y ,ψ

i,0
z ) ·

AR(ψ
X,i
x ,ψ

Y,i
y ,ψ

Z,i
z ) and Eqs. (6)–(8), the unit vectors of

those three vectors can be represented in X0Y0Z0 as follows:X′0(δRs) X′0(δθ) X′0(δφ)
Y′0(δRs) Y′0(δθ) Y′0(δφ)
Z′0(δRs) Z′0(δθ) Z′0(δφ)

= AR
(XYZ,X0Y0Z0)

·

sinθ cosφ cosθ cosφ −sinφ
sinθ sinφ cosθ sinφ cosφ

cosθ −sinθ 0

 . (10)

(
X′

0 (δRs ),Y
′
0 (δRs ),Z

′
0 (δRs )

)T,
(
X′

0 (δθ ),Y
′
0 (δθ ),Z

′
0 (δθ )

)T,
and

(
X′

0 (δφ ),Y
′
0 (δφ ),Z

′
0 (δφ )

)T are unit vectors of δRs,
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Rsδθ , and Rssinθδφ in X0Y0Z0, respectively. The 3×3 ma-
trix on the left-hand side of Eq. (10) is denoted as Pij for
i,j = 1,2,3.

From Eqs. (6)–(8) and Fig. 4c, we see that the length of
those three vectors (the error values) is δRs, Rsδθ , Rs sinθδφ
as a function of δR, δθ , δφ. In order to reassemble them to
form new error vectors, transformation of δθ and δφ into
two independent errors δ(191) and δ(192) is needed be-
cause δθ and δφ are not independent. Using Eqs. (3) and (4),
one can transform vector (δR , δθ , δφ)T into three inde-
pendent measuring errors δR, δ(191) and δ(192). Thus,
(δRs,Rsδθ,Rs sinθδφ)T can be expressed as follows:

 δRs
Rsδθ

Rs sinθδφ

=
fR(θ,φ) fθ (θ,φ) fφ(θ,φ)

0 Rs 0
0 0 Rs sinθ



·


1 0 0

0
λ

2π
cosθ

cosφ
D1

−
λ

2π sinφ
sinθD1

0
λ

2π
cosθ

sinφ
D2

λ
2π cosφ
sinθD2


·

 δR

δ (191)

δ (192)

 . (11)

The product of the first and the second term on the right-
hand side of Eq. (11) is a 3× 3 matrix, denoted as Wij for
i,j = 1,2,3. From Eq. (11), we see that the three error val-
ues δRs, Rsδθ and Rs sinθδφ are the linear combinations of
δR, δ(191),and δ(192) with their corresponding linear co-
efficientsW1j ,W2j andW3j . Those three error values can be
projected toward new directions (e.g., the X0Y0Z0 axis) by
using Pij . It worth noting that in a new direction the same ba-
sis’s projected linear coefficients from different error values
should be used to calculate their sum of squares (SS). Fol-
lowing this, the square root of SS will be used as a new linear
coefficient for that basis in the new direction. For example,
inX0 directions, basis δ(191)’s projected linear coefficients
are X′0(δRs)W12, X′0(δθ)W22 and X′0(δφ)W32 from δRs,
Rsδθ and Rssinθδφ, respectively. Therefore, the new linear
coefficient for δ(191) in the X0 direction is W δ(191)

X′0
=

±

√(
X′0(δRs)W12

)2
+
(
X′0(δθ)W22

)2
+
(
X′0(δφ)W32

)2.
Similarly, one can get δR and δ(192)’s new lin-
ear coefficients in X′0, denoted as W δR

X′0
and W

δ(192)

X′0
.

Thus, the true error value in the X0 direction is
W δR

X′0
δR+W

δ(191)

X′0
δ(191)+W

δ(192)

X′0
δ(192). Because δR,

δ(191), and δ(192) are mutually independent,E1 is related
to the mean squared error (MSE) values in the X0 direction,
denoted as δ(1)X0 and can be expressed as δ(1)X0 =±√(
W δR
X′0
δR
)2
+

(
W
δ(191)

X′0
δ(191)

)2
+

(
W
δ(192)

X′0
δ(192)

)2
.

In short, E1-related errors in ENU coordinate’s three axis
directions (denoted as δ(1)X0, δ(1)Y0 and δ(1)Z0) can be ex-

pressed in the form of a matrix as follows:δ2
(1)X0

δ2
(1)Y0

δ2
(1)Z0

= P 2
ij ·W

2
ij ·

 δ2R

δ2(191)

δ2 (192)

 . (12)

The E2-related error vector DA needs transformation from
XiYiZi to X0Y0Z0. Therefore, E2-related errors in the ENU
coordinate’s three axis directions (denoted as δ(2)X0, δ(2)Y0
and δ(2)Z0) can be expressed in the form of a matrix as fol-
lows:δ(2)X0
δ(2)Y0
δ(2)Z0

=±AR(ψ
i,0
x ,ψ

i,0
y ,ψ

i,0
z ) ·DA. (13)

E1 and E2 are mutually independent. By using Eq. (1), the
total MSE values in ENU coordinate’s three axis directions
(denoted as δtotalX0, δtotalY0 and δtotalZ0) can be expressed in
the form of matrix as follows:δ2

totalX0
δ2

totalY0
δ2

totalZ0

=
δ2

(1)X0

δ2
(1)Y0

δ2
(1)Z0

+
δ2

(2)X0

δ2
(2)Y0

δ2
(2)Z0

 . (14)

In conclusion, for a radar link Li and a MTSP represented
as (x0,y0,z0) in the ENU coordinate system X0Y0Z0, as
sketched in Fig. 4a, the location errors of this point in east,
north and up directions (±δtotalX0, ±δtotalY0 and ±δtotalZ0)
can be calculated as follows: firstly, for a point (x0,y0,z0) in
X′0Y

′

0Z′0, use AR to transform it to XiYiZi and denote it as
(xi,yi,zi). Following this, in XiYiZi calculate the AoA (θ
and φ) and the range information (Rs andRi). Details of AoA
and range calculation can be found in Appendix A. It is worth
noting that the AoA is given by the angles relative to the
axes of XYZ. Secondly, in XYZ use the AoA and Eqs. (3)–
(8) to calculate E1’s three orthogonal error vectors shown in
Fig. 4c; in XiYiZi use the range information and Eq. (9) to
calculate E2’s error vectorDA, as shown in Fig. 4b. Thirdly,
project E1’s three error vectors to X0Y0Z0 by using Eq. (10)
and use Eqs. (11)–(12) to reassemble them to calculate E1-
related MSE values in the direction of X0Y0Z0; use Eq. (13)
to transform the E2 error vector fromXiYiZi toX0Y0Z0. Fi-
nally, use Eq. (14) to get the total location errors of a MTSP
in (x0,y0,z0). Figure 5a shows the flow chart for the process
we have just described.

3 Results and discussion

The program to study the method we have described above is
written in the Python language and is presented in the Sup-
plement. To calculate a special configuration of a multistatic
radar system, we initially need to set six coordinate trans-
formation angles (ψX,ix , ψY,iy and ψZ,iz ;ψ

i,0
x , ψ i,0y and ψ i,0z )
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Figure 5. (a) The flow chart of the location error calculation process for a point in X0Y0Z0. The notation beside the arrows represents the
corresponding equations (black) or coordinate rotation matrix (blue) in the paper. � is the Hadamard product. Thus, E2�E2 will yield
(δ2
(2)X0,δ

2
(2)Y0,δ

2
(2)Z0)

T. (b) The flow chart of the program to calculate the location errors distributions for a radar link Li . This process
includes parameters settings for a radar link, the generation of the sampling grid nodes and the traversing of all the nodes. For each node, the
program uses the calculation method described in (a). MC is the multistatic configuration, and IC is the interferometer (receiving antenna)
configuration. (c) Schematic diagram of the relationship between the spatial resolution and the total location errors of the MTSP. For a
detected point in space, the MSE of MTSP’s location errors is ±|δtotalX0|, ±|δtotalY0| and ±|δtotalZ0| in the zonal, meridional and vertical
directions, respectively. This means that the actual specular point might occur in a region that forms a 2|δtotalX0| × 2|δtotalY0| × 2|δtotalZ0|
cube and that the detected point is on the centroid of this cube.

and the baseline length di for each radar link Li . For ex-
ample, ψ i,0x = ψ

i,0
y = 0, ψ i,0z = 30◦ and di = 250km means

that transmitter Ti is 250 km, 30◦ east by south of the re-
ceiver RX. Further, ψX,ix = 5◦, ψY,iy = 0, ψZ,iz = 0 means
one receiver arm (y axis) points to 60◦ east by north with
a 5◦ elevation. The detection area of interest for a multi-
static meteor radar is usually from 70 to 110 km in height
and around 300 km× 300 km in the horizontal. In our pro-
gram, this area needs to be divided into a spatial grid for
sampling. The default value of the sampling grid length is
1 km in height and 5 km in the meridional and zonal direc-
tions. After selecting the desired settings, the program steps
though the sampling grid nodes and calculates the location
errors at each node as described in Fig. 5a. Figure 5b de-
scribes the parameter settings and the transversal calculation
process. For a given setting of radar link Li , the program will
output the squared values of E1-related, E2-related and to-
tal MSE values (E2

total: δ
2
totalX0,δ

2
totalY0,δ

2
totalZ0; E2

1 : δ2
(1)X0,

δ2
(1)Y0,δ

2
(1)Z0; E2

2 : δ2
(2)X0,δ

2
(2)Y0,δ

2
(2)Z0). The location er-

rors can be positive or negative, and thus the spatial resolu-
tions are twice the absolute value of the location errors. For
an example, see Fig. 5c. For a detected MTSP, represented

as (x0,y0,z0) in X0Y0Z0, with δ2
totalX0,δ

2
totalY0 and δ2

totalZ0
equal to 25, 16 and 9 km2, respectively, the actual position of
the MTSP could occur in an area that is ± 5, ± 4 and ± 3 km
around (x0,y0,z0) with equal probability. Consequently, the
zonal, meridional and vertical resolutions are 10, 8 and 6 km,
respectively.

The HM analyzes the vertical resolution (corresponding
to δZ0 in our paper) in a two-dimensional vertical section
(corresponding to the X0Z0 plane in our paper). To compare
with Hocking’s work, ψ i,0z is set to 180◦, and the other five
coordinate transformation angles are all set to zero with d
equal to 300 km. The half-pulse length S is set to 2 km and
δ(191) to 35◦. Calculating in the X0Y0 plane only should
have degraded our method into Hocking’s two-dimensional
analysis method but does not because the HM method ig-
nores δRs. In fact, the HM considers onlyE2 andRsδθ in the
X0Y0 plane. Consequently, we need to further set fR(θ,φ),
fθ (θ,φ) and fφ(θ,φ) to be zero. When this is done, our
method degrades into the HM. Hocking’s results are shown
as the absolute value of vertical location error normalized
relative to the half-pulse width |δZ0|/S. Hereinafter, |E|/S
is referred to as the normalized spatial resolution, such as
δ(1)X0 and δtotalY0, where E represents the location errors
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Figure 6. The normalized vertical resolution distribution in a vertical section from 50 to 120 km height when the error term “δRs” is ignored.
Panels (a–c) are the total, Rsδθ -related and E2-related normalized resolution distributions, respectively. These results are the same as those
produced in Hocking’s work (Hocking, 2018). The two black arrows represent the positions right above the transmitter (Tx) and the receiver
(Rx) and the transmitter–receiver separation is 300 km. The region between the two oblique black lines is the sampling volume for the
receiving array because the elevation angle is beyond 30◦ to reduce influence from potential mutual antenna coupling or from other obstacles
in the surrounding area. Except the region at large elevation angles (i.e., 90◦), the E2-related resolution values are much lower than the Rsδθ -
related errors. The Rsδθ -related resolution distribution only depends on the receiving antennas. Thus, the total vertical resolution distribution
is nearly unchanged with the variation of the transmitter–receiver distance. Normalized resolution values that exceed 3 km (which correspond
12 km vertical resolution) are not shown.

in a direction. Thus, the spatial resolutions are 2S times the
normalized spatial resolutions.

Our normalized vertical resolution distributions are shown
in Fig. 6a and are the same as those presented in Hocking’s
work (Hocking, 2018). The distribution of Rsδθ -related, E2-
related and total normalized vertical resolution distributions
are shown in Fig. 6 from left to right, respectively. In most
cases, E2 is an order of magnitude smaller than Rsδθ . Only
in the region directly above the receiver does E2 have the
same magnitude as Rsδθ . In other words, only in the region
directly above the receiver can E2 influence the total reso-
lution. E2 is related to the bistatic configuration but Rsδθ is
not. Therefore, in the HM, the distribution of the total vertical
resolution varies slightly with d . After adding the error term
δRt , which is related to the bistatic configuration, the nor-
malized total vertical spatial-resolution distribution changes
more obviously with d , as the first two rows in Fig. 7 show.
The region between the two black lines represents the sam-
pling volume for the receiver where the elevation angle is
beyond 30◦. As the transmitter–receiver distance becomes
longer, resolutions in this sampling volume are not always
acceptable. In the first row of Fig. 7, the transmitter–receiver
distance is 300 km and about half of the region between
the two black lines has normalized vertical resolution values
larger than 3 km. Because our analytical method can obtain
spatial resolutions in three-dimensional space, the third row
of Fig. 7 shows the horizontal section at 90 km altitude for
the second row of Fig. 7.

To get a perspective on the spatial-resolution distribution
in three-dimensional space, Fig. 8 shows the normalized

zonal, meridional and vertical spatial-resolution distributions
for a multistatic radar link whose transmitter–receiver sepa-
ration is 180 km and the transmitter is 30◦ south by east of
the receiver. The classic monostatic meteor radar is a special
case of a multistatic meteor radar system whose the baseline
length is zero. By setting the transmitter–receiver distance
to be zero in our program, a monostatic meteor radar’s spa-
tial resolution can also be obtained. In this case, the spatial-
resolution distributions are highly symmetrical and corre-
spond to the real characteristics of monostatic meteor radar
(this is not shown here but can be found in Fig. S1 in the Sup-
plement). In the discussion above, the receiver and transmit-
ter antennas are all coplanar. By varying ψX,ix , ψY,iy and ψZ,iz

in our program, non-coplanar receiver–transmitter antenna
situations can also be studied. Slightly tilting the receiver
horizontal plane (for example, set ψX,ix = ψ

Y,i
y = 5◦) causes

the horizontal spatial distributions to change (see Figs. S2
and S3 in the Supplement). In practice, the Earth’s curvature
and local topography will lead to tilts in the receiver hori-
zontal plane. This kind of tilt should be taken into account
for multistatic meteor radar systems, and details relating to
the parameter selections for this can be found in the Supple-
ment.

The AoA error propagation process has been simplified
to yield Eqs. (3) and (4) by using constant PDMEs. This is
for the sake of providing the most general example of our
method. If the analysis of AoA errors were to start from
the original received voltage signals (e.g., Vaudrin et al.,
2018), the error propagation process would depend on the
specific receiver interferometer configuration and the specific
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Figure 7. The normalized vertical resolution distribution using the analytical method described in this paper. The first and second rows
represent a vertical section of height from 50 to 120 km. The third row represents the horizontal section at 90 km, and the receiving array
is at the origin, with positive coordinate values representing the eastward or northward directions. The first row has the same parameters
settings as Fig. 6 and is used to compare with Fig. 6. The E1-related resolution will change with the transmitter–receiver configuration
because it considers the error term “δRs”. Thus, the total vertical resolution will change with the transmitter–receiver configuration. With
the transmitter–receiver distance varying from 300 km (the first row) to 150 km (the second row), the total vertical resolution distribution is
clearly changed. The third row is the perspective to the horizontal section at 90 km altitude for the second row. Normalized resolution values
that exceed 3 km are not shown.

signal processing method. The approach used here can be
applied to different receiver antenna configurations or new
signal processing algorithms. This would involve substitu-
tion of δ(191) and δ(192) into other mutually independent
measuring errors to suit the experimental arrangement and
then establishing a new AoA error propagation to obtain δθ
and δφ. This means rewriting the second and third term in
Eq. (11) to the determine a new AoA error propagation ma-
trix and new mutually independent measuring errors, respec-
tively.

It worth noting that except for using the PDMEs as the start
of the error propagation, all the analytical processes are built
on mathematical error propagations. PDMEs include uncon-
trolled errors, such as those resulting from the returned wave
being scattered from a few Fresnel zones along the meteor

trail, phase calibration inaccuracy and noise. However, there
are other error sources in practice. For example, aircraft or
lightning interference and fading clutter from obstacles can
cause further measurement errors in the AoA. These issues
are related to actual physical situations and are beyond the
scope of this text.

Knowing the valid observational volume for meteor detec-
tions and the errors associated with each detection is vital
for a meteor radar system as it determines which meteors
can be used to calculate wind velocities and also the uncer-
tainties associated with the winds themselves. To reduce the
influence of mutual antenna coupling or ground clutter, the
elevation angle of a detection should be above a threshold,
with 30◦ being typically used, and this sets the basic valid
observational volume. Within this, the normalized vertical
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Figure 8. The 3D contour plot of the normalized resolution distribution for a multistatic radar link whose baseline length is 180 km and
whose transmitter is 30◦ south by east of the receiver. The black dots represent the position right above the transmitter, and the receiving
array is at the origin of the axes. Panels (a–c) are the normalized resolution distributions in the zonal, meridional and vertical directions,
respectively. The subplot’s four slice circles from bottom to top are the horizontal section at 50, 70, 90 and 110 km height, respectively. The
region whose elevation angle of the receiver is less than 30◦ is not shown, and therefore the slice circles become larger from the bottom to
the top. Normalized resolution values that exceed 4 km (which corresponds to 16 km resolution) are not shown.

resolution varies, and in Figs. 7 and S4 in the Supplement
only the areas of normalized vertical resolution with values
below 3 km are shown, which we argue represents an ac-
ceptable sampling volume. In addition, as the transmitter–
receiver distance increases, the sampling volume becomes
smaller and the vertical resolution in this volume is reduced.
This effect limits the practically usable transmitter–receiver
distances for multistatic meteor radars.

The geometry of the multistatic meteor radar case also im-
pacts on the ability of the radar to measure the Doppler shifts
associated with drifting meteor trails within the observational
volume. This is because the measured Doppler shift is pro-
duced by the component of the wind field in the direction
of the Bragg vector, which in the multistatic configuration is
divergent from the receiver’s line of sight (see e.g., Spargo
et al., 2019). The smaller the angle between the Bragg vec-
tor and the wind fields is, the larger the Doppler shift (and
the higher the SNR) will be. This means that within the ob-
servational volume, the angular diversity of the Bragg vector
should be taken into account in the wind retrieval process. A
discussion of wind retrievals is beyond the scope of this text
and will be considered in future work.

4 Conclusions

In this study, we have presented preliminary results from an
analytical error method analysis of multistatic meteor radar
system measurements of angles of arrival. The method can
calculate the spatial resolution (the spatial uncertainty) in

the zonal, meridional and vertical directions for an arbitrary
receiving antenna array configuration in three-dimensional
space. A given detected MTSP is located within the spatial-
resolution volume with an equal probability. Higher values
of spatial-resolution mean that this region needs more meteor
counts or longer averaging to obtain a reliable accuracy. Our
method shows that the spatial configuration of a multistatic
system will greatly influence the spatial-resolution distribu-
tion in ENU coordinates and thus will in turn influence the re-
trieval accuracy of atmospheric parameters such as the wind
field. The multistatic meteor radar system’s spatial-resolution
analysis is a key point in analyzing the accuracy of retrieved
wind and other parameters. The influence of the spatial reso-
lution on wind retrieval will be discussed in future work.

Multistatic radar systems come in many types, and the
work in this paper considers only single-input (single-
antenna transmitter) and multi-output (five-antenna interfer-
ometric receiver) pulse radar systems. Although the single-
input multi-output (SIMO) pulse meteor radar is a classic
meteor radar system, other meteor radar systems, such as
continuous-wave radar systems and MISO (multiple-antenna
transmitter and single-antenna receiver), also show good ex-
perimental results. Using different types of meteor radar sys-
tems to constitute a meteor radar network is the future trend,
and so we will add the spatial-resolution analysis of other
system types using our method in the future. We will also
validate and apply the spatial-resolution analysis in the hori-
zontal wind determination to a multistatic meteor radar sys-
tem that will be soon be installed in China.
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Appendix A

A1 Coordinates rotation matrix

For a right-handed rectangular coordinate system XYZ, we
rotate clockwise 9x about the x axis to obtain a new coor-
dinate. We specify that clockwise rotation satisfies the right-
hand screw rule. A vector in XYZ, denoted as (x,y,z)T, is
represented as (x′,y′,z′)T in the new coordinate. The rela-
tionship between (x,y,z)T and (x′,y′,z′)T is as follows:(
x′

y′

z′

)
= Ax(ψx)

(
x
y
z

)
=

(
1 0 0
0 cosψx sinψx
0 −sinψx cosψx

)(
x
y
z

)
. (A1)

Similarly, we rotate 9y clockwise about the y axis to
obtain a new coordinate. The presentation for a vector in
new coordinates and the original can be linked by a matrix,
Ay(ψy):

Ay(ψy)=

cosψy 0 −sinψy
0 1 0

sinψy 0 cosψy

 , (A2)

we rotate9z clockwise about the z axis to obtain a new coor-
dinate. The presentation for a vector in new coordinates and
original can be linked by a matrix Az(ψz):

Az(ψz)=

 cosψz sinψz 0
−sinψz cosψz 0

0 0 1

 . (A3)

For any two-coordinate systems XYZ and X′Y ′Z′ with
co-origin, one can always rotate 9x , 9y and ψz clockwise in
the order of the x, y and z axes, respectively, transforming
XYZ to X′Y ′Z′ (Fig. A1). The presentation for a vector in
X′Y ′Z′ andXYZ can be linked by a matrix, AR(ψx,ψy,ψz).

AR(ψx,ψy,ψz)= Az(ψz)Ay(ψy)Ax(ψx)

=

 cosψy cosψz sinψx sinψy cosψz+ cosψx sinψz
−cosψy sinψz −sinψx sinψy sinψz+ cosψx cosψz

sinψy −sinψx cosψy

−cosψx sinψy cosψz+ sinψx sinψz
cosψx sinψy sinψz+ sinψx cosψz

cosψx cosψy

 (A4)

We call AR(ψx,ψy,ψz) the coordinate rotation matrix.

A2 AoA measuring errors

In coordinate XYZ, AoAs includes zenith angle θ and az-
imuth angle φ. In the plane wave approximation, the radio
wave is at angle γ1 and γ2 with an antenna array (Fig. A2).
There is a phase difference 191 and 192 between two an-

Figure A1. Schematic diagram of Coordinates rotation.

Figure A2. The receiving array geometry (only three antennas are
shown for clarity).

tennas (Fig. 1). 191 and 192 can be expressed as follows:

191 =
2πD1 cosγ1

λ
, (A5)

192 =
2πD2 cosγ2

λ
. (A6)

Using γ1, γ2 the AoA can be expressed as follows:

cos2γ1+ cos2γ2+ cos2θ = 1, (A7)

tanφ =
cosγ2

cosγ1
, (A8)

or in another expression:

cosγ1 = sinθ cosφ, (A9)
cosγ2 = sinθ sinφ, (A10)

substitute cosγ1 and cosγ2 in Eqs. (A7) and (A8) by using
Eqs. (A5) and (A6):

cos2θ = 1−
(
λ

2π

)2
(
1291

D2
1
+
1292

D2
2

)
, (A11)

ln(tanφ)= ln(D1192)− ln(D2191) . (A12)

Equations (A11) and (A12) link the phase difference with
the AoA and expanding θ and φ, 191 and 192 to the first
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order.

2cosθ sinθδθ

=

(
λ

2π

)2

·

[
2191δ (191)

D2
1

+
2192δ (192)

D2
2

]
(A13)

δφ =
sinφ cosφ
192

δ (192)−
sinφ cosφ
191

δ (191) (A14)

For Eqs. (A13) and (A14), substitute191 and192 using
Eqs. (A5), (A6) and (A9), (A10) to the functions of θ , φ.
Now Eqs. (3) and (4) have been proven. If the zenith angle
θ = 0◦, we stipulate that cosφ

sinθ and sinφ
sinθ are 1.

A3 Radial distance measuring error

Expanding Rs, R and cosα in Eq. (1) to the first order, δRs
can be expressed as a function of δR and δ(cosα):

δRs =
R2
− 2Rd cosα+ d2

2(R− d cosα)2
δR

+
d(R2

− d2)

2(R− d cosα)2
δ(cosα), (A15)

where α is the angle between Rs and the Xi axis. We denote
the zenith and azimuth angles in coordinateXiYiZi as θ ′ and
φ′, respectively. The relationship between α and θ ′, i.e., φ′,
is

cosα = sinθ ′ cosφ′. (A16)

Using the coordinate rotation matrix AR(ψ
X,i
x ,ψ

Y,i
y ,ψ

Z,i
z )

and sinθ ′ cosφ′ can be expressed as the function of AoA:

sinθ ′ cosφ′ = A11 sinθ cosφ+A12 sinθ sinφ

+A13 cosθ. (A17)

Aij represent the elements in matrix AR(ψ
X,i
x ,ψ

Y,i
y ,ψ

Z,i
z )

for i,j = 1,2,3.
Using Eqs. (A16) and (A17), δ(cosα) can be expressed as

a function of δθ and δφ as follows:

δ (cosα)

=
(
A11 cosθ cosφ+A12 cosθ sinφ−A13 sinθ

)
δθ

+
(
−A11 sinθ sinφ+A12 sinθ cosφ

)
δφ. (A18)

Finally, δRs can be expressed as the function of δR,δθ,δφ
as follows.

δRs = F(δR,δθ,δφ)= fR(θ,φ)δR+ fθ (θ,φ)δθ

+ fφ(θ,φ)δφ (A19)

fR(θ,φ)=

d2
+R2

− 2Rd(A11 sinθ cosφ+A12 sinθ sinφ+A13 cosθ)

2[R− d(A11 sinθ cosφ+A12 sinθ sinφ+A13 cosθ)]2 (A20)

fθ (θ,φ)=

d(R2
− d2)(A11 cosθ cosφ+A12 cosθ sinφ−A13 sinθ)

2[R− d(A11 sinθ cosφ+A12 sinθ sinφ+A13 cosθ)]2 (A21)

fφ(θ,φ)=

d(R2
− d2)(−A11 sinθ sinφ+A12 sinθ cosφ)

2[R− d(A11 sinθ cosφ+A12 sinθ sinφ+A13 cosθ)]2 (A22)

A4 True error of E2

The total length of side AC and side AB represents the pulse
width. Side AC equals side CB and they are both equal to half
of the pulse width S. In XiYiZi , the presentation of point A
is (xi,yi,zi), the receiver is (0,0,0) and Ti is (d,0,0). The
distance between Ti and A is Ri = R−Rs. We denote the
presentation of point B and C in XiYiZi as (xB ,yB ,zB) and
(xC,yC,zC), respectively. We use vector collinear to estab-
lish equations for B and C. Therefore, one can obtain the
coordinates of point B and C by the following equations:

(xB ,yB ,zB)
T
=
Rs− S

Rs
(xi,yi,zi)

T, (A23)

(xC − d,yC,zC)
T
=
Ri − S

Ri
(xi − d,yi,zi)

T. (A24)

For isosceles triangle ABC, the perpendicular line AD in-
tersects side CB at the midpoint D. Thus, we obtain the co-
ordinate value of D in XiYiZi as follows:

(xD,yD,zD)=
1
2
(xB + xc,yB + yc,zb+ zc)

=
1
2

(
(a1+ a2)xi − a2d

+ d,(a1+ a2),yi(a1+ a2)zi
)
. (A25)

We denote a1 =
Rs−S
Rs

, a2 =
Ri−S
Ri

. Finally, one can obtain the
error vector of E2 as vector DA in XiYiZi :

DA=

(
(2− a1− a2)xi + d(a2− 1)

2
,

2− a1− a2

2
yi,

2− a1− a2

2
zi

)T

. (A26)

A5 Calculate AoA and range information in XiYiZi

For a space point (xi,yi,zi) in XiYiZi , which represents a
MTSP, Rs can be solved easily as follows:

Rs = (xi,yi,zi)

Rs =

√
x2
i + y

2
i + z

2
i . (A27)
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The distance between transmitter Ti and receiver RX is
di , as shown in Fig. 4a. Thus, the coordinate value of Ti in
XiYiZi is (di,0,0), and Ri can be solved as follows:

Ri =

√
(xi − di)2+ y

2
i + z

2
i . (A28)

Before we calculate the AoAs in XiYiZi , the representa-
tion of unit vectors of the x, y and z axes in XiYiZi needs
to be known. In XYZ those unit vectors are easily repre-
sented as (1,0,0)T, (0,1,0)T, (0,0,1)T. Through the coordi-
nate rotation matrix AR(ψ

X,i
x ,ψ

Y,i
y ,ψZ,iz ), one can get those

unit vector’s representation in XiYiZi as follows:

nx = (A11,A21,A31)
T

ny = (A12,A22,A32)
T

nz = (A13,A23,A33)
T. (A29)

nx , ny and nz are unit vectors of the x, y and
z axes, respectively, and Aij is the element’s 3× 3 matrix
AR(ψ

X,i
x ,ψ

Y,i
y ,ψZ,iz ) for i,j = 1,2,3. Now the AoA can be

obtained as follows:

cosθ =
Rs

Rs
·nz, (A30)

sinθ =
√

1− cos2θ, (A31)

cosφ =
Rs

Rs
·
nx

sinθ
, (A32)

sinφ =
Rs

Rs
·
ny

sinθ
, (A33)

for 0◦ < θ < 180◦ and 0◦ ≤ φ < 360◦. When θ = 0◦, we
handle it the way as same as in Sect. A2.
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