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Abstract. Clouds impact the radiative transfer of the Earth’s
atmosphere and strongly influence satellite measurements in
the ultraviolet–visible (UV–vis) and infrared (IR) spectral
ranges. For satellite measurements of trace gases absorbing
in the UV–vis spectral range, particularly clouds ultimately
determine the vertical sensitivity profile, mainly by reducing
the sensitivity for trace-gas columns below the cloud.

The Mainz iterative cloud retrieval utilities (MICRU) al-
gorithm is specifically designed to reduce the error budget
of trace-gas retrievals, such as those for nitrogen dioxide
(NO2), which strongly depends on the accuracy of small
cloud fractions (CFs) in particular. The accuracy of MICRU
is governed by an empirical parameterisation of the viewing-
geometry-dependent background surface reflectivity taking
instrumental and physical effects into account. Instrumental
effects are mainly degradation and polarisation effects; phys-
ical effects are due to the anisotropy of the surface reflectiv-
ity, e.g. shadowing of plants and sun glitter.

MICRU is applied to main science channel (MSC) and
polarisation measurement device (PMD) data collected be-
tween April 2007 and June 2013 by the Global Ozone Mon-
itoring Experiment 2A (GOME-2A) instrument aboard the
MetOp-A satellite. CFs are retrieved at different spectral
bands between 374 and 758 nm. The MICRU results for
MSC and PMD at different wavelengths are intercompared
to study CF precision and accuracy, which depend on wave-
length and spatial correlation. Furthermore, MICRU results
are compared to FRESCO (fast retrieval scheme for clouds
from the oxygen A band) and OCRA (optical cloud recogni-
tion algorithm) operational cloud products.

We show that MICRU retrieves small CFs with an accu-
racy of 0.04 or better for the entire 1920 km wide swath with
a potential bias between −0.01 and −0.03. CFs retrieved
at shorter wavelengths are less affected by adverse surface
heterogeneities. The comparison to the operational CF algo-
rithms shows that MICRU significantly reduces the depen-
dence on viewing angle, time, and sun glitter. Systematic ef-
fects along coasts are particularly small for MICRU due to
its dedicated treatment of land and ocean surfaces.

The MICRU algorithm is designed for spectroscopic
instruments ranging from the GOME to Sentinel-
5P/Tropospheric Monitoring Instrument (TROPOMI)
but is also applicable to UV–vis imagers like the Advanced
Very High Resolution Radiometer (AVHRR), the Moder-
ate Resolution Imaging Spectroradiometer (MODIS), the
Visible Infrared Imaging Radiometer Suite (VIIRS), and
Sentinel-2.

1 Introduction

Clouds are the most clearly visible component of the atmo-
sphere, both from the ground and from space. Their presence
increases the shortwave albedo of the Earth and hence re-
duces the amount of solar radiation absorbed by the Earth.
Clouds furthermore alter the radiative transfer (RT) within
the atmosphere by effectively shielding the underlying at-
mosphere and surface from observation. This paper focuses
on the influence of clouds on the measurement sensitivity
for atmospheric trace gases retrieved from satellite observa-
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tions in the UV and visible (UV–vis) spectral ranges. The
largest portion of the Earth’s surface is darker than overlying
clouds. In this scenario, the measurement sensitivity – that
is, the air mass factor (AMF) (Noxon et al., 1979; Solomon
et al., 1987; McKenzie et al., 1991; Perliski and Solomon,
1993; Sarkissian et al., 1995; Rozanov and Rozanov, 2010;
Deutschmann et al., 2011) – is decreased for trace-gas abun-
dances below clouds and increased above (see, e.g. Wagner
et al., 2003). For trace gases located within clouds, however,
the influence of clouds depends on the cloud characteristics
and trace-gas profiles. In any case, cloud properties need to
be carefully constrained in order to achieve high accuracy
in tropospheric trace-gas measurements from satellites (De
Smedt et al., 2008; Liu et al., 2011; Barkley et al., 2012;
Lorente et al., 2017). Boersma et al. (2004), for example, es-
timated the uncertainty in the tropospheric air mass factor for
GOME measurements of nitrogen dioxide (NO2) due to un-
certainties in the cloud fraction between 25 % and 30 % over
large parts of North America, Europe, and southeast Asia,
where most anthropogenic NO2 emissions occur.

Satellite retrievals of trace gases with high abundances in
the boundary layer depend on the amount and properties of
clouds within one satellite pixel. The effective cloud fraction
(CF, c) is one measure to quantify cloud contamination. CF
is defined by

c =
R−Rmin

Rmax−Rmin
, (1)

based on the top-of-atmosphere (TOA) reflectance

R =
πI

E0 cosϑ0
, (2)

with TOA radiance I , solar irradiance E0, and solar zenith
angle ϑ0. This definition of c applies the independent pixel
approximation (IPA), neglecting the influence of horizontal
RT (Martin et al., 2002). Rmin and Rmax in Eq. (1) denote
lower and upper thresholds corresponding to reflectances
from cloud-free and completely cloudy pixels, respectively.
Rmin depends on the reflecting properties of the surface and
viewing geometry. Hence, an Rmin approximating the time
dependency of the actual bidirectional reflectance distribu-
tion function (BRDF) is required for any geolocation in order
to retrieve small CFs at high accuracy. In contrast, Rmax de-
pends on cloud albedo. The cloud albedo depends on optical
density and scattering properties, which can be described by
an a priori cloud model, in addition to the observation geom-
etry. Rmax may be empirically determined (e.g. Grzegorski
et al., 2006; Lutz et al., 2016) or calculated using a radiative
transfer model (RTM) (e.g. Wang et al., 2008). The Mainz
iterative cloud retrieval utilities (MICRU) algorithm applies
a Lambertian cloud model with a fixed albedo of 0.8 (e.g.
McPeters et al., 1996; Stammes et al., 2008; Vasilkov et al.,
2017), rendering Rmax depending on observation geometry
alone.

Within tropospheric trace-gas retrievals, cloudy pixels are
usually flagged by applying a threshold for c between 10 %
and 30 %, and a high accuracy of c is required for the cor-
rection of cloud effects of the remaining pixels. Specifi-
cally, the accurate determination of Rmin is crucial to de-
termine small CFs accurately. Rmin depends on the geolo-
cation and time, and therefore maps of the lower threshold
are needed. The Heidelberg iterative cloud retrieval utilities
(HICRU), for example, derive background maps based on
TOA reflectances using image processing techniques (Grze-
gorski et al., 2006; Grzegorski, 2009). In contrast, Koelemei-
jer et al. (2003) take Rayleigh scattering into account pro-
viding Lambertian-equivalent reflectivity (LER) maps. More
sophisticated methods apply a complex BRDF accounting
for the anisotropy of the surface reflectivity (Vasilkov et al.,
2017; Lorente et al., 2018) or a geometry-dependent LER
model (Vasilkov et al., 2018; Loyola et al., 2020).

Algorithms for the retrieval of background maps usually
rely on completely cloud-free observations over a certain lo-
cation. Here, we are interested in CFs of spectroscopic mea-
surements. Compared to imager instruments, spectrometers
are characterised by lower spatial but much higher spectral
resolution. For example, the Visible Infrared Imaging Ra-
diometer Suite (VIIRS) imager features 22 spectral channels
at a resolution of approximately 400 m, whereas the spec-
trometer Ozone Monitoring Instrument (OMI) offers 1176
spectral channels at a nadir resolution of 13 km× 24 km
(Schueler et al., 2002; Levelt et al., 2006; KNMI, 2019;
de Graaf et al., 2016; Sihler et al., 2017). Based on this
difference of spatial resolution, it becomes evident that the
probability to obtain a completely cloud-free observation
over a certain location is much higher for imagers than for
spectrometers (Krijger et al., 2007). Therefore, background-
reflectance-retrieving algorithms applicable to spectrometer
data have to deal with much sparser statistics than those tai-
lored for imagers.

Algorithms deriving cloud fractions from spectroscopic
measurements feature different approaches for background
maps. One of the first algorithms published for the Global
Ozone Monitoring Instrument (GOME; Burrows et al., 1999)
is the initial cloud fitting algorithm (ICFA), applying the
global ETOPO5 digital elevation model (Kuze and Chance,
1994; Tuinder et al., 2004). Then, 7 years later, Koele-
meijer et al. (2001) published the fast retrieval scheme for
clouds from the oxygen A band (FRESCO), whose develop-
ment continued as FRESCO+ (Fournier et al., 2006; Wang
et al., 2008; TEMIS, 2021). Operational algorithms, like
FRESCO+, apply background maps from auxiliary instru-
ments in order to provide data directly after launch. The
algorithms are then usually updated by implementing dif-
ferent background maps as the mission evolves. The back-
ground maps may be either supplied from spectrometers
or images. FRESCO version 6, for example, applies im-
ager data from the Medium Resolution Imaging Spectrom-
eter (MERIS), resolving albedo gradients, e.g. over coast-
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lines, much better than the spectrometer data (Popp et al.,
2011). Kokhanovsky et al. (2009), on the other hand, inter-
prets MERIS data using threshold techniques to derive cloud
fractions for the Scanning Imaging Absorption Spectrometer
for Atmospheric Cartography (SCIAMACHY; Bovensmann
et al., 1999). FRESCO version 7 features another approach
for the Global Ozone Monitoring Experiment 2 (GOME-2;
Callies et al., 2000; Munro et al., 2006, 2016) by apply-
ing LER maps derived from GOME-2 itself (TEMIS, 2021;
Tilstra et al., 2017b). Version 8 of FRESCO then applies a
LER climatology derived from GOME-2 data by taking the
viewing geometry into account. In contrast to FRESCO, the
optical cloud recognition algorithm (OCRA) applies back-
ground maps derived in the RGB colour space (Loyola, 1998;
Loyola et al., 2007; Lutz et al., 2016). In its third version, de-
veloped for GOME-2 and the Tropospheric Monitoring In-
strument (TROPOMI; Veefkind et al., 2012), OCRA also ac-
counts for degradation, viewing geometry dependence, and
sunglint (Lutz et al., 2016). The fourth version of OCRA
applied to TROPOMI is described by Loyola et al. (2018).
For OMI, the first version of reprocessed OMI/Aura Level-
2 cloud data product (OMCLDO2) (Stammes et al., 2008)
uses albedo data from GOME (Koelemeijer et al., 2003)
and Total Ozone Mapping Spectrometer (TOMS) (Herman
and Celarier, 1997) for calculating effective cloud fractions,
whereas OMCLDO2 version 2 (Veefkind et al., 2016) applies
a LER database derived from OMI measurements themselves
as published by Kleipool et al. (2008). It is preferred to apply
background maps from the same sensor for cloud retrievals
– like in Grzegorski et al. (2006), Veefkind et al. (2016), and
Tilstra et al. (2017b) – in order to achieve higher CF accuracy
especially at small CFs because radiometric properties and
their dependence on viewing angles vary between sensors
(e.g. Tilstra et al., 2012). This approach is especially suitable
for scientific studies using data processed offline. However,
operational CF processors require background obtained from
auxiliary sensors because data from the same sensor are then
not yet available.

Recent developments also focus on applying geometry-
dependent background maps in CF algorithms. HICRU em-
pirically derives lower thresholds for each of the three sub-
pixels of GOME separately (Grzegorski et al., 2006). For
instruments featuring wider swaths like OMI and GOME-
2, the limitations of the LER surface model become more
important (Vasilkov et al., 2017; Lorente et al., 2017, 2018;
Fasnacht et al., 2019). Lorente et al. (2018) find biases in
cloud fractions of up to 50 % between backward-scattering
and forward-scattering geometries in the GOME-2 FRESCO
and 26 % in the OMI OMCLDO2 cloud algorithms. Vasilkov
et al. (2017) show that applying a geometry-dependent LER
instead of a regular LER can lead up to a 50 % increase of the
trace-gas column density over polluted areas. Furthermore,
Vasilkov et al. (2018) compared CFs derived using geometry-
dependent LER with those based on regular LER and found
CF differences of up to 0.07, especially for small CFs. These

absolute differences correspond to relative errors that have
a significant impact on trace-gas retrievals. Aerosols, how-
ever, reduce the effect of the BRDF (Noguchi et al., 2015).
These recent studies rely on BRDF information derived from
Moderate Resolution Imaging Spectroradiometer (MODIS;
Justice et al., 1998) measurements because similar informa-
tion from spectrometers is still too sparse to derive all coef-
ficients of, for example, the Ross–Li BRDF model (Wanner
et al., 1995).

This paper presents a new method to derive a geometry-
dependent lower threshold map from spectroscopic measure-
ments. MICRU applies an empirical parameterisation of the
geometry dependence in order to overcome the limitation of
having sparse data per geolocation. MICRU derives the lower
threshold as LER in contrast to its heritage algorithm (HI-
CRU), which applies TOA reflectances directly. Hence, first-
order atmospheric effects are accounted for. The remaining
dependencies on the viewing angle, which may be either in-
strumental artefacts or physical, are modelled by a combina-
tion of a second-order polynomial and a reduced model for
surface effects of land and sun glitter over ocean (Cox and
Munk, 1954a; Harmel and Chami, 2013; Martin et al., 2016).
It is noted that the idea of modelling the viewing angle de-
pendence using a second-order polynomial is not new. For
example, Várnai and Marshak (2007) used a second-order
polynomial to model the mean optical thickness of inhomo-
geneous clouds in MODIS measurements.

In this study, we apply MICRU to GOME-2 data exem-
plarily. Unlike its heritage algorithm (HICRU), MICRU is
applicable to almost arbitrary wavelength intervals in the
UV–vis wavelength region. MICRU furthermore uses an RT
model to reduce the influence of atmospheric scattering for
the retrieval of Rmin. MICRU CFs are evaluated between
382 and 757.5 nm in order to investigate the spectral sta-
bility of the algorithm, the influence of the surface on CF
accuracy, and the influence of spatial aliasing specific to
GOME/GOME-2 instruments (EUMETSAT, 2015).

The MICRU algorithm has been developed as part of the
cloud fraction verification activities for the S5P/TROPOMI
(Veefkind et al., 2012) and Sentinel-5 satellite missions.
The operational cloud fraction algorithm for Sentinel-5P
(S5P)/TROPOMI is OCRA (Loyola et al., 2018), and
FRESCO is an auxiliary cloud product used for selected
level-2 products (Wang et al., 2008), respectively. A com-
parison between all three algorithms is performed in Sect. 3
after introducing MICRU in Sect. 2.

2 Method

MICRU is designed to be applicable to UV–vis satellite sen-
sors operating on Sun-synchronous orbits. In this study, we
examine its applicability using GOME-2 data. This section
first describes the required input data (Sect. 2.1) and the con-
version between TOA reflectances R to the LER (Sect. 2.2).
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Section 2.3 then details the retrieval of Tmin maps. The calcu-
lation of Rmax is described in Sect. 2.4. Section 2.5 specifies
the implementation of the MICRU algorithm, followed by a
description of the data sets that MICRU results are compared
to (Sect. 2.6).

2.1 Input data

2.1.1 GOME-2 data

The primary data used in this work are radiances measured
by the GOME-2 instrument aboard the MetOp satellites.
There are three essentially identical MetOp satellites in to-
tal: MetOp-A was launched in 2006, followed by MetOp-B
and MetOp-C in 2012 and 2018, respectively. The MetOp
satellites fly in a Sun-synchronous orbit with an Equator-
crossing time around 09:30 LST (local solar time) (Munro
et al., 2016). This study applies data from GOME-2A only
as it features the longest uninterrupted time series at the time
of the MICRU algorithm development.

GOME-2 has four spectral main science channels (MSCs)
with a spectral resolution between 0.26 and 0.51 nm rang-
ing between 240 and 790 nm. Each MSC band features 1024
spectral channels. This study uses GOME-2A MSC data col-
lected between February 2007 and June 2013. Data before
and after this period are discarded in order to avoid inter-
ferences from instrument startup and a change of the oper-
ational swath width, respectively (EUMETSAT, 2015). Fur-
thermore, GOME-2 has two polarisation measurement de-
vices (PMDs) covering a similar spectral range but at a much
coarser spectral resolution: PMD-PP and PMD-SP measure
the polarised intensity parallel and perpendicular to the slit
of the spectrometer, respectively. Lang (2010) defines 15
discrete wavelength intervals for each PMD instrument. On
11 March 2008, the PMD band definitions of GOME-2A
were updated to version 3.1 (EUMETSAT, 2015; Munro
et al., 2016). Therefore, PMD data obtained before April
2008 are disregarded here in order to achieve a consistent
PMD data set. All spectral data are contained in the level-1b
(L1b) data (processor version 5.3) provided by EUMETSAT.

GOME-2 is a scanning spectrometer featuring a nomi-
nally 1920 km wide swath, which was reduced to 960 km
in July 2013 (Munro et al., 2016). One swath consists of
32 MSC or 256 PMD pixels, respectively. One swath is di-
vided into a forward and a backward scan. The scanner turns
3 times faster during the backward scan resulting in 3 times
larger pixels, which are discarded altogether in the follow-
ing. Hence, 24 MSC or 192 PMD pixels remain, respectively.
At nadir, the nominal (that is, forward scan) MSC pixel size
is 40 km× 80 km in along- and across-track directions, re-
spectively. The PMDs feature an 8 times higher acquisition
frequency, leading to a smaller pixel size of 40 km× 10 km.
The illumination-observation geometry is defined by the so-
lar zenith angle (SZA) θ0, the viewing zenith angle (VZA) θ ,
and the relative azimuth angle (RAA) φ as sketched in Fig. 1.

Figure 1. Angle definition at the surface: solar zenith angle θ0,
viewing zenith angle θ , relative azimuth angle φ, scattering angle
θs, and reflected Sun angle θr. Zenith is towards z.

The angles are defined at the pixel centre at the surface. It is
noted that the along-track pixel size increases with increasing
VZA due to the Earth’s curvature. Hence, the pixel shape be-
comes trapezoidal (de Graaf et al., 2016; Sihler et al., 2017).

In the spectral domain, the MICRU algorithm is applied
to 14 MSC and 16 PMD channels in order to assess the in-
fluence of systematic differences on the accuracy of c. In
principle, the radiometric input required by MICRU may be
integrated along any spectral interval, but it is beneficial to
avoid significant absorption structures in order to minimise
the influence of atmospheric absorptions. A dependence on
the accuracy of the spectral calibration, which may not be op-
timal, is reduced by avoiding narrowband absorption features
and Fraunhofer lines. Furthermore, broadband absorption by
molecules and aerosols interferes with the inversion of the
LER from measured R. Interferences may not be avoided
completely in the UV–vis, but MICRU MSC channels are de-
fined by minimising interferences from broad- and narrow-
band spectral features caused by Fraunhofer lines, inelastic
Raman scattering (Grainger and Ring, 1962; Solomon et al.,
1987, Ring effect), and molecular absorption by H2O, O2,
and O4. The TOA reflectance Rk of MSC channel k is de-
rived from the measured spectrum R(λ) by applying

Rk = R(λ)×Kk(λ), (3)

whereKk is the convolution kernel of channel k.Kk indicates
either Gaussian or boxcar convolution kernels with different
widths as listed in Table 1 and depicted in Fig. 2. The MI-
CRU PMD channels as listed in Table 2 are selected from
predefined PMD bands (Lang, 2010).

The convolution kernels for 14 MICRU MSC channels
are manually defined in the range between 374 and 758 nm.
Hence, CF results are available for a variety of spectral
ranges with different atmospheric trace-gas absorptions. This
is particularly important to improve collocation between
CF and trace-gas measurement featuring different spatial
sensitivities caused by spatial aliasing (EUMETSAT, 2015;
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Table 1. Definition of MICRU MSC channels k with spectral convolution kernelsK centred at λ and widthw. The kernels are either Gaussian
(denoted G) or boxcar (denoted b) shaped. According to the spatial aliasing of GOME-2 (Fig. 3), channels 1, 4, 5, and 10 apply the same
readout time as corresponding MSC or PMD channels in different bands.

Channel Spectral convolution kernel MSC RT Comment

k Centre Width Shape band wavelength

1 374.96 nm 1.00 nm G 2B 375.0 nm Same timing as channel 9
2 381.97 nm 3.57 nm b 2B 382.0 nm Range of PMD-PP band 6
3 388.00 nm 1.00 nm G 2B 388.0 nm KNMI GOME-2 LER at 388 nm
4 389.68 nm 1.00 nm G 2B 389.7 nm Same timing as channel 14
5 424.52 nm 0.64 nm b 3 424.5 nm Timing of PMD-PP band 6
6 425.00 nm 1.00 nm G 3 425.0 nm KNMI GOME-2 LER at 425 nm
7 433.40 nm 1.00 nm G 3 433.4 nm Same timing as channel 14
8 440.00 nm 1.00 nm G 3 440.0 nm KNMI GOME-2 LER at 440 nm
9 460.00 nm 1.00 nm G 3 460.0 nm Range of NO2 retrieval
10 516.67 nm 3.52 nm b 3 519.0 nm Timing of PMD-PP band 9
11 521.77 nm 53.98 nm b 3 521.8 nm Range of PMD-PP band 9
12 670.00 nm 1.00 nm G 4 670.0 nm KNMI GOME-2 LER at 670 nm
13 680.00 nm 1.00 nm G 4 680.0 nm Short of red edge and O2-B band
14 757.50 nm 0.75 nm G 4 757.5 nm Short of O2-A band (FRESCO)

Figure 2. Mean solar spectrum of GOME-2A MSC channel 2B, 3, and 4 recorded on 1 April 2009. Spectral convolution kernels Kk from
Table 1 are plotted in orange. Note the small biases between overlapping bands due to different calibrations.

Table 2. Definition of MICRU PMD channels for PP and SP
polarisation, respectively. PMD band definitions are compiled in
Sect. 5.1.5 of EUMETSAT (2015) or Table 5 by Munro et al. (2016).

Channel PMD approximate RT

PP SP band w/l range wavelength

1 9 6 380–384 nm 382 nm
2 10 7 400–429 nm 413 nm
3 11 8 434–492 nm 460 nm
4 12 9 495–549 nm 519 nm
5 13 10 553–556 nm 554 nm
6 14 11 568–613 nm 589 nm
7 15 12 618–662 nm 639 nm
8 16 14 794–804 nm 799 nm

Munro et al., 2016). Spatial aliasing is caused by the sequen-
tial detector readout in connection with the movement of the
GOME-2 scanning mirror (Sihler et al., 2017). The compari-
son of MICRU results from MSC channels 2, 5, 10, and 11 al-
lows the investigation of spatial aliasing. These channels fur-
thermore allow us to compare the effect of spatial with spec-
tral aliasing, which is due to differences in the spectral re-
sponse of different channels. The horizontal arrows in Fig. 3
indicate MSC channels 2 and 5 matching the spectral sen-
sitivity of the two PMD-PP/SP channel pairs 1/9 and 4/12,
respectively. The vertical arrows indicate MICRU channels
featuring the same acquisition time and hence minimising the
spatial aliasing between them: MSC channels 2 and 10 cor-
respond to PMD channels 1/9 and 4/12; MSC data acquired
at the same time but in different bands are sampled by MSC
channels 1 and 9 in bands 2B and 3, respectively, and MSC
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Figure 3. Spatial aliasing of GOME-2 for MSC and PMD bands in
time–wavelength space. Radiometric and spatial correlation is ex-
pected to be maximal at the respective intersections. Note that the
PMD readout is faster (steep slope of gray lines) and at higher fre-
quency compared to the MSCs. The second PMD readout (m= 1)
begins after 23.4375 ms (EUMETSAT, 2015). Horizontal and ver-
tical black arrows indicate the spectral and temporal mapping be-
tween GOME-2 bands, respectively.

channels 4, 7, and 14 in bands 2B, 3, and 4, respectively. The
correlation of MICRU CFs depending on spatial alignment is
investigated in Sect. 3.3.3.

2.1.2 Auxiliary data for MICRU

The MICRU algorithm requires several external data sets
listed in Table 3. Two different strategies of collocating these
data to the GOME-2 observations are applied depending on
the spatial resolution. Data provided at spatial resolutions
significantly higher than the generic GOME-2 resolution are
convolved with the respective average MSC and PMD point
spread function (PSF), as depicted in Fig. 4. The average
PSFs are derived from all forward scan pixel edges from
one orbit of GOME-2A data at latitudes lower than 55◦.
This approach simplifies the interpolation of auxiliary data
on GOME-2 observations because a linear interpolation can
be performed based on the GOME-2 pixel centre alone while
providing still sufficient spatial accuracy. Data provided at
coarser resolutions than GOME-2 are linearly interpolated
based on the GOME-2 pixel centre without prior convolu-
tion.

MICRU features a separate Tmin parameterisation for mea-
surements over land and ocean, respectively. An accurate de-
scription of the land and water transition is therefore crucial
for the accurate interpolation of Tmin at coasts. An algorithm
specifically developed for MICRU derives the fraction of wa-
ter and land in each satellite pixel at high resolution. As in-
put, the land–sea mask (LSM) compiled from revision 679
of the Global Self-consistent, Hierarchical, High-resolution

Geography (GSHHG) shoreline database (Wessel and Smith,
1996; NOAA, 2018) is applied. The polygon data from inter-
mediate GSHHG resolution neglecting polygons smaller in
area than one GOME-2 pixel are first sampled at 0.1◦× 0.05◦

and 0.0125◦× 0.05◦ for MSC and PMD, respectively, and
then convolved with the corresponding PSF (Fig. 4). The
convolution yields a global map of fractional land cover rang-
ing between 0 and 1 representing complete water and land
coverage, respectively. Hence, Tmin values for land and ocean
may be interpolated for each satellite pixel based on the con-
volved land cover map. The interpolated fractional land cover
values are later also used for flagging (Sect. 2.5.3).

The second important input is the surface elevation h re-
quired for the inversion of the LER (Sect. 2.2). Elevations
maps are inferred based on GTOPO30 raw data (USGS,
2018), which are averaged on a 0.05◦× 0.05◦ grid, and con-
volved with a mean PSF sampled on the same grid resolu-
tion. Interpolation to GOME-2 resolution is again performed
by applying nearest-neighbour interpolation.

Snow and sea ice data are queried to flag possible in-
terferences from highly reflecting surfaces during post-
processing (Sect. 2.5.3). Snow data are imported from
MODIS Terra measurements with a similar Equator-crossing
time of 10:30 LST in the descending node, similar to GOME-
2. Hence, possible effects of different orbital parameters
are supposed to be reduced. We used the 8 d composite
MOD10C2 product (Hall and Riggs, 2016). Spatiotempo-
ral interpolation uses the nearest-neighbour method based on
spatially convolved 8 d maps as described above.

Sea ice data are provided by the National Snow and Ice
Data Center (NSIDC) and integrate microwave measure-
ments from different sensors (Cavalieri et al., 1996). These
data have a native resolution of 25 km× 25 km, which is con-
volved using average PSFs on 0.1◦ resolution before merg-
ing to GOME-2. Data voids at the poles are filled with val-
ues from the nearest valid latitude. Unfortunately, there is no
information on the sea ice concentration close to shores in
the applied data set. This limitation leads to interferences at
shores at high latitudes because GOME-2 pixels possibly af-
fected by sea ice may not be filtered a priori.

Information on wind speed for the calculation of con-
tributions from sun glitter is extracted from ERA-Interim
data provided by the European Centre for Medium-Range
Weather Forecasts (ECMWF) (Dee et al., 2011). ECMWF
10 m wind fields are used to parameterise sun glitter. As
proposed by Ebuchi and Kizu (2002), the ECMWF wind
fields are divided by a factor of 0.918 to approximate the
wind speed at 41 ft (≈ 12.5 m) above the surface, which
is required as input for the sun glitter model by Cox and
Munk (1954a). This factor corresponds to a drag coeffi-
cient of 0.0015, assuming neutral stratification (Ebuchi and
Kizu, 2002). ECMWF data are imported at 1◦ and 6 h spa-
tial and temporal resolution, respectively. Spatially, nearest-
neighbour interpolation is applied based on GOME-2 pixel
centres.
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Table 3. List of external data sets applied in MICRU (see text for details).

Name Symbol Reference(s) Native data resolution Comment

temporal spatial

Land–sea mask LSM Wessel and Smith (1996), – ≈ 178 m GSHHG shoreline database, rev. 679
NOAA (2018)

Surface elevation h USGS (2018) – 30 arcsec GTOPO30, US Geological Survey
Snow concentration – Hall and Riggs (2016) 8 d 0.05◦ MODIS Terra level 3 (MOD10C2)
Sea ice – Cavalieri et al. (1996) 1 d 25 km Compiled passive microwave data
Surface wind speed W Dee et al. (2011) 6 h 1◦ ERA-Interim (ECMWF)
Absorbing aerosol index AAI Tuinder et al. (2020) GOME-2 pixels GOME-2A level 2, version 1.01

Figure 4. Illustration of average MSC (a) and PMD (b) point spread functions (PSFs) used as convolution kernels for LSM, elevation, sea
ice and snow concentration maps. The PSFs correspond to a nominal GOME-2 swath width of 1920 km. The highest resolutions for MSC
and PMD lower threshold maps are 0.1◦× 0.05◦ and 0.0125◦× 0.05◦, respectively, and denoted as binning no. 1 as in Table 6.

Absorbing aerosol indices (AAIs) are also used to
mask measurements potentially biased by aerosol effects
(AAI> 2). For this purpose, AAI data inferred from GOME-
2 measurements at both MSC and PMD resolutions are used
(Tuinder et al., 2020). The reflectances used for the determi-
nation of the AAI at MSC resolution are centred at 340 and
380 nm. For the AAI at PMD resolution, PMD-PP bands 4
and 6 at 338 and 382 nm are applied, respectively. Hence, no
interpolation is required to merge MICRU and AAI data.

2.2 RT calculations and inversion of LER

The conversion between surface LER and measured TOA
reflectance R applies a look-up table (LUT) based on re-
duced reflectances R̂ = I/E0 = R cosθ0/π . The LUT entries
are pre-computed using SCIATRAN software version 3.7.1
(Rozanov et al., 2014; IFE-Bremen, 2018). The LUT has
five dimensions: SZA, VZA , RAA, surface height h, and
surface LER. Table 4 compiles the LUT nodes as well as
the wavelengths applied as described in Sect. 2.1.1. It needs
to be noted that the resolution of the LUTs in the LER di-
rection may appear rather coarse. However, the difference
of the obtained results compared to preliminary RT compu-
tations featuring a 10 times higher resolution was found to
be < 0.001 in the UV and even 1 order of magnitude lower

in the red spectral region. The LUT nodes in the SZA and
VZA directions are defined in reduced angles µ0 = cosθ0
andµ= cosθ , respectively, in order to provide more nodes at
angles featuring larger gradients. The linear interpolation be-
tween the nodes is performed in θ0 and θ space, respectively,
in order to increase numerical stability at nadir.

The vector RT calculations are performed in spherical ge-
ometry based on a US standard atmosphere with 1013 hPa
surface pressure at h= 0 m and accounting for atmospheric
refraction. The surface is treated as a Lambertian reflector.
The model accounts for molecular absorption by O3 and O4.
The O3 column is fixed to 250 Dobson units (DU) in or-
der to reduce the number of required input parameters. This
simplification may affect MICRU retrievals within the ozone
Chappuis band, most notably PMD channels 6 and 14, and,
to a lesser extent, MSC channels 11 and 12. Preliminary re-
sults, however, showed that errors are on average negligible
as the empirical approach of MICRU reduces the influence
of systematic errors. Aerosols and Raman scattering are not
included in the simulations.

From the LUT, the R̂(LER) relation is interpolated for
all observation geometries except for h< 0 km, which are
tweaked to h= 0 km. R̂(LER) is monotonic, and therefore
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Table 4. Definition of LUT nodes: reduced SZA µ0, reduced VZA µ, RAA φ, surface height h, and surface LER. The 5-D LUTs are
calculated for 19 wavelengths λ.

Parameter Nodes

µ0 = cosθ0 1.00, 0.975, 0.95, 0.90, 0.85, 0.80, 0.75, 0.70, 0.65, 0.60, 0.55, 0.50,
0.45, 0.40, 0.35, 0.30, 0.25, 0.20, 0.15, 0.10, 0.05 (21 total)

µ= cosθ 1.000, 0.9875, 0.975, 0.950, 0.925, 0.900, 0.875, 0.850, 0.825, 0.800,
0.775, 0.750, 0.725, 0.700, 0.675, 0.650, 0.625, 0.600, 0.575, 0.550,
0.525, 0.500, 0.475, 0.450, 0.425, 0.400, 0.375, 0.350, 0.325 (29 total)

φ (◦) 0–180, in steps of 15 (13 total)

h (km) 0, 1.4, 3, 4.8, 7 (5 total)

LER 0–1, in steps of 0.1 (11 total)

λ (nm) 375, 382, 388, 389.7, 413, 424.5, 425, 433.4, 440, 460, 519, 521.8, 554,
589, 639, 670, 681, 757.5, 799 (19 total)

LER(R̂) can be readily inverted. We apply linear interpola-
tion to infer LER(R̂).

2.3 Tmin retrieval

The Tmin MICRU algorithm requires a certain number of
measurements in order to constrain its model parameters us-
ing observations not contaminated by clouds. For the descrip-
tion of the algorithm, we define a base set of measurements
�0, which are spatially and temporally correlated. It is noted
that �0 is a subset of all available measurements depending
on grid resolution, measurement resolution, time period, sur-
face structure, and cloud statistics. Section 2.5.1 describes
the implementation of the subsetting process.

MICRU defines Tmin depending on the measurement ge-
ometry (θ0, θ , φ), geolocation, and time t . Tmin is not a true
LER because it contains geophysical and instrumental infor-
mation. This information is not separated within MICRU and
will be treated simultaneously, as the ultimate goal is to de-
termine a parameterisation of Tmin as accurately as possible.
In general, it is not possible to parameterise Tmin in full (θ0,
θ , φ) space due to the Sun-synchronous orbit of GOME-2
(Sect. 2.1.1). At every latitude, the dependencies of SZA and
RAA on both VZA and time repeat annually. The depen-
dence of SZA and RAA on VZA and time is exemplarily
depicted for 45◦ N latitude in Figs. 5 and 6, respectively. It is
therefore sufficient to parameterise the observation geometry
(in each bin) by θ and t .
�0 typically contains a significant number of observations

contaminated by clouds. Cloudy observations need to be fil-
tered in order to retrieve a Tmin parameterisation based on
cloud-free observations. Therefore, an iterative filter algo-
rithm to find the lower accumulation point by Grzegorski
et al. (2006) is presented in Appendix A. Compared to HI-
CRU, however, the MICRU algorithm generalises from zero
to four dimensions.

Figure 5. SZA depending on time and VZA at 45◦ N latitude. Data
bins correspond to 24 discrete forward scan pixels and individual
days in the x and y directions, respectively. GOME-2A performs a
Sun-synchronous orbit at a fixed inclination to the Sun. Hence, the
SZA unambiguously depends on time, VZA, and latitude.

Tmin model

The MICRU Tmin model is

y
(
t̂ , θ̂ , θs, rg

)
= a0+ at t̂ + ya

(
t̂ , θ̂

)
+ as cosθs+ agrg, (4)

applying four independent variables (t̂ , θ̂ , θs, and rg) and
seven dependent variables (a0, at, ap, aa0, aa1, as, and ag),
which are introduced in the following. Equation (4) is an em-
pirical parameterisation accounting for actual and systematic
effects of the lower threshold, which are not linearly inde-
pendent in general.

Equation (4) applies normalised time t̂ and normalised
VZA θ̂ instead of t , and θ as independent model parame-
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Figure 6. Same as Fig. 5 but showing the RAA at 45◦ N latitude.

ters to improve fit stability. Assuming t measures in units of
days, we then define the normalised time:

t̂ =
t − t0

365.25d
, (5)

measuring in units of years centred on t0. In the case of
GOME-2A, t0 is chosen so that t̂ = 0 for 1 January 2010.
θ measured in units of degrees and the normalised VZA,

θ̂ = θ/55◦, (6)

ranges between −1 and 1.
The two further model parameters are the scattering angle

θs, defined by

cosθs = sinθ0 sinθ cosφ− cosθ cosθ0, (7)

and the reflected Sun angle θr, defined by

cosθr = sinθ0 sinθ cosφ+ cosθ cosθ0. (8)

Both angles are also illustrated in Fig. 1.
The right-hand side of Eq. (4) is the sum of the following

terms.

1. The constant offset a0 accounts for the mean surface
LER.

2. Residual line-of-sight dependencies are modelled by
a second-order polynomial (Fig. 7), which is parame-
terised by the normalised apex angle θ̂a and curvature
ap:

ya

(
θ̂
)
= ap

((
θ̂ − 2θ̂a

)
θ̂ + θ̂2

a

)
. (9)

3. Temporal degradation is assumed by a linear off-
set degradation factor at and the time-dependent nor-
malised apex angle:

θ̂a
(
t̂
)
= aa0+ aa1 t̂ , (10)

Figure 7. A second-order polynomial parameterised by apex an-
gle and curvature model systematic VZA dependencies of the lower
threshold Tmin. Degradation may affect both apex angle and offset.
The position, amplitude, and width of the sun glitter contribution
depend on geometry and wind speed.

as indicated by the arrows in Fig. 7. Tests applying a
second-order polynomial or an exponential to model
degradation of GOME-2 MSC data were not success-
ful. The former does not improve results significantly
and the latter deteriorates the stability of the fit.

4. BRDF effects are modelled by an empiric cosθs term.
Its inverse shows a similar behaviour to the Li dense
kernel for closed canopy (Li and Strahler, 1992; Wan-
ner et al., 1995) but does not require any further param-
eters. This term models the annual oscillations particu-
larly visible at the western swath edge in Figs. 8d, e and
9d, e.

The cosine normalises the parameter improving the fit
stability. As tests, we replaced the empirical term either
with the precise Li dense kernels, a reduced cosθr term
for surface effects, cscθs, or cos2θs, but all of these tests
resulted in less accurate surface fits and hence increased
Tmin noise compared to our final choice.

5. The contribution of sun glitter on water surfaces is pa-
rameterised based on the isotropic sun glitter model
suggested by Cox and Munk (1954a, b). This model
was found to be sufficiently accurate for MICRU and,
according to Zhang and Wang (2010), performs rea-
sonably well compared to competing models in their
study. We apply the glitter reflectance rg as provided in
Eqs. (1)–(4), (9), and (15) in Zhang and Wang (2010).
According to Cox and Munk (1954a), the mean square
slope of the clean surface is

σ 2
= 0.003+ 5.12× 10−3W, (11)

where W is the wind speed at 41 ft (≈ 12.5 m) above
sea level, which is computed from 10 m wind speeds as
described in Sect. 2.1.2. The index of refraction is set to
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Table 5. List of Tmin model parameters with initial values (β0) and
parameter bounds of the constrained non-linear fit.

Symbol Comment β0 Range

a0 offset variable −∞ ...∞
at offset degradation 0 −0.02 ... 0.02∗

ap polynomial amplitude 0.02 0 ... 0.2
aa0 normalised apex angle 0 −5 ... 10
aa1 apex degradation 0.02 −0.5 ... 0.5∗

as scattering amplitude 0 −0.5 ... 0.2
ag glitter amplitude 0.2 0 ... 0.4

∗ Degradation constrained to 0 for MSC channels 12, 13, and 14.

n=1.34 (Blum et al., 2012). Hence, rg as illustrated in
Fig. 7 is a function of θ0, θ , φ, and W .

Table 5 summarises the Tmin model parameters and the
bounds of the constrained fit. The parameters at and aa1 are
constrained to 0 for MSC channels 12, 13, and 14, as prelim-
inary evaluations showed that degradation can be neglected
for these channels, which furthermore improved the signal-
to-noise ratio. Clearly, the above model is a trade-off between
accuracy and stability. Choosing a model based on more pa-
rameters would increase the accuracy of modelling the phys-
ical effects but degrade the stability of the fit limited by the
number of cloud-free observations.

2.4 Determination of Rmax

The upper threshold Rmax is defined as the reflectance of a
Lambertian surface with an albedo of 0.8 located at 7 km al-
titude. This simple cloud model, which was adopted from
McPeters et al. (1996) and Koelemeijer et al. (2001), im-
proves applicability to retrievals building on MICRU cloud
products because cloud correction algorithms in many trace-
gas retrievals apply the same model (Vasilkov et al., 2017).
Furthermore, the assumptions on cloud RT need to be consis-
tent between cloud and trace-gas retrievals for AMF calcula-
tion. Volumetric clouds, on the other hand, are more complex
to simulate and would require more parameters, which are
unknown a priori.
Rmax is assumed independent of geolocation and time

and calculated applying the look-up tables described in
Sect. 2.2 and Table 4. A quantitative discussion of choos-
ing Tmax= 0.8 as a cloud albedo for an Lambertian cloud
model as an upper threshold is provided by Koelemeijer et al.
(2001), Ahmad et al. (2004), and Stammes et al. (2008).
As a consequence, however, very bright clouds exceeding
Tmax= 0.8 will result in a MICRU CF> 1. Some CF algo-
rithms normalise CF> 1 to 1, but MICRU rather provides
these exceptionally high values as additional output.

It needs to be noted that instrumental degradation may in-
troduce a systematic bias of the CF, which will be strongest
for large CFs. Most importantly, for MICRU, the influence of

the applied cloud model on the CF accuracy decreases with
CF.

2.5 Implementation

The MICRU algorithm consists of several consecutive steps:
import of data, RT simulation, merging of external data, de-
termination of Rmin, determination of Rmax, and finally the
computation of CF. The following subsections detail the im-
plementation of the methods described above in the MICRU
framework.

2.5.1 Geospatial subsetting

The Tmin algorithm (Sect. 2.3) requires a spatiotemporal sub-
set of satellite measurements with a sufficient number of
measurements. Section 2.1.2 describes how GOME-2 pix-
els are reduced to their centres. Hence, geospatial locations
can be readily indexed and assigned to geospatial subsets.
All MICRU computation refers to pixel centres rather than
their actual area. This simplification takes advantage of the
fact that the surface is scanned by almost identically shaped
ground pixels over the evaluated measurement period, and
therefore measurements with an identical pixel centre are
congruent.

Temporally, larger subsets should be favoured over smaller
ones unless there are significant changes of surface proper-
ties or the instrument response degrades much differently
than considered in the model (Sect. 2.3). For example, for
MSC binning no. 1, there are 400 equatorial bins over land
with 15 or less measurements considered cloud-free by the
Tmin retrieval despite applying a study period of 77 months.
Longer time series increase the probability of including mea-
surements not contaminated by clouds (Krijger et al., 2007).

Spatially, a very small geospatial interval would be bene-
ficial in order to increase the correlation between measure-
ment and collocated Tmin where the true surface is inhomo-
geneous. However, there is a trade-off because the probabil-
ity of including enough cloud-free measurements decreases
if the geospatial interval becomes too small. If there are not
enough cloud-free measurements, the accuracy of the fit de-
grades. Furthermore, spatial subsampling can be avoided us-
ing spatial sampling intervals larger than the native resolution
of the measurements defined by its PSF.

Within MICRU, the geospatial subsetting is called “bin-
ning”, which is performed on a longitude–latitude grid. Each
binning corresponds to a global map at a different resolution.
The Tmin retrieval is independently applied on each binning,
whose definition distinguishes between measurements over
ocean and land. The results are then merged to form com-
plete parameterisations of Tmin for ocean and land surfaces
independently. There are several advantages of this approach.

1. If, for some reason, the fit fails using the highest resolu-
tion, the parameterisation results from evaluation using
larger bins may be used instead.
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Figure 8. Example surface fit for MSC channel 2 at 382 nm and applying binning no. 2 over Australia: (a) the bin of interest ranges from 131
to 132◦ E and from 20 to 21◦ S, (b) 3-D representation of measurement set�0 (blue) and finally fitted set�I (red), (c) frequency distribution
of the fit residual, (d) lower accumulation point within each individual 0-D box, (e) surface fit result using model Eq. (4), and (f) difference
between panels (d) and (e). The discretisation chosen for panels (d)–(f) displays a trade-off between accuracy and noise for the sake of
clarity. Negative VZA denote the western half of the swath.

2. The bin dimensions can be adapted to the surface type:
smaller and approximately quadratic over land; larger
and less depending on longitude over ocean.

3. It enables independent parameterisations for the two
different surface types. Hence, Tmin gradients at the
coast can be mitigated.

Table 6 details and Fig. 4 illustrates the MICRU binnings for
GOME-2 MSC and PMD evaluations, respectively. Figure 8a
illustrates the dimension and location of bin 25152 of MSC
binning no. 2.

The entire data set needs to be resorted with respect to
geolocation instead of acquisition time for computational
purposes. Therefore, input data are organised in geospatial
“tiles” as defined in Table 6, which reduces the memory re-
quirement for a process performing the iterative surface fit-
ting per bin (Appendix A). Tiling furthermore enables paral-
lel processing of MICRU on a cluster because each subpro-
cess only requires a small portion of the observational data.
Hence, scaling MICRU to sensors different from GOME-2 is
straightforward by adjusting the tile resolution.

Table 6. Spacing of meridians (1λ) and parallels (1ϕ) for the def-
initions of tiling and binnings for MSC and PMD evaluations, re-
spectively. Binning resolutions depend on surface type: land (s= 1)
and ocean (s= 2).

MSC PMD

No. s 1λ 1ϕ 1λ 1ϕ

Tiling 45◦ 15◦ 15◦ 5◦

Binning 1 1 1◦ 0.5◦ 0.125◦ 0.5◦

2 1 1◦ 1◦ 0.5◦ 1◦

3 1 3◦ 2.5◦ 2.5◦ 2.5◦

4 2 1◦ 0.5◦ 0.125◦ 0.5◦

5 2 3◦ 2.5◦ 2.5◦ 2.5◦

6 2 15◦ 2.5◦ 15◦ 2.5◦

7 2 45◦ 2.5◦ 15◦ 5◦

2.5.2 Tmin maps

The following filters are applied on the input data prior to the
Tmin retrieval:
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Figure 9. Same as Fig. 8 but for MSC channel 10 at 516.7 nm and applying binning no. 5 over the equatorial Atlantic. The set of measurements
ranges from 30◦W to 27◦ E and from 7.55 to 5◦ S.

– Filter measurement in ascending node to avoid ambigu-
ities of the time- and latitude-dependent θ selection.

– Filter viewing modes other than the nominal 1920 km
swath (EUMETSAT, 2015). For example, this filter ex-
cludes nadir static and narrow swath orbits as well as
data recorded after June 2013.

– Filter SZA larger 85◦.

– Filter data possibly affected by solar eclipses as defined
in Appendix B of Tilstra et al. (2017a).

– Filter times of instrumental malfunction as listed in EU-
METSAT (2014).

– Filter measurements with AAI> 2.

– Filter measurements, which include neither> 90 % land
nor > 90 % ocean.

– Over ocean, filter measurements with θr< 8◦ (sun glit-
ter).

Then, the Tmin algorithm (Sect. 2.3) is applied on the mea-
surement tuples within each bin. Figure 8 illustrates the Tmin
algorithm applied on MSC channel 2 for a 1◦× 1◦ bin over

Australia. Similarly, Fig. 9 illustrates the same on MSC chan-
nel 10 data at 516.7 nm over the Atlantic Ocean. This step is
repeated for all binnings listed in Table 6 and all channels
listed in Tables 1 and 2 for MSC and PMD, respectively. For
diagnostic purposes, the number of iterations i, the number
of included measurements N , the number of fitted measure-
ments N∗, threshold τ , and residual statistics are intermedi-
ately stored alongside the fit result β for diagnostic purposes.

Tiled Tmin results are stitched together to form global maps
for all binnings and channels. For each channel, the maps
of different resolutions need to be merged in order to obtain
two complete and unambiguous β maps, respectively: one
for ocean and one for land. The steps of the merging process
are detailed in Appendix B. Appendix C presents exemplary
results for MICRU channel 2.

2.5.3 CF calculation and flagging

Once Rmin and Rmax are determined, c can be computed us-
ing Eq. (1) for all MICRU channels separately. The MICRU
data set furthermore provides several quality flags listed in
Table 7. MICRU MSC and PMD data are merged with three
aliasing offsets (m= 0, 1, 2) (Sect. 2.1.1) for the investiga-
tion of the spatial aliasing in Sect. 3.3.3.

Atmos. Meas. Tech., 14, 3989–4031, 2021 https://doi.org/10.5194/amt-14-3989-2021



H. Sihler et al.: MICRU effective cloud fractions 4001

Table 7. Flags applied by the MICRU algorithm allowing for indi-
vidual filtering.

Flag Description

Coast warning if > 10 % land and > 10 % ocean
AAI warning if AAI> 2
Snow warning if MODIS 8 d snow concentration > 5 %
Sea ice warning if microwave sea ice concentration > 5 %
Sunglint warning if θr< 36◦ over ocean or θr< 8◦ over land
Sunglint risk if θr< 8◦ over ocean
Statistics warning if N < 80 or if the mode of R> 0.1
Coarse mode if the applied binning is neither 1 nor 4
Extrapolated if the applied parameterisation is extrapolated
parameters

2.6 Comparison data

For GOME-2 MSCs, FRESCO+ cloud fractions evaluated at
the O2-A band are widely used (Wang et al., 2008; TEMIS,
2021). In this study, three different versions of the FRESCO
cloud fractions are applied in order to study the particular
differences with respect to background map generation and
residual VZA dependence:

FRESCO L1b denotes the CF data shipped with the L1b
files from EUMETSAT, also denoted FRESCO ver-
sion 6. This FRESCO version applies a background map
compiled from MERIS measurements over land and
GOME-1 surface LER over ocean (Popp et al., 2011;
Tilstra et al., 2017b).

FRESCO v7 is the first FRESCO version applying a back-
ground LER map derived from GOME-2 measurements
themselves (Tilstra et al., 2017b).

FRESCO v8 is the most recent version applying a direc-
tional LER database compiled from GOME-2 measure-
ments. The resolution at the coast and over specific re-
gions is increased to reduce interference from different
surface types within one GOME-2 pixel (Wang et al.,
2018).

FRESCO L1b data of the entire evaluation period are
included in this study. For FRESCO v7 and v8, however,
comparisons to MICRU are limited to selected months. For
FRESCO v7, it is January, April, July, and October 2010.
For FRESCO v8, it is January to December 2010 plus April
2007 and 2013 (see Fig. 24b and c). The applied FRESCO
products do not correct for interferences with sun glitter. It is
furthermore noted that MICRU data are ignored in the com-
parisons in Sect. 3.4 if respective OCRA/FRESCO data are
invalid.

The second batch of comparison data are OCRA cloud
fractions inferred from GOME-2 PMD measurements de-
scribed by Lutz et al. (2016). In its actual version (3.0),
OCRA is mainly developed as the operational CF product for

the S5P/TROPOMI mission (Loyola et al., 2018). In contrast
to FRESCO, OCRA applies an empirical correction scheme
for the sunglint effect (Lutz et al., 2016). OCRA CFs are of-
ficially provided at PMD resolution and are therefore suited
to be compared directly to MICRU PMD results. OCRA re-
sults mapped to MSC resolution are denoted OCRA MSC.
OCRA, however, does not assume a constant cloud albedo of
0.8 as the upper threshold, resulting in systematic differences
between both products. We therefore introduce scaled OCRA
results as a third OCRA data set. The scaling performed re-
quires the cloud albedo CAROCINN retrieved by the retrieval
of cloud information using neural networks (ROCINN) al-
gorithm (Loyola et al., 2007, 2011, 2018), which is there-
fore only available at MSC resolution. We define the scaled
OCRA CF CFOCRA_fixed_albedo by

CFOCRA_fixed_albedo = CFOCRA
CAROCINN

0.8
, (12)

denoted as “OCRA_fixed_albedo” below.
The selected cloud products define the upper threshold dif-

ferently. FRESCO applies a Lambertian (or reflecting) cloud
model – like MICRU – and OCRA applies a colour space
approach for the upper threshold (Wang et al., 2008; Lutz
et al., 2016). Furthermore, the treatment of extreme CFs sig-
nificantly differs between MICRU, FRESCO, and OCRA.
Both FRESCO and OCRA provide normalised CFs, which
means that CFs do not linearly scale with reflectance. OCRA,
for example, normalises CF< 0 to 0 and CF> 1 to 1. For
FRESCO, normalisation schemes defer between versions:
FRESCO L1b sets CF< 0 to 0. For CF> 1, all FRESCO ver-
sions vary the cloud albedo to improve convergence. In con-
trast, MICRU does not apply any normalisation by default,
leading to an unlimited CF distribution. We define “cropped”
subsets of data: CFs< 0 are set to 0 and CFs> 1 are omitted
from statistical comparisons (Sect. 3.4) in order to avoid sys-
tematic bias from different normalisation strategies. It shall
be noted that both normalisation and cropping lead to biased
mean results. These biases propagate into trace-gas retrievals
if normalised CF data are applied.

Finally, measurements by the AVHRR/3 (Advanced Very
High Resolution Radiometer version 3) instrument are ap-
plied as independent measurements for the detection of
clouds from the MetOp satellite (Cracknell, 1997; NOAA,
2021; EUMETSAT, 2011). AVHRR is an imager with six
spectral channels centred between 630 nm and 12 µm. The
spatial sampling of GOME-2 and AVHRR is detailed by Sih-
ler et al. (2017). In this study, AVHRR data of bands 1, 2, and
3a are applied to produce RGB false colour images. Further-
more, an artificial AVHRR cloud mask is constructed, where
an AVHRR pixel is assumed cloudy if either the albedo test,
the T4-T3 test, or the T4-T5 test indicates a cloudy scene (see
EUMETSAT, 2011).
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3 Results

This section starts off with results from the Tmin retrieval
(Sect. 3.1) and a comparison between MICRU, FRESCO,
and OCRA based on single, cloud-free swaths (Sect. 3.2).
Subsequently, statistical ensembles are applied to intercom-
pare MICRU CF results (Sect. 3.3) and to evaluate differ-
ences between the three CF algorithms (Sect. 3.4).

Studies on monthly statistics exclude data where

– SZA≥ 84◦,

– latitudes ≥ 55◦,

– MODIS snow concentration > 2 %,

– AAI> 2,

– the sunglint risk flag is raised, or

– the coast warning is raised (exception: average maps)

in order to reduce interferences.

3.1 Tmin retrieval

Figure 8 illustrates the input measurements and output re-
sults of the Tmin retrieval (Sect. 2.3) by applying MSC chan-
nel 2 at 382 nm and binning no. 2 over continental Australia.
The blue dots in Fig. 8b denote the input data, omitting scat-
tering angle θs and glitter reflectance rg dimensions for the
sake of clarity. Figure 8d shows a matrix of lower aggrega-
tion points of LER retrieved independently in discrete boxes
defined in the t–θ plane. The lower aggregation points are
retrieved with the same τ resulting from the surface fit but
without parameterisation. The matrix reveals an increasing
trend with time and a significant VZA dependence. The iter-
ative surface fitting result using the same data (Fig. 8e) shows
a similar but much smoother result due to improved statistics
by combining the information from all measurements and ap-
plying a parameterised surface model. Figure 8f shows the
difference between boxed and fitted results, indicating aver-
age deviations much smaller than 0.04. There are, however,
small systematic deviations towards the edges indicating a
slight overestimation of Tmin at the beginning of the sensing
period (2007) and at large VZAs, and slight underestimation
at the end of the period (colder colours for 2013). The his-
togram of the residual R of LER measurements and mod-
elled Tmin is plotted in Fig. 8c using the respective colours
as in Fig. 8b. Measurements applied for the final iteration of
the surface fit peak between −0.01 and 0, for which a final
threshold of τ = 0.018 is applied.

Figure 9, in contrast to Fig. 8, illustrates the application
to another MSC channel at 516.7 nm and surface type ocean.
Compared to Australia, the fraction of fitted measurements
is significantly lower due to a higher probability for clouds.
The smaller fraction of fitted measurements is also indicated
by a less pronounced peak in the histogram (Fig. 9c). There

is a significant contribution of sun glitter, which is visible by
the annually appearing red areas at positive VZA in Fig. 9d
and e. The scatter in Fig. 9f collocated with the regions af-
fected by sun glitter is probably due to poor statistics when
calculating the boxed comparison results. The LER in the
first, western-most column of boxes seems to be biased low,
of the order of 0.01, compared to other viewing angles.

Figure 10 investigates trends of the VZA dependence for
the three GOME-2 channels (MSC, PMD-PP, and PMD-
SP) but same spectral region, respectively. Figure 10a corre-
sponds to the first and last rows in Fig. 8d/e, indicated by blue
and green dots, respectively. Circled dots correspond to the
red dots in Fig. 8b. The red lines correspond to the fit results
shown in 8e. Figure 10a reveals a lower threshold increas-
ing with time (≈ 0.02 in total) and a time-dependent VZA
dependence affecting apex VZA and curvature. Figure 10b
and c illustrate the temporal behaviour of the correspond-
ing PMD-PP and PMD-SP measurements. For PMD-PP, the
VZA dependence and its degradation is smallest compared
to the other channels. PMD-PP, however, features a signifi-
cantly larger overall trend compared to PMD-SP in Fig. 10c.
For PMD-SP, the overall trend is small, but the VZA depen-
dence degrades significantly more than MSC channel 2.

Another estimate of the residual VZA dependence may
be assessed by analysing the cross-track dependence of the
lower CF accumulation point displayed in Figs. 11a and
12a for land and ocean surfaces, respectively. Over land,
the small CFs accumulate between −0.02 and 0.03 almost
evenly over the entire swath. Over ocean, small CFs are
slightly more scattered. The distribution dilutes significantly
and reveals a slight positive bias towards the west (negative
VZA in Fig. 12).

3.2 Cloud-free observations

Figure 13 compares cloud-free measurements of MICRU,
OCRA, and FRESCO over three exemplary sites featuring
different surface cover (left to right): rainforest, continen-
tal midlatitudes, and ocean. Independent AVHRR measure-
ments are included to identify essentially cloud-free scans
(top row). MICRU MSC and PMD results are specifically
obtained at 440 and 460 nm, respectively. OCRA results
are based on PMD measurements between 321 and 804 nm.
FRESCO applies the O2-A band at 757.5 nm.

MICRU MSC and PMD results show no significant cloud
cover where also AVHRR does not detect clouds. Purple
colours at the swath edges, however, indicate biased low CF
results (Fig. 13d–i in cloud-free observations over both land
and ocean. Over land, the MICRU results are consistent with
the AVHRR cloud mask; e.g. CF contributions of singular
clouds smaller than the GOME-2 pixel sizes are reproduced
in Fig. 13e and h over North America. The bias of cloud-free
observations is small and the colour bar range almost does
not resolve the scatter around zero CF.
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Figure 10. Detailed fit results from surface of three GOME-2 bands measured over Australia (cf. Fig. 8a), comparing the fit results with
measurements selected from the beginning (blue dots) and the end (green dots): (a) MSC channel 2, the fit results (red lines) correspond
to Fig. 8f, (b) for PMD-PP, and (c) for PMD-SP. Note the significant differences between the residual VZA dependence and the trends of
three GOME-2 bands measuring at the same wavelength of 382 nm. Note that reflectance measurements below the red line will later result
in negative CFs.

Figure 11. Comparison of viewing angle dependence of small CFs over land between the 55◦ parallels: (a) MICRU MSC at 440 nm,
(b) OCRA MSC, (c) OCRA_fixed_albedo, (d) FRESCO L1b, (e) FRESCO v7, and (f) FRESCO v8. Statistics are based on April 2010 data.

In the case of sunglint, the situation is more complex. In
Fig. 13f and i, MICRU measurements scatter significantly
as indicated within the area flagged with a sunglint warning
(green edges). The scatter is only significant in the eastern
swath (orbit 17907), whereas the western swath (orbit 17908)
shows almost no scatter. The analysis of the wind fields (not
plotted) reveals that wind speeds vary between 0 and 5 m s−1

for the cloud-free region of the eastern swath and between
3 and 4 m s−1 in the western swath, respectively. The inter-

polation of the wind fields is apparently not accurate enough
for the eastern swath. The interpolation is limited by a spa-
tial resolution of 1◦ and a temporal resolution of 6 h. Hence,
MICRU CFs may be over- and underestimated in the event
of heterogeneous wind situations and especially for very low
winds. We conclude, however, that MICRU is able to model
moderate Rmin contributions by sun glitter. When sun glitter
is large (in the event of low winds), as indicated by yellow
colours in the false colour background image of Fig. 13c, this
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Figure 12. Same as Fig. 11 but over ocean. The influence of sun glitter is evident for positive VZA for most products, even though measure-
ments flagged “sunglint risk” (Table 7) are filtered.

correction is less reliable. Therefore, measurements flagged
with a sunglint warning are screened from the statistical com-
parison studies below.

Figure 13 furthermore compares MICRU results to
FRESCO and OCRA. Over land, the CF maps of FRESCO
L1b and v7 measurements (Fig. 13j, k, m, and n) reveal
significant positive biases in the western part of the swath.
Cloud fractions larger than 20 % are detected even though
AVHRR and MICRU both detect no clouds. FRESCO v8
displays a significant improvement over Brazil (Fig. 13p),
whereas CFs over North America in Fig. 13q are still sig-
nificantly biased in the west of the swath. Over eastern In-
dia (orbit no. 17907), however, all FRESCO versions are
significantly biased high (Fig. 13l, o, and r). Switching to
OCRA, Fig. 13s reveals significantly smaller positive biases
of OCRA over Brazil compared to FRESCO L1b and v7.
Over North America (Fig. 13t), however, a positive bias and
scatter are significant. The biases of OCRA_fixed_albedo
at MSC resolution are significantly smaller, especially over
Brazil (Fig. 13v). Similarly, Fig. 13x shows significantly
smaller biases over eastern India compared to the native
OCRA results at PMD resolution in Fig. 13u.

Over ocean (right column in Fig. 13), biases in regions
possibly affected by sun glitter are obvious in the FRESCO
and OCRA data. FRESCO products are not correcting for
this interference, leading to systematic positive biases be-

cause the increased intensity is apparently interpreted as re-
flecting clouds (Fig. 13l, o, and r). In contrast to FRESCO,
OCRA corrects for the sunglint effect in the centre of the
affected region (Fig. 13u), but interferences still persist for
θr< 36◦, which is flagged by MICRU as sunglint warning.

3.3 MICRU

3.3.1 Global average cloud fraction

Figure 14 shows a global map of the average MICRU cloud
fraction of 6 consecutive years using GOME-2A measure-
ments. Therefore, it is a snapshot of the average CF at
09:30 LST. The averaging period starts in July 2007 and ends
in June 2013. The map clearly reveals a statistically increased
CF at the Intertropical Convergence Zone (ITCZ), off the
western coasts of continents in the subtropics, and in the sub-
polar oceans. The comparatively high average CF over China
indicates a significant bias due to aerosol scattering. Similar
plots for MICRU PMD, FRESCO and OCRA are described
in Appendix F.

3.3.2 MSC intercomparison

Figure 15 shows correlation density plots and bi-variate fits
(Cantrell, 2008) of MICRU CF for channels 2, 12, and 14
with respect to MICRU channel 8 (see Table 1).
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Figure 13. Detailed comparison between different cloud fraction products over cloud-free scenes over land and ocean: Brazil on 10 April
2010 (left column), North America on 8 April 2010 (second column), and the Indian Ocean on 2 April 2010. The rows display cloud informa-
tion from different sensors/products (from top to bottom): AVHRR false colour RGB image indicating areas where at least one AVHRR cloud
test is positive (orange), MICRU MSC at 440 nm, MICRU PMD-PP at 460 nm, three FRESCO versions, OCRA, and OCRA_fixed_albedo.
The colour bar is defined to resolve cloud fractions particularly below 0.3 and negative values. Areas without data are indicated in gray.
Images in the right column contain swath data of two orbits featuring different sun glitter scenarios due to different wind conditions (see
text).
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Figure 14. The 6-year average of MICRU MSC channel 8 cloud fraction measurements recorded between 1 July 2007 and 30 June 2013.
Areas without data are plotted in gray. See Figs. F4 through F9 for comparison.

Figure 15. Comparison between MICRU MSC channel 8 at 440 nm and MSC channels (a) 2 at 382 nm, (b) 12 at 670 nm, and (c) 14 at
757.5 nm for April 2010. The plots correspond to the combinations indicated by circles in Fig. E1a.

The comparison between MICRU evaluations at 382 and
440 nm shows an almost perfect correlation of r2

= 0.997 in
Fig. 15a. The slope reveals a minute positive bias. Figure 15b
and c reveal significantly increased scatter for comparisons
with longer wavelengths, which is dominated by increased
heterogeneities of the land surface reflectance because the
scatter is almost independent of wavelength over ocean (not
shown). It is important to note that in Fig. 15b and c the scat-
ter in the y direction for small |cx | is larger than the scatter in
the x direction for small |cy |. This indicates that the accuracy
of CF is decreasing towards larger wavelengths.

Figure 15 furthermore indicates that the CF slope differs
between MICRU channels, which is discussed in Sect. 4.1.
Appendix E comprehensively compares results from MICRU
channels and other cloud products.

3.3.3 MSC vs. PMD

Figure 16 shows CF comparison plots of two corresponding
MSC/PMD evaluations. A spatial aliasing of m= 0 is cho-
sen for the comparison at 382 nm in Fig. 16a and m= 1 at

519 nm in Fig. 16b, respectively. According to Fig. 3, these
are the optimal choices of m, which is confirmed by the cir-
cled values in Fig. E2a, indicating a significantly higher cor-
relation between MSC and PMD channels compared to the
results neighbouring to the left and right.

Furthermore, the matrix results in Figs. E1b and E2a can
be used to compare the influence of spatial vs. spectral alias-
ing. Due to the different readout scheme (Fig. 3), both can-
not be perfectly fulfilled simultaneously, either spectral or the
spatial alignment between MSC and PMD can be achieved.
In Fig. E1b, the standard deviation of MSC measurements at
382 nm is slightly smaller (0.008) than for those at 424.5 nm
(0.009). At 519 nm, however, the MSC values at 516.7 nm
feature a smaller standard deviation (0.008) compared to
those at 521.8 nm (0.009). Hence, spectral alignment seems
favourable for PMD channel 1 at 382 nm, whereas spatial
alignment seems favourable for PMD channel 4 at 519 nm.
The linear coefficients of correlation in Fig. E2a, however,
indicate that PMD channel 1 correlates slightly better to
MSC channel 5 (0.998) compared to MSC channel 2 (0.997).
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Figure 16. Comparison between MICRU MSC and MICRU PMD cloud fractions for April 2010: (a) at 382 nm and (b) at 519 nm. The plots
correspond to the combinations indicated by circles in Fig. E2a.

Hence, spatial alignment is favourable if r2 should be opti-
mal. For PMD channel 4, the deviation of the respective r2

values is < 0.001 (both 0.998). It shall be noted here that
Fig. E2a also illustrates the importance for the correct choice
ofm. The correlation of PMD-PP at 519 nm with itself is sig-
nificantly reduced from 1 to 0.994 if the value of m deviates
by ±1.

The coefficient of correlation between MSC channel 10
and PMD channel 4 (m= 1) of r2

= 0.998 is optimal for al-
lowing a direct comparison and the investigation of the ac-
curacy of small cloud fractions in the MSC product assum-
ing that zero CF is physically only possible if all including
PMD CFs are also zero. Therefore, standard deviations of
PMD CFs within each MSC pixel are computed. Figure 17
shows the density of CF standard deviations vs. MSC cloud
fractions. The maximum standard deviation is minimal for
small and large CFs and maximal for a CF of approximately
0.5. The absolute and relative distributions of MSC mea-
surements corresponding to a standard deviation of PMD
CF< 0.005 are plotted in Fig. 17b and c, respectively. The
width of the histogram bins is 0.02 CFs. Figure 17b peaks at
−0.01 CFs and Fig. 17c at −0.03 CFs, which can be inter-
preted as an estimate for the accuracy of small MICRU CFs.

3.4 Comparison to other CF algorithms

3.4.1 MICRU vs. OCRA

Figure 13s and t in Sect. 3.2 suggest that OCRA measure-
ments may be biased high in the western part of single cloud-
free swaths over land. This observation is now investigated
further based on monthly statistics. Figure 18a and b com-
pare MICRU and OCRA measurements recorded over land
and ocean, respectively. Most apparently, the slope of 1.35
indicates different definitions of the upper threshold. Fig-
ure E2c consistently confirms that OCRA overestimates large
CFs compared to FRESCO and MICRU CFs. This is proba-
bly due to OCRA applying a scattering cloud model to define
the upper threshold, whereas FRESCO and MICRU apply a
reflecting cloud model. It needs to be noted that this compar-

ison between OCRA and MICRU applies cropped data as de-
scribed in Sect. 2.6, which may furthermore affect the overall
slope. And indeed, the comparisons between MICRU MSC
and OCRA_fixed_albedo in Fig. 19 result in more moderate
slopes of 0.9 and 0.86 for land and ocean, respectively. Also
the linear coefficient of correlation is slightly higher com-
pared to the uncorrected OCRA values in Fig. 18.

Secondly, it is focused on the scatter of very small cloud
fractions. Figure 18 clearly shows that OCRA CFs for very
small MICRU CFs scatter more than MICRU CFs for very
small OCRA CFs (cf. Fig. E1b). Figure 18a and b investi-
gate this feature depending on surface type land and ocean,
respectively. Small OCRA CFs over land scatter significantly
more for small MICRU CFs when compared to measure-
ments over ocean. The same but less pronounced behaviour
may be observed for OCRA_fixed_albedo in Fig. 19.

Figure 20 shows a detailed comparison between OCRA
and MICRU over land where the data are sorted according to
the west, nadir, and east viewing directions, respectively. Fo-
cusing again on small CFs, a significant bias of 0.066 may be
detected when averaging over the eight westernmost GOME-
2 pixels of the swath (Fig. 20a), whereas the bias towards
nadir and east is negligible (0.02). Furthermore, the scatter
of small OCRA CFs is larger towards western compared to
eastern viewing directions.

An additional view of the VZA dependence of MICRU
and OCRA CFs is provided in Figs. 11a–c and 12a–c for
land and ocean surfaces, respectively. Over land, the ac-
cumulation points of small OCRA MSC are significantly
biased high for all negative VZA. The albedo correction
for OCRA_fixed_albedo (Fig. 11c) improves the situation
significantly, confining the accumulation point to CF< 0.1,
which is still significantly larger than the MICRU CFs in
Fig. 11a. Over ocean, both investigated versions of OCRA
reveal a significant bias from sun glitter for positive VZA in
Fig. 11b and c. Towards the west (negative VZA), the lower
accumulation point of OCRA_fixed_albedo is more popu-
lated than MICRU.
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Figure 17. Standard deviation (SD) of PMD cloud fractions within one collocated MSC pixel recorded in April 2010. PMD cloud fractions
are obtained from PMD-PP channel 10 (m= 1) with minimal spatial aliasing to MSC channel 10, which are both centred at 516.7 nm.
(a) Density of PMD standard deviation and MSC cloud fraction; (b) histogram of MSC cloud fraction for a standard deviation of the
collocated PMD measurements < 0.005 that is the lowermost row in panel (a); (c) relative frequency corresponding to panel (b). Note that
the lower part of panel (b) is in linear scale; the upper part is in logarithmic scale.

Figure 18. Comparison between MICRU PMD at 382 nm and OCRA based on CF data from April 2010: measurements over (a) land and
(b) ocean. This comparison applies cropped data.

3.4.2 MICRU vs. FRESCO

Figure 21 compiles the comparison between MICRU CFs
at 440 nm and three FRESCO versions depending on sur-
face type land or ocean, respectively. Overall, all FRESCO
versions reveal a significantly higher scatter of small CFs
compared to MICRU, which is similar to the comparison
to OCRA. Furthermore, the scatter over land is consistently
larger compared that to over ocean due to the increased
albedo effect at 757 nm applied by FRESCO. The slope of
the comparisons is close to unity due to a similar definition
of the upper threshold. But there are specific differences be-
tween the FRESCO versions.

The comparisons to FRESCO L1b in Fig. 21a and b fea-
ture smaller biases for small CFs than FRESCO v7 and v8,
which is in agreement with Fig. E1b. The respective compar-
isons applying FRESCO v7 data in Fig. 21c and d reveal sig-
nificantly larger scatter over both land and ocean. The bias
over land is larger than 0.08, which seems to be a specific
feature for FRESCO v7, as all other investigated products
are less biased against each other (cf. Fig. E2b). The com-
parison over land in Fig. 21c includes FRESCO CFs up to

0.5 for MICRU CF equal to 0, which may be attributed to
albedo effects along coasts as investigated below (Fig. 23).
Figure 21d then shows a small quantity of unrealistic CFs
smaller than 0.2 over ocean for MICRU CFs up to 0.8. Next,
the comparison between FRESCO v8 and MICRU features a
bias that is smaller compared to v7 but still larger than L1b.
The scatter is significantly improved compared to v7, but the
scatter of small FRESCO CFs for small MICRU CFs is still
much larger than vice versa. In Fig. 21, it may be further-
more observed that both FRESCO versions (v7 and v8) fea-
ture CF< 0. This is an improvement considering that physi-
cal measurements are affected by noise.

Similar to the comparison to OCRA, the comparisons
between FRESCO and MICRU over land are now inves-
tigated depending on viewing geometry. Figure 22 consis-
tently demonstrates that the western parts of the swath are
biased due to BRDF effects. Largest biases are observed to-
wards the west for FRESCO L1b and v7 (Fig. 22a and d),
whereas the comparisons between FRESCO v8 and MICRU
are almost independent of the viewing direction (Fig. 22g–i).
It is furthermore noted that the comparisons between MICRU
and FRESCO L1b for nadir and eastern viewing geometries
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Figure 19. Comparison between MICRU MSC at 382 nm and OCRA_fixed_albedo based on CF data from April 2010: measurements over
(a) land and (b) ocean. This comparison applies cropped data.

Figure 20. Same data as Fig. 18a but for different viewing angles: (a) west, (b) nadir, and (c) east. This comparison applies cropped data.

in Fig. 22b and c reveal an almost identical scatter of small
MICRU CFs for small FRESCO CFs and vice versa. This
feature, however, is not visible in the comparison with the
two more recent FRESCO versions, for which a significant
number of small CFs are systematically biased (Fig. 22e, f,
h, and i).

Figures 11d–f and 12d–f detail the VZA dependence of the
three FRESCO versions over land and ocean, respectively.
Over land, the accumulation points of small CFs are signifi-
cantly biased high for negative VZA, especially for FRESCO
L1b and v7. The distribution of FRESCO v8 CFs (Fig. 11f),
however, is almost independent of VZA. Over ocean, the dif-
ferences between the FRESCO versions are small and the
bias from sun glitter is again significant, which is consistent
with other results.

A final comparison between MICRU and FRESCO fo-
cuses on spatial features in average CF maps. Figure 23 com-
pares average MICRU CF maps derived at 440 nm with three
corresponding average maps from FRESCO data. The maps
zoom on Mexico and its Pacific coast where interferences
due to the land–sea contrast can be expected. All maps are
computed using the same selection of data: January, April,
July, and October 2010. In order to reduce potential inter-
ferences from BRDF effects (see Fig. 22), only the central
third (nadir) of the swath is considered where |θ |< 23.5◦.

Significant differences between the four CF products are vis-
ible in the mean CF maps in the left column of Fig. 23 even
though major features are similar. The difference plots in
the right column quantify the differences. Comparing MI-
CRU to FRESCO L1b in Fig. 23c reveals relatively high spa-
tial gradients, especially at the coast of the peninsula. Fur-
thermore, MICRU seems to be biased low in comparison to
FRESCO L1b over the Pacific and mainland Mexico, espe-
cially in the north-east of the zoom image. The compari-
son to FRESCO v7 in Fig. 23e differs significantly. Here,
FRESCO v7 is biased high throughout the image. Further-
more, FRESCO v7 CFs are biased low by more than 15 %
along the coasts, which may be attributed to the low res-
olution sampling applied in the LER computation for this
FRESCO version in combination with the larger albedo con-
trast between land and ocean in the wavelength range ap-
plied by FRESCO. For FRESCO v8 (Fig. 23g), this issue is
partially reduced by applying LER maps with an increased
resolution along coasts. Another feature in the comparison to
FRESCO v7 and v8 in Fig. 23e and g is pointed out. Both
average FRESCO data are biased high with respect to MI-
CRU in central Mexico east of Torreón municipality, where
the surface albedo is significantly higher compared to the
surroundings. Hence, this feature may again be due to the
comparatively low spatial sampling of the background LER
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Figure 21. Comparison between MICRU MSC at 440 nm and three different FRESCO versions based on CF data from April 2010: measure-
ments over land (a, c, e) and ocean (b, d, f); FRESCO L1b (a, b), FRESCO v7 (c, d), and FRESCO v8 (e, f). The comparison to FRESCO
L1b applies cropped data. The comparisons in panels (c)–(f) only exclude CF> 1.

maps and the red wavelength range, where the influence of
the albedo on CF is larger compared to shorter wavelengths.
In contrast, this interference is not visible in Fig. 23c where a
MERIS background map sampled at higher spatial resolution
is applied.

3.4.3 Temporal evolution and degradation

So far, the statistical evaluations are carried out on monthly
data aggregates. Now, the temporal evolution of the different
CF products is investigated with respect to small CFs. Here,
the temporal evolution is studied based on the 15th percentile
of monthly CF measurements framed by the 55◦ parallels.
Preceding tests showed that 10 % to 15 % of GOME-2 MSC
measurements are effectively cloud-free. The selection of the

15th percentile showed optimal contrast for this study and
avoids saturation or normalisation effects. Figure 24 com-
piles the temporal evolution of selected CF products and
groups them in order to highlight different comparative as-
pects.

There are, however, no significant trends visible in the in-
vestigated time period.

Figure 24a compares the time series of different cloud
products: MICRU MSC channel 8, the same MSC chan-
nel but applying only 1 year of data (dashed blue), the
two MICRU PMD channels at a similar wavelength of
460 nm (Table 2), OCRA MSC, OCRA_fixed_albedo, and
the three FRESCO versions. First off, the two MICRU
MSC versions align almost perfectly. Apparently, reducing
the time interval used to derive the LT parameterisation
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Figure 22. Viewing angle dependence of the comparison between MICRU at 440 nm and three different FRESCO versions over land. Same
data as Fig. 21a, c, and e, respectively.

has an almost negligible effect in this comparison. Further-
more, the statistics of MICRU MSC, MICRU PMD, and
OCRA_fixed_albedo data are almost identical, with the MI-
CRU PMD and OCRA_fixed_albedo results being positively
biased of≈ 0.005. The amplitude of bi-annual variations is of
the same order for the MICRU versions and less pronounced
for OCRA_fixed_albedo. In contrast to the MICRU results,
OCRA and FRESCO results feature a larger amplitude of at
least 0.01 and an increased annual instead of bi-annual os-
cillation. For all products, the overall trends are negligible
compared to the annual variations.

Figure 24b details the CF statistics depending on VZA
over land (see Figs. 20 and 22). The plot confirms the afore-
mentioned results: MICRU shows negligible VZA depen-
dence of the 15th percentile. For FRESCO v8, the 15th per-
centile of nadir measurements (solid gray line) is approxi-
mately 0.01 smaller compared to measurements in the east-

ern and western thirds of the swath. The VZA dependence
in the OCRA_fixed_albedo percentiles is significantly larger
compared to MICRU and FRESCO. OCRA data reveal a
clear east-to-west trend, while FRESCO v8 features mini-
mal CF values in the centre third of the swath. The CFs in
the western third of the swath of OCRA_fixed_albedo (dot-
ted orange line) average to 0.02, while the average is close to
zero in the eastern third of the swath.

4 Discussion

4.1 MICRU

Figures 8 and 9 illustrate the Tmin retrieval at two differ-
ent sites and wavelengths. The residuals in both examples
(Figs. 8f and 9f) are on average significantly smaller than the
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Figure 23. Comparison between average cloud fractions from different algorithms: (a) MICRU PMD channel 8 at 440 nm; (b, d, f) FRESCO
L1b, v7, and v8, respectively; (c, e, g) respective differences between MICRU and FRESCO. Averages include all nadir measurements
(|θ |< 23.5◦, same as in Fig. 22b, e, and h, respectively) recorded in January, April, July, and October 2010. The T in panels (e) and (g)
marks the location of Torreón municipality in Comarca Lagunera, Mexico (see text).

targeted 0.04 accuracy. Systematic contributions from degra-
dation, seasonal variability, VZA dependence, and sun glitter
are small. This indicates that Eq. (4) is sufficient to param-
eterise Tmin for GOME-2A. Figures 13 and 24b also sup-
port this conclusion. The periodic structures in the west of
Fig. 8e, which are also visible but less pronounced in Fig. 9e,
may be mostly attributed to the anisotropic reflectivity over
land. Figure 11 suggests that this anisotropy may be under-
estimated by the operational CF products. In Fig. 8e, there
seems to be an upward trend and a shift of the apex towards
east over time. Both may be attributed to the degradation of

this particular MICRU channel (cf. Fig. D1a and d). Further-
more, also local changes of land use, vegetation type, or pre-
cipitation climatology may lead to shifts in the lower thresh-
old, which would be linearised by the applied Tmin model.
These additional local trends may be reproduced by the MI-
CRU algorithm as Fig. C1d and g illustrate.

Equation (4) models the residual VZA dependence. Fig-
ure 10 shows that the VZA dependence and its temporal de-
pendence vary between GOME-2 channels even though they
are measuring in the same wavelength region. This indicates
that the instrumental contribution to the residual VZA depen-
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Figure 24. Temporal evolution of the 15th percentile of monthly cloud fraction distributions: (a) comparison between selected MICRU
channels, two OCRA versions, and three FRESCO versions, and (b) viewing angle dependency of MICRU, OCRA_fixed_albedo, and
FRESCO v8. Note that the offset between the blue line in panel (a) and the average of the blue lines in panel (b) is due to a different data
subset that is all vs. land only, respectively. FRESCO L1b and v7 results are omitted in panel (b) for the sake of clarity.

dence is at least of the same order as possible inaccuracies of
RT used to invert the surface LER. Hence, this issue cannot
be solved by a more accurate RT but needs to be corrected for
empirically. Furthermore, degradation needs to be accounted
for and it needs to be noted that the design of MICRU would
allow degradation models different from Eqs. (4) and (10).
For example, discrete functions and prescribed degradation
are both possible to be included.

Considering the influence of surface BRDF effects on MI-
CRU CFs, our results support the discussion by Lorente et al.
(2018) that the LER model systematically underestimates the
surface reflectance in forward direction corresponding to the
eastern part of the GOME-2 swath. Figures C1f and D1c
show that the average apex offset is biased high. The min-
imum gradient of the polynomial is more frequently in the
eastern part of the swath. This suggests stronger contribu-
tions from the surface BRDF in the western part of the swath
in accordance with Lorente et al. (2018). Therefore, MICRU
CFs in Figs. 11, 12, 13, 20, and 22 are consistently smaller in
the western part of the swath when compared to OCRA and
the three FRESCO versions because OCRA and FRESCO
both apply a constant surface reflectance model, whereas MI-
CRU applies an empiric VZA dependence model. This ef-
fect is almost independent of wavelength and consistent for
all MICRU channels (cf. Fig. 15 and Appendix E). It needs

to be noted, however, that also OCRA applies an empirical
VZA correction based on global monthly means (Lutz et al.,
2016).

Lorente et al. (2018) furthermore claim that surface effects
are stronger for longer wavelengths where atmospheric scat-
tering is weaker. Figure D1b may support this claim: the av-
erage curvature of the residual VZA dependency decreases
with wavelength but its variance increases. This observa-
tion is consistent for all three channels and suggests that,
at shorter wavelengths, the residual VZA dependency is due
to a combination of instrumental and RT effects, which are
similar for the ensemble of measurements. At larger wave-
lengths, however, the surface introduces a larger variance
due to stronger spatial and season heterogeneities. However,
the wavelength dependency of the apex offset in Fig. D1c is
ambiguous. The average apex offset peaks between 450 and
700 nm for two out of three GOME-2 channels. The variance,
on the other hand, is minimal for shorter wavelengths. There-
fore, retrieving CFs in the UV–blue spectral range is in any
case beneficial in order to reduce interferences with surface
albedo and type.

In addition to interferences with BRDF effects, there is
another drawback of retrieving CFs at larger wavelengths
(Sect. 3.3.2), which is caused by the spectral surface albedo
and its heterogeneity increasing with wavelength. CFs re-
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trieved at 382 and 440 nm correlate better compared to those
retrieved at the O2-B and O2-A bands at 670 and 757.5 nm,
respectively. This effect is studied more systematically in
Fig. E1b, revealing a significant increase of the standard de-
viation of small CFs between 521.8 and 670 nm. The av-
erage CF maps (Figs. F1, 14, F2, and F3) of MICRU CFs
at 382, 440, 670, and 757.5 nm, respectively, reveal signif-
icant systematic biases of the bright tropic deserts at 670
and 757.5 nm, notably aver Africa and Australia. At 382 and
440 nm, the MICRU results over bright desert areas are sig-
nificantly smaller than all other results and may therefore
be assumed more reliable. This assumption is confirmed in
Fig. 13, where MICRU CF results over North America and
eastern India, which are significantly brighter compared to
Brazil, are not significantly biased. These maps furthermore
indicate systematic CF biases from anthropogenic aerosols
over East Asia and residual clouds in the tropics of South
America and Africa.

Another aspect of the MICRU MSC channel intercompar-
ison are differences at different wavelengths for high values
of CF and hence slopes deviating from unity as, for example,
shown in Fig. 15a. CFs at 382 nm are biased high with respect
to those retrieved at 440 nm, while the intercept at zero CF
is negligible. Hence, the definition of Tmax apparently devi-
ates between MICRU channels, which should be independent
of surface effects. Figure E2c comprehensively compares the
slopes of all MICRU channels. There is a significantly biased
slope for MSC channels 1–4 retrieved at 389.7 nm and below.
This step between MSC channels 4 and 5 may be attributed
to the application of different GOME-2 bands, specifically
bands 2B and 3, from which the MICRU channels are ex-
tracted (Table 1). Hence, we conclude that differences be-
tween MICRU channels at high CF values are dominated by
instrumental effects and calibration deficiencies of the input
data. We would like to note that we observed also the CF ac-
curacy degrading near GOME-2 band edges when fine tun-
ing the MSC channel definitions (Table 1). The degradation
depends only weakly on kernel width, leading to the con-
clusion that this is a broadband effect. Furthermore, interfer-
ences with molecular absorption and atmospheric scattering
above the clouds resulting in a wavelength dependent R may
also cause a systematic slope bias. It needs to be noted, how-
ever, that the influence of the slope on the accuracy on small
cloud fractions is minor.

From the systematic studies compiled in Figs. E1 and E2c,
we may conclude that MSC channels between 424.5 and
521.8 nm are most consistent. The varying slope in band 2B
may be influenced by instrumental effects. For cloud height
retrievals using the O2-A band, MICRU channels 4 and 7
centred at 389.68 ad 433.4 nm, respectively, may be a good
option for GOME-2 as they offer reasonable spatial alias-
ing (Fig. 3). There is a slight priority for channel 7 when
considering the mean and standard deviation of small CFs in
Fig. E1a and b.

The comparison between MSC and PMD channel results
with minimal spatial alignment in Fig. 16 shows an almost
perfect correlation and biases ≤ 0.4. The correlation in the
UV is slightly lower compared to the visible, which may be
caused by the inferior spatial aliasing in the UV. The com-
parisons between MSC and PMD furthermore reveal a slope
significantly smaller than 1. Figure E2b reveals that this is
a minor feature and may be explained by calibration differ-
ences between the different GOME-2 channels. However, the
slope is dominated by differences of the definition of the UT,
which are not accounted for by MICRU. This behaviour has
a minor effect on the accuracy of the LT.

The comparison between MSC and PMD measurements
allows us to estimate the influence of spatial (i.e. temporal)
and the spectral alignment. Figure E2a confirms a maximum
correlation for optimal m as expected. The influence of the
spatial alignment parameter m is found significant and de-
viations by ±1 degrade the correlation from 0.998 to 0.992
for MSC at 516.7 nm. Results comparing spatial vs. spec-
tral alignment are not very clear. At least for PMD chan-
nel 4 (PMD-PP centred at 519 nm), spatial alignment seems
slightly favourable over spectral alignment, which would be
perfect for MSC channel 11 (Fig. E1b).

Hence, MSC channel 10 is selected over channel 11 to be
compared to PMD-PP channel 4 with m= 1 in order to in-
vestigate the absolute accuracy of small CFs. The compari-
son between the standard deviation of PMD CFs within one
MSC pixel in Fig. 17 indicates that the systematic bias of
MICRU CFs is of the order of −0.03.

Figure 24 finally shows that small MICRU CFs have a
negligible trend over the investigated period of more than
6 years. The variations of the 15th percentile are smaller than
0.01. Clearly, CFs at different viewing directions are signifi-
cantly more consistent for MICRU compared to OCRA and
FRESCO.

4.2 OCRA

OCRA CFs are compared to MICRU results based on singu-
lar orbits and exemplary monthly statistics. Both approaches
consistently reveal that OCRA CFs are biased high for ob-
servations towards the west (Figs. 13s, t, and 20a). This indi-
cates that BRDF effects have a stronger influence on OCRA
results for observation geometries opposing the Sun and that
the empirical VZA correction performed by OCRA is not
sufficient. OCRA_fixed_albedo results, however, indicate
that considering the cloud albedo by ROCINN significantly
lowers the biases between MICRU and OCRA/ROCINN CFs
(Figs. 13v–x, 19). OCRA_fixed_albedo CF values in the
eastern third of the GOME-2 swath have similar statistics to
MICRU (Fig. 24b). It needs to be noted, however, that com-
parisons to OCRA_fixed_albedo may only be performed at
MSC resolution because the required ROCINN cloud albedo
values are not available in PMD resolution. Therefore, all

Atmos. Meas. Tech., 14, 3989–4031, 2021 https://doi.org/10.5194/amt-14-3989-2021



H. Sihler et al.: MICRU effective cloud fractions 4015

comparisons to OCRA at PMD resolution are affected by a
different cloud albedo.

Considering the bias of small MICRU CFs of −0.03, the
bias of OCRA measurement in the western third of the swath
can be estimated to 0.095 on average over land. These biases
may be even larger depending on observation geometry and
surface type (Fig. 13t).

The overall statistics in Fig. 18 indicate that small OCRA
CFs are on average less biased when taking into account the
negative systematic bias of MICRU (Sect. 3.3.3). The accu-
racy of singular OCRA measurements, however, is signifi-
cantly and consistently lower compared to MICRU, as re-
vealed by the larger scatter of OCRA CFs for very small MI-
CRU CFs than vice versa (Figs. 18, 20, and E1b). Again,
the application of OCRA_fixed_albedo improves the com-
parison in Fig. 19 significantly compared to OCRA at PMD
resolution (Fig. 18). The remaining excess scatter of small
OCRA_fixed_albedo compared to small MICRU CFs may
be explained by the spatial aliasing effect intrinsically affect-
ing all OCRA evaluations, which combine PMD measure-
ments from three PMD bands with slightly different acquisi-
tion times.

From the investigation of OCRA CFs over ocean in
Fig. 13u, it can be concluded that OCRA’s empirical correc-
tion algorithm is a bit too optimistic. While large contribu-
tions by sun glitter seem to be removed, the area at larger θr
are still positively biased. In regions of very strong sun glitter
(yellow areas in Fig. 13c), OCRA seems to properly account
for this effect on PMD resolution. OCRA_fixed_albedo,
however, is again affected by sun glitter as indicated in
Fig. 13x. It is noted that the conservative MICRU sunglint
warning flag contains the affected regions and that also
OCRA contains a sunglint flag.

4.3 FRESCO

Three different versions of FRESCO CFs are compared to
MICRU MSC results based on singular orbits, exemplary
monthly statistics, and average nadir maps. The different ap-
proaches for the background maps of the FRESCO versions
are clearly visible in Figs. 22 and 23. Small FRESCO CFs
over land are significantly biased high for western observa-
tion geometries by 0.17 and 0.21 on average for FRESCO
L1b and v7, respectively. In contrast, the comparison be-
tween FRESCO v8 and MICRU is almost independent of
the VZA. Therefore, we conclude that the consideration of
BRDF effects in FRESCO v8 displays a significant improve-
ment compared to preceding versions of the product.

On the other hand, however, Fig. 23 shows that interfer-
ences with the coast are minimal for FRESCO L1b, whereas
both newer FRESCO versions are significantly biased high
at coasts and inland. This issue is slightly improved in
FRESCO v8, where GOME-2 background LER data are
sampled at a 4 times higher resolution at coasts. This spe-
cific positive bias along coasts may interfere with the pro-

cessing and evaluation of tropospheric trace-gas products
from GOME-2 applying FRESCO because it leads to filter-
ing a significant amount of measurements there when a CF-
threshold filter is applied. Assuming a significant fraction of
the world’s population resides along coasts, this interference
is considered significant. Less coastal measurements would
be applied using FRESCO L1b, but this would come with
the cost of filtering many measurements in the western part
of the swath, as investigated in Fig. 22.

Compared to MICRU, FRESCO results are biased high, as
indicated in the top right panel of Fig. E1a. The mean biases
of FRESCO v7 and v8 are between 0.05 and 0.07, which
is unrealistic even when considering the systematic bias of
MICRU CFs. In this light, FRESCO L1b CFs, however, are
probably less biased on average compared to MICRU.

The scatter of FRESCO CFs for very small MICRU CFs,
however, is consistently larger for all FRESCO versions than
vice versa. This may be attributed to the application of ra-
diances close to the O2-A band as discussed above. From
the comparison of MICRU CFs at different wavelengths, we
may furthermore conclude that the attempt by Desmons et al.
(2019) to apply FRESCO at the O2-B band may not fully
mitigate significant interferences with heterogeneities of the
absolute surface albedo.

In general, it appears that features in the comparison be-
tween one FRESCO version and MICRU do not appear in
the comparison with the other FRESCO versions. We there-
fore conclude that MICRU reveals actually less systematic
features than all three considered FRESCO versions.

5 Conclusions

MICRU is a cloud fraction retrieval algorithm based on satel-
lite radiance measurements of backscattered solar radiation.
The MICRU algorithm achieves an accuracy of 0.04 in calcu-
lating small effective CFs from spectroscopic satellite mea-
surements. This is a prerequisite for accurate trace-gas re-
trievals because clouds in most cases determine the radiative
transport within each satellite measurement. The unique fea-
ture of MICRU is the application of an empirical BRDF sur-
face model accounting for viewing angle dependencies in the
cloud retrieval. The paper demonstrates that MICRU CFs de-
pend significantly less on VZA compared to other available
CF products for GOME-2 and hence are significantly more
accurate. MICRU determines the lower threshold from the
measurements themselves, furthermore reducing biases due
to calibration and degradation issues.

As a proof of concept, we applied MICRU to GOME-
2A data, but the algorithm is also applicable to similar
spectroscopic satellite missions like SCIAMACHY, OMI,
S5P/TROPOMI, and Sentinel-5/UVNS. Furthermore, MI-
CRU can also process UV–vis imager data like AVHRR,
MERIS, MODIS, or Sentinel-2/MSI (multi-spectral instru-
ment) due to its scalable design.
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Our results confirm that MICRU is able to accurately re-
trieve small CFs over a wide spectral range, which renders it
an optimal choice for tropospheric trace-gas retrievals. These
should use a cloud product based on radiance measurements
of similar wavelength and spatial sampling so that the corre-
lations between cloud and trace-gas retrievals are optimised.
For example, satellite instruments like Sentinel-5 have an
inter-band offset of up to 30 %, which deteriorates the ap-
plicability of particularly small cloud fractions retrieved in
the red spectra range (e.g. FRESCO) to differential opti-
cal absorption spectroscopy (DOAS) products like NO2 and
HCHO retrieved in the UV–blue spectral region.

In conclusion, applying radiances recorded in the UV–blue
spectral range is advantageous over the red spectral range in
order to reduce surface effects. Furthermore, spatial align-
ment effects between MSC and PMD channels may be min-
imised by choosing appropriate spectral convolution kernels.
In order to test the applicability of MICRU to data from re-
cent satellite missions spanning less than 6 years, it was ap-
plied on a data set reduced to 1 year. Results of this alterna-
tive retrieval are found to provide sufficient accuracy. Hence,
MICRU may be applied on satellite missions offering less
data than the GOME-2A mission with confidence.
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Appendix A: Iterative surface fitting

MICRU applies an iterative threshold technique to retrieve
the lower accumulation point Tmin. The method is similar to
the threshold method applied by HICRU (Grzegorski et al.,
2006), where Rmin is assumed to only depend on time and
viewing direction. For HICRU, this dependency could be re-
solved manually because the number of discrete VZAs was
small, and therefore the lower accumulation point could be
efficiently retrieved in an image processing manner. MICRU,
however, assumes a more complex behaviour of Tmin and
therefore incorporates a non-linear least-squares fit in every
iteration of the lower accumulation point determination algo-
rithm.

The basic idea behind iterative surface fitting is that the
lower envelope of measurement set � (blue dots in exem-
plary Figs. 8b and 9b) is approximated by iteratively filtering
measurement tuples (t̂, θ̂, θs, rg,LER) ∈� fulfilling

LER> y(β)+ τ, (A1)

where y(β) is the fit result and τ is a positive threshold. β
denotes the result vector of Eq. (4):

β =
[
a0,at,ap,aa0,aa1,as,ag

]
. (A2)

The accuracy and the convergence of the method depend on
the choice of τ (Grzegorski et al., 2006), the applicability
of the Tmin model, the stability of the surface fit, and the
initial values β0. Compared to HICRU, MICRU introduces
two improvements: (1) an adaptive scaling of τ reducing the
number of a priori assumptions, and (2) the application of a
surface fit. The surface fit incorporates parameter constraints
(Table 5), and therefore the trust-region-reflective algorithm
(Coleman and Li, 1994, 1996) is applied.

The initialisation of the fit defines β0 and an initial se-
lection vector V 0. The selection vector V i defines the sub-
set of measurements �i+1 =�(V i), on which the (i+ 1)th
iteration of the surface fit is applied. Table 5 provides ini-
tial values β0 except for a0, which is set to the median of
LER(�). V 0 is set true for all LER measurements fulfilling
LER< a0+ σ0, where σ0 is the standard deviation of resid-
ual vector R = LER− y(β0). The initial threshold τ0 is set
to 0.012.

The ith iteration consists of the following steps: fit Eq. (4)
to�i with initial guess βi−1 yielding βi . The residual vector
is then R = LER−y(βi), defining the measurement set used
in the next iteration through

�i+1 = {�|R < τ ∧R >−3σR} , (A3)

where σR is again the standard deviation of R. The second
condition in Eq. (A3) filters outliers of the measurements dis-
tribution towards −∞.

After that, the threshold for the next iteration is deter-
mined. τi+1 depends on the retrieved mean LER; that is, the

threshold becomes larger for brighter surfaces. The adjust-
ment is retarded to steps of δτ = 0.002. The upper limit τmax
is defined. τmax increases linearly with y(βi): τmax = τ0 for
y(βi)= 0 and τmax= 0.1 for y(βi)= 1. Then, τ is increased
if

τi < τmax⇒ τi+1 = τi + δτ,

or decreased if

τi > τ0 ∧ τi > τmax+ δτ ⇒ τi+1 = τi − δτ.

Iterations terminate if at least one of the following
four conditions is true: number of iteration steps exceeds
imax= 40, invariance of selection vector (V i+1=V i), invari-
ance of result vector (βi =βi−1), or �i+1 includes less than
eight data points.

The result is β =βi , corresponding to a remaining set �i
(red dots in Fig. 8b) defining Tmin as a function of t̂ , θ̂ , θs, and
rg in a specific geospatial bin. Diagnostic metrics for filtering
(Sect. 2.5.3) are the number of elements in�i , its ratio to the
number of elements in �0, and the number of iterations i.

Appendix B: Tmin merging steps

The merging process consists of the following steps:

– Extrapolate all results to highest resolution.

– Discard result bins fulfilling

– i < 4, or
– a0≤−0.5 for ϕ > 80◦ S.

– Additionally, filter oceans bins where

– N∗ ≤ 120, or
– N∗ ≤ 1000 for N

∗

N
< 0.02 and |ϕ| ≤ 65◦

is fulfilled, except in the coarsest resolution realised in
binning no. 7.

– Additionally, filter bins over land with N∗ ≤ 80.

– Filtered maps are merged from coarse to fine resolution
in order to maintain the highest resolution possible.

– Empty bins – or gaps – are extrapolated as follows:

– For ϕ ≤ 80◦ S, zonal means are copied into the
gaps; if there are no data at the same latitude at all,
β from one row towards the north are applied.

– Remote gaps, like islands or lakes, which are more
than 6◦ longitude and 3◦ latitude away from a valid
bin, are filled with zonal mean values.

– Remaining gaps, e.g. at coasts, are filled by succes-
sive applying a Gaussian convolution kernel with a
1σ diameter of 3◦ longitude and 1◦ latitude.

– Set ag= 0 for |ϕ|> 65◦.
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Appendix C: Tmin parameter map

Figure C1 shows an exemplary stitching result for MSC
channel 2. The spatial origin of the finally applied fit results
is compiled in Fig. C1a: fit results from the highest resolution
– binning no. 1 over land and binning no. 4 over the ocean –
are in dark blue colour. Extrapolated bins are coloured in yel-
low. Coastlines typically apply coarser resolutions because of
the poorer statistics and the 90 % cut-off criterion for the re-
spective surface types. Polar oceans appear in light blue or
orange colours because frequent clouds and bright sea ice
significantly reduce N∗.

Figure C1 is a merged Tmin map of all binned Tmin results
for MSC channel 2. It is the base LUT for calculating Rmin
globally. Figure C1b indicates that τ increases over water
and desert regions with larger LER. Figure C1c–i illustrate
the geographical dependence of the fitted surface parame-
ters. A significant latitudinal dependence and interferences
with the increased cloud probability at the ITCZ can be ob-
served for all parameters. A significant land–sea contrast is
visible for the apex degradation in Fig. C1g: the apex seems
to shift systematically less over land. Furthermore, there is a
significantly different behaviour of the apex angle and scat-
tering angle dependence over the rainforest regions between
South America and Africa in Fig. C1f and h, respectively.
Both regions feature a comparatively large cloud probability
and hence fewer statistics available for the Tmin retrieval.

It is noted that Fig. C1d and g reveal that both trend terms
are latitudinally correlated with the opposite sign. A discus-
sion of independent terms is therefore difficult. This obser-
vation, however, confirms an overall degradation of the VZA
dependence as shown in Fig. 7.

Sunglint is not constant throughout Fig. C1i and therefore
cannot be corrected for a priori. Specifically, panel (i) indi-
cates lower values in the ocean west of equatorial Africa and
India. Towards the poles, scatter increases as sunglint contri-
bution diminishes. Over the Amazon, interestingly, there is a
clear signal from sun glitter, which was not expected a priori,
illustrating the gain by fitting this parameter also over land.

Appendix D: Wavelength dependency of MICRU results

Figure D1 compiles the average wavelength dependency of
the Tmin parameters for the MSC and PMD MICRU chan-
nels. Apparently, offset degradation is much more an is-
sue for MSC and PMD-PP when compared to PMD-SP
(Fig. D1a), which is in accordance with the findings from
Fig. 10. The VZA dependence is consistently stronger in
the UV compared to MICRU channels at longer wavelengths
(Fig. D1b) but relatively smaller for PMD-PP as already dis-
cussed above. The wavelength dependence of the apex degra-
dation in Fig. D1d seems to be much more complex, chang-
ing signs below 500 nm. The wavelength dependence of as
is small compared to the overall variability in Fig. D1e. ag
values in Fig. D1f are increasing with wavelength, suggest-
ing Rayleigh scattering is damping the contribution from sun
glitter in the UV.
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Figure C1. Parameterisation of the lower threshold (LT) for MSC channel 2 after post-processing: (a) binning over land and ocean, (b) final
threshold Tmin, (c) offset, (d) offset degradation, (e) curvature, (f) apex angle, (g) apex degradation, (h) scattering angle, and (i) sun glitter.
In panel (a), colours other than dark blue indicate regions where the resolution is reduced or extrapolation (ex) is applied. Coast-containing
pixels display land results.

Figure D1. Wavelength dependency of Tmin parameters: (a) offset degradation, (b) curvature, (c) apex offset, (d) apex degradation, (e) scat-
tering angle, and (f) sun glitter. MSC channels are in red, PMD channels 1–8 in blue, and PMD channels 9–16 in green. Interconnected data
points are median fit parameters. Transparent areas include 50 % of all results with boundaries at the 25th and 75th percentiles.
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Appendix E: Matrix comparison between MICRU,
FRESCO, and OCRA

Figures E1 and E2 show a selection of comparisons be-
tween different MICRU MSC, MICRU PMD, FRESCO, and
OCRA cloud products for April 2010. Figure E1a and b show
the mean CF and standard deviation of selected CFs for the
product in the x direction. The selection includes only those
measurements fulfilling |c|< 0.01 of the product in the y di-
rection. As a reference, results in Fig. 15, which are the re-
sults where MICRU MSC channels 2, 12, and 14 are com-
pared to MICRU MSC channel 8 evaluated at 440 nm, corre-
spond to the results in the second row as indicated by circles
in Fig. E1a.

Focusing on the inter-MSC comparison, the upper left
block in Figs. E1 and E2, one observes that the MICRU re-
sults are relatively consistent for all MICRU channels. The
standard deviation in Fig. E1b reveals a significant jump
between 521.8 and 670 nm, which was already observed in
Fig. 15. Figure E2a and b show that the correlation degrades
and the deviation of small CF increases with increasing spec-
tral distance. The slope, which is dominated by Rmax, reveals
a significant jump between 389.7 and 425.5 nm in Fig. E2c,
coinciding with a step from MSC band 2B to band 3 (Ta-
ble 1).

MSC applying less data

In addition to the standard MSC evaluation integrating
6 years of measurements (Sect. 2.1.1), an evaluation using
only 1 year of data is performed in order to simulate the per-
formance of MICRU if applied to shorter data sets. We chose
the year 2010 because it ranges approximately in the centre
of the standard evaluation period where CF accuracy may be
assumed optimal (see Sect. 3.4.3). For this special evalua-
tion, the parameters accounting for degradation (at and aa1
in Table 5) are constrained to 0 for all MSC channels. The
results of this simulation are included in the result matrices
in Figs. E1 and E2 and denoted as “1 year”.

The circles in Fig. E1b indicate the entries, where the
new results are compared to the standard results, which
are located one column to the left. All circled values are
larger compared to the standard evaluation. This indicates
that small cloud fractions are less accurate if a shorter eval-
uation period is chosen. The corresponding matrix entries
in Fig. E1a indicate that small cloud fractions retrieved at
382 nm are more deviated compared to the standard evalua-
tion (−0.3) compared to those at longer wavelengths, where
corresponding entries are negligible (denoted by ·).
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Figure E1. Tabular intercomparison of MICRU and external cloud fraction results for April 2010: (a) mean CF of product listed in the
x direction selected by corresponding product in the y direction with an absolute CF< 1 %; (b) same as panel (a) but listing the standard
deviation. The circled values in panel (a) correspond to Fig. 15. The circled values in panel (b) indicate values comparing data of the same
MICRU channel but different evaluations periods: 1 year vs. the standard data set applying 7+ years.
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Figure E2. Continuation of Fig. E1: (a) linear coefficient of correlation r2, (b, c) intercept and slope of bi-variate linear fit, respectively.
Numbers of small deviations from 0 and 1, respectively, are omitted for the sake of clarity. The circled values in panel (a) correspond to
Fig. 16.
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Appendix F: Global average cloud fractions

This section compiles global average cloud fraction maps
of MICRU MSC channels 2, 12, and 14 (Figs. F1, F2,
F3), FRESCO L1b (Fig. F4), FRESCO v7 (Fig. F5),
FRESCO v8 (Fig. F6), MICRU PMD channel 4 (Fig. F8),
OCRA (Fig. F9), and OCRA_fixed_albedo (Fig. F7) similar
to Fig. 14 in Sect. 3.3.1, applying MICRU MSC channel 8
in the main body of the paper. MICRU MSC and FRESCO
L1b maps are compiled from 6 years of data collected be-
tween July 2007 and June 2013. Averages of MICRU PMD
and OCRA data begin 1 year later. FRESCO v7 data (Fig. F5)
comprise 4 months; FRESCO v8 data (Fig. F6) solely com-
prise the year 2010.

Figure F1. The 6-year average of MICRU MSC channel 2 cloud fraction measurements recorded between 1 July 2007 and 30 June 2013.
Areas without data are plotted in gray.

Figure F2. The 6-year average of MICRU MSC channel 12 cloud fraction measurements recorded between 1 July 2007 and 30 June 2013.
Areas without data are plotted in gray.
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Figure F3. The 6-year average of MICRU MSC channel 14 cloud fraction measurements recorded between 1 July 2007 and 30 June 2013.
Areas without data are plotted in gray.

Figure F4. Same as Fig. 14 but showing the 6-year average of the FRESCO L1b cloud fraction measurements recorded between 1 July 2007
and 30 June 2013. Areas without data are plotted in gray.

Figure F5. Same as Fig. 14 but showing the 4-month average of the FRESCO v7 cloud fraction measurements recorded in January, April,
July, and October 2010. Areas without data are plotted in gray.

Atmos. Meas. Tech., 14, 3989–4031, 2021 https://doi.org/10.5194/amt-14-3989-2021



H. Sihler et al.: MICRU effective cloud fractions 4025

Figure F6. Same as Fig. 14 but showing the 1-year average of the FRESCO v8 cloud fraction measurements recorded in 2010. Areas without
data are plotted in gray.

Figure F7. Same as Fig. 14 but showing the 5-year average of the OCRA_fixed_albedo cloud fraction measurements recorded between
1 July 2008 and 30 June 2013. Areas without data are plotted in gray.

Figure F8. Same as Fig. 14 but showing the 5-year average of the MICRU PMD channel 4 cloud fraction measurements recorded between
1 July 2008 and 30 June 2013. Areas without data are plotted in gray.
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Figure F9. Same as Fig. 14 but showing the 5-year average of the OCRA cloud fraction measurements recorded between 1 July 2008 and
30 June 2013. Areas without data are plotted in gray.

Atmos. Meas. Tech., 14, 3989–4031, 2021 https://doi.org/10.5194/amt-14-3989-2021



H. Sihler et al.: MICRU effective cloud fractions 4027

Data availability. GOME-2 Level 1b data are available via the
EUMETSAT Data Centre on the EUMETSAT Earth Observation
(EO) Portal (see also https://navigator.eumetsat.int/product/EO:
EUM:DAT:METOP:GOMEL1, last access: 25 May 2021). Repro-
cessed GOME-2 AAI data (R1) version 1.01 are available from AC-
SAF (https://doi.org/10.15770/EUM_SAF_O3M_0003, AC SAF,
2017a; https://doi.org/10.15770/EUM_SAF_O3M_0004, AC SAF,
2017b). MODIS snow data have been provided by Hall and
Riggs (2016) (https://doi.org/10.5067/MODIS/MOD10C2.006).
Sea ice data have been provided by Cavalieri et al. (1996)
(https://doi.org/10.5067/8GQ8LZQVL0VL). The Global 30-Arc-
Second Elevation (GTOPO30) data set can be found at
https://doi.org/10.5066/F7DF6PQS (USGS, 2018). The Global
Self-consistent, Hierarchical, High-resolution Geography Database
(GSHHG) can be downloaded from NOAA NCEI (https://
www.ngdc.noaa.gov/mgg/shorelines/, NOAA, 2018). ERA-Interim
data used in this study were provided by ECMWF. MICRU
MSC results are archived and will be distributed through the
Edmond service of the Max Planck Digital Library (https://
edmond.mpdl.mpg.de/imeji/, last access: 27 May 2021) under
https://doi.org/10.17617/3.59 (Sihler and Wagner, 2020). MICRU
PMD results are available from the authors upon request.
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