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Abstract. In this paper, we present two micro rain radar-
based approaches to discriminate between stratiform and
convective precipitation. One is based on probability density
functions (PDFs) in combination with a confidence function,
and the other one is an artificial neural network (ANN) clas-
sification. Both methods use the maximum radar reflectivity
per profile, the maximum of the observed mean Doppler ve-
locity per profile and the maximum of the temporal standard
deviation (±15 min) of the observed mean Doppler velocity
per profile from a micro rain radar (MRR). Training and test-
ing of the algorithms were performed using a 2-year data set
from the Jülich Observatory for Cloud Evolution (JOYCE).
Both methods agree well, giving similar results. However,
the results of the ANN are more decisive since it is also able
to distinguish an inconclusive class, in turn making the strat-
iform and convective classes more reliable.

1 Introduction

Evaporation of precipitation below cloud base is a crucial
process in the water and energy cycle. Precipitation can be
of two clearly distinguishable types – stratiform and con-
vective. Both types originate from different clouds (Houze,
2014). Stratiform precipitation mainly falls from nimbostra-
tus, whereas convective precipitation originates from active
cumulus and cumulonimbus clouds. These cloud types may
occur separately or entangled in the same cloud complex.

The parameterization of the precipitation evaporation pro-
cess is highly empirical in current general circulation models
(Rotstayn, 1997). Evaporation of precipitation generates cold
pools that lead to convective organization (Schlemmer and
Hohenegger, 2014) and tropical storms (Pattnaik and Krish-
namurti, 2007); it is highly relevant for boundary-layer hu-
midity (Worden et al., 2007) and subsequently for the trop-
ical general circulation (Bacmeister et al., 2006). However,
also at the midlatitudes, precipitation evaporation is an im-
portant factor in the water cycle (Morrison et al., 2012), and
the simulated water cycle processes are highly sensitive to
the empirical parameters and assumptions.

In order to improve the parameterization of evaporation
from convective rain, a big data set of convective rain cases
is needed to generate robust statistics. Since it is a large effort
to manually discriminate between stratiform and convective
cases, automated algorithms were developed.

In previous approaches, stratiform and convective rain is
separated based on the raindrop size distribution measured
by a disdrometer (Caracciolo et al., 2006; Thompson et al.,
2015; Ghada et al., 2019). Precipitation was also classified
using radar images and radar wind profiler data (Rosenfeld
et al., 1995; Williams et al., 1995; Tokay and Short, 1996;
Tokay et al., 1999; Yang et al., 2013). Deng et al. (2014)
classified convective precipitation based on thresholds of the
radar reflectivity and the gradient of accumulative radar re-
flectivity retrieved from a vertically pointing cloud radar.
Geerts and Dawei (2004) used a decision tree to separate
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different precipitation types by means of cloud radar vari-
ables. Additionally, discrimination algorithms using an ANN
were developed (Yang et al., 2019; Ghada et al., 2019). The
ANN approach of Yang et al. (2019) is based on ground-
based Doppler radar observations. Lazri and Ameur (2018)
combined a support vector machine, ANN and random for-
est to improve the stratiform convective classification using
spectral features of SEVIRI data. Jergensen et al. (2020) clas-
sify thunderstorms into three categories: supercell, part of a
quasi-linear convective system, or disorganized using radar
data in a machine-learning approach.

In summary, several approaches such as ANN, fuzzy log-
ics, or decision trees based on different instruments such as
disdrometer, cloud radar, precipitation radar, or radar wind
profiler were developed in the past. In this paper, two meth-
ods are developed which classify rain as stratiform or con-
vective event based only on micro rain radar (MRR) obser-
vations to enable a widespread and straightforward usage for
ground-based remote-sensing sites.

2 Instrumentation

2.1 Supersite JOYCE

In recent years, the Jülich Observatory for Cloud Evo-
lution (JOYCE; http://cpex-lab.de/cpex-lab/EN/Home/
JOYCE-CF/JOYCE-CF_node.html, last access: 1 December
2020) was equipped with a combination of synergistic
ground-based instruments (Löhnert et al., 2015). JOYCE
is situated at 50◦54′31′′ N and 6◦24′49′′ E with an altitude
of 111 m a.m.s.l.. In 2017 JOYCE was transformed into a
Core Facility (JOYCE – CF) funded by the DFG (Deutsche
Forschungsgemeinschaft) with the aim of high-quality radar
and passive microwave observations of the atmosphere.
The supersite operates a variety of ground-based active
and passive remote-sensing instruments for cloud and
precipitation observations, for example, X, Ka, and W-Band
radars, ceilometers, a Doppler wind lidar, an atmospheric
emitted radiance interferometer (AERI), a Sun photometer,
disdrometers, several radiation measurement systems, as
well as an MRR. The latter is the main instrument in this
study and is explained in detail in the following sub-section.
The data used in this study were gathered in 2013 and 2014.
The data from 2013 cover the entire year and were used to
train the algorithms (training data set). The data from 2014
cover almost the entire year apart from February. This is
a completely independent data set and is used as a test data
set for the algorithms. In 2013 and 2014, 471 and 683 h of
rain were observed, respectively.

2.2 Micro rain radar

The MRR which is built by the Metek (Meteorologische
Messtechnik GmbH) company is a compact FM–CW (fre-
quency modulated–continuous wave) Doppler radar operat-

ing at 24 GHz (Peters et al., 2002). The MRR at JOYCE (in
2013 and 2014) is an MRR-2 system operating with 32 range
gates. The lowermost range gates (number 0, 1 and 2) up to
200 m are affected by near-field effects, and the last range
gate of 3100 m is too noisy. These range gates are usually
omitted according to Maahn and Kollias (2012). Hence, 28
range gates from 300 to 3000 m remain for the analyses in
this study. The vertical and temporal resolution amounted
to 100 m and 1 min, respectively. The MRR data were pro-
cessed according to Peters et al. (2005). The instrument was
zenith-pointing and measured the radar Doppler spectrum
from which the mean Doppler velocity (vD) was derived. The
radar reflectivity factor (Z) is derived by integrating over the
drop size distribution according to Peters et al. (2005).

3 Stratiform convective discrimination

3.1 Convection indices

Several weather indices can be used to describe the stabil-
ity of the atmosphere (Kunz, 2007). Three indices that are
based on thermodynamic profiles are described in the follow-
ing. All give a hint of the probability of convection based on
COSMO (Consortium for Small-scale Modeling) EU model
data. COSMO-EU has a horizontal resolution of 7 km and
a vertical resolution between around 60 and 370 m below
3 km. The temporal resolution amounts to 1 h. The weather
index total totals are a combination of the vertical totals
(VTs) and cross totals (CTs). The VT is the temperature (ϑ
in ◦ Celsius) difference between 850 and 500 hPa, while the
CT is 850 hPa dew point (τ ) minus the 500 hPa temperature:

TT= VT+CT

= (ϑ850−ϑ500)+ (τ850−ϑ500) . (1)

The higher the TT is, the more probable convection is.
The second index, named the KO index (Andersson et al.,

1989), describes the potential instability between lower and
higher levels of the atmosphere (at 1000, 850, 700, and
500 hPa). It is thus based on the pseudo-potential tempera-
tures θe:

KO= 0.5(θe,700+ θe,500− θe,1000− θe,850). (2)

The lower the KO index, the higher the potential of convec-
tion.

The soaring index (S; http://www2.wetter3.de/soaring_
index.html, last access: 1 December 2020) is intended to be
a tool in soaring and sporting aviation because it gives a hint
of thermal lift and hence of instability. It is defined as

S = ϑ850−ϑ500+ τ500− (ϑ700− τ700) . (3)

The higher the S index, the higher the probability of convec-
tion.
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3.2 Convection score

First, a convection score to classify three types of precipi-
tation labelled as stratiform, convective and inconclusive is
defined by applying a threshold range to six different vari-
ables. Three variables are based on thermodynamic profiles
(TT, KO, S) and three are based on the MRR observations.
Specifically, the used MRR variables are the maximum of re-
flectivity (Zmax) per profile, maximum of the mean Doppler
velocity (vD,max) per profile and the maximum (per profile)
of the temporal standard deviation (±15 min) of the mean
Doppler velocity (σvD,max). The profile maxima are calcu-
lated between ground and 3 km. It is expected that larger
raindrops are usually caused by convective precipitation (Niu
et al., 2010), which leads to higher Z and vD values, respec-
tively. Furthermore, stratiform precipitation is expected to be
less variable over time, whereas convective precipitation re-
sults in a larger standard deviation of vD over time. It is as-
sumed that ±15 min is a reasonable time span for classifica-
tion of rain events. If the rain event is shorter than 30 min
(±15 min), the variability is determined over this shorter pe-
riod. The maxima of the height-dependent Z, vD and σvD
are used to assign the vertical properties to profile proper-
ties. In case of cold stratiform rain there might be a clearly
defined melting layer. The so-called radar “bright band” is in-
dicated by erroneously high reflectivity values Z in the layer
of melting ice particles which force the detection to be con-
vective. Therefore, two other variables (vD and σvD) are cho-
sen which are not affected by the melting layer, and both will
counteract the false classification and force the retrieval to
classify as stratiform.

Different weightings are assigned to the six variables as vi-
sualized in Fig. 1. Whenever a variable exceeds a convection
threshold range (or falls below it in the case of the KO index),
the weight to be convective increases. A detailed description
of the value range of convection indices such as TT and KO
is given by Kunz (2007). The threshold range of the MRR-
based variables is determined empirically. For this purpose,
the variables were closely examined and adjusted for clearly
evident cases. The weightings of all variables are summed
up, resulting in the convection score which ranges from 0
to 10. The application of a smooth linear threshold range of
weights between stratiform and convective is more realistic
and leads to a more homogeneous distribution of the con-
vection score compared to using strict binary thresholds. By
using six variables the classification is more robust against
false classifications than those based on one single variable.
The model-based variables have lower weightings because
they are based on temperature and humidity profiles from the
nearest COSMO-EU model grid cell, which may differ cru-
cially in whether it is a precipitating or a non-precipitating
grid cell. Therefore, the model-derived measures (TT, KO,
and S) have lower weights, because the measured MRR vari-
ables are more trustworthy than the modeled ones. σvD,max
is assigned to have the highest weight because the variability

Figure 1. Weight of the meteorological and radar-based convec-
tion criteria: total totals (TT), convection index (KO), soaring index
(S), maximum of the reflectivity (Zmax) per profile, maximum of
the Doppler velocity (vD,max) per profile and the maximum (per
profile) of the temporal standard deviation of the Doppler velocity
(σvD,max) within a ±15 min interval.

Figure 2. Relative frequency of occurrence of the convection score.

of the rain intensity is assumed to be the best criterion for the
stratiform–convective discrimination.

Figure 2 illustrates the distribution of the convection score.
Whenever a convection score is less than 3, the profile is as-
signed as stratiform. Values between 3 and 5.5 are stated as
inconclusive. Values larger than or equal to 5.5 are assigned
as convective. These strict thresholds enable a very certain
classification with a low number of false classifications. The
inconclusive zone between stratiform and convective indi-
cates a transition between both. The thresholds of 3 and 5.5
were chosen to confidently separate two classes which are
mainly free of false classified rain events, resulting in a con-
fident data set for training the algorithms. This approach re-
places a manual inspection by visual classification of each
single profile. However, several rain events (approx. 10 %)
were reviewed by eye to verify a correct classification. That
means randomly selected cases were checked to see whether
the convection score worked as intended, and the synoptic
situation was reviewed.
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Figure 3. Frequency of occurrence of rain rate at 300 m height for
stratiform (blue) and convective (red) rain cases.

In this step, each profile is classified as either stratiform,
inconclusive, or convective using the convection score, and
this assignment is stated as the true state to train the algo-
rithms explained below. Since the motivation of this work is
to classify the precipitation type and its confidence purely
based on the MRR observations, the following methods
based on PDFs or ANN are developed. Since the PDF and
ANN method are based on training, the MRR data have to
be free of extreme or unphysical values. Therefore the MRR
data (input) are filtered. Only measurements with Zmax be-
tween −10 and 50 dBZ, vD,max between 0 and 10 m s−1 and
σvD,max between 0 and 2.5 ms−1 are taken into account.

Here, the question might arise why inconclusive profiles
should be learned by algorithms. In fact, rain events can be
ambiguous and cannot be classified as stratiform or convec-
tive, especially stratiform rain moving towards mountainous
area which causes convection. On the other hand, vertical air
motion and turbulence influence vD,max and might shift strat-
iform profiles towards higher convection scores and convec-
tive profiles to lower scores. A class with inconclusive pro-
files accounts for the mentioned features and avoids misclas-
sifications into the stratiform and convective classes, respec-
tively.

The frequency distribution of rain rate at 300 m height is
shown in Fig. 3. The precipitation cases are separated by the
convection score. The stratiform precipitation mostly causes
low rain rates below 1 mm h−1, whereas high rain rates above
15 mm h−1 are very rare. In contrast, high rain rates above
15 mm h−1 are caused by convective precipitation. It has to
be considered that the absolute number of occurrence differs
from Fig. 2 because precipitation disappears due to evapora-
tion on the way through the atmosphere and does not reach
300 m, which is the lowest available MRR height.

3.3 Rain classification method based on PDF

This algorithm was developed based on the classification al-
gorithm by Liu et al. (2004) which was originally developed
for the Cloud-Aerosol Lidar and Infrared Pathfinder Satel-
lite Observations (CALIPSO) aerosol cloud discrimination

(Winker et al., 2009). It shows that the confidence of a dis-
crimination algorithm can be improved by using three mea-
surement variables instead of only one or two. Later on, Liu
et al. (2009) improved the algorithm by using five instead
of three variables. Here, this separation approach is modified
for MRR variables to classify precipitation as stratiform or
convective.

The confidence function is defined as

f (X)=
nc(X)− ns(X)

nc(X)+ ns(X)
(4)

=
Pc(X)−Ps(X)/Ns/Nc

Pc(X)+Ps(X)/Ns/Nc
, (5)

with ni being the number of occurrences of class i (stratiform
s or convective c) having attribute X and Ni the total number
of events for the ith class. P is the PDF of X, which can be
multidimensional X = [X1, . . .,Xm]. The used bin size of the
distributions of Z, vD,max, and σvD,max amounts to 0.5 dB,
0.125 ms−1, and 0.025 ms−1, respectively. The value of f
is bounded by [−1,1]. The lower the value, the more prob-
able the MRR-observed rain profile is of stratiform nature.
Values of exactly −1 are treated as certainly stratiform, and
values of+1 correspond to certainly convective profiles. Val-
ues around 0 indicate uncertain classifications. On the basis
of the return value of f , a classification and a measure of
the confidence of this classification can be derived. The sign
of f determines the class assignment, and the absolute mag-
nitude of f assigns the confidence to the classification. In
the following the PDFs are smoothed using a Gaussian filter
with a standard deviation of three bins in each dimension to
account for gaps in the PDF due to missing variable combi-
nations in the training data. Applying such a Gaussian filter
makes the PDF method more robust.

Figure 4d, e and f show the one-dimensional distribution
of the three MRR variables (Zmax, vD,max and σvD,max) and
their corresponding confidence functions f (Fig. 4a, b, c).
Here, the stratiform and convective precipitation profiles are
distinguished by the convection score explained above. How-
ever, Zmax at values between 5 and 25 dB shows a region of
overlap between both classes, resulting in low magnitude of
f ranging between−0.8 and 0.8.Zmax below 5 dBZ or above
25 dBZ can be reliably classified as stratiform or convective,
respectively (Fig. 4d). The distribution of vD,max (Fig. 4e) as
well as σvD,max (Fig. 4f) shows significant overlap regions
between stratiform and convective profiles between 2.5 and
5.5 ms−1 and between 0.4 and 1.1 ms−1, respectively. This
results in absolute magnitudes of f below 0.8 for both vD-
related variables. The overlap area of stratiform and convec-
tive profiles is smallest for σvD,max, but since vertical air
motion and turbulence influence vD,max, it cannot serve as
a stand-alone value. In conclusion, a classification algorithm
based on only one of the mentioned MRR variables is not
able to unambiguously distinguish between stratiform and
convective precipitation indicated due to existing overlap re-
gions.
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Figure 4. Overview of the one-dimensional (1D: d, e, f), two-dimensional (2D: g, h, i), and three-dimensional (3D: j) probability density
functions for the maximum radar reflectivity Zmax per profile (d), the maximum of the observed Doppler velocity vD,max per profile (e), the
maximum of the temporal standard deviation of the observed Doppler velocity σvD,max per profile (f), and each 2D combination of these
three variables (g–i). Panel (j) shows the 3D scatterplot of the three variables with the contour of the corresponding confidence values in
each plane. Panels (a)–(c) show the confidence function of the corresponding 1D distributions. The dashed lines represent the thresholds
of a confident classification with values beyond −0.9 and 0.9, whereas values in between are indicated by a grey area (g–i). Stratiform or
convective profiles are indicated by blue or red colors and by low or high values of the confidence functions, respectively.

The ambiguity can be reduced by adding a second dimen-
sion to the PDF. Figure 4g, h and i illustrate the distribu-
tion of each two-dimensional (2D) combination of the three
MRR-based variables. The dashed lines indicate the f values
of −0.9 and 0.9. The values in between represent the over-
lap where no unambiguous assignment can be made (grey
area). The peaks of the two classes are clearly separated for
all three variable combinations (Fig. 4g, h, i). Nevertheless,
there are still observations leading to an ambiguous assign-

ment. In principle, these ambiguous assigned profiles with
f values between −0.9 and 0.9 could be stated as inconclu-
sive. However, the PDF algorithm is not trained to classify
inconclusive cases. A quantitative estimation of how well the
discrimination works is given at the end of this sub-section.
By using all three mentioned MRR-based variables, a three-
dimensional (3D) PDF can be created which is visualized in
Fig. 4j. It is indicated that both stratiform and convective pro-
files are clearly separated with a very small region of overlap.
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Figure 5. Comparison of the mean stratiform convective discrimi-
nation failure rates for two data sets, the training data set from 2013
(light grey) and the test data set from 2014 (dark grey). The shown
failure rate is separated for PDFs with increasing dimension: 1D
is based on only one MRR variable, 2D is a two-dimensional PDF
based on two MRR variables, and 3D is a three-dimensional PDF
based on three MRR variables, as mentioned in the legend.

The quality of the 3D-PDF-based classification in contrast to
2D and 1D can be explained in terms of failure rates Rf (Liu
et al., 2009):

Rf(X)=
|f (X)− 1|
−2

. (6)

As explained above, the performance of the classification is
limited by the amount of overlap in the PDFs. The smaller
the overlap, the clearer the separation between stratiform and
convective profiles. Figure 5 presents the mean failure rate
for the 1D, 2D, and 3D PDFs of the training data set 2013
and the independent test data set 2014. The training data
were used to build the PDF for the calculation of f . For each
profile from the test data, the corresponding f value can be
read out from the trained confidence function. To account
for measurement uncertainties or turbulence influencing all
radar variables, the f underlying PDFs are smoothed using
a Gaussian filter with a standard deviation of three bins in
each dimension corresponding to a Zmax of 1.5 dB, vD,max of
0.38 ms−1, and σvD,max of 0.08 ms−1. In Fig. 5 it is obvious
that a reduction of the overlap by adding another attribute
(MRR-based variable) results in smaller failure rates. The
highest failure rates result from the 1D PDFs. The mean fail-
ure rate for the 3D-PDF-based rain classification discrimina-
tion for training and test data is less than 1 % and 3 %, respec-
tively. This is much lower than the failure rates of 1D and 2D
PDFs for stratiform–convective discrimination, which range
between 2 % and 7 % for the training data set and between
3 % and 15 % for the test data set.

It was shown that the algorithm performance could be im-
proved by adding more variables. However, the number of
independent variables only obtained by MRR is limited. Z
calculation is based on the drop number concentration. Other
MRR variables such as rain rate or liquid water content are
also based on drop number concentration and are hence not

independent of Z and would not add any more information
to the discrimination algorithm.

3.4 Method based on an artificial neural network
(ANN)

A classification of rain as stratiform, convective or inconclu-
sive can also be based on an ANN. The ANN model cre-
ated is a multi-layer perceptron approach implemented using
the open-source machine-learning library for research and
production TensorFlow (TensorFlow: an end-to-end open-
source machine-learning platform, https://www.tensorflow.
org/, last access: 1 December 2020). It is trained with Zmax,
vD,max and σvD,max from the training data set (2013). The
ANN model (Fig. 6) consists of three input nodes (Zmax,
vD,max and σvD,max) and is further composed of two hid-
den layers with six nodes each and one output node to learn
how to classify rain events according to the true classification
made by the convection score. With the chosen number of
hidden layers and nodes, nonlinear relationships can be bet-
ter represented, and the ANN shows the best performance.
Giving Zmax, vD,max and σvD,max as input to the ANN, it
will classify the rain event with probabilities of being strati-
form (labeled as−1), inconclusive (0), and convective (1). To
finally classify the rain event, the class with the highest prob-
ability is stated as being the actual rain type. For example,
the ANN outputs the probabilities 0.7 for stratiform, 0.2 for
inconclusive, and 0.1 for convective. Then this profile is clas-
sified as stratiform with the label −1. The model is trained
for 500 epochs (iteration steps), and the training data are
shuffled before each epoch. The algorithm Adam (Kingma
and Ba, 2014) is used to optimize the model. As activation
functions relu (rectified linear unit) and softmax are used for
the two hidden layers and the output layer, respectively. Relu
avoids negative output, whereas softmax produces an output
which is a range of values between 0 and 1, with the sum of
the probabilities equal to 1. As a loss function the categori-
cal cross-entropy is used to compute the cross-entropy loss
between the truth and the predictions. The cross-entropy is
a measure of the difference between two probability distribu-
tions. The accuracy of the neural network can be described in
terms of how often the predictions equal the truth. The ANN
accuracy of the independent test data set (2014) amounts to
80 %.

4 Results

After the successful development and evaluation of the clas-
sification algorithms, both methods (3D-PDF and ANN)
were applied to two case studies. The first one was a rainy
night on 26 May 2013 (Fig. 7a–g). Figure 7e shows the time–
height display of the radar reflectivity factor. The day began
with rain from 00:00 to 02:30 UTC. The rain fell homoge-
neously with only small variations in Zmax (a), vD,max (b)

Atmos. Meas. Tech., 14, 4565–4574, 2021 https://doi.org/10.5194/amt-14-4565-2021
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Figure 6. Diagram of the neural network with an input layer con-
sisting of three nodes (green) according to the three MRR-based
variables, two hidden layers with six nodes each (blue) and the out-
put layer with one node (red).

and σvD,max (c). The calculated convection score (d) was
very low, which means that these rain events were stated as
being stratiform. For this springtime rain event, the PDF (f)
and ANN (g) methods produce very similar results, and both
agree with the true class given by the convection score.

The right panel of Fig. 7 shows the same quantities as in
the left panel but for 23 July 2013. This case indicates con-
vective rain falling between 15:00 and 16:00 UTC. Zmax (h),
vD,max (i) and σvD,max (j) and the calculated convection score
are characterized by high values representing convective rain.
Figure 7l shows the radar reflectivity factor of the shower.
The PDF and ANN methods are in very good agreement
and classify each profile as convective in conformity with
the convection score (truth).

The performance of both algorithms over a whole year
(test data year 2014) is illustrated in Fig. 8. It shows the rela-
tive frequency of occurrence of precipitation profiles that are
defined by the convection score (truth) as stratiform (a), in-
conclusive (b), or convective (c). For the PDF method cases
are stated as stratiform when the f value is lower than −0.9,
inconclusive when f is between −0.9 and 0.9, and convec-
tive when f is larger than 0.9. For the stratiform cases the
PDF and ANN methods classify most stratiform cases as
stratiform (84.7 % and 96.1 % for ANN and PDF, respec-
tively; see Fig. 8a). Only 15.3 % and 3.9 %, respectively,
are erroneously classified as inconclusive. These are cases
with higher convection scores with averaged values around
roughly 2.5, which is closer to the transition of convection
scores larger than 3 that are stated as inconclusive. As ex-
pected, neither ANN nor PDF misclassified true stratiform
cases as convective. The performance of the classification of
true convective cases (c) is very similar. There are almost no

completely misclassified cases and only a few percent of er-
roneously inconclusive cases. Here the averaged convection
scores are roughly 6, that is, on the lower edge of the convec-
tive classification and close to the transition of convection
scores of less than 5.5 that are stated as inconclusive; 85.8 %
and 98.1 % (ANN and PDF) of the true convective cases are
correctly classified as convective.

However, the most critical point is the classification of
the true inconclusive cases (Fig. 8b). Only 71 % and 35.8 %
(ANN and PDF) are correctly classified. That means that
nearly 30 % of ANN-based profiles and nearly 65 % of PDF-
based profiles of all true inconclusive cases are classified as
stratiform or convective. The ANN performs better here. This
is caused by the strict convection score discrimination which
was stated as truth. In fact, these inconclusive cases might
be classified as stratiform or convective, but the thresholds
were chosen very strictly to confidently separate two classes
which are mainly free of misclassified rain events. The av-
eraged convection score of the false stratiform inconclusive
cases (ANN) amounts to 3.6, and that of the false convective
inconclusive cases amounts to 5 (Fig. 8b). The erroneously
stratiform and convective classified inconclusive cases of the
PDF method (25.9 % and 38.3 %) have averaged convection
score values of 3.6 (stratiform) and 4.9 (convective). Appar-
ently, these cases would be correctly classified in case of less
strict convection score thresholds than currently used (3 and
5.5; see Fig. 2). It is expected to improve the ANN and PDF
performances by gathering more data for algorithm training.

It has to be considered that the total amount of data is dif-
ferent for both methods. This is due to the fact that some
combinations of the three input variables do not appear
within the training data, causing gaps in the 3D PDF. Those
combinations cannot be classified, but the number is less than
0.2 % for the 2014 test data set.

5 Conclusions and outlook

In order to improve microphysical parameterizations within
small-scale models, one has to deal with large data sets. The
presented rain-type classification methods based on PDF and
ANN algorithms are suited to processing micro rain radar
data from long time series. The effort of creating a robust
training data set without unphysical data between both meth-
ods is similar, and the application of both methods is straight-
forward. The main advantage of the ANN in contrast to the
PDF method is that the ANN method was trained to directly
classify inconclusive profiles, which leads to a lower number
of false classified profiles.

In a next step, evaporative cooling rates will be estimated
for convective rain events to parameterize the cooling by
means of temperature, relative humidity and rain droplet
number concentration. Application of the algorithms to
different ground-based remote-sensing sites that have long-
term MRR observations to create stratiform-vs.-convective
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Figure 7. Discrimination indices: Zmax (a, h), vD,max (b, i), σvD,max (c, j) and the convection score indicating the true rain type (d, k). MRR
reflectivity (e, l) and the rain classification based on the PDF method given by the confidence function (f, m) and based on the ANN (g, n).
The data points in the time series are colored according to the convection criteria of whether the values indicate stratiform or convective rain.
Panels (a)–(g) refer to the case study of 26 May 2013, and panels (h)–(n) show 23 July 2013.

Figure 8. Relative frequency of occurrences of the stratiform, inconclusive and convective rain classifications for both the ANN (light pink)
and PDF (grey) methods separated by the true class (a, b, c) based on the test data 2014. The true class is defined by the strict convection
score discrimination. The colored numbers denote the sample size. The numbers on top of each bar indicate the actual value.

rain event climatologies is also planned. At present, the new
MRR of the University of Leipzig (https://www.physgeo.
uni-leipzig.de/en/institut-fuer-meteorologie/forschung/
workinggroupremotesensingandarcticclimatesystem/?lang=
en&content=ql, last access: 10 June 2021) is running 24/7.
In the near future, the classification algorithms will be ap-
plied operationally and will be improved with continuously
gathered data.

Code availability. The open-source machine-learning library for
research and production TensorFlow used for this publication
is available at https://www.tensorflow.org/ (Abadi et al., 2015;
https://doi.org/10.5281/zenodo.4758419, TensorFlow Developers,
2021).

Data availability. Data were provided by the Cloud and Precip-
itation Exploration Laboratory (CPEX-LAB, http://cpex-lab.de,
last access: 18 June 2021), a competence centre within the
Geoverbund ABC/J, and are freely available on request from

Atmos. Meas. Tech., 14, 4565–4574, 2021 https://doi.org/10.5194/amt-14-4565-2021

https://www.physgeo.uni-leipzig.de/en/institut-fuer-meteorologie/forschung/workinggroupremotesensingandarcticclimatesystem/?lang=en&content=ql
https://www.physgeo.uni-leipzig.de/en/institut-fuer-meteorologie/forschung/workinggroupremotesensingandarcticclimatesystem/?lang=en&content=ql
https://www.physgeo.uni-leipzig.de/en/institut-fuer-meteorologie/forschung/workinggroupremotesensingandarcticclimatesystem/?lang=en&content=ql
https://www.physgeo.uni-leipzig.de/en/institut-fuer-meteorologie/forschung/workinggroupremotesensingandarcticclimatesystem/?lang=en&content=ql
https://www.tensorflow.org/
https://doi.org/10.5281/zenodo.4758419
http://cpex-lab.de


A. Foth et al.: Evaluation of precipitation classification algorithms 4573

http://cpex-lab.de/cpex-lab/EN/Home/JOYCE-CF/JOYCE-CF_
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