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Abstract. NASA’s Plankton, Aerosol, Cloud, ocean Ecosys-
tem (PACE) mission, scheduled for launch in the time-
frame of 2023, will carry a hyperspectral scanning ra-
diometer named the Ocean Color Instrument (OCI) and
two multi-angle polarimeters (MAPs): the UMBC Hyper-
Angular Rainbow Polarimeter (HARP2) and the SRON
Spectro-Polarimeter for Planetary EXploration one (SPEX-
one). The MAP measurements contain rich information on
the microphysical properties of aerosols and hydrosols and
therefore can be used to retrieve accurate aerosol properties
for complex atmosphere and ocean systems. Most polarimet-
ric aerosol retrieval algorithms utilize vector radiative trans-
fer models iteratively in an optimization approach, which
leads to high computational costs that limit their usage in
the operational processing of large data volumes acquired by
the MAP imagers. In this work, we propose a deep neural
network (NN) forward model to represent the radiative trans-
fer simulation of coupled atmosphere and ocean systems for
applications to the HARP2 instrument and its predecessors.
Through the evaluation of synthetic datasets for AirHARP
(airborne version of HARP2), the NN model achieves a nu-
merical accuracy smaller than the instrument uncertainties,
with a running time of 0.01 s in a single CPU core or 1 ms in
a GPU. Using the NN as a forward model, we built an effi-
cient joint aerosol and ocean color retrieval algorithm called

FastMAPOL, evolved from the well-validated Multi-Angular
Polarimetric Ocean coLor (MAPOL) algorithm. Retrievals of
aerosol properties and water-leaving signals were conducted
on both the synthetic data and the AirHARP field measure-
ments from the Aerosol Characterization from Polarimeter
and Lidar (ACEPOL) campaign in 2017. From the valida-
tion with the synthetic data and the collocated High Spectral
Resolution Lidar (HSRL) aerosol products, we demonstrated
that the aerosol microphysical properties and water-leaving
signals can be retrieved efficiently and within acceptable er-
ror. Comparing to the retrieval speed using a conventional
radiative transfer forward model, the computational acceler-
ation is 103 times faster with CPU or 104 times with GPU
processors. The FastMAPOL algorithm can be used to op-
erationally process the large volume of polarimetric data ac-
quired by PACE and other future Earth-observing satellite
missions with similar capabilities.

1 Introduction

Atmospheric aerosols are tiny particles suspended in the at-
mosphere, such as dust, sea salt, and volcanic ash, that play
important roles in air quality (Shiraiwa et al., 2017; Li et al.,
2017) and Earth’s climate (Boucher et al., 2013). Aerosols
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influence the Earth’s reflectivity directly through scattering
and absorption of solar light and indirectly through inter-
actions with clouds. The radiative forcing from aerosols is
one of the main uncertainties in studies of global climate
change (Boucher et al., 2013). When deposited into ocean
waters, aerosols also contribute to the availability of nutri-
ents needed for phytoplankton growth and thereby influence
ocean ecosystems (Westberry et al., 2019). Accurate knowl-
edge of aerosol optical properties is also important for at-
mospheric correction in ocean color remote sensing, wherein
the spectral water-leaving radiances are retrieved by subtract-
ing the contributions of the atmosphere and ocean surface
from the spaceborne or airborne measurements made at the
top of atmosphere (TOA; Mobley et al., 2016). The resulting
water-leaving signals provide valuable information to derive
biogeochemical quantities for monitoring the global ocean
ecosystem (Dierssen and Randolph, 2013) and for quantify-
ing ocean biochemical processes (Platt et al., 2008). Accurate
assessments of aerosol optical and microphysical properties
are thus important for both atmospheric and oceanic studies.

Multi-angle polarimeters (MAPs) measure polarized light
at continuous or discrete spectral bands and at multiple view-
ing angles, providing rich information on aerosol optical
and microphysical properties (Mishchenko and Travis, 1997;
Chowdhary et al., 2001; Hasekamp and Landgraf, 2007;
Knobelspiesse et al., 2012). The Polarization and Direction-
ality of the Earth’s Reflectances (POLDER) instrument pi-
oneered the spaceborne MAP, which was hosted on Ad-
vanced Earth Observing Satellite missions (ADEOS-I; 1996–
1997 and ADEOS-II; 2002–2003) and the Polarization and
Anisotropy of Reflectances for Atmospheric Sciences cou-
pled with Observations from a Lidar (PARASOL; 2004–
2013) mission (Tanré et al., 2011). The Hyper-Angular Rain-
bow Polarimeter (HARP) CubeSat, a small satellite with 3U
(10 cm× 10 cm× 30 cm) volume, was launched from the In-
ternational Space Station on February of 2020 and has cap-
tured scientific images (UMBC Earth and Space Institute,
2021). Several satellite missions plan to carry MAP instru-
ments, which are scheduled to be launched in the timeframe
of 2023–2024, including the European Space Agency’s
(ESA) Multi-viewing Multi-channel Multi-polarisation Im-
ager (3MI) on board the MetOp-SG satellites (Fougnie et al.,
2018), the National Aeronautics and Space Administration’s
(NASA) Multi-Angle Imager for Aerosols (MAIA) (Diner
et al., 2018), and Plankton, Aerosol, Cloud, ocean Ecosys-
tem (PACE) (Werdell et al., 2019) missions. A thorough re-
view of the MAP instruments and algorithms can be found in
Dubovik et al. (2019).

The PACE mission will carry a hyperspectral scanning
radiometer named the Ocean Color Instrument (OCI) and
two MAPs: a next-generation UMBC (University of Mary-
land, Baltimore County) Hyper-Angular Rainbow Polarime-
ter (HARP2) (Martins et al., 2018) and the SRON (Nether-
lands Institute for Space Research) Spectro-Polarimeter for
Planetary EXploration one (SPEXone) (Hasekamp et al.,

2019a). OCI will provide continuous spectral measurements
from the ultraviolet (340 nm) to near-infrared (890 nm) with
full width at half maximum of 5 nm resolution and sampling
every 2.5 nm, plus a set of seven discrete shortwave infrared
(SWIR) bands centered at 940, 1038, 1250, 1378, 1615,
2130, and 2260 nm. SPEXone performs multi-angle mea-
surements at five along-track viewing angles of 0◦, ±20◦,
and ±58◦, with a surface swath of 100 km and a continu-
ous spectral range spanning 385–770 nm at resolutions of 2–
3 nm for intensity and 10–40 nm for polarization (Rietjens
et al., 2019). HARP2 is a wide field-of-view imager that mea-
sures the polarized radiances at 440, 550, 670, and 870 nm,
where the 670 nm band will measure 60 viewing angles and
the other bands 10 viewing angles, with a swath of 1556 km
at nadir on the Earth’s surface. To facilitate cross calibra-
tions and validations, a PACE Level-1C common data for-
mat has been developed, with the purpose of projecting all
three PACE instruments onto an uniform spatial grid (Plank-
ton, Aerosol, Cloud, ocean Ecosystem – PACE, 2020). The
PACE instruments will provide an unprecedented opportu-
nity to improve the characterization of the atmosphere and
ocean states (Remer et al., 2019a, b; Frouin et al., 2019).

To retrieve the aerosol information from polarimetric mea-
surements over oceans, several advanced aerosol retrieval al-
gorithms have been developed for both airborne and space-
borne MAPs, such as POLDER/PARASOL(Hasekamp et al.,
2011; Dubovik et al., 2011, 2014; Li et al., 2019; Hasekamp
et al., 2019b; Chen et al., 2020), the Airborne Multi-
angle SpectroPolarimetric Imager (AirMSPI) (Xu et al.,
2016, 2019), SPEX airborne (the airborne version of SPEX-
one) (Fu and Hasekamp, 2018; Fu et al., 2020; Fan et al.,
2019), the Research Scanning Polarimeter (RSP) (Chowd-
hary et al., 2005; Wu et al., 2015; Stamnes et al., 2018; Gao
et al., 2018, 2019, 2020), and the Directional Polarimetric
Camera (DPC) on board Gaofen-5 (Wang et al., 2014; Li
et al., 2018). The retrieval algorithms are mostly based on
iterative optimization approaches that utilize vector radiative
transfer (RT) models as the forward model. The high compu-
tational costs of the RT simulations pose great challenges in
the operational processing of the large data volumes acquired
by the MAP imagers. To alleviate this issue, the SPEX team
represented the polarimetric reflectance for an open-ocean
system using a deep neural network (NN) and coupled it
with a radiative transfer model for the atmosphere (Fan et al.,
2019). This hybrid forward model avoids the direct calcu-
lation of the scattering and absorption properties inside the
ocean and still maintains high accuracy, therefore enabling
sufficient efficiency for SPEXone data retrieval. For coastal
waters, Mukherjee et al. (2020) developed a NN model to
predict the polarimetric reflectance associated with complex
water optical properties. This NN model can be combined
with a flexible atmosphere model for MAP aerosol retrievals
over complex waters.

For non-polarimetric remote sensing studies, several NN
approaches have been developed to derive aerosol and ocean
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properties simultaneously (Fan et al., 2017; Shi et al., 2020,
and references therein). Fan et al. (2017) developed NN mod-
els to directly invert the aerosol optical depth (AOD) and re-
mote sensing reflectance Rrs(λ) (sr−1) from the NASA Mod-
erate Resolution Imaging Spectroradiometer (MODIS) mea-
surements. Shi et al. (2020) developed a NN radiative transfer
scheme for coupled atmosphere and ocean systems includ-
ing both open and coastal waters, which is then applied in
an optimal estimation algorithm for the Cloud and Aerosol
Imager-2 (CAI-2) hosted on the Greenhouse gases Observ-
ing Satellite-2 (GOSAT-2).

A number of NN models have been developed to directly
invert the aerosol microphysical properties from MAP mea-
surements. Di Noia et al. (2015) discusses the NN employed
to retrieve aerosol refractive index, size, and optical depth
(AOD) from groundSPEX (a ground version of SPEX instru-
ment) measurements. Di Noia et al. (2017) developed a NN
inversion method for airborne MAP measurement over land
from RSP. In both works, the results from the NN inversion
are further used as initial values for iterative optimization,
and both efficiency and the retrieval accuracy are shown to
be improved. Using NN to conduct direct inversion is effi-
cient, but it is often viewed as a black box, and it is difficult to
account for measurement uncertainties. The combination of
a NN inversion with an iterative optimization method shows
promise for MAP retrievals.

Even with such ample progress, it is still challenging for
current state-of-the-art algorithms to process MAP data op-
erationally through iterative optimization. In this work, we
present a joint retrieval algorithm for aerosol properties and
water-leaving signals that uses a deep NN model to replace
the radiative transfer forward model for simulation of the po-
larimetric reflectances. This approach is one step further than
Fan et al. (2019), as both the atmospheric and oceanic radia-
tive transfer processes are represented by the NN. The NN
forward model is then used in an iterative retrieval algorithm
that is significantly more computationally efficient than ap-
proaches that use traditional radiative transfer. The benefits
of using a NN model as the forward model in retrieval algo-
rithms can be summarized as follows with details provided
in later sections.

– Fast. NN models involve matrix operations that can be
evaluated efficiently.

– Accurate. Given sufficient training data volumes and ac-
curacies, NN models can be trained with high precision.

– Differentiable. The Jacobian matrix of NN models can
be represented analytically and therefore further im-
proves efficiency and accuracy in retrievals.

– Transferable. The parameters of a NN can be exported
and implemented into existing retrieval algorithms.

The retrieval algorithm we developed is called
FastMAPOL, which is evolved from the well-validated

Multi-Angular Polarimetric Ocean coLor (MAPOL) al-
gorithm (Gao et al., 2018, 2019, 2020) by replacing its
forward model with NN models. To validate the retrieval
algorithm, we applied FastMAPOL to both synthetic and
field measurements from AirHARP (the airborne version of
HARP2 and HARP CubeSat) for the Aerosol Characteri-
zation from Polarimeter and Lidar (ACEPOL) campaign in
2017 (Knobelspiesse et al., 2020). The synthetic AirHARP
data are a supplement of the field measurements with a wider
range of aerosol and ocean optical properties, as well as solar
and viewing geometries. The AODs derived from coincident
High Spectral Resolution Lidar (HSRL, Hair et al., 2008)
and Aerosol Robotic Network (AERONET, Holben et al.,
1998) measurements are used to evaluate the performance of
the AOD retrieval from the AirHARP field measurements.
Using the retrieved aerosol properties, atmospheric correc-
tion is applied to the AirHARP measurements to derive the
water-leaving signal at four AirHARP bands. The retrieved
aerosol products from MAP can also assist hyperspectral
atmospheric correction on instruments such as PACE OCI
as previously demonstrated using the aerosol properties
retrieved from RSP and hyperspectral measurements from
SPEX airborne (Gao et al., 2020; Hannadige et al., 2021).
Retrieval uncertainties of both aerosol and water-leaving
signals under various aerosol loadings are also discussed
in this study. The retrieval algorithm powered by the NN
forward model provides a practical approach for operational
applications of polarimetric aerosol and ocean color retrieval
for PACE, as well as other satellite missions that utilize
polarimeters in the retrieval of geophysical properties from
Earth observations.

The paper is organized into seven sections: Sect. 2 re-
views the retrieval algorithm and its radiative transfer for-
ward model, Sect. 3 discusses the training and accuracy of
the NN forward model, Sect. 4. applies the NN forward
model to aerosol and water-leaving signal retrievals from the
synthetic AirHARP data, Sect. 5. discusses the retrievals on
AirHARP field measurements from the ACEPOL campaign,
and Sects. 6 and 7 provide discussions and conclusions.

2 Joint aerosol and ocean color retrieval algorithm

In this section, we will discuss the MAPOL retrieval al-
gorithm based on multi-angle polarimetric measurements
and the associated radiative transfer forward model. The re-
trieval algorithm has been validated using both synthetic data
(Gao et al., 2018) and RSP field measurements (Gao et al.,
2019, 2020). To apply the retrieval algorithm to AirHARP
measurements, we will first discuss the AirHARP instrument
characteristics.

AirHARP measures the total and linearly polarized radi-
ance at 60 viewing angles at the 660 nm band and at 20 view-
ing angles at the 440, 550, and 870 nm bands. Different from
AirHARP, HARP2 reduces the number of viewing angles to
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10 at 440, 550, and 870 nm and maintains 20 viewing an-
gles at 660 nm in order to fulfill the bandwidth requirement
and preserve information content as much as possible. HARP
instruments (AirHARP, HARP CubeSat, and HARP2) use
a modified three-way Phillips prism located after the front
lens to split the incident light into the three orthogonal lin-
ear polarization states (0◦, 45◦, and 90◦), which can be re-
combined to obtain the Stokes parameters Lt, Qt, and Ut at
the observational altitude (Puthukkudy et al., 2020). Circu-
lar polarization (Stokes parameter V) is not measured by any
of the polarimeters in ACEPOL as it is negligible for atmo-
spheric studies (Kawata, 1978). We use the total measured
reflectance (ρt(λ)) and degree of linear polarization (DoLP,
Pt(λ)) at the height of the aircraft with spectral dependencies
hereafter implied, which are defined as

ρt =
πr2Lt

µ0F0
, (1)

Pt =

√
Q2

t +U
2
t

Lt
, (2)

where F0 is the extraterrestrial solar irradiance, µ0 is the co-
sine of the solar zenith angle, and r is the Sun–Earth distance
correction factor in astronomical units.

Based on the MAP measurements, the MAPOL retrieval
algorithm is developed to derive both the aerosol proper-
ties and the water-leaving signal simultaneously. The re-
trieval algorithm minimizes the difference between the MAP
measurements and the forward model simulations com-
puted from vector radiative transfer simulations (Zhai et al.,
2009, 2010). By assuming the measurement and modeling
uncertainties follow Gaussian statistical distributions, the re-
trieval parameters can be estimated through Bayesian theory
using the cost function χ2 to quantify the difference between
the measurement and the forward model simulation (Rogers,
2000):

χ2 (x)=
1
N

∑
i

([
ρt(i)− ρ

f
t (x; i)

]2
σ 2
ρ (i)

+

[
Pt(i)−P

f
t (x; i)

]2
σ 2
P (i)

)
, (3)

where ρt and Pt are the measured reflectance and DoLP as
defined in Eqs. (1) and (2), and ρf

t and P f
t are the correspond-

ing quantities computed from the forward model. The state
vector x contains all retrieval parameters, such as the aerosol
size and refractive indices; the subscript i stands for the index
of the measurements at different viewing angles and wave-
lengths; and N is the total number of the measurements used
in the retrieval. For AirHARP measurements, the maximum
value of N is 240, twice of the total number of viewing an-
gles. The total uncertainties of the reflectance and DoLP used
in the algorithm are denoted as σρ and σP , which are con-
tributed by both the measurement uncertainties σm and the

forward model uncertainties σf (more details in Sect. 3.3):

σ 2
ρ = σ

2
ρ,m+ σ

2
ρ,f, (4)

σ 2
P = σ

2
P,m+ σ

2
P,f. (5)

One important component of σm is the calibration uncer-
tainty. AirHARP was calibrated in the lab with an accuracy
of 3 %–5 % for reflectance and 0.005 for DoLP (McBride
et al., 2019). In-flight uncertainty for the AirHARP DoLP
is conservatively estimated to be at most 0.01 without an on-
board calibrator. In this study, we adopted the calibration un-
certainty for reflectance as σρ,cal = 3%ρt and for DoLP as
σP,cal = 0.01 for all four bands. The accuracy of the HARP2
measurements can be further improved through onboard cal-
ibration (McBride et al., 2020; Puthukkudy et al., 2020). In
this study, we considered the total measurement uncertainties
as the contributions only from the calibration (σcal):

σm = σcal. (6)

However, other contributions such as spatial variability of
the geophysical properties may also contribute to the mea-
surement uncertainties, which will be discussed in Sect. 5.
Furthermore, noise correlation is an import influence on the
retrieval accuracy (Knobelspiesse et al., 2012) that is ignored
in this study due to the lack of knowledge on this character-
istic for AirHARP.

As observed by AirHARP (Puthukkudy et al., 2020) and
RSP measurements (Gao et al., 2020), the sunglint angu-
lar pattern cannot be well modeled by an isotropic Cox–
Munk model. Using these data will require characterization
of the corresponding measurement and model uncertainties.
To minimize the impact of sunglint in our discussions, we re-
moved the signals within an angle range of 0◦ to 40◦ relative
to the solar specular reflection direction.

The forward model uncertainties σf include the uncertain-
ties of the radiative transfer calculation and uncertainties due
to the incompleteness of the model to describe the system.
However, the latter are difficult to quantify; we will discuss
the possible sources for them in the next section. For con-
venience, we will only consider the uncertainties of the NN
forward model (σNN) and the radiative transfer simulation
used for generating the NN training data (σRT) as

σ 2
f = σ

2
RT+ σ

2
NN. (7)

σNN is evaluated by comparing with synthetic multi-angle
AirHARP measurements discussed in Sect. 3.3.

To fully utilize the information contained in the AirHARP
measurements, the forward model needs to achieve an accu-
racy level much better than the measurement uncertainties.
This becomes the goal of the NN training in the next section.
Detailed comparisons of the forward model uncertainties and
the measurement uncertainties will be provided in the next
section. To minimize the cost function defined in Eq. (3),
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we use an optimization method, called the subspace trust-
region interior reflective (STIR) approach (Branch et al.,
1999) as implemented in the Python SciPy package (Virta-
nen et al., 2020), to solve the state parameters x iteratively.
The method is based upon the Levenberg–Marquardt method
(Moré, 1978) and shows good stability for the boundary con-
straints.

2.1 Forward model

We used a vector radiative transfer model based on the suc-
cessive order of scattering method for coupled atmosphere
and ocean systems (Zhai et al., 2009, 2010) to model the
measured reflectance and DoLP. The atmosphere is config-
ured as three layers: a top molecular layer above the aircraft,
a molecular layer below the aircraft in the middle, and an
aerosol and molecular mixing layer on the bottom with a
height of 2 km. Aerosols are assumed to be uniformly dis-
tributed in the mixing layer as shown in the left panel of
Fig. 1. The same vertical structure of the atmosphere was
successfully used in the inversion of RSP data (Gao et al.,
2019, 2020).

The atmospheric surface pressure is assumed to be 1 atm
(standard atmosphere pressure), which is consistent with the
value discussed in Sect. 5. Anisotropic molecular Rayleigh
scatterings are accounted for in Hansen and Travis (1974).
The molecular absorption properties are computed by the hy-
perspectral line-by-line atmospheric radiative transfer simu-
lator (ARTS) (Buehler et al., 2005) with the molecular ab-
sorption parameters of oxygen, water vapor, methane, and
carbon dioxide from the HITRAN database (Gordon et al.,
2017). The gas absorption of ozone and nitrogen dioxide are
from Gorshelev et al. (2014), Serdyuchenko et al. (2014), and
Bogumil et al. (2003), respectively. The hyperspectral ab-
sorption coefficients are then averaged within the instrument
spectral response function and used in the multiple scattering
radiative transfer simulation (Zhai et al., 2009, 2010, 2018).
The molecular profile used is the US standard atmospheric
constituent profiles (Anderson et al., 1986). Ozone is the
most important gas that influences the absorption transmit-
tance at the AirHARP bands of 550 and 660 nm. For the ap-
plication to AirHARP measurements in ACEPOL, we use the
ozone column density as a free parameter with values from
the Modern-Era Retrospective analysis for Research and Ap-
plications, Version 2 (MERRA-2) developed by NASA’s
Global Modeling and Assimilation Office (Gelaro et al.,
2017) to rescale the molecular absorption optical depth cal-
culated under the abovementioned standard atmospheric pro-
file.

Aerosols are diverse in size, composition, and morphol-
ogy. To capture their variation in the atmosphere, we mod-
eled the size and refractive index for both fine and coarse
modes. The aerosol size is represented by the volume density

distribution as a combination of five lognormal distributions:

dV (r)
dlnr

=

5∑
i=1

Vi
√

2πσv,i
exp

[
−
(lnr − lnrv,i)2

2σ 2
v,i

]
, (8)

where Vi is the column volume density for each submode;
the mean radius ri is fixed with values of 0.1, 0.1732, 0.3,
1.0, and 2.9 µm; and the standard deviation σi is fixed with
values of 0.35, 0.35, 0.35, 0.5, and 0.5 (Dubovik et al., 2006;
Xu et al., 2016). The first three submodes are categorized
as the fine-mode aerosol, while the last two submodes are
the coarse mode. All aerosols are assumed to be spherical in
the current forward model. The nonspherical particle shape
is important in the aerosol model (Dubovik et al., 2006) and
will be considered in future studies. The aerosol refractive
index spectra for the fine and coarse modes are represented
by the principal component analysis in MAPOL (Wu et al.,
2015; Gao et al., 2018) as

m(λ)=m0+α1p1(λ), (9)

where p1(λ) is the first-order principal component computed
from the aerosol refractive index dataset including water, sea
salt, dust-like particles, biomass burning, soot, sulfate, water-
soluble aerosols, and industrial aerosols (Shettle and Fenn,
1979; d’Almeida et al., 1991).m0 and α1 are two coefficients
to determine the spectrum. For the application to AirHARP
bands, p1(λ) for the real part of the refractive index is ap-
proximately spectrally flat for both the fine- and coarse-mode
aerosols within the AirHARP spectral range. We further as-
sume the spectral shape for the imaginary refractive spectra
is also flat. Two parameters can be combined into one to rep-
resent the refractive index. Hereafter, we only refer one inde-
pendent parameter for each refractive index spectrum. There-
fore, only four independent parameters are required to deter-
mine the real and imaginary refractive index spectra for the
fine and coarse modes. With the aerosol size and refractive
index, the polarimetric single scattering properties are mod-
eled by the Lorenz–Mie theory and computed by the code
developed by Mishchenko et al. (2002).

For the ocean layer shown in Fig. 1, two ocean bio-optical
models are implemented in the forward model of MAPOL:
one with chlorophyll a concentration (Chl a; mgm−3) as the
single parameter applicable to open-ocean optical properties
and the other with seven parameters more suitable to fully
describe complex coastal waters (Gao et al., 2019). Since
the waters are generally clear within the ocean scenes in
this study (Gao et al., 2020), an open-ocean model is used
for both NN training and retrievals. The optical properties of
open-ocean waters include contributions from pure seawater,
colored dissolved organic matter (CDOM), and phytoplank-
ton, where the CDOM and phytoplankton absorption coeffi-
cients as well as the phytoplankton scattering coefficient and
phase function are parameterized by Chl a (Gao et al., 2019).
A complex costal water model for NN trainings will be in-
vestigated in separate studies. The ocean surface roughness
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Figure 1. Panel (a) shows the coupled atmosphere and ocean system used in FastMAPOL including the atmosphere, ocean surface, and ocean
body. Panel (b) represents a system used for atmospheric correction which only has atmosphere and ocean surface without scattering in the
ocean body. The atmospheres in both systems are modeled as the same three layers. TOA indicates the top of the atmosphere. The bottom
of the atmosphere (BOA) and the top of the ocean (TOO) indicate the locations just above and below the ocean surface, respectively. All
quantities shown in the figures need to be computed from the forward model and represented by the NN for efficient calculations. Symbols
are defined in Table 1.

is modeled by the isotropic Cox–Munk model with a scalar
wind speed. Whitecap is not considered in the current study.

In summary, the parameters used to represent the forward
model include five volume densities (one for each submode);
four independent parameters for the refractive indices of fine
and coarse modes; and one parameter for wind speed, ozone
column density, and Chl a, respectively. Three additional ge-
ometric parameters are used to set up the system, includ-
ing the solar zenith angle, viewing zenith angle, and relative
viewing azimuth angle. Therefore, it requires a total of 15 pa-
rameters to conduct the radiative transfer calculation, with a
total of 11 independent state parameters that can be retrieved
from optimizing the cost function as defined in Eq. (3).

2.2 Remote sensing reflectance

An important task for the joint retrievals is to obtain the
water-leaving signal, which is often represented in ocean
color studies by the spectral remote sensing reflectance de-
fined as Rrs = L

+
w/E

+

d , where E+d is the downwelling irra-
diance and L+w is the water-leaving radiance just above the
ocean surface (Mobley et al., 2016). The remote sensing re-
flectance can be derived from the water-leaving reflectance
reaching the sensor (ρw) via

Rrs =

[
ρw(θ0,θv,φv)

πr2

]
×

[
CBRDF(θ0,θv,φv)

T
f,+

d (θ0)t
f,+
u (θ0,θv,φv)

]
, (10)

where θ0 and θv are the solar and viewing zenith angles, and
φv is the relative viewing azimuth angle. ρw represents the
signals originating from scattering in the ocean that reached
the sensor, which can be derived from the atmospheric cor-
rection process as

ρw(θ0,θv,φv)= ρt(θ0,θv,φv)− ρ
f
t,atm+sfc(θ0,θv,φv), (11)

where ρt is the measured total reflectance as defined in
Eq. (1), and ρf

t,atm+sfc is the reflectance from a system with
only atmosphere and ocean surface (Mobley et al., 2016) as
represented in the right panel of Fig. 1. The same formalism
has been used to derive Rrs from RSP measurements Gao
et al. (2019, 2020).

The downwelling irradiance transmittance T f
d is for the so-

lar irradiance from TOA to the surface, and the upwelling
radiance transmittance t f,+u is for the water-leaving radiance
from BOA to the sensor (Gao et al., 2019). Both T f

d and t f,+u
are denoted in Fig. 1 and represented as follows:

T
f,+

d (θ0)=
E

f,+
d (θ0)

µ0F0
, (12)

t f,+u (θ0,θv,φv)=(
ρf

t (θ0,θv,φv)− ρ
f
t,atm+sfc(θ0,θv,φv)

ρ
f,+
t (θ0,θv,φv)− ρ

f,+
t,atm+sfc(θ0,θv,φv)

)
, (13)

where ρf,+
t and ρf,+

t,atm+sfc are reflectance just above ocean
surface also denoted in Fig. 1 and Table 1.

To remove the dependency of Rrs on the solar and viewing
geometries, a bidirectional reflectance distribution function
(BRDF) correction CBRDF is applied to adjust Rrs to the ob-
servation with a zenith sun and a nadir viewing direction as
defined by Morel et al. (2002):

CBRDF(θ0,θv,φv)=
Ro(W)

R(θ ′v,φv,W)

×
ρ

f,−
t (0,0)

T
f,−

d (0)

[
ρ

f,−
t (θ0,θ

′
v,φv)

T
f,−

d (θ0)

]−1

. (14)
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Table 1. Definition of the symbols for the quantities computed from the forward model (indicated by the superscript f) as shown in Fig. 1.

Symbols Definition

ρf
t Reflectance at the aircraft level, Eq. (1)

P f
t DoLP at the aircraft level, Eq. (2)

ρ
f,+
t Reflectance at BOA

ρ
f,−
t Reflectance at TOO

ρf
t,atm+sfc Reflectance at the aircraft level for atmosphere and ocean surface only

ρ
f,+
t,atm+sfc Reflectance at BOA for atmosphere and ocean surface only

T
f,+
d Irradiance transmittance from TOA to BOA, Eq. (12)

T
f,−
d Irradiance transmittance from TOA to TOO

t
f,+
u Radiance transmittance from BOA to sensor, Eq. (13)

R0/R accounts for reflection and refraction effects when
light propagates through the ocean interface. (θ ′v,φv) is the
direction of the upwelling radiance beneath the sea surface,
where θ ′v is defined through Snell’s law:

sinθ ′v = sinθv/nw, (15)

with water refractive index nw. CBRDF in its original form
is defined using the radiance and irradiance just below the
ocean surface (Morel et al., 2002); here we have converted
all quantities into the radiance reflectance ρf,−

t and the irra-
diance transmittance T f,−

d (θ0) similar to Eqs. (1) and (12).
To compute the remote sensing reflectance from the multi-

angle AirHARP measurement, we only consider the re-
flectance at the minimum viewing zenith angle for each
wavelength and apply the atmospheric correction and BRDF
correction as discussed above. For θ ′v < 15◦ (θv < 20◦), the
Ro/R factor is approximately a constant value of 1, but for
larger θv angles, the ratio increases with both wind speed
and θv (Morel and Gentili, 1996; Morel et al., 2002). In this
study we ignored the Ro/R factor in Eq. (14), which will not
impact Rrs calculation from synthetic data due to the small
viewing zenith angle used but may cause underestimation of
Rrs at the edge of the image, as will be discussed in Sects. 4
and 5. All quantities denoted in Fig. 1 and Table 1 need to
be determined for the forward model and the calculation of
remote sensing reflectance and will be represented by NN
models.

3 Neural network for forward model

Deep NN models are developing rapidly due to the advance-
ment in machine-learning infrastructure and demands in
broad applications (Goodfellow et al., 2016) and are demon-
strated to be efficient in approximating physical functions
(Lin et al., 2017). In this study, we employed the deep feed-
forward NN (Goodfellow et al., 2016) to represent the MAP

measurements. In this section, we will discuss the procedures
to train the NN forward models for reflectance and DoLP re-
spectively, with their performance evaluated.

3.1 Training data

To train a NN that can represent the forward model accu-
rately for the AirHARP measurements from the ACEPOL
field campaign, we generated the training data according to
the average aircraft height of 20.1 km on the day of 23 Oc-
tober 2017 from ACEPOL. We simulated 21 000 cases ac-
cording to the forward model as discussed in the previous
section by considering general aerosol and ocean properties,
as well as a large range of solar and viewing geometries with
the minimum and maximum values of all parameters summa-
rized in Table 2. The ranges of solar zenith angle θ0, viewing
zenith angle θv, and relative viewing azimuth angle φv are
from 0◦ to 70◦, 60◦ and 180◦, respectively. The reflectance
and DoLP with a viewing azimuth angle larger than 180◦ can
be evaluated by the corresponding value less than 180◦ due
to symmetry with respect to the principal plane (defined by
φv = 0◦ and φv = 180◦). For each solar zenith angle, the po-
larized reflectance is calculated for all viewing angles within
the aforementioned ranges with an angular resolution of 1◦.
The solar zenith angle, ozone column density, refractive in-
dex, and wind speed are randomly sampled from a uniform
distribution. Chl a is randomly sampled from a log-uniform
distribution. The fine-mode volume fraction is sampled uni-
formly within [0, 1], which is then randomly partitioned to
each submode. To maintain a uniform distribution of the to-
tal AOD, we sampled the AOD at 550 nm within [0, 0.5] in
a linear scale. The volume density Vi of each submode is de-
termined by the total aerosol optical depth and volume frac-
tion for each mode. Figure 2 shows one example simulation
dataset for the angular distribution of reflectance and DoLP.

We randomly selected 20 000 cases out of the total 21 000
simulated cases for the training and validation processes, and
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Figure 2. The reflectance (a) and DoLP (b) from radiative transfer simulation with the wind speed of 4.13 ms−1, the aerosol optical depth
of 0.26, Chl a of 0.05 mgm−3, and ozone column density of 196 DU. The antisolar point is indicated by the red asterisk with a solar zenith
angle θ0 = 46.41◦. θv and φv indicate the viewing zenith and relative azimuth angles. The principal plane is defined by the viewing azimuth
angle of 0◦ and 180◦.

Table 2. Parameters used to represent the atmosphere and ocean
system for the radiative transfer simulation and NN training. θ0 and
θv are the solar and viewing zenith angles. φv is the relative view-
ing azimuth angle. Vi denotes the five volume densities defined in
Eq. (8). mr and mi are the real and imaginary parts of the refractive
index. Ozone column density (nO3 ) in the atmosphere, ocean sur-
face wind speed, and Chl a are also provided. The minimum (min)
and maximum (max) values determine the parameter ranges used to
generate NN training data, which are also the constraints in the re-
trieval algorithm. The initial values are the ones used in the retrieval
optimization algorithm, where θ0, θv, φv, and nO3 are assumed to
be known from inputs.

Parameters Unit Min Max Initial

θ0
◦ 0 70 (Input)

θv
◦ 0 60 (Input)

φv
◦ 0 180 (Input)

nO3 DU 150 450 (Input)
mr (fine) (None) 1.3 1.7 1.5
mr (coarse) (None) 1.3 1.7 1.5
mi (fine) (None) 0 0.03 0.015
mi (coarse) (None) 0 0.03 0.015
V1 µm3 µm−2 0 0.11 0.012
V2 µm3 µm−2 0 0.05 0.007
V3 µm3 µm−2 0 0.05 0.009
V4 µm3 µm−2 0 0.19 0.017
V5 µm3 µm−2 0 0.58 0.033
Wind speed ms−1 0.5 10 5.0
Chl a mgm−3 0.001 30 0.1

the remaining 1000 random cases will be used as test cases
to evaluate the NN accuracy, which will be discussed in the
next section. To enable the NNs to predict reflectance and
DoLP at any given viewing geometry, for each case, we sam-
pled 100 random pairs of viewing zenith and azimuth angles.
If the sampled angles fall outside of the predefined angular
grids, values from spline interpolation are used. The sunglint
angles within an angle of 40◦ to the solar specular reflection

direction are removed. Approximately 1 million data points
are obtained for each wavelength for training.

To maintain both flexibility and efficiency, we trained two
NN models for reflectance and DoLP respectively in the next
section. Reflectance and DoLP have different accuracy re-
quirements as discussed in Sect. 2 and also differ in angular
variations as shown in the Fig. 2; therefore, it is convenient to
control their accuracy through separated training procedures.

3.2 Neural network training

A feed-forward NN can be defined recursively with one in-
put layer, one output layer, and k hidden layers (Aggarwal,
2018):

h1 =8(WT
1 x+ b1), (16)

hp+1 =8(WT
p+1hp + bp+1), p = 1, . . .,k− 1, (17)

y =WT
k+1hk + bk+1, (18)

where x is the input parameter vector including all 15 pa-
rameters needed to define the forward model as listed in Ta-
ble 2. Here x not only contains the retrieval parameters in
the state vector defined in Eq. (3) but also includes additional
non-retrieval parameters such as the solar zenith angle, view-
ing zenith and azimuth angles, and the ozone column den-
sity. y is a four-dimensional output vector for reflectance or
DoLP at the four AirHARP bands. The weight matrix Wp+1
connects the pth and (p+ 1)th NN layers. The bias vector
for the (p+ 1) layer is defined as bp+1. The output of each
layer hp+1 becomes the input of the next layer as shown in
Eq. (17). k is the number of hidden layers, and k+ 1 refers
to the output layer. In this study, we tested several NN ar-
chitectures and eventually chose three hidden layers with the
number of nodes of 1024, 256, and 128 as shown in Table 3.
The nonlinear activation function 8 used in this model is the
Leaky ReLU function, which is defined as

8(z)=max(0,z)+ 0.01×min(0,z). (19)
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Both Leaky ReLU and ReLU (defined as max(0,z)) activa-
tion functions are simple in their mathematical forms and are
tested in our NN trainings. Leaky ReLU is eventually chosen
due to its slightly better accuracy achieved than the NN with
ReLU.

The training process is to minimize the cost function
defined as the mean square error between the training
data generated from radiative transfer simulations and the
NN-predicted values (Aggarwal, 2018). All parameters in
the neural network weight matrices and bias vectors, over
670 000 numbers, need to be trained. With this large num-
ber of parameters, it is a challenging task to avoid overfit-
ting where the model works well for the training dataset but
poorly for the dataset not used in the training process. Several
training procedures are performed for reflectance and DoLP
data to avoid overfitting and improve NN performance.

1. Both input and output data are normalized before train-
ing. We normalize the input data into the range of
[0, 1] using the minimum and maximum values from the
datasets as listed in Table 2. The reflectance and DoLP
in the output layers are normalized by dividing their
standard deviation of the training data at each wave-
length.

2. The Adam (short for Adaptive Moment Estimation)
optimization algorithm (Kingma and Ba, 2015) with
weight decay regularization (Loshchilov and Hutter,
2019) is used to update the weights and bias of the
NN. The training dataset is divided into multiple mini-
batches, each with 1024 random samples. The training
iterations loop through all mini-batches in the training
data (each loop is called an epoch). Convergence re-
quires training through multiple epochs, where mini-
batches are resampled in each epoch.

3. The learning rate determines the step size in the param-
eter update. We use an exponential decay schedule to
reduce the learning rate: we start with a learning rate
of 0.005 and reduce the learning rate by a factor of 10
every 200 epochs.

4. To monitor overfitting in the training process, we split
the data into 70 % for training and 30 % for valida-
tion. We conduct the optimization based on the train-
ing dataset, and in the meantime we monitor the perfor-
mance of training by applying the NN model to the val-
idation dataset. To avoid overfitting, the early-stopping
approach is employed where the training is stopped
when the cost function on the validation dataset stops
to reduce for a threshold of 50 epochs.

The machine-learning Python library PyTorch is used for
the training (Paszke et al., 2019). The trained NN model is
used to replace the radiative transfer model to compute the
reflectance and DoLP in the retrieval algorithm. The Jacobian

matrix used in the optimization is computed by the finite dif-
ference approximation of the partial derivatives of reflectance
and DoLP with respect to the retrieval parameters. Here cen-
tral difference method is used. Note that the Jacobian matrix
can also be computed analytically from the NN model using
the automatic differentiation techniques based on the chain
rule of differentiation (Baydin et al., 2018). This will be a
topic in our future studies.

3.3 Neural network accuracy

After training the NN model, we evaluated its accuracy using
synthetic AirHARP measurements generated from the 1000
simulation cases which have not been used in the training
and validation process. Each simulation dataset includes po-
larized reflectance on regular viewing angle grids, which are
interpolated to the viewing geometry of AirHARP to cre-
ate synthetic measurement data and compare with the NN
predictions. Glint angles are excluded from the comparison
because the NNs are not trained over these angles. As the
example shown in Fig. 3, both the reflectance and DoLP
are in good agreement between the synthetic data and the
NN results, where the maximum absolute differences for re-
flectance and DoLP are within 0.001 and 0.0025. This trans-
lates to a difference for both reflectance and DoLP mostly
less than 1 % for bands 440, 550, and 670 nm. The maximum
percentage difference can be as large as 3 % for 870 nm bands
due to the small reflectance magnitude.

The comparison with all 1000 synthetic datasets and their
NN predictions are shown in Fig. 4. The mean absolute error
(MAE) and the root mean square error (RMSE) between the
simulation data (Ti) and the NN-predicted data (Ri) shown
in Fig. 4 are defined as

MAE=
1
N

N∑
i=1
|Ri − Ti |, (20)

RMSE=

√√√√ 1
N

N∑
i=1
(Ri − Ti)

2. (21)

Both MAE and RMSE are useful metrics, where MAE is less
dependent on outliers compared to RMSE.

Analysis shows that the statistics of the differences be-
tween the NN prediction and the RT simulations as shown
in Fig. 4 can be well modeled by Gaussian distributions and
characterized by RMSE. Therefore the RMSE is used to rep-
resent the NN uncertainties for both reflectance (σρ,NN) and
DoLP (σρ,NN) and will be incorporated into the total uncer-
tainties in the cost function. Table 3 summarizes the uncer-
tainties of the NN models. The σρ,NN at 440 nm is 0.0006,
which decreases to 0.0004 at 870 nm. However, due to the
smaller reflectance magnitude at 870 nm, the corresponding
RMSE for the percentage reflectance difference as shown in
Fig. 4 is increased from 0.4 % at 440 nm to 1.0 % at 870 nm.
For DoLP, the maximum σP,NN is 0.003 at 870 nm, which
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Table 3. The accuracy of the NN for the corresponding quantities in terms of the RMSE (σNN) of the difference between the NN-predicted
values and the truth values from radiative transfer simulation. The NN architecture denotes the number of the nodes in each layer. The corre-
sponding NN data sizes are indicated. Remote sensing reflectance is computed by Eq. (10) using the NNs for ρf

t,atm+sfc and [CBRDF/Tdtu]
as discussed in Sect. 3.4. (The percentage values listed below in the parenthesis are the percentage uncertainties defined as the RMSE of the
percentage difference between the RT simulation and NN predictions.). n/a means not applicable.

Quantities NN architecture Size σNN (440 nm) σNN (550 nm) σNN (670 nm) σNN (870 nm)

P f
t 15× 1024× 256× 128× 4 1.2 MB 0.0016 0.0020 0.0024 0.0030

ρf
t 15× 1024× 256× 128× 4 1.2 MB 0.00061 (0.4 %) 0.00046 (0.5 %) 0.00041 (0.6 %) 0.00039 (1.0 %)

ρf
t,atm+sfc 14× 1024× 256× 128× 4 1.2 MB 0.00084 (0.4 %) 0.00065 (0.6 %) 0.00057 (0.9 %) 0.00055 (1.3 %)[
CBRDF
Tdtu

]
15× 128× 128× 4 86 KB 0.02 (0.9 %) 0.01 (0.7 %) 0.01 (1.0 %) 0.01 (1.0 %)

Rrs *Eq. (10) n/a 0.0004 0.0002 0.0002 0.0001

Figure 3. The synthetic HARP reflectance (a) and DoLP (b) sampled from the radiative transfer data shown in Fig. 2. Panels (c) and (d)
indicate the difference between the NN predictions and RT simulations. Panels (e) and (f) indicate their percentage differences. The positive
and negative signs of the viewing zenith angles indicate the azimuth angles of φv = 116.2◦ and 180◦+φv.

decreases to 0.0016 at 440 nm. The uncertainties can be fur-
ther improved with more training data points. For the read-
ers’ information, RMSE of the NN model trained with 20 000
cases (1 million data points) decreases by a factor of

√
2 in

comparison with the one using 10 000 cases (0.5 million data
points). It takes 0.01 s in a single-core CPU (AMD EPYC
processor) or 1 ms in a GPU (GeForce GTX 1060) to predict
all 120 angles for both reflectance and DoLP in the NN for-
ward model. Furthermore, the data sizes for the NNs are min-
imal, which are 1.2 MB for the reflectance and DoLP and less
than 100 KB for the factor [CBRDF/Tdtu] (details in Sect. 3.4
as shown in Table 3).

The assessment of the NN accuracy is relative to the syn-
thetic measurements simulated by the vector radiative trans-

fer simulations. To account for the modeling uncertainties of
the forward model σf, we consider both the NN accuracy σNN
and the numerical accuracy of the radiative transfer simula-
tions σRT for reflectance and DoLP, respectively. Uncertain-
ties due to incomplete assumptions in the forward model are
not considered. Several internal parameters determine the nu-
merical accuracy of the radiative transfer simulations. In the
framework of the successive order of scattering (Zhai et al.,
2008, 2009), these parameters include the number of scat-
tering orders (Ns), the number of Gaussian quadratures for
discretizing the viewing zenith angle in the atmosphere (Pa)
and ocean (Po), the order of Fourier decomposition (M) for
the viewing azimuth angle, and the order of Legendre expan-
sion (L) of the single scattering phase function. In this study,
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Figure 4. Comparison between the radiative transfer simulation and NN prediction: (a, c, e) reflectance (ρ) and (b, d, f) DoLP (P ). The
scatter plots are shown in panels (a) and (b), the difference in panels (c) and (d), and the percentage difference in panels (e) and (f). For each
plot, the data points for the 550, 660, and 870 nm bands are shifted upward by constant offsets consecutively as indicated by the solid cyan
lines.

we chose Ns = 20, Pa = 32, Po = 64, M = 32, and L= 32,
which has a higher accuracy than the radiative transfer for-
ward model directly used in our previous retrieval studies
(Gao et al., 2020).

To quantify the accuracy of the radiative transfer calcula-
tion used for generating training data (σRT), we simulated an
additional 1000 synthetic AirHARP datasets with all internal
parameters doubled as the most rigorous calculations, and the
viewing angular resolution was reduced from 1◦ to 0.5◦ in
order to reduce interpolation errors. The resultant reflectance
and DoLP values are compared between these two sets of ra-
diative transfer calculations. The RMSE for each band can
be used as a measure of the accuracy for the radiative trans-
fer calculation used to generate the training data (σRT). The
uncertainties σRT for reflectance and DoLP are summarized
in Table 4, with reflectance uncertainties less than 0.00015
and DoLP uncertainties less than 0.0007 for all AirHARP
bands. σρ,RT is about 4 times smaller than the NN uncer-

tainties, and σP,RT is about 4 to 10 times smaller. The mea-
surement uncertainties from calibration (σcal) are also sum-
marized in Table 4. The total forward model uncertainties
σf =

√
σ 2

RT+ σ
2
NN as in Eq. (7) are much smaller than σcal.

The overall uncertainties used in the retrieval cost function
in Eq. (3) are dominated by the measurement contributions.

Furthermore, in this study higher accuracies from the ra-
diative transfer simulations are used for the NN training for
comparison with the accuracies from the radiative transfer
model directly used in our previous retrieval algorithm. Since
the simulations of the training data can be conducted in-
dependent of the retrieval algorithm, higher computational
costs can be accommodated to improve NN forward model
accuracy. After the NN model is trained, the model can be
applied to the retrieval algorithm through efficient matrix op-
erations.
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Table 4. Comparisons of the uncertainties for reflectance (ρ) and DoLP (P ) for both measurement and forward model including calibration
uncertainty (σcal), the radiative transfer simulation uncertainty (σRT), and the NN uncertainty (σNN). The same σρ,NN and σP,NN have been
shown in Table 3 and are repeated here for comparisons. (As in Table 3, the percentage values listed in the table indicate the percentage
uncertainties.)

Uncertainties 440 nm 550 nm 670 nm 870 nm

σρ,cal 3 % 3 % 3 % 3 %
σρ,RT 0.00012 (0.08 %) 0.00005 (0.07 %) 0.00010 (0.2 %) 0.00015 (0.4 %)
σρ,NN 0.00061 (0.4 %) 0.00046 (0.5 %) 0.00041 (0.6 %) 0.00039 (1.0 %)

σP,cal 0.01 0.01 0.01 0.01
σP,RT 0.0002 0.0002 0.0005 0.0007
σP,NN 0.0016 0.0020 0.0024 0.0030

3.4 Neural network model for remote sensing
reflectance

As discussed in Sect. 2.2, the water-leaving signals are rep-
resented by the remote sensing reflectance as defined in
Eq. (10) (Mobley et al., 2016). To conduct the atmospheric
correction in Eq. (11), we need to determine the reflectance
ρf

t,atm+sfc at the aircraft level, transmittance t fu and T f
d , and the

BRDF correction coefficient CBRDF. Based on Eq. (10), we
combined T f,+

d , t f,+u , andCBRDF into a single term denoted as
[CBRDF/Tdtu]. To efficiently determine Rrs, two NNs need to
be trained to represent ρf

t,atm+sfc, and [CBRDF/Tdtu], respec-
tively.

Following similar NN training schemes as discussed pre-
viously, we conducted 10 000 simulations to determine the
reflectance at aircraft altitude ρt,atm+sfc from a system with
only atmosphere and ocean surface (right panel of Fig. 1)
and trained the NN for ρt,atm+sfc in the same way as ρf

t . Since
this system only includes the atmosphere and ocean surface
but without the ocean body, there are a total of 14 input pa-
rameters (without Chl a). To train a NN for [CBRDF/Tdtu]

with T f,+
d , t f,+u , and CBRDF defined in Eqs. (12)–(14), we ob-

tained five additional quantities corresponding to the above-
mentioned 10 000 cases with and without ocean body: for
the fully coupled system with atmosphere, ocean surface,
and ocean body (left panel of Fig. 1), we computed the re-
flectance just above and below the ocean surface (ρf,+

t and
ρ

f,−
t ) and irradiance transmittance just above and below the

ocean surface (T f,+
d and T f,0

d ); for the system without ocean
body but with ocean surface (right panel of Fig. 1), we com-
puted the reflectance just above the ocean surface (ρf,+

t,atm+sfc).
The accuracies of the NNs for ρf

t,atm+sfc and [CBRDF/tuTd]

are evaluated and shown in Table 3, which has an accuracy
around 1 % similar to other quantities.

To evaluate the overall accuracy for theRrs after the BRDF
correction, we conducted radiative transfer simulations with
a zenith sun and a nadir viewing direction and obtained the
truth remote sensing reflectance using the upwelling radiance
and downwelling irradiance just above the ocean surface as
the examples shown in Fig. 5. The predicted Rrs values were

Figure 5. Comparison of the truth Rrs (RT) and the neural network
(NN) computedRrs. The truthRrs is computed from radiative trans-
fer simulations with a zenith sun and nadir viewing direction. The
NN computed Rrs follows Eq. (10).

computed from Eq. (10) after the application of two NNs.
The RMSEs of the difference between the simulated and NN-
predicted Rrs are shown in Table 3, with a maximum value
of 0.0004 at wavelength 440 nm and smaller than 0.0002 in
other bands.

4 Joint retrieval results on synthetic AirHARP
measurements

The NN forward models for reflectance (ρf
t ) and DoLP (P f

t )
are used in the FastMAPOL retrieval algorithm as discussed
in Sect. 2. To evaluate the performance of the retrieval al-
gorithm, we conducted retrievals on the synthetic AirHARP
data. The creation of the synthetic data is discussed in
Sect. 3.3. To account for the measurement uncertainties, ran-
dom noise is added to the simulated data according to the
calibration uncertainties as listed in Table 4. The total uncer-
tainties in the cost function include contributions from cal-
ibration (σcal), radiative transfer simulation (σRT), and NN
model (σNN).
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Figure 6. Histogram of the cost function values (χ2) with initial
values as specified in Table 3 with a total of 1000 cases. The most
probable χ2 is 0.82. A threshold of χ2 < 1.5 is used in the discus-
sion.

Using the initial values as listed in Table 2, a total of 1000
synthetic AirHARP cases are retrieved with the cost function
values (χ2) summarized in Fig. 6. Retrievals with χ2 < 1.5
are chosen in our following discussion, which includes 96 %
of all retrieval cases. Gao et al. (2020) showed that the re-
trieval results depend on the initial values. Testing with sev-
eral random sets of initial values shows that the statistics of
the retrieval results from the 1000 synthetic cases are robust.
As demonstrated by Di Noia et al. (2015) and Di Noia et al.
(2017), a better choice of initial values for each pixel in the
optimization may further improve the overall retrieval accu-
racy.

With the directly retrieved aerosol refractive index and
volume densities (see Table 2) as inputs, the aerosol optical
depth (AOD) and single scattering albedo (SSA) for both the
fine and coarse modes were computed using additional NNs
to represent the Lorenz–Mie calculations in Appendix A. The
retrieved total AOD, SSA, wind speed, and Chl a are com-
pared with the truth values as shown in Fig. 7. Total AOD
indicates the summation of the fine- and coarse-mode AODs,
and total SSA is the ratio of the total scattering and extinc-
tion cross sections; both are specified in Appendix A. For
fine aerosol, the AOD, SSA, refractive index (mr), and effec-
tive radius (reff) and variance (veff) are shown in Fig. 8. The
color plots indicate the data point density (normalized by its
maximum value) approximated by a kernel density estima-
tion method (Silverman, 1986).

In order to quantify the variation of the retrieval uncertain-
ties with respect to different aerosol loadings, we computed
the RMSE between the retrieved and truth values at five AOD
ranges including [0.01, 0.1], [0.1, 0.2], [0.2, 0.3], [0.3, 0.4],
and [0.4, 0.5]. Each AOD range includes approximately 200
cases. Note that as discussed in Sect. 3.3 the total AOD and
the fine-mode volume fraction are uniformly sampled for the
simulated data; therefore, there is an equal mixing fraction
of fine- and coarse-mode aerosol for each AOD range. The
retrieval uncertainties for aerosols are shown in Fig. 9, with
the corresponding ranges indicated by AOD values from 0.1

to 0.5. All discussions regarding the AOD and SSA are for a
wavelength of 550 nm in this section.

As shown in Figs. 7 and 9, the errors of the retrieved total
AOD increase with aerosol loadings: the uncertainty (eval-
uated using RMSE) is 0.008 and 0.015 for the AOD range
[0.01, 0.1] and [0.1, 0.2] and increases to 0.035 for the AOD
range [0.4, 0.5]. Similar absolute uncertainties are found for
both the fine- and coarse-mode AODs, with a slightly smaller
value. In percentage, the total AOD uncertainties is 28.3 % at
the AOD range [0.01, 0.1], where the large uncertainties are
due to the cases with small AODs. For the AOD range from
[0.1, 0.2] to [0.4, 0.5], the AOD uncertainties further decrease
from 14.4 % to 5.6 %.

Similar to the total AOD uncertainties, the total SSA un-
certainties decreases with AOD from 0.05 to 0.02. The fine-
mode SSA uncertainties reduce similarly from 0.05 to 0.03.
The uncertainties for coarse-mode SSA reduces slightly from
0.1 to 0.08, which is more than twice as large as the fine-
mode SSA uncertainties. The uncertainties for the fine-mode
mr, reff, and veff show a larger value in the AOD bin of
[0.01, 0.1] of 0.06, 0.024 µm, and 0.08 and then remain close
to a constant at larger AOD ranges with a smaller value of
0.03, 0.01 µm, and 0.03 respectively. The averaged uncer-
tainties for coarse-mode mr, reff, and veff are approximately
0.08, 0.5 µm, and 0.15 respectively with less AOD depen-
dency at all AOD ranges. The coarse-mode mr uncertainty is
more than twice the fine-mode uncertainty. The larger uncer-
tainty values for coarse-mode reff and veff are also related to
their large particle size.

For wind speed retrievals as shown in Fig. 7, the agree-
ments between the truth and retrievals depend strongly on the
wind speed value itself: when the wind speed is small, there
is less retrieval sensitivity due to the removal of glint; for a
higher wind speed, the agreements are improved, likely due
to the larger range of angles influenced by wind speed. The
retrieval uncertainties are shown in Fig. 9; for a wind speed
(WS) lower than 3 ms−1, the uncertainty increases from 1.5
to 2.1 ms−1 for AOD ranges from [0.1, 0.2] to [0.4, 0.5].
For wind speed higher than 3 ms−1, the averaged retrieval
uncertainty is 1.2 ms−1 with a small variation of less than
0.1 ms−1.

The retrieved and truth Chl a is compared in Fig. 7, where
the MAE in log scale is used with the definition

MAE(log)= 10Y , (22)

where

Y =
1
N

N∑
i=1
|log10(Ri)− log10(Ti)|,

where Ri and Ti denote the retrieval and truth values.
MAE(log) is recommended by Seegers et al. (2018) as a
better metric for Chl a, which indicates the averaged ra-
tio between the retrieval and truth values. The dependency
of the MAE(log) for Chl a with the aerosol loadings is
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Figure 7. The comparisons of the retrieved and truth values for total AOD (550 nm), SSA (550 nm), wind speed, and Chl a are shown in the
top panels. The dashed line indicates the linear regression fitting with y = βx+α, where β is the slope and α is the intercept. The lower
panels show the difference between the retrieved and truth values of the corresponding upper panel parameters as a function of the total AOD
at 550 nm.

Figure 8. The comparisons of the retrieved and truth values for the fine-mode aerosol parameters including AOD, SSA, refractive index (mr),
and effective radius (reff) and variance (veff).

shown in Fig. 9. The Chl a retrieval performance depends
on the magnitude of the Chl a. In this work, we chose
four ranges of Chl a according to the trophic regions dis-
cussed in Seegers et al. (2018). Note that Chl a from in
situ measurements is typically larger than 0.01mgm−3, and
we chose a broader range of Chl a with its minimum value
of 0.001mgm−3 as listed in Table 2 for sensitivity studies.
For 0.01mgm−3 < Chl a < 0.1mgm−3 and 0.1mgm−3 <

Chl a < 1mgm−3, Chl a retrieval uncertainties vary within
1.3 to 1.6 when AOD< 0.3 and then increase to 2.3 at
AOD range [0.4, 0.5]. For Chl a > 1mgm−3 and Chl a <
0.01mgm−3, the uncertainties are generally larger, with a
value around 2 to 3.

With the retrieved aerosol and ocean properties, the at-
mospheric correction procedures can be applied to compute
the remote sensing reflectance as discussed in Sect. 3.4. The

comparison of the retrieved Rrs with the truth data is shown
in Fig. 5. To account for the various solar geometries, the
BRDF correction has been applied to the retrieved Rrs as dis-
cussed in Sect. 3.4. Note that the Ro/R factor will not impact
the BRDF correction in computing Rrs for the synthetic data,
because of the small viewing zenith angles used at the four
AirHARP bands, which are 1.22◦, 1.17◦, 0.03◦, and 3.52◦,
respectively. The truth Rrs was computed with a zenith sun
and a nadir viewing direction, emphasizing the need for the
latter correction to the MAP observations. Overall Rrs un-
certainties for the four bands are 0.007, 0.0004, 0.0002, and
0.0002 as shown by the RMSE in Fig. 10. MAE showed val-
ues of 0.0006, 0.0003, 0.0002, and 0.0001, which are less
sensitive to outliers. Note that the atmospheric correction is
applied to the synthetic measurements without adding ad-
ditional random noise in order to evaluate the impacts on
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Figure 9. The retrieval uncertainties at various aerosol loadings for AOD, SSA, refractive index (mr), effective radius (reff) and variance
(veff), wind speed, and Chl a. AOD values at the x axis from 0.1 to 0.5 indicate the five ranges of total AOD including [0.01, 0.1], [0.1, 0.2],
[0.2, 0.3], [0.3, 0.4], and [0.4, 0.5], which are used to compute the corresponding uncertainties. Chl a uncertainties are evaluated in terms
of MAE in log scale (see Eq. 22), and all other parameters are evaluated in terms of RMSE. AOD (%) indicates the percentage AOD
uncertainties comparing to the truth AOD.

Figure 10. The difference between the retrieval and truth Rrs with
respect to AOD. The truth Rrs is computed with a zenith sun and a
nadir viewing direction. The retrieved Rrs follows Eq. (10) with the
BRDF correction considered. RMSE and MAE are for all retrievals
cases at each wavelength.

Rrs uncertainties from only aerosol and ocean surface prop-
erty retrievals. The retrieval uncertainties for Rrs for each
AirHARP bands are shown in Fig. 10 depending on the
aerosol loadings: larger uncertainties are found with larger
aerosol optical depth.

The PACE accuracy requirements on ocean color are spec-
ified in terms of the water-leaving reflectance, which can be
converted to those of Rrs by dividing them by a factor of π .
The resultant requirements in terms of Rrs are 0.0006 sr−1 or

5 % from 400 to 600 nm and 0.0002 sr−1 or 10 % from 600 to
710 nm (Werdell et al., 2019). As shown in Fig. 11, Rrs val-
ues at 550 nm are within the requirement of 0.0006 sr−1 for
all AOD ranges. For the 440 nm band, when AOD is less than
0.3, the Rrs retrieval uncertainties are less than 0.0005 sr−1,
but the uncertainties become as high as 0.001 sr−1 at a larger
AOD of 0.5. Rrs at 670 and 870 nm varies in a very small dy-
namical range and is less impacted by the aerosol retrievals.
Rrs uncertainties at 670 and 870 nm are slightly larger than
the requirement of 0.0002 sr−1 when AOD (550 nm) is larger
than 0.4 and 0.3 respectively. Further work is needed to un-
derstand how the uncertainties of the retrieved aerosol prop-
erties influence the retrievals. Note that from Table 3, the un-
certainties of the Rrs computed using NNs have an uncer-
tainty of 0.0004 to 0.0001 from 440 to 870 nm, which may
be further minimized with better training and help to reduce
the Rrs retrieval uncertainties.

5 Joint retrieval results on AirHARP measurements
from ACEPOL

The ACEPOL field campaign, conducted from October to
November of 2017, included a total of six passive and ac-
tive instruments on the NASA ER-2 high-altitude aircraft
(Knobelspiesse et al., 2020) with four MAPs – AirHARP
(McBride et al., 2020), AirMSPI (Diner et al., 2013), SPEX
airborne (Smit et al., 2019), and the RSP (Cairns et al., 1999)
– and two lidars – HSRL-2 (Burton et al., 2015) and CPL
(the Cloud Physics Lidar) (McGill et al., 2002). Aerosol re-
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Figure 11. Retrieval uncertainties for Rrs at the four AirHARP
bands. The uncertainties are computed in the same way as for Fig. 9
in terms of RMSE.

trieval algorithms have been applied for all four MAPs (Fu
et al., 2020; Puthukkudy et al., 2020; Gao et al., 2020). The
measurement datasets are available from the ACEPOL data
portal (Knobelspiesse et al., 2020). In this work, we focus on
the study of the AirHARP measurements over ocean scenes
as shown in Fig. 12 on 23 October 2017. The viewing an-
gles are within ±57◦ along the track and ±47◦ across the
track as shown in the polar plots in Fig. 12. Figure 13 shows
the RGB images (670, 550, and 440 nm) for the three scenes
at near-nadir viewing direction. AirHARP conducted high-
spatial-resolution measurements with a grid size of 55 m and
swath width of 42 km at nadir (up to 60 km at far angles). We
averaged the reflectance and DoLP respectively within a bin
box of 10× 10 pixels (550m× 550 m).

The HSRL-2 instrument from ACEPOL provided useful
aerosol optical depth ground truth at 355 and 532 nm (Hair
et al., 2008; Burton et al., 2016), which was used for the val-
idation of the aerosol retrieval algorithm using the AirHARP
data. The HSRL-2 measures the pixels along the track as
shown in Fig. 12, where an assumed lidar ratio of 40 sr is
multiplied by the aerosol backscatter coefficient derived from
the HSRL technique to produce aerosol extinction and AOD
at 532 nm. For the low-aerosol-loading cases considered in
this study, the assumed lidar ratio approach produces a sys-
tematic uncertainty of ±50% (Fu et al., 2020). In Scene 3,
the aircraft also flew over an AERONET USC_SEAPRISM
site (33.564◦ N, 118.118◦W) which is equipped with a
CIMEL-based system called the Sea-viewing Wide Field-
of-view Sensor (SeaWiFS) Photometer Revision for Incident
Surface Measurements (SeaPRISM) that collects radiances at
eight wavelengths of 412, 443, 490, 532, 550, 667, 870, and
1020 nm (Zibordi et al., 2009). AOD from the AERONET
data product version 3 level 2.0 data was used in this study,
which is also consistent with the HSRL-2 AOD at 532 nm as
shown latter in Fig. 20. The estimated AERONET AOD un-
certainty is from 0.01 to 0.02, with the maximum uncertainty
in the UV channels (Giles et al., 2019). We compared AOD
from AirHARP retrievals with those from both HSRL and
AERONET. Furthermore, to validate the atmospheric correc-

tion procedure in the retrieval algorithm, we compared the re-
trieved remote sensing reflectance with the AERONET ocean
color (OC) products as reported by the SeaPRISM measure-
ments at the USC_SEAPRISM site.

To assess the spatial variability of field measurement, we
computed the standard deviations for the reflectance (σρ,avg)
and DoLP (σP,avg) within the bin box. Representative values
are provided in Table 5. The values of σρ,avg and σP,avg at
the 870 nm band are 4.5 % and 0.05, respectively, which sug-
gest larger measurement uncertainties at 870 nm than other
bands probably due to small radiometric magnitudes. Mean-
while, our retrieval tests showed larger coarse-mode retrieval
uncertainties than synthetic data results. To better constraint
retrievals, we assume the coarse-mode aerosol as sea salt by
setting its imaginary refractive index to zero. All other re-
trieval parameter ranges are kept the same as in Table 2. Fur-
thermore, we found our forward model cannot predict the
angular variation of DoLP in the 440 nm band well (with an
estimated MAE of 0.04), which contributes a major portion
to the cost function and increases both fine- and coarse-mode
retrieval uncertainties. Therefore, we exclude DoLP in the
440 nm band from our retrievals in this study.

We conducted retrievals with similar procedures as dis-
cussed for synthetic data. The solar and viewing geometries
as shown in Fig. 12 and the ozone column density (nO3 ) are
assumed to be known inputs to the retrieval algorithm. The
averaged values of nO3 from MERRA2 over each of the three
scenes are obtained, which are 277.5, 278.6, and 281.3 DU
respectively. The averaged surface pressures from MERRA2
over the three scenes are 1.008, 1.006 and 1.003 atm, which
is consistent with our assumption in the atmosphere model as
discussed in Sect. 3. The histograms of χ2 for all pixels re-
trieved in each scene are shown in Fig. 14. The most probable
χ2 values are 1.1, 1.7, and 1.1 respectively.

To evaluate the retrieval performance, we plotted the map
of the total number of viewing angles used in the retrieval
(Nv), the cost function χ2, the retrieved AOD (550 nm), and
Rrs for each scene in Figs. 15–17. As discussed in Sect. 2,
the maximum number of viewing angles is 120 for AirHARP
measurements. Figures 15–17 show the number of available
viewing angles vary from 0 to 120 due to the removal of
glint and other data quality control measures. Discontinuity
in the number of angles can be seen as a stripe, due to the
removal of angles influenced by water condensation on the
lens, which can also be observed in the polar plots in Fig. 12
with the nadir region removed. All three figures show that the
number of viewing angles are smaller at the edges parallel to
the flight track, where small χ2 can be achieved but may be
less reliable.

For pixels with large χ2 as shown in Fig. 14, the forward
model cannot fit the measured reflectance or DoLP well,
which may be due to cloud contamination (Stap et al., 2015),
land, or residuals of glint. In Scene 1, the top region with
large χ2 values is impacted by the thin cloud which is visible
from Fig. 13. Larger residuals in the 870 nm band between
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Figure 12. The location of the three ocean scenes from AirHARP from ACEPOL on 23 October 2017. The flight track color shows the UTC
time along the flight path. The aircraft flew at an altitude of 20.1 km. The viewing zenith and relative azimuth angle (relative to the solar
azimuth angle) for the 440 nm band from all pixels in the corresponding scene are shown in the bottom polar plots. The central portion of
viewing angle plot is removed due to water condensation on the lens. The averaged solar zenith angles for the three scenes are 47.0◦, 45.6◦,
and 52.9◦, respectively, as indicated in the polar plots by the red asterisks.

Figure 13. The RGB images (670, 550, and 440 nm bands) for the three scenes at near-nadir viewing directions. Scene 1 and Scene 2 observe
only ocean, while Scene 3 observes both ocean and land. Sparse thin clouds are visible from Scene 1 and Scene 2. Sunglint can be observed
at the lower portion of the Scene 2 image.

measurement and forward model are also observed. The re-
trieved AOD are overestimated in this region. In Scene 2, the
region with χ2 > 3 correlates closely with the thin clouds
(Fig. 13), which influence nearby AOD and Rrs retrievals.
For Scene 3, χ2 become larger than 2 when close to the coast.
This may be due to complex water properties which are not

well represented by the open-water bio-optical model used
in the simulation (Gao et al., 2019). The pixels near the coast
are also potentially impacted by the bottom effect and adja-
cency effect of land pixels.

To compare with the HSRL AOD in the along-track direc-
tion, the retrieved AOD (550 nm) is averaged within a box of
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Table 5. The standard deviations of the reflectance (σρ,avg) and DoLP (σP,avg) are calculated within a 10× 10 pixel box and averaged
over all angle and pixels from the three scenes (over ocean pixels only). The percentage values listed in the table indicate the percentage
uncertainties.

Uncertainties 440 nm 550 nm 670 nm 870 nm

σρ,avg 0.0018 (1.1 %) 0.0011 (1.3 %) 0.0009 (2.3 %) 0.0009 (4.6 %)
σP,avg 0.015 0.016 0.024 0.052

Figure 14. The histograms of the cost function values over the three scenes as shown in Fig. 12 with total pixel numbers of 13 491, 13 226,
and 9159. Only pixels over ocean are considered.

4× 4 pixels (2.2 km×2.2 km). The averaged AOD (550 nm)
values and the corresponding standard deviations are shown
in Fig. 18. Pixels with Nv > 30 and χ2 < 10 are consid-
ered. The overall averaged AODs and their standard devia-
tion are also computed and indicated in the plots. The aver-
aged HSRL AODs are 0.079, 0.071, and 0.037 for Scene 1
to 3. The averaged retrieved AOD (550 nm) are 0.096, 0.078,
and 0.049, with relatively larger retrieval variation of 0.02 to
0.03. For Scene 1, most χ2 values are larger than 2, while
for the other two scenes, more pixels are less than 2 except
for those pixels very close to cloud and coast. In Scene 1,
the retrieved AOD is larger than that of the HSRL AOD by
0.03 in the overlapped region, which may be influenced by
the remaining effect of water condensation. In Scene 2, the
peaks of the retrieved AOD values correspond to the χ2 val-
ues larger than 2, which are influenced by the nearby thin
cloud. There are no overlapped pixels except the ones asso-
ciated with high AOD peaks, but the general trend of the re-
trieved AOD agrees with the HSRL results. For Scene 3, the
retrieved AOD values agree well with the HSRL AOD with
an average difference of less than 0.01 and χ2 mostly less
than 2. However when the pixels are close to the coast, both
χ2 and AOD increased significantly as discussed previously.

Figure 19 shows the mean value and standard deviation
of Rrs averaged in the same way as AOD discussed above.
There is similar spatial variation between the retrieved Rrs
and AOD. Pixels with large Rrs uncertainties are mostly as-
sociated with the large AOD uncertainties shown in Fig. 18.
The Rrs values at 440 nm for the three scenes are 0.0055,
0.0072, and 0.0030 sr−1, where the decrease in Rrs from
Scene 2 to Scene 3 may be due to the increase in CDOM
close to the coast as demonstrated in Fig. 5. Moreover, Rrs

values at Scene 1 are likely to be underestimated due to the
large χ2 and retrieved AOD over the center of Scene 1. The
averaged Rrs values at 550 nm remain approximately con-
stant with a value of 0.0003 sr−1 over all three scenes. Rrs
values from the AERONET USC_SeaPRISM site are indi-
cated in Scene 3 of Fig. 19 and also compared in Fig. 20.
As discussed in Sect. 2.2, we chose the minimum viewing
zenith angle available from the measurements after remov-
ing the sunglint. The removal of sunglint improves the Rrs
calculation for Scene 2 as shown in Fig. 16. Moreover, we
have ignored the R0/R factor in Eq. (14), which may cause
underestimation of the Rrs at the edge of the image where
θv can reach as large as 60◦. However it is challenging to
analyze its impact at large θv angles. R0/R has a strong de-
pendency on wind speed, but the retrieved wind speeds from
current retrievals show large uncertainties. Further work may
require a better treatment of sunglint and improved accuracy
in wind speed.

To better compare with AERONET results, we only con-
sidered the pixels with χ2 < 2 and conducted the same aver-
aging (4× 4 pixels) around the USC_SeaPRISM site for the
retrieved AOD and Rrs. The averaged values and their stan-
dard deviations are plotted in Fig. 20. The overall retrieved
AOD spectrum is similar to AERONET results with a differ-
ence smaller than 0.01. The results are similar to the retrieval
results from the Research Scanning Polarimeter as reported
by Gao et al. (2020). The retrieved Rrs agrees well with the
AERONET Rrs, with a difference of less than 0.001 sr−1.
Note that this study is done with a possible AirHARP mea-
surement uncertainty of 3 % in reflectance, which may im-
pact the atmospheric correction accuracy.
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Figure 15. The number of viewing angles used in the retrieval (Nv), the cost function value (χ2), the retrieved AOD (550 nm), and Rrs
(550 nm) for all pixels in Scene 1. The HSRL AODs at 532 nm are indicated by the colored dots in the AOD plot.

Figure 16. Same as Fig. 15 but for Scene 2. For Rrs, viewing angles at least 40◦ away from the solar specular reflection direction are used to
avoid sunglint as shown in Fig. 13.

The complete retrieval results, including the aerosol mi-
crophysical properties, wind speed, Chl a, and atmospheric-
correction-related datasets, are provided in the “Data avail-
ability” section. The retrieval uncertainties for aerosol mi-
crophysical properties are relatively large due to the small
aerosol optical depths. Chl a retrievals are sensitive to the
aerosol retrievals and are more challenging to retrieve accu-
rately at small values as discussed in Sect. 4.

6 Discussion

The NN model greatly improved the speed of the for-
ward model used in the iterative optimization approach and
boosted the efficiency of the FastMAPOL retrievals. The av-
erage retrieval speed for one pixel with FastMAPOL is ap-
proximately 3 s with a single CPU core, or approximately
0.3 s with a GPU using the same hardware as mentioned in
Sect. 3.3. Comparing to the retrieval speed of approximately
1 h per pixel using conventional radiative transfer forward
model, the computational acceleration is 103 times faster
with CPU or 104 times with GPU processors. Meanwhile,
the NN model maintains a high accuracy as shown in Ta-
bles 3 and 4. For retrieval algorithms running the radiative
transfer simulation, the accuracy is often tuned down to re-
duce the simulation time. By training a NN, however, the
high accuracy of the radiative transfer model simulation can
be achieved, as has been demonstrated in this work. Thus,
despite the one-time high computational costs in generating
the training datasets and conducting the training, the trained

NN can be applied efficiently to large observational datasets
in the retrieval algorithm.

In the retrieval of the AirHARP field measurement, each
pixel has multiple viewing angles that are aggregated from
measurements at different times with slightly different solar
zenith angles. The NN used in FastMAPOL computes the
polarimetric measurement for specific solar zenith angles for
each viewing direction, and, therefore, the variation of the so-
lar zenith angle can be captured. These effects may be small
for AirHARP measurement in ACEPOL, with a maximum
solar zenith angle difference within 0.6◦. However, this ca-
pability can help to minimize the impacts of the solar angle
for HARP2 in spaceborne measurements, which can reach to
a maximum difference of 1.5◦ for HARP2 observations.

With the efficient retrievals from FastMAPOL, we have
discussed the retrieval performance and uncertainties for the
aerosol properties, including AOD, SSA, refractive index,
and particle sizes. Since the AirHARP measurements share
many similar characteristics with HARP2 as planned for the
PACE mission, the knowledge from the retrieval analysis can
help to understand the retrieval performance for the HARP2
instrument in spaceborne measurements. Note that HARP2 is
likely to have higher accuracy due to the onboard calibration
capability and the potential to conduct cross calibration with
the OCI instrument. For the development of the NN forward
model for spaceborne measurements, similar training proce-
dures can be applied with the sensor altitude at the top of the
atmosphere instead of the aircraft altitude used in this study.
Due to the impact of retrieval capability by geometry (Foug-
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Figure 17. Same as Fig. 15 but for Scene 3. The pixels with large χ2 are mostly influenced by the land (upper region) and island (lower left).
The retrieved AOD and Rrs over land pixels are not shown. The location of the AERONET USC_SEAPRISM site is indicated by a red star
symbol.

Figure 18. Comparison of the retrieved AOD (550 nm) from AirHARP measurement with the AOD (532 nm) from HSRL for Scene 1 to 3.
The AOD (550 nm) from the AERONET USC_SeaPRISM site is shown in Scene 3. The AirHARP retrieved AOD is averaged with 4×4 pixels
(2.2km× 2.2km). The averaged AODs and their standard deviations for both AirHARP retrievals and HSRL products are provided in the
text. Pixels with Nv > 30 and χ2 < 10 are considered.

Figure 19. Similar to Fig. 18, the retrieved Rrs values are computed for the AirHARP band of 440, 550, and 670 nm bands. The averaged
Rrs and its standard deviation are shown in the legends. For Scene 3, Rrs values from the AERONET USC_SeaPRISM site at wavelengths
corresponding to AirHARP bands are indicated by the star symbols.

nie et al., 2020), solar and viewing geometries according to
the PACE orbits need to be considered.

The water-leaving reflectance is obtained from the atmo-
spheric correction process using the aerosol and ocean prop-
erties retrieved from the AirHARP measurements, and a sim-
ilar procedure can be applied to future HARP2 retrievals.
Since the hyperspectral OCI in PACE will provide high-
accuracy measurements, the retrieved information can be ap-
plied to OCI and therefore assist hyperspectral atmosphere
corrections as demonstrated by Gao et al. (2020) and Han-
nadige et al. (2021). However, aerosol retrieval and atmo-

spheric correction are challenging in the UV spectral range
(Remer et al., 2019a). For the ocean bio-optical model in this
study, the water properties are modeled as open-ocean waters
parameterized by a single Chl a value. For complex coastal
water, complex bio-optical models are preferred in the re-
trieval of both accurate aerosol properties and water-leaving
signals as demonstrated by Gao et al. (2019).
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Figure 20. Comparisons of the AOD and Rrs from AirHARP re-
trievals with AERONET products. The retrieval results are aver-
aged with 4× 4 pixels (2.2km× 2.2km) around the AERONET
USC_SeaPRISM site. This is similar to Figs. 18 and 19, with er-
ror bars indicating the standard deviations, but only pixels with
χ2 < 2 are considered. The AERONET AOD and Rrs spectra are
taken from 23 October 2017, with the error bars indicating daily
variations. HSRL AOD at 532 nm is also shown.

7 Conclusions

We have demonstrated the application of a NN for highly ac-
curate forward model calculations of polarimetric measure-
ments for AirHARP. Additional NN models were used to
conduct atmospheric correction. These models are used in
the FastMAPOL joint retrieval algorithm to conduct simul-
taneous aerosol property and water-leaving signal retrieval.
Applications to both the synthetic AirHARP data and field
measurements from ACEPOL are discussed. The uncertain-
ties of the retrieved aerosol properties and remote sensing re-
flectance are discussed for different aerosol loadings. These
results from AirHARP retrievals can help to evaluate the re-
trieval capabilities for the HARP2 instrument on PACE. In
the application to field measurements from ACEPOL, the
impacts of the number of viewing angles and the value of
cost function to the retrieval quality are discussed. Further
comparison with the HSRL and AERONET OC data shows
good performance in the retrieval of AOD and remote sens-
ing reflectance. Furthermore, the NN forward model and the
associated retrieval algorithm enable fast and practical re-
trievals of the polarimetric measurement, thus making the al-
gorithm practical for analysis of large data volumes expected
from spaceborne imagers such as HARP2. The experience
and methodology can be used to help the algorithm devel-
opment of other satellite instruments in polarimetric remote
sensing.
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Appendix A: Neural networks for AOD and SSA

As summarized in Table 3, we have discussed the NNs used
to represent the total reflectance (ρf

t ) and DoLP (P f
t ), which

are then used as the forward model in the retrieval algorithm.
Using the retrieved aerosol parameters, NNs for ρf

t,atm+sfc

and
[
CBRDF
Tdtu

]
are used to compute remote sensing reflectance.

To expedite and simplify the calculation of aerosol single
scattering properties such as AOD and SSA as discussed in
Sect. 4, we developed four additional NNs to represent the
AOD and SSA for both fine and coarse modes, respectively.
These NNs are only used to analyze the retrieved aerosol
properties and are not used in the retrieval process. The NN
architectures and accuracy are shown in Table A1. The in-
put parameters for the fine-mode SSA and AOD are the three
submode volume densities and the real and imaginary parts
of refractive index, with a total of five parameter. For coarse-
mode aerosols, there are a total of four parameters with only
two submodes used. The outputs are the AOD and SSA at the
four AirHARP bands.

A total of 10 000 training data points are generated in the
same way as in Sect. 3.1 using the Lorenz–Mie code dis-
cussed in Sect. 2. The NN model accuracy is evaluated with
an additional 1000 data points not used in the training. As
shown in Table A1, the accuracy is much smaller than the
retrieval uncertainties shown in Fig. 9; therefore, the NNs
for AOD and SSA provide sufficient accuracy to evaluate the
aerosol single scattering properties.

Table A1. The accuracy of the NN for the corresponding quantities in terms of the RMSE (σ ) between the NN-predicted values and the truth
values from the Lorenz–Mie calculations.

Quantities NN architecture σ (440 nm) σ (550 nm) σ (660 nm) σ (870 nm)

AOD (fine) 5× 64× 64× 4 0.004 0.003 0.002 0.001
AOD (coarse) 4× 64× 64× 4 0.001 0.001 0.001 0.001
SSA (fine) 5× 64× 64× 4 0.002 0.003 0.004 0.006
SSA (coarse) 4× 64× 64× 4 0.01 0.01 0.01 0.01

With the fine- and coarse-mode AOD and SSA evaluated,
the total AOD and SSA can be derived. The total AOD (τt) is
the summation of the fine- and coarse-mode AODs as

τt = τf+ τc, (A1)

where τf and τc are the fine- and coarse-mode AODs. The
total (or averaged) SSA (ωt) is defined as the ratio of the total
scattering cross section and the total extinction cross section
for both fine and coarse modes, which can be computed as

ωt =
τfωf+ τcωc

τf+ τc
, (A2)

where ωf and ωc are the fine- and coarse-mode SSA.

Atmos. Meas. Tech., 14, 4083–4110, 2021 https://doi.org/10.5194/amt-14-4083-2021



M. Gao et al.: FastMAPOL 4105

Data availability. The data files for AirHARP and HSRL-2
used in this study are available from the ACEPOL website
(https://doi.org/10.5067/SUBORBITAL/ACEPOL2017/DATA001,
ACEPOL Science Team, 2017). Complete retrieval results as well
as data related to atmospheric correction from the three AirHARP
scenes discussed in Sect. 5 are available from NASA Open
Data Portal: https://data.nasa.gov/Earth-Science/FastMAPOL_
ACEPOL_AIRHARP_L2/8b9y-7rgh (Gao, 2021).
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