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Abstract. Measurement and source apportionment of atmo-
spheric pollutants are crucial for the assessment of air qual-
ity and the implementation of policies for their improvement.
In most cases, such measurements use expensive regulatory-
grade instruments, which makes it difficult to achieve wide
spatial coverage. Low-cost sensors may provide a more af-
fordable alternative, but their capability and reliability in sep-
arating distinct sources of particles have not been tested ex-
tensively yet. The present study examines the ability of a low-
cost optical particle counter (OPC) to identify the sources of
particles and conditions that affect particle concentrations at
an urban background site in Birmingham, UK. To help evalu-
ate the results, the same analysis is performed on data from a
regulatory-grade instrument (SMPS, scanning mobility par-
ticle sizer) and compared to the outcomes from the OPC
analysis. The analysis of the low-cost sensor data manages
to separate periods and atmospheric conditions according to
the level of pollution at the site. It also successfully identifies
a number of sources for the observed particles, which were
also identified using the regulatory-grade instruments. The
low-cost sensor, due to the particle size range measured (0.35
to 40 um), performed rather well in differentiating sources

of particles with sizes greater than 1 um, though its ability
to distinguish their diurnal variation, as well as to separate
sources of smaller particles, at the site was limited. The cur-
rent level of source identification demonstrated makes the
technique useful for background site studies, where larger
particles with smaller temporal variations are of significant
importance. This study highlights the current capability of
low-cost sensors in source identification and differentiation
using clustering approaches. Future directions towards par-
ticulate matter source apportionment using low-cost OPCs
are highlighted.

1 Introduction

Particulate matter (PM) plays a dominant role in air qual-
ity and is known to cause adverse health effects (Dockery
et al., 1993; Pascal et al., 2013; Wu et al., 2016; Zeger et
al., 2008). As a result, regulatory limits are set for its con-
centrations, especially in urban areas (US EPA, 2012; WHO,
2006). For the implementation of such regulations, the identi-
fication of the sources of PM is required. To accomplish this,
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measurements of the concentrations of PM, typically along-
side PM composition, in the area of study are conducted.
Until recent years these measurements were typically made
using regulatory-grade instruments which, while providing
high quality data, are rather expensive, thereby limiting the
number that could be deployed and consequently the spa-
tial resolution of any measurement network. This increases
the spatial interpolation uncertainty (Kanaroglou et al., 2005)
and can result in inadequate connection between the levels of
air pollution exposures and resulting health effects (Holstius
et al., 2014), especially in complex urban environments (Har-
rison, 2017; Mueller et al., 2016). Additionally, many low-
and middle-income countries are unable to invest the large
economic assets currently required for source apportionment,
even though in many of these countries the air quality is poor
(Ghosh and Parida, 2015; Kan et al., 2009; Petkova et al.,
2013; Pope et al., 2018; Singh et al., 2020).

In the past decade, the development of new and cheaper
sensors for air quality monitoring has intensified. Many dif-
ferent sensors were introduced measuring either the num-
ber concentration or surface area of PM (or gas-phase
species) (JovaSevi¢-Stojanovi¢ et al., 2015; Lewis et al,,
2018; Popoola et al., 2018). Overall, the low-cost PM sen-
sors currently offer better comparison with regulatory-grade
equipment compared to their gas-phase counterparts (Lewis
et al., 2018). However, many shortcomings have been iden-
tified in their application, with the most common being the
loss of accuracy in the measurements due to environmen-
tal conditions such as relative humidity (RH) variations or
high PM concentrations (Castell et al., 2017; Crilley et al.,
2018, 2020; Di Antonio et al., 2018; Hagan and Kroll, 2020;
Miskell et al., 2017; Zheng et al., 2018). Measurements in
ambient conditions also lead to discrepancies with research-
grade instruments, which often measure in controlled envi-
ronments that are air conditioned (U.S. Environmental Pro-
tection Agency, 2016). The reproducibility and variability of
the outputs from sensors of the same type can also be prob-
lematic (Austin et al., 2015; Sousan et al., 2016; Wang et al.,
2015). Therefore, the need for constant and careful calibra-
tion is repeatedly highlighted for many studies that evaluate
the potential of low-cost sensors (Rai et al., 2017; Spinelle
et al., 2015, 2017). When these calibration steps are imple-
mented, low-cost sensors have been shown to provide reli-
able near real-time measurements, maintaining high corre-
lations with research-grade instruments (Kelly et al., 2017,
Malings et al., 2020; Sayahi et al., 2019) with the added ad-
vantages of the lower cost and portability.

Consequently, low-cost sensors have been successfully de-
ployed in many studies for which the use of more expensive
instruments was not feasible. There is a number of applica-
tions in low- and middle-income countries (e.g. Nagendra et
al., 2019; Pope et al., 2018), in studies which included mo-
bile measurements within the urban environment (Ionascu et
al., 2018; Jerrett et al., 2017; Miskell et al., 2018), or studies
of indoor air quality from multiple sites, such as the SKO-
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MOBO project conducted in New Zealand, in which the air
quality in schools was assessed (Weyers et al., 2018). The
greatest advantage though is likely, as their name implies,
their lower cost, which made possible the formation of a net-
work of measuring stations (Feinberg et al., 2019; Kotsev
et al., 2016; Moltchanov et al., 2015), increasing the spatial
resolution and through new data analysis methods improv-
ing the mapping of air pollution up to a sub-neighbourhood
level (Schneider et al., 2017; Shindler, 2019). Therefore, it
is suggested that the development and use of low-cost sen-
sors, either used individually or in conjunction with research-
grade instruments (Snyder et al., 2013), have the potential to
radically change the conventional approach of both pollution
measuring and policymaking (Borrego et al., 2018; Kumar
et al., 2015; Lagerspetz et al., 2019; Morawska et al., 2018),
providing a more effective general public information and
enhanced environmental awareness (Penza et al., 2014), even
for countries with smaller budgets (Amegah, 2018).

As yet, studying the different sources of particles at a site
with the use of data from low-cost sensors has not been
widely attempted. Pope et al. (2018) managed to identify
major pollution sources by studying the ratios of PM of dif-
ferent sizes provided by low-cost sensors, while Popoola et
al. (2018) using a network of sensors identified the sources
of pollution near Heathrow Airport in London, UK. Hagan
et al. (2019), applying a statistical method (non-negative ma-
trix factorisation) on low-cost sensor data, identified a com-
bustion factor in a three-factor solution in New Delhi, India.
The present study investigates the ability of low-cost sen-
sors to provide measurements that can be used to identify
the sources of pollution at a background site in Birmingham,
UK, using clustering of particle size profiles. This method
was successfully used in a number of previous studies,
though with the use of measurements from research-grade in-
struments (Beddows et al., 2009, 2015; Von Bismarck-Osten
and Weber, 2014; Dall’Osto et al., 2011, 2012; Sabaliauskas
et al., 2013). To support the clustering method, chemical
composition data from both research-grade and low-cost sen-
sor instruments were used, as well as meteorological data
from a closely located measurement station. Apart from at-
tempting the source differentiation with low-cost sensor data,
a direct comparison with the results from a similar analy-
sis using research-grade instruments is also conducted to not
only validate the results but also find the strengths and weak-
nesses of such an application.

2 Methods

2.1 Location of the site and instruments

The measurement site (Fig. 1), characterised as an ur-
ban background, is the Birmingham Air Quality Supersite

(BAQS) located at the grounds of the University of Birm-
ingham (52.45° N, 1.93° W), about 3 km southwest from the
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Figure 1. Map of the location of the Birmingham Air Quality Su-
persite (BAQS) in the UK (Map by © HERE).

city centre (Alam et al., 2015). In the present study, measure-
ments from the following instruments for the period 24 Jan-
uary to 12 March 2020 (the date range was chosen to avoid
the effect of the lockdown due to COVID-19) were used (Ta-
ble 1, a picture of the low-cost sensors used at BAQS is found
in Fig. S1 in the Supplement).

The Alphasense OPC-N3, which is an optical particle
counter (OPC), measuring particle number concentrations
in the size range between 0.35 and 40 um at rates up to
about 10000 particless~!'. As the sample air stream enters
the instrument with a sample flow rate of 210mL m~! (dy-
namically monitored and corrected by the sensor), it passes
through a laser beam (wavelength at 658 nm). OPC-N3 mea-
sures the light scattered by individual particles carried in
a sample air stream through a laser beam. These measure-
ments are used to determine the particle size, related to the
intensity of light scattered via a calibration based on Mie
scattering theory and particle number concentration. Parti-
cle mass loadings (PM1, PM3 5 and PMj¢) are then calcu-
lated from the particle size spectra and concentration data,
assuming a particle density and refractive index (default den-
sity is 1.65 gmL ™!, and complex refractive index is 1.5+ i0)
(Alphasense, 2019). Particles of larger size are likely lost to
impaction in the tubing prior to the OPC and thus are not
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considered. The OPC is located within the air-conditioned
station, so measurements represent PM dry mass.

The AethLabs MA200 (microAeth MA200) provides
black carbon (BC) information (0—1 mgBC m~3). The sam-
ple is deposited onto an internal filter, and an IR light
(880 nm) is directed through the sample on the filter and into
a detector on the other side of the sample. The amount of
light absorbed from the sample is proportional to the BC con-
centration.

Two Naneos Partectors (Naneos Particle Solutions GmbH)
provide the lung-deposited surface area metric (LDSA,
um? cm™3) in the particle diameter range 10 nm to 10 um. In
general, the instrument charges particles with an efficiency
proportional to the particle diameter to the power of 1.1
("1 and is independent of particle composition (Todea et
al., 2015; Geiss et al., 2016). The particle number concentra-
tion (N) is also provided for all particles, resulting in a Nd'-!
metric that can be correlated to LDSA. A catalytic stripper
(Catalytic Instruments CS015) was used to remove the semi-
volatile particles entering one of the two Naneos Partectors.
The other Naneos Partector was not subject to the catalytic
stripper and therefore measured the surface of all particles.
In the present study, apart from the values provided directly
from the sensors, the ratio between the measurements of the
two Naneos Partectors was also considered according to

LDSA after the catalytic stripper
LDSAati0 =

LDSA before the catalytic stripper M
This was done to resolve whether such a configuration can
also provide information such as the level of pollution or
the age of the incoming air masses, as increased concentra-
tions of semi-volatile compounds are usually associated with
anthropogenic sources, especially in the urban environment
(Harkov, 1989; Mahbub et al., 2011; Schnelle-Kreis et al.,
2007; Xu and Zhang, 2011). Thus, a high LDS A0 is ex-
pected to be associated with fresher pollution, which usually
has a higher content of volatile compounds (i.e. pollution
sources at a close distance from the site), while lower ra-
tios are probably associated with either cleaner conditions or
more regional and aged pollution with higher concentrations
of semi-volatile compounds, usually associated with sources
at a greater distance from the measuring site. The specific
metric though should be considered with caution, as it can be
biased by the absolute surface areas measured.

The sensors monitoring nitrogen dioxide (NO;) and ozone
(O3) concentrations are part of an Alphasense BOx of Clus-
tered Sensors (BOCSs) (Smith et al., 2019), which is a low-
power instrument based on multiple low-cost air pollution
sensors allocated in two independent circuits to redundantly
measure concentrations and other airflow parameters. The
air is driven by a pump through the cell (air flow is about
4Lmin~") that hosts electrochemical (EC) sensors and the
nondispersive infrared (NDIR) sensors. The EC sensors re-
dundantly (six sensors per gas) measure carbon monoxide,
NO,, nitrogen monoxide and oxidising gases (O,), and the
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Table 1. List of the measuring instruments used in the present study.

D. Bousiotis et al.: Assessing the sources of particles using low-cost sensors

Monitoring Model Manufacturer Regulatory  Approximate
grade cost (GBP)
NO, NO2-B43F Alphasense No 250
Oy Ox-B431 Alphasense No 160
Black carbon MA200 AethLabs No 5700
Lung-deposited surface area Naneos No 8500
OPC OPC-N3 Alphasense No 250
SMPS TSI 3082 TSI Yes 80000
ACSM Quad - ACSM  Aerodyne Yes 170000
PM Fidas 200E Palas Yes 25000
NO, T500U Teledyne Yes 15000
Black carbon AE33 Magee Scientific  Yes 25000
03 49i Thermo Yes 3000
NDIR sensors measure carbon dioxide. EC sensors are based Planetary boundary layer (PBL) height data
on recording the current generated by redox reactions that oc- were downloaded from ECMWF’s ERAS
cur at the electrode—electrolyte interface in an electrochem- (https://cds.climate.copernicus.eu/cdsapp#!/dataset/
ical cell composed of three electrodes (working electrode reanalysis-eraS-single-levels, last access: 20 March
(WE), counter electrode (CE) and reference electrode (RE)). 2021). Back-trajectory data calculated wusing the
While the gas of interest reacts on the WE surface, the CE HYSPLIT model (Draxler and Hess, 1998) were

completes the redox reaction, and the RE ensures that the WE
potential remains in the proper range. In the present study,
only the measurements of O3 (deriving from a linear regres-
sion of the values of the six O, sensors with the measure-
ments from the reference instrument also located at BAQS)
and NO, were used.

The Aethalometer, model AE33 by Magee Scientific, col-
lects aerosol particles continuously by drawing the aerosol-
laden air stream through a spot on the filter tape. It analyses
the aerosol by measuring the transmission of light through
one portion of the filter tape containing the sample versus the
transmission through an unloaded portion of the filter tape
acting as a reference area. This analysis is done at seven opti-
cal wavelengths spanning the range from the near-infrared to
the near-ultraviolet. The Aethalometer calculates the instan-
taneous concentration of optically absorbing aerosols from
the rate of change of the attenuation of light transmitted
through the particle-laden filter.

For the same period, data from regulatory-grade instru-
ments were also available. Thus, particle size composition
data from a model TSI 3082 scanning mobility particle sizer
(SMPS) in the size range 12-552 nm, along with PM data
for the sizes of 1, 2.5, 4 and 10 um acquired using a Fidas
200E, were used. Additionally, chemical composition data
for NO, and O3, as well as SOZ_, NOj; and organic content
(size range 40 nm to 1 um), from an Aerodyne aerosol chem-
ical speciation monitor (ACSM) were also available. Meteo-
rological data (wind speed (WS) and direction, temperature,
RH, and rain level) from the Birmingham Air Quality Su-
persite were also used in the characterisation of the clusters
formed from both methods.
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extracted by the NOAA Air Resources Laboratory
(https://ready.arl.noaa.gov/READYtransp.php, last ac-
cess: 17 August 2020). Data were processed using the
Openair package for R (Carslaw and Ropkins, 2012).

2.2 k-means clustering

In this study, two size spectra are considered: one deriving
from the OPC and one from the regulatory-grade SMPS.
It is noted that the size spectra from the two instruments
only briefly overlap in the size range 350-552nm, with
the SMPS mostly measuring smaller particles and the OPC
mostly measuring larger particles. For the time period stud-
ied (24 January—12 March 2020), 874 h of available data (av-
eraged from 10s intervals — 76 % coverage) from the OPC
and 732 h from the SMPS (66 % coverage) were exposed to
k-means clustering. k-means clustering is a method success-
fully used in many studies for particle source differentiation
(Beddows et al., 2015; Brines et al., 2015, Von Bismarck-
Osten and Weber, 2014; Giorio et al., 2015; Wegner et al.,
2012) and has been shown to have better performance com-
pared to other clustering techniques (Beddows et al., 2009;
Salimi et al., 2014). The technique was found to produce
clusters with the highest similarity between their elements
and the highest separation against the other clusters formed
(Hennig, 2007). It is a method of vector quantisation which
aims to partition observations (xi, x2, ..., X,) into k sets,
minimising within-cluster variances (squared Euclidean dis-
tances) as

k k
argminz Z x — pwill> = argminz |S;| Vars;, ()
i=1

i=1xeS;
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where S; represents the sets (clusters) formed, and pu; repre-
sents the centroid point of the cluster (Likas et al., 2003).
k-means clustering in this study was performed using the
“stats” library for R. The optimal number of clusters was
chosen using two metrics: the Dunn index and the Silhou-
ette width as proposed by Beddows et al. (2009). The Dunn
index provides a measure of the ratio of the minimum cluster
separation to the maximum cluster (providing a metric of the
compactness and separation of the clusters formed within the
space — Pakhira et al., 2004). The larger the Dunn index, the
better separated are the clusters formed. The Silhouette width
is a measure of the similarity of the spectra within each clus-
ter (Rousseeuw, 1987). Both the Dunn index and Silhouette
width were calculated using the “fpc” library for R. In the
present study the best statistically fitted solution was chosen
(the solution for which both metrics maximised), though in
source differentiation studies such a solution may not always
provide the best separation of all the available sources. Us-
ing the aforementioned statistical tests, a six-cluster solution
was independently suggested for both the OPC and SMPS
datasets. Although the clustering process could be applied
for the Fidas data, which are comparable in size range, it was
not performed in this study because of the limited size bin
data of the Fidas instrument.

3 Results

3.1 General conditions, sources of particles and
pollution at the site

Being an urban background site, it presents relatively low
concentrations of most pollutants (the average atmospheric
conditions for each cluster formed by both methods is pre-
sented in Table 2), without the effect of direct sources of pol-
lution, such as traffic. Wind rose and polar plots illustrating
the conditions in the period studied are found in Fig. S2. The
main source of pollution lies in the north and northeast sec-
tors, where the city centre is located, as well as in the south-
ern and eastern sectors, where a populous residential area is
located. As a result, the main sources of NO; and BC as well
as the smaller-sized PM are associated with easterly winds
(this though is not reflected in particles observed in the SMPS
size range). For the PMyg, apart from the aforementioned,
increased concentrations are also found with southwestern
winds likely associated with marine sources. Typical for the
UK, the average wind profile for the period consists mainly
of western and southwestern winds (McIntosh and Thom,
1969), reducing the effect of the pollution sources in the east
of the site. Finally, the secondary pollutants NO; and SO,
which are in most cases associated with aged pollution and
long-distance transport, have less consistent profiles, though
they both seem to be mainly associated with southern wind
directions. Finally, for the period studied no new particle for-
mation (NPF) events were observed. This is consistent with
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the general trend in the area as found by Alam et al. (2003)
for Birmingham (as well as in more recent studies by Bousio-
tis et al. (2019, 2021) at nearby sites in Oxford and London),
in which NPF events in southern UK are more frequent dur-
ing the summer months and barely occurring during winter
and early spring, mainly due to unfavourable meteorological
conditions.

3.2 Clustering of the OPC data

Due to the larger particle sizes measured by the OPC-N3, the
differences in the cluster profiles are mainly associated with
the particle number concentrations and to a lesser extent with
the different peaks, which are less distinct due to the smaller
variation found as particle diameter increases. The frequency
of the clusters formed, as well as their diurnal occurrence, is
shown in Fig. 2. The average particle size distribution spectra
and wind roses for the clusters formed are found in Figs. S3
and S4.

The six clusters formed from the OPC data are as follows:

— OPC.1 is a rather polluted group with the highest NO;
concentrations and average secondary pollutants, PM
and LDSA ratio. Its fresher polluted character is fur-
ther confirmed using the SMPS data which showed
higher-than-average particle concentrations for particles
with diameters smaller than 50 nm. This group presents
lower-than-average temperature, RH, and PBL height
and slower-than-average southwestern winds, which is
explained, to an extent, by the cluster being slightly
more frequent during night-time.

— OPC.2 refers mainly to a single midday event on
12 March 2020 (which explains the highest PBL height
found) with high-speed southwestern winds, which are
associated with lower pollution levels in the area (Mc-
Gregor and Bamzelis, 1995), high temperature and very
low RH. On this day the concentrations of all the pol-
lutants were rather low, though due to the high wind
speeds (an increase in the wind speed is observed at the
start of the occurrence of this cluster — at 10:00LT —
which affects the particle distribution profile as can be
seen in Fig. S5) the PMj( values were close to average
(when PM; and PM; 5 were rather low), indicating the
stronger presence of coarser particles, possibly of ma-
rine origin, as shown by the back trajectories, which is a
source with an increasing importance for larger-size PM
in this area (Harrison et al., 2004; Taiwo et al., 2014).
This group presents the highest LDSA ratio, which is in
agreement with the low concentrations of the secondary
pollutants.

— OPC.3 is a group occurring mainly during some of the
midday periods in January, with the lowest temperature
and wind speed averages, as well as the highest average
RH, containing both southwestern and southern winds.

Atmos. Meas. Tech., 14, 4139-4155, 2021
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While the concentrations of the measured pollutants are
close to average, high sulfate and ozone concentrations
were found, with the former pointing to air masses with
higher concentrations of aged pollutants assisted by the
lowest PBL found for this cluster. The LDSA ratio,
though, was found to be very high despite the higher
concentrations of sulfate and nitrate. The near-average
NO; concentrations may point to the effect of a nearby
pollution source that may have resulted in the increased
LDSA ratio found.

OPC.4 is a group with low concentrations of NO,, BC
and PM but close-to-average secondary pollutant con-
centrations. It is associated with close-to-average tem-
perature, RH, PBL height and wind speed of mainly
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Figure 2. Frequency and diurnal variation of the clusters formed by the OPC data.

southwestern directions. It is slightly more frequent dur-
ing daytime and has lower-than-average concentrations
of particles in the SMPS range.

— OPC.5 includes the most polluted conditions in the area

throughout the day. It is associated with western and
southwestern winds of average speed, high temperature
and lower-than-average RH. Most pollutant concentra-
tions, including PM, are rather high, while O3 is low.
Similarly, it presents the highest concentrations of par-
ticles in all SMPS size ranges, which is probably due
to the reduced atmospheric mixing in the lowest aver-
age PBL height among the OPC clusters. This cluster
also includes the more polluted conditions found with
northeastern winds.
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— OPC.6 is a group associated with rather clean condi-
tions, presenting the lowest concentrations of NO,, BC,
NOj and organic content. It is associated with higher-
than-average temperature, PBL height and wind speed
and lower-than-average RH; it has low concentrations
of PM; and PM, s, while the PM;¢ concentration is
close to average. Its association with cleaner conditions
(lower concentrations of the pollutants with available
data) probably explains the highest O3 concentrations.
The fast-moving southwestern air masses, which this
group is associated with, are probably of marine origin
that have not passed through any significant pollution
sources, which can be further suggested by both the low
LDSA values and the highest LDSA ratio.

3.3 Clustering of the SMPS data

In the past, a number of studies on the sources of particles
were conducted for both the greater area of Birmingham and
specifically the site in the university (Harrison et al., 1997;
Taiwo, 2016; Yin et al., 2010). As these studies mainly fo-
cused on the chemical composition of coarser particles, to
the authors’ knowledge this is the first study that uses ul-
trafine particle size distribution data to study the sources of
particles in Birmingham, UK. The frequency and hourly oc-
currence of the six clusters formed from the SMPS data are
found in Fig. 3. The average particle size distributions and
wind roses for the clusters formed are found in Figs. S6 and
S7.

— SMPS.1 contains averagely polluted hours and is as-
sociated with fresher pollutants (such as NO; or NO)
and PM, while secondary pollutants such as NHI, N 03_
and SO?[ are relatively low. Due to being associated
with fresher emissions, this group presents higher-than-
average concentrations of particles below 50nm and a
low LDSA ratio. It is associated with average south-
western winds (it also includes the small portion of
northeastern winds) and temperature and higher-than-
average RH, and it occurs more frequently during late
night and early morning hours, which explains the low
PBL height among the SMPS clusters.

— SMPS.2 is similar to the first group, and average pol-
lutant concentrations are found in this group with low
concentrations of secondary pollutants. It is associated
with slow western and southwestern winds and lower-
than-average temperatures, RH, and PBL height, and
it is more frequent during early morning hours. It has
the highest concentrations of particles with diameters
smaller than 20 nm, but the particle concentrations be-
come relatively smaller as their size increases.

— SMPS.3 is a small group containing very clean night
hours mainly in February, with higher-than-average
temperature, lower-than-average RH, strong western

Atmos. Meas. Tech., 14, 4139-4155, 2021
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and southwestern winds, and a remarkably great PBL
height for the time of the day. It has low concentrations
of pollutants and PM apart from O3 (despite the time of
day), though PM g concentration is enhanced, probably
associating this group with stronger marine origins. The
particle concentrations of all size ranges below 500 nm
are the lowest among the groups formed and, along with
the high LDSA ratio, are in agreement with the very
clean conditions associated with this cluster. This clus-
ter, contrary to all others, presents two peaks: one peak-
ing just below 30 nm and another one just over 100 nm,
which indicates that it is probably associated with at
least two different sources.
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Figure 3. Frequency and diurnal variation of the clusters formed by the SMPS data.

— SMPS .4 presents near-average concentrations of all the

pollutants studied. PM; average concentration is rather
low, while PMg is higher than the average. It is asso-
ciated with average-speed southwestern winds, higher-
than-average temperature and PBL height, and low RH.
It is more frequent during midday and evening hours,
and it appears to represent the most common conditions
in the area, hence having the highest frequency of all
clusters.

— SMPS.5 is a unique group associated with southern

winds, the side at which the central part of the univer-
sity resides. This is the most polluted group, probably
affected by emissions from the university and the resi-
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dential area found in that direction, assisted by the very
low PBL height, with very high concentrations of all
the pollutants (apart from O3), PM and ultrafine parti-
cles with available data. The LDSA ratio is very high,
and this is probably due to the great surface area of the
involatile component found. It is associated with very
slow wind speeds, low temperature and very high RH,
and it occurred evenly throughout the day, mainly on the
first weeks of the campaign when pollution levels were
rather high, probably due to increased heating emis-
sions.

— SMPS.6 presents low concentrations of all pollutants
(apart from O3), PM and ultrafine particles with avail-
able data and is associated with western winds with
higher-than-average speed, near-average temperatures
and PBL height, and low RH. It occurred more fre-
quently during evening hours and almost equally fre-
quently throughout the whole study period apart from
the first 2 weeks when pollution levels were rather high.

3.4 Direct comparison between the methods

Due to the difference in the size ranges measured by the
SMPS and OPC instruments, it is evident that a direct com-
parison between the two methods would provide mixed re-
sults as some clusters found using the SMPS data are not
detectable with the OPC and vice versa. The particle size
range that is common between the two instruments lies at
about 350-550 nm. Therefore, many particle sources associ-
ated with particles in the size range below the minimum de-
tectable size of the OPC are not expected to be found using
its data and vice versa. At a background site though, many
of the sources of smaller-sized particles play a less important
role as they are usually associated with fresher emissions,
which are not common to such sites.

The clustering process attempts to separate the particle
size distributions into groups with as similar spectral profiles
as possible, while being as different to the other groups as
possible. As expected, the SMPS is more capable of sepa-
rating different cluster profiles at the size range smaller than
500 nm, a size range in which the cluster profiles (using the
SMPS data) formed by the groups from the OPC are almost
uniform (Fig. 4). This shows the limitation of the OPC data to
distinguish ultrafine particle variations; thus, it does not pro-
vide insight for the sources of particles within this size range.
On the other hand, the OPC performs much better in identify-
ing different sources when considering larger particles in the
range between 1-10 pm, for which it manages to clearly dis-
tinguish variations between the groups formed (Fig. 5). The
clusters formed using the OPC data appear to be better as-
sociated with different sources of PM; (Fig. 6), compared to
those deriving from the SMPS data (Fig. S8), as distinct “hot
spots” of PM; are more clearly defined on the polar plots
from the OPC compared to the less clear and mainly associ-
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Figure 4. Particle contributions in the range 12-550 nm (using the
SMPS data) for the clusters formed using the OPC data (a) and the
SMPS data (b).

ated with calm (or almost calm) conditions from the SMPS
(providing no separation among possible sources of PMy).

Table 3 contains the cluster relationships between the two
methods, while Table S1 contains the conditions observed
when pairs of clusters from both methods are considered.
The OPC.2 and OPC.3 clusters appear infrequently, and it
would be nonsensical to directly associate them with SMPS
groups, as they appear under very specific conditions that are
either not detected or are not identified as separate cases by
the SMPS. As a result, they will be separately studied later
in this study.

The OPC.1 was mainly associated with SMPS.4 and
SMPS.6 and to a lesser extent with SMPS.1. OPC.1 has a
somehow higher frequency during night times and it shares
many of these hours with groups SMPS.4 and SMPS.6, while
with SMPS.1 it mainly shares early morning hours. It in-
cludes the more polluted portion of the rather clean SMPS.6
and a portion with lower PMq (though not much difference
from average pollutant concentrations) from the more pol-
luted SMPS 4. It is interesting that the variation between the
subgroups (in relation to SMPS clusters) of the OPC.1 is
very small for the NO, concentrations, a pollutant for which
its variations are not expected to be directly “visible” at the

Atmos. Meas. Tech., 14, 4139-4155, 2021
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Table 3. Simultaneous occurrences of the clusters formed by both the OPC and SMPS.

OPC/SMPS SMPS.1 SMPS.2 SMPS.3 SMPS4 SMPS.5 SMPS.6 Total
OPC
OPC.1 48 30 9 71 13 66 237
OPC.2 1 3 0 0 3 12
OPC.3 0 15 0 2 4 2 23
OPC4 25 27 6 52 19 50 179
OPC.5 24 26 17 39 40 38 184
OPC.6 7 25 9 28 3 25 97
Total SMPS 105 126 41 197 79 184 732
(a) 60 mean N mean
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Figure 5. Particle contributions in the range up to 10 um (using the
Fidas data) for the clusters formed using the OPC data (a) and the
SMPS data (b).

size range of the OPC as it is mainly associated with fresher
emissions. No great variation was found for the wind direc-
tion in the subgroups of OPC.1, though it includes the lower-
temperature and higher RH conditions of the SMPS clusters
that it is associated with. The OPC.1 includes the relatively
clean part of the more polluted SMPS.1 and the more pol-
luted portion of the cleaner SMPS.6. While this does not pro-
vide a clear connection between the OPC and SMPS results,

Atmos. Meas. Tech., 14, 4139-4155, 2021

it shows that there is consistency in the results provided by
the former in identifying particle sources of specific qualities.
Similarly, OPC.4 was mainly associated with SMPS.4 and
SMPS.6. As the OPC.4 occurs under cleaner conditions, it in-
cludes the less polluted hours of both the SMPS clusters that
it is mainly associated with, though the concentrations of the
secondary pollutants such as NO3 and SOZ_ are closer to the
average. The OPC.4 is associated with the cleaner portion of
the aforementioned SMPS clusters with higher-than-average
temperature and RH though with variable wind speeds.
OPC.5 represents a polluted group of hours associated
mainly with SMPS.4, SMPS.5 and SMPS.6. Being a group of
hours associated with higher concentrations of pollutants, it

https://doi.org/10.5194/amt-14-4139-2021
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includes the more polluted portions of SMPS.4 and SMPS.6
with average meteorological conditions though lower wind
speeds. It also coincides with the largest portion of SMPS.5,
mainly in the sixth week when the temperature was the low-
est, including the portion with the higher concentrations of
organic content and NO;'. SMPS.5 is the group that is as-
sociated with southern wind directions, a side from which a
source of secondary pollutants (NO; s SO?[, NHZ{), organic
content and particles of diameter greater than 100 nm occurs.
OPC.5 is associated with the part of SMPS.5 which is more
burdened from secondary pollutants; hence, very large con-
centrations are observed for them.

Finally, OPC.6 is mainly associated with SMPS.2,
SMPS.4 and SMPS.6. Being a cleaner group of hours, it in-
cludes the portion of these SMPS clusters with lower pollu-
tant concentrations but higher PM|g concentrations (though
with lower PM; concentrations). These rather clean condi-
tions, along with the western and southwestern high-speed
winds on average and the large PM1( concentrations, further
enhance the possible marine character of this cluster. Due to
the size range of these particles, such variation is not clearly
identified by the SMPS, resulting in them not being clearly
separated when their data are considered.

The weekly contribution of each cluster group from the
analysis of either dataset is found in Fig. 7, and the conditions
on each week studied are shown in Table S2. It is evident that
the variation from the SMPS is greater than that of the OPC,
as the latter is less affected by the diurnal variations. It is
apparent that it is easier to comprehend the clusters’ varia-
tion in association with the levels of pollution in the site (the
more polluted weeks have a greater portion of SMPS.1 and
SMPS.5), while for those with lower concentrations of pol-
lutants the SMPS.4 and SMPS.6 are more enhanced. These
variations are harder to distinguish using the OPC data, as
they are less apparent in the size range measured by the sen-
sor. To further understand the possible sources using the lat-
ter, information from other instruments which provide chem-
ical composition data are needed, though it is still hard to pin-
point exact sources, due to the OPC’s weakness in explaining
distinct particle sources within the day.

3.5 Case studies
3.51 OPC.2

OPC.2 occurs mainly on a single day in March (12 March)
with higher-than-average temperature and strong western
winds. This was the cluster with the lowest concentrations
of NHI, NO; (about an order of magnitude compared to
average conditions), and SO?[; rather low concentrations of
NO, and BC; and high O3, which is probably the result of the
strong winds and the very high PBL height assisting in the re-
moval of the pollutants from the site. Using the SMPS data,
this group of hours seems to follow the trends of BC, asso-
ciating it with SMPS.6 for low concentrations, SMPS.1 and

https://doi.org/10.5194/amt-14-4139-2021
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Figure 7. Weekly contribution (week number refers to week of year
2020) of the clusters formed by the OPC (a) and SMPS (b).

SMPS.2 for medium concentrations, and SMPS.4 for higher
concentrations of BC. This cluster has very low PM; and
PM, 5 and near-average PM g concentrations, probably asso-
ciating it with marine sources (due to the high wind speed).
Because to this, it is not clearly separated using the SMPS
data, which it does so for the hours of this group accord-
ing to the level of fresher pollutants, the variation of which
is smaller in this type of environment. This cluster seems to
be the result of the change in the wind profile which greatly
affected the coarser particles at the site (Fig. S5).

3.52 OPC3

The third cluster formed using the OPC data was a rather
small group of hours in late January (25, 27 and 28 Jan-
uary), with the lowest average temperature, wind speed and
PBL height compared to the rest of the clusters. The wind
direction profile for this group contains both western and
southern winds, with the latter being associated with high
concentrations of pollutants (as found by the study of the
SMPS data). The majority of the hours in this group (65 %)
were characterised as freshly polluted when using the SMPS
data, mainly associated with SMPS.2. Unfortunately, data of
NO,, BC, O3 and PM for this group were very scarce from
regulatory-grade instruments (due to instrument error — the
results provided in Table 2 for the OPC.3 are only from 2 h
of data that were available from the regulatory-grade instru-
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ment). The ACSM data, which were available for the hours of
this cluster, pointed to marginally lower-than-average values
of organic content, nitrate and ammonium, while the sulfate
concentrations were rather high. Using the low-cost sensor
data, it is found that this group has the highest BC (data from
this low-cost sensor are not included) and involatile compo-
nent of LDSA. This group also had the highest average par-
ticle concentration in the size range of the OPC, which is in
agreement with the highest PM concentrations in all ranges
(PM1, PM3 s, PMjg) and is probably the result of the low
wind speed and PBL height. As this is not visible from the
SMPS, the cluster associated with this group has nearly av-
erage particle concentrations in the SMPS particle ranges.
This group was not distinctively detected by the SMPS due
to presenting variation in larger-sized particles, which can be
one of the weaknesses of studying the sources of such parti-
cles using SMPS data alone. The OPC.3 appears to contain
the more polluted slow-moving portion of SMPS.2 with en-
hanced SO?[, BC and PM concentrations.

3.5.3 SMPS.3

The third cluster from the analysis of SMPS data presented
a unique profile with two peaks: one below 30 nm and one a
bit over 100 nm. This unique group was associated with very
clean conditions, with very low concentrations for all the pol-
lutants with available data (apart from O3) and low particle
concentrations for all the ranges in the SMPS and OPC range
as well as PM; and PM, 5. The concentrations of PM;y and
SOi_ were somehow higher but still lower than the average
in the area for the period of the study. This group is associated
with high average temperature and wind speed and rather
low RH, with wind directions being mainly southwestern and
western. This group occurred solely at night hours during a
number of relatively warm nights mainly in February and to a
lesser extend in March. Even with very low particle concen-
trations (as found by both the SMPS and OPC), the presence
of two separate peaks in the size range of the ultrafine parti-
cles is indicative of more than one simultaneous source. Due
to these sources of particles occurring at the ultrafine parti-
cle range, the OPC was not able to distinguish this special
condition and grouped the hours of this cluster into a number
of clusters (mainly OPC.5 and to a lesser extend OPC.1 and
OPC.6), occurring either during night-time or throughout the
day. The inability of the OPC to distinguish complicated con-
ditions in the ultrafine range is a weakness of the OPC that
should be considered when such conditions are anticipated.

4 Discussion

As the SMPS measures smaller particle sizes and with en-
hanced accuracy compared to the OPC, it managed to bet-
ter separate the different sources of fresher pollution with
the main differentiating factor being the time of the day,
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for which the variability of such sources is more prominent.
The differences in NO; concentrations, which are mainly as-
sociated with fresher emissions, are more distinct between
the groups; using this data, better separation of very clean
(SMPS.3) and very polluted conditions from a distinct source
(SMPS.5) was achieved, while the other groups described
mostly average conditions with lesser variability (as expected
in this range at a background site). Additionally, using the
SMPS data, it is possible to distinguish multiple sources of
ultrafine particles (SMPS.3), as they can appear as multiple
peaks within the SMPS spectra. This is not possible using
the OPC data, as the size range measured by this instrument
cannot identify such cases.

Contrary to the SMPS, using the OPC data provided less
distinct separation of fresher emissions (as expected due to
the lack of data of small-sized particles). Additionally, the
OPC data are less sensitive to diurnal variations due to the
range of particles covered, which are in a size range that does
not vary significantly through the day but between days. This
results in the less distinct diurnal variations found between
the groups formed. The analysis of the OPC data, though,
managed to adequately separate conditions and/or sources
associated with larger particles, such as aged pollution (for
which it also managed to separate a small time window with
very strong sulfate presence — OPC.3), which has the great-
est contribution in the particle chemical composition for the
study area (Harrison et al., 2003; Taiwo, 2016; Yin et al.,
2010), RH variations or air masses of marine origin. To an
extent, this might be due to the number of clusters chosen,
as there is a possibility that a larger number of clusters from
the SMPS may separate sources of larger particles better but
with the risk of also separating similar sources. Additionally,
the pollution levels of the clusters formed directly follow the
trends of the PBL height in the area, which is a variation cap-
tured by both instruments, showing the importance of this
variable in the air quality of an area.

To sum up, the study of SMPS data with k-means cluster-
ing is far superior at separating complex pollution sources
within urban environments in which the variation of very
small particles is crucial for identifying particle and emission
sources. This advantage of the SMPS will not be overcome
even with a denser measuring network of OPCs that could be
acquired for the same cost of the SMPS. However, clustering
of the OPC data can provide useful information to assess the
sources of air pollution at background sites in which the di-
rect (smaller) particle sources are few. The method managed
to find sources of greater pollution associated with higher
concentrations of particles of greater sizes (which are mainly
associated with aged pollution), showing that the footprint of
pollution in the ultrafine particle range can have a detectable
effect in coarser particle distributions as well. While not as
precise as the SMPS, a denser network of such instruments
in background sites can be more beneficial and more cost
efficient in studying multiple pollution sources or hot spots
within the urban environment.
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The current inability of low-cost PM sensors to mea-
sure particle size spectra at small sizes (< 300nm) is the
greatest drawback in their application for separating parti-
cle sources, since much information is contained in these
smaller sizes. OPCs using shorter-wavelength light sources
and hence smaller particle detection could be beneficial here.
Also, there are several low-cost sensors that provide insight
for the surface area or the total number of particles in the ul-
trafine particle size range (such as the LDSA sensor used in
this study). The combined use of the OPC with these instru-
ments, along with sophisticated statistical techniques, may
provide possibilities for more precise source differentiation
than shown in the present study.

It is noted that while clustering of particle number size
distributions is one approach in the study of the source as-
sessment of particles, other alternative methods, such as the
positive matrix factorisation (PMF), may also provide useful
results.

5 Conclusions

The present study investigates the capabilities of a low-cost
OPC sensor for source differentiation at an urban background
site in Birmingham, UK. It is used alongside a regulatory-
grade SMPS instrument, which has previously been used
successfully for source differentiation. The clustering ap-
proach identified optimal solutions of six clusters for both
the SMPS and OPC data. There were similarities between the
SMPS and OPC solutions, which provide insights into peri-
ods of low and high pollution. However, large differences
were also observed. A more distinct separation of direct
emission sources was achieved using the SMPS data, which
identified sources with time windows that correlated with ex-
treme NO; concentrations (either high or low), as well as pe-
riods with more complex sources. The OPC was able to dis-
tinguish time periods with greater variation of supermicron-
sized particle sources (e.g. marine sources). There seems to
be a clearer distinction of the diurnal variability of sources
using the SMPS data, while the OPC seems to be able
to only distinguish the variability within periods of days
rather than hours, as found by the less variable diurnal and
weekly variation. This, though, might not be a great draw-
back when considering background sites, as this variabil-
ity is smaller in such environments which are mainly af-
fected by regional pollution, while the local emissions are
less and more distinct. Low-cost sensors can be a reliable
alternative for source identification studies in environments
with less complex sources, which present smaller alterations
within the span of the day. Still, such instruments cannot be
used for scientific analyses, which require greater precision.
Their application will probably be adequate when studying
the sources of particles with a more regional character (e.g.
marine sources) rather than direct and variable sources (e.g.
traffic or cooking emissions) and can provide enough in-
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formation for the air quality levels, sources and conditions
that these are anticipated from. Such studies may include the
analysis of mineral dust events resulting from either anthro-
pogenic activities or meteorological events (e.g. dust storms),
bioaerosol events in forested areas and other sources which
affect mainly the composition of coarser particles.

This study demonstrates that single low-cost sensor PM
units can provide sensible source differentiation of large-
sized PM pollution sources. This allows for the prospect of
source apportionment via networks of low-cost sensors in
the near future, thereby allowing triangulation of sources.
The development of more sophisticated low-cost sensors in
conjunction with their low cost ensures the application of a
denser measurement network, making better air quality mon-
itoring and control feasible in the near future. However, this
requires additional studies, which can further elucidate the
strengths and weaknesses of those sensors compared to the
regulatory-grade ones, as they develop.
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