
Atmos. Meas. Tech., 14, 4617–4637, 2021
https://doi.org/10.5194/amt-14-4617-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.

Development and application of a United States-wide correction for
PM2.5 data collected with the PurpleAir sensor
Karoline K. Barkjohn1, Brett Gantt2, and Andrea L. Clements1

1Office of Research and Development, US Environmental Protection Agency, 109 T.W. Alexander Drive,
Research Triangle Park, NC 27711, USA
2Office of Air Quality Planning and Standards, US Environmental Protection Agency, 109 T.W. Alexander Drive,
Research Triangle Park, NC 27711, USA

Correspondence: Karoline K. Barkjohn (barkjohn.karoline@epa.gov)

Received: 16 October 2020 – Discussion started: 2 December 2020
Revised: 27 April 2021 – Accepted: 29 April 2021 – Published: 22 June 2021

Abstract. PurpleAir sensors, which measure particulate mat-
ter (PM), are widely used by individuals, community groups,
and other organizations including state and local air monitor-
ing agencies. PurpleAir sensors comprise a massive global
network of more than 10 000 sensors. Previous performance
evaluations have typically studied a limited number of Pur-
pleAir sensors in small geographic areas or laboratory envi-
ronments. While useful for determining sensor behavior and
data normalization for these geographic areas, little work has
been done to understand the broad applicability of these re-
sults outside these regions and conditions. Here, PurpleAir
sensors operated by air quality monitoring agencies are eval-
uated in comparison to collocated ambient air quality regula-
tory instruments. In total, almost 12 000 24 h averaged PM2.5
measurements from collocated PurpleAir sensors and Fed-
eral Reference Method (FRM) or Federal Equivalent Method
(FEM) PM2.5 measurements were collected across diverse
regions of the United States (US), including 16 states. Con-
sistent with previous evaluations, under typical ambient and
smoke-impacted conditions, the raw data from PurpleAir
sensors overestimate PM2.5 concentrations by about 40 %
in most parts of the US. A simple linear regression reduces
much of this bias across most US regions, but adding a rel-
ative humidity term further reduces the bias and improves
consistency in the biases between different regions. More
complex multiplicative models did not substantially improve
results when tested on an independent dataset. The final Pur-
pleAir correction reduces the root mean square error (RMSE)
of the raw data from 8 to 3 µg m−3, with an average FRM
or FEM concentration of 9 µg m−3. This correction equa-

tion, along with proposed data cleaning criteria, has been ap-
plied to PurpleAir PM2.5 measurements across the US on the
AirNow Fire and Smoke Map (https://fire.airnow.gov/, last
access: 14 May 2021) and has the potential to be success-
fully used in other air quality and public health applications.

1 Introduction

Fine particulate matter (PM2.5, the mass of particles with
aerodynamic diameters smaller than 2.5 µm) is associated
with a number of negative health effects (Schwartz et al.,
1996; Pope et al., 2002; Brook et al., 2010). Short-term and
long-term exposures to PM2.5 are associated with increased
mortality (Dominici et al., 2007; Franklin et al., 2007; Di
et al., 2017). Even at low PM2.5 concentrations, significant
health impacts can be seen (Bell et al., 2007; Apte et al.,
2015), and small increases of only 1–10 µg m−3 can increase
negative health consequences (Di et al., 2017; Bell et al.,
2007; Grande et al., 2020). In addition to health effects,
PM2.5 can harm the environment, reduce visibility, and dam-
age materials and structures (Al-Thani et al., 2018; Ford et
al., 2018). Understanding PM2.5 at fine spatial and temporal
resolutions can help mitigate risks to human health and the
environment, but the high cost and complexity of conven-
tional monitoring networks can limit network density (Sny-
der et al., 2013; Morawska et al., 2018).

Lower-cost air sensor data may provide a way to better
understand fine-scale air pollution and protect human health.
Air sensors are widely used by a broad spectrum of groups,
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from air quality monitoring agencies to individuals. Sensors
offer the ability to measure air pollutants at higher spatial
and temporal scales than conventional monitoring networks
with potentially less specialized operating knowledge and
cost. However, concerns remain about air sensor data qual-
ity (Clements et al., 2019; Williams et al., 2019). Typically,
air sensors require correction to become more accurate com-
pared to regulatory monitors. A best practice is to locate air
sensors alongside regulatory air monitors to understand their
local performance and to develop corrections for each indi-
vidual sensor (Jiao et al., 2016; Johnson et al., 2018; Zusman
et al., 2020). For optical particulate matter (PM) sensors, cor-
rection procedures are often needed due to both the chang-
ing optical properties of aerosols associated with both their
physical and chemical characteristics (Levy Zamora et al.,
2019; Tryner et al., 2019) and the influence of meteorolog-
ical conditions including temperature and relative humidity
(RH) (Jayaratne et al., 2018; Zheng et al., 2018). In addition,
some air sensors have out-of-the box differences and low pre-
cision between sensors of the same model (Feenstra et al.,
2019; Feinberg et al., 2018). Although collocation and local
correction may be achievable for researchers and some air
monitoring agencies, it is unattainable for many sensor users
and community groups due to lack of access and proximity
to regulatory monitoring sites.

PurpleAir sensors are a PM sensor package consisting of
two laser scattering particle sensors (Plantower PMS5003),
a pressure–temperature–humidity sensor (Bosch BME280),
and a WiFi-enabled processor that allows the data to be up-
loaded to the cloud and utilized in real time. The low cost of
outdoor PurpleAir sensors (USD 230–260) has enabled them
to be widely used with thousands of sensors publicly report-
ing across the US. Previous work has explored the perfor-
mance and accuracy of PurpleAir sensors under outdoor am-
bient conditions in a variety of locations across the United
States including in Colorado (Ardon-Dryer et al., 2020;
Tryner et al., 2020a); Utah (Ardon-Dryer et al., 2020; Kelly
et al., 2017; Sayahi et al., 2019); Pennsylvania (Malings et
al., 2020); North Carolina (Magi et al., 2019); and in Califor-
nia, where the most work has occurred to date (Ardon-Dryer
et al., 2020; Bi et al., 2020; Feenstra et al., 2019; Mehadi
et al., 2020; Schulte et al., 2020; Lu et al., 2021). Their
performance has been explored in a number of other parts
of the world as well including in Korea (Kim et al., 2019),
Greece (Stavroulas et al., 2020), Uganda (McFarlane et al.,
2021), and Australia (Robinson, 2020). Additional work has
been done to evaluate their performance under wildland-fire-
smoke-impacted conditions (Bi et al., 2020; Delp and Singer,
2020; Holder et al., 2020), indoors (Z. Wang et al., 2020),
and during laboratory evaluations (Kelly et al., 2017; Kim et
al., 2019; Li et al., 2020; Mehadi et al., 2020; Tryner et al.,
2020a; Zou et al., 2020a, b). The performance of their dual
Plantower PMS5003 laser scattering particle sensors has also
been explored in a variety of other commercial and custom-
built sensor packages (He et al., 2020; Tryner et al., 2019;

Kuula et al., 2020a; Ford et al., 2019; Si et al., 2020; Zou
et al., 2020b; Tryner et al., 2020b). Although not true of all
types of PM2.5 sensors, previous work with PurpleAir sen-
sors and other models of Plantower sensors has shown that
the sensors are precise, with sensors of the same model mea-
suring similar PM2.5 concentrations (Barkjohn et al., 2020;
Pawar and Sinha, 2020; Malings et al., 2020). However, ex-
tensive work with PurpleAir and Plantower sensors has of-
ten shown deficiencies in the accuracy of the measurement,
resulting in the need for correction. A number of previous
corrections have been developed; however, they are typically
generated for a specific region, season, or condition, and lit-
tle work has been done to understand how broadly applicable
they are (Ardon-Dryer et al., 2020; Magi et al., 2019; Delp
and Singer, 2020; Holder et al., 2020; Tryner et al., 2020a;
Robinson, 2020). Although location-specific and individual
sensor corrections may be ideal, the high precision suggests
that a single correction across PurpleAir sensors may be pos-
sible. This is especially important since having multiple cor-
rections can make it difficult for many sensor users to know
which correction is best for their application.

In this work, we develop a US-wide correction for Pur-
pleAir data which increases accuracy across multiple re-
gions, making it accurate enough to communicate the air
quality index (AQI) to support public health messaging. We
use onboard measurements and information that would be
available for all PurpleAir sensors, even those in remote ar-
eas far from other monitoring or meteorological sites.

2 Data collection

2.1 Site identification

Data for this project came from three sources: (1) PurpleAir
sensors sent out by the EPA for collocation to capture a wide
range of regions and meteorological conditions; (2) privately
operated sensor data volunteered by state, local, and tribal
(SLT) air monitoring agencies independently operating col-
located PurpleAir sensors; and (3) publicly available sensors
located near monitoring stations and confirmed as true col-
location by air monitoring agency staff. In order to identify
publicly available collocated sensors, in August of 2018, a
survey of sites with potentially collocated PurpleAir sensors
and regulatory PM2.5 monitors was performed by identify-
ing publicly available PurpleAir sensor locations within 50 m
of an active EPA Air Quality System (AQS) site reporting
PM2.5 data in 2017 or 2018. The 50 m distance was selected
because it is large enough to cover the footprint of most AQS
sites and small enough to exclude most PurpleAir sensors in
close proximity of but not collocated with an AQS site. From
a download of all active AQS PM2.5 sites and PurpleAir sen-
sor locations on 20 August 2018, 42 unique sites were iden-
tified in 14 states (data from additional states were available
from sensors sent out by the EPA and privately operated sen-
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sors). From this list of public PurpleAir sensors potentially
collocated with regulatory PM2.5 monitors, we reached out
to the appropriate SLT air monitoring agency to understand
if these units were operated by the air monitoring agency and
their interest in partnering in this research effort. If we could
not identify the sensor operator of these 42 sensors or if the
sensor was not collocated at the air monitoring station, the
sensor was not used in this analysis.

Much past work using public data from PurpleAir has used
public sensors that appear close to a regulatory station on the
map (Ardon-Dryer et al., 2020; Bi et al., 2020). However,
there is uncertainty in the reported location of PurpleAir sen-
sors as this is specified by the sensor owner. In some cases,
sensors may have the wrong location. Known examples in-
clude owners who forgot to update the location when they
moved, take the sensor inside for periods to check their in-
door air quality, or specifically choose an incorrect location
to protect their privacy. In addition, without information on
local sources of PM2.5, it can be unclear how far away is ac-
ceptable for a “collocation” since areas with more localized
sources will need to be closer to the reference monitor to
experience similar PM2.5 conditions. By limiting this work
to true collocations operated by air monitoring agencies, we
eliminate one source of uncertainty. We can conclude that the
PurpleAir errors measured in this work are not due to poor
siting or localized sources and can focus on other variables
that influence error (e.g., RH).

When the EPA provided PurpleAir sensors to air monitor-
ing agencies, the EPA suggested that they be deployed with
similar siting criteria as regulatory monitors. Some sites had
space and power limitations to consider, but trained techni-
cians sited sensors allowing adequate unobstructed airflow.
In many cases, sensors were attached to the top rung of the
railings at the monitoring shelters, where they were within a
meter or so of other inlet heights and within 3 m or so of the
other instrument inlets.

In total, 53 PurpleAir sensors at 39 unique sites across 16
states were ideal candidates and were initially included in
this analysis with data included from September 2017 until
January 2020. The Supplement contains additional informa-
tion about each AQS site (Table S1) and each individual sen-
sor (Table S2).

Subsetting the Iowa dataset

Initially, there were 10 907 pairs of 24 h averaged collo-
cated data from Iowa, which was 55 % of the entire collo-
cated dataset. In order to better balance the dataset among
the states and to avoid building a correction model that is
weighted too heavily towards the aerosol and meteorologi-
cal conditions experienced in Iowa, the number of days from
Iowa was reduced to equal the size of the California dataset,
the state with the next largest quantity of data (29 % of the
entire collocated dataset). When reducing the Iowa dataset,
the high-concentration data were preserved. Although high

24 h PM2.5 averages occurred less frequently, they may have
larger public health consequences and be of greater interest
to communities. To preserve more of the high-concentration
data, the Iowa PurpleAir PM2.5 data were split into 10 bins
from 0–64 µg m−3 by 6.4 µg m−3 increments. Since there
were fewer data in the higher-concentration bins, all data in
bins 6–10 (≥ 25 µg m−3) were included, and an equal num-
ber of randomly selected data points was selected from each
of the other four bins (N = 649). The subset and full com-
plement of Iowa data were compared visually, and the dis-
tributions of the temperature and RH for both datasets were
similar (Fig. S1), with a similar range of dates represented
from September 2017 until January of 2020.

2.2 Air monitoring instruments and data retrieval

2.2.1 PurpleAir sensors

The PurpleAir sensor contains two Plantower PMS5003 sen-
sors, labeled as channel A and B, that operate for alternat-
ing 10 s intervals and provide 2 min averaged data (prior to
30 May 2019, this was 80 s averaged data). Plantower sensors
measure 90◦ light scattering with a laser using 680± 10 nm
wavelength light (Sayahi et al., 2019) and are factory cali-
brated using ambient aerosol across several cities in China
(Malings et al., 2020). The Plantower sensor reports esti-
mated mass of particles with aerodynamic diameters < 1 µm
(PM1), < 2.5 µm PM2.5, and < 10 µm (PM10). These values
are reported in two ways, labeled as cf_1 and cf_atm, in the
PurpleAir dataset, which match the “raw” Plantower outputs.
PurpleAir previously had these cf_1 and cf_atm column la-
bels flipped in the data downloads (Tryner et al., 2020a),
but for this work we have used the updated labels. The two
data columns have a [cf_atm] / [cf_1]= 1 relationship below
roughly 25 µg m−3 (as reported by the sensor) and then tran-
sition to a two-thirds ratio at higher concentration ([cf_1]
concentrations are higher). The cf_atm data, displayed on the
PurpleAir map, are the lower measurement of PM2.5 and will
be referred to as the “raw” data in this paper when making
comparison between initial and corrected datasets. In addi-
tion to PM2.5 concentration data, the PurpleAir sensors also
provide the count of particles per 0.1 liter of air above a spec-
ified size in micrometers (i.e., > 0.3, > 0.5, > 1.0, > 2.5,
> 5.0, > 10 µm); however, these are actually calculated re-
sults as opposed to actual size bin measurements (He et al.,
2020).

When a PurpleAir sensor is connected to the internet, data
are sent to PurpleAir’s data repository on ThingSpeak. Users
can choose to make their data publicly viewable (public) or
control data sharing (private). Agencies with privately re-
porting sensors provided application programming interface
(API) keys so that data could be downloaded. PurpleAir PA-
II-SD models can also record data offline on a microSD card;
however, these offline data appeared to have time stamp er-
rors from internal clocks that drift without access to the fre-
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quent time syncs available with access to WiFi, so they were
excluded from this project. Data were downloaded from the
ThingSpeak API using Microsoft PowerShell at the native
2 min or 80 s time resolution and were saved as csv files
that were processed and analyzed in R (R Development Core
Team, 2019).

2.2.2 Federal Reference Method (FRM) and Federal
Equivalent Method (FEM) PM2.5

On 20 February 2020, 24 h averaged PM2.5 reference data
were downloaded for the 39 collocation sites from the AQS
database for both FRM and FEM regulatory monitors. Collo-
cation data were collected from 28 September 2017 (the date
at which the first collocated PurpleAir sensor was installed
among the sites used in this study) through to the most recent
quality-assured data uploaded by each SLT agency (nomi-
nally 13 January 2020). The 24 h averages represent concen-
trations from midnight to midnight local standard time from
either a single 24 h integrated filter-based FRM measurement
or an average of at least 18 valid hours of continuous hourly
average FEM measurements (75 % data completeness). In
our analysis, we included sample days flagged or concurred
upon as exceptional events to ensure that days impacted by
wildfire smoke or dust storms with very high PM2.5 concen-
trations would be considered in the correction.

National Ambient Air Quality Standards (NAAQS) set a
24 h average standard for PM2.5, so the PurpleAir sensor and
FRM or FEM comparison used daily averaged data (mid-
night to midnight). This also allows for comparison of Pur-
pleAir data to both FRM and FEM PM2.5 measurements,
which are expected to provide near-equivalent measurements
at this time averaging interval. The use of 24 h averages
also benefits from the (1) improved inter-comparability be-
tween the different FEM instruments (Zikova et al., 2017)
and (2) avoidance of the variability in short-term (1 min to
1 h) pollutant concentrations compared to longer-term aver-
ages as used in the NAAQS (Mannshardt et al., 2017).

The dataset was comprised of data from 21 BAM 1020s
or 1022s, 19 Teledyne T640s or T640xs, and 5 TEOM 1405s
or 1400s. A total of 16 sites had FRM measurements. Af-
ter excluding part of the Iowa dataset, BAM1020s provided
the most 24 h averaged points, followed by the T640 and
T640x and the RP2025 (Fig. S2). One-fifth of the data came
from FRM measurements, while the rest came from FEMs
(Fig. S3). If daily measurements were collected using two
methods, both points were included in the analysis.

3 Quality assurance

3.1 FRM and FEM quality assurance

The accuracy of the FRM and FEM measurements was con-
sidered. In total, Federal Reference Method (FRM) data were
used from 13 organizations. The accuracy of these mea-

surements was evaluated using the FRM performance as-
sessments (U.S. EPA, 2020b). They were evaluated using
the FRM–FRM precision and bias, the average field blank
weight, and the monthly precision. The performance of the
FEM monitors was evaluated using the PM2.5 continuous
monitor comparability assessments (U.S. EPA, 2020a). FEM
measurements are compared to simultaneous Federal Ref-
erence Method (FRM) measurements. Linear regression is
used to calculate a slope, intercept (int), and correlation (R),
and the FEM /FRM ratio is also computed. Based on data
quality objectives, the slope should be between 0.9 and 1.1,
intercept between −2 and 2, correlation between 0.9 and 1,
and the ratio within 0.9 and 1.1. The most recent 3 years of
available data was used to evaluate each monitor.

Performance data were only available for 10 of the 13 col-
lection agencies (77 %; Table S3). All available agencies met
the FRM–FRM precision goals. All but one state show nega-
tive FRM bias, suggesting organization-reported FRM PM2.5
is biased low by 1 %–22 %. Four of the agencies (40 %)
only marginally fail the ≤ 10 % bias criteria with bias from
−10.1 % to −11 %. The one organization with more signifi-
cant bias (−22 %) is driven by the difference in a single FRM
measurement pair. All sites typically have acceptable field
blank weights and monthly average precision within 30 %.
The performance of all FRM measurements is acceptable for
use in developing the PurpleAir US-wide correction.

Of the 46 unique FEM monitors, comparability assess-
ments were only available for 24 monitors (51 %; Tables S4,
S5). All slopes were within the acceptable range. One in-
tercept was slightly outside the acceptable range (2.35), and
three correlations were slightly below the acceptable limit
(0.86–0.89); however these values have been considered ac-
ceptable for this use. Of greater concern is that 10 FEMs had
ratios greater than 1.1, up to 1.3 (41 % of monitors), and these
were all Teledyne T640 or T640x devices (Fig. S4). The data
from the T640 and T640x make up about 20 % of the total
dataset, and excluding them would reduce the diversity of
the dataset. Since these monitors are frequently used for reg-
ulatory applications, the performance of all FEM measure-
ments has been considered acceptable for use in developing
the PurpleAir US-wide correction.

3.2 PurpleAir quality assurance and data cleaning

3.2.1 PurpleAir averaging

The 2 min (or 80 s) PM2.5 data were averaged to 24 h (rep-
resenting midnight to midnight local standard time). A 90 %
data completeness threshold was used based on channel A
since both channels were almost always available together
(i.e., 80 s averages required at least 0.9× 1080 points before
30 May 2019, or 2 min averages required at least 0.9× 720
points after 30 May 2019). This methodology ensured that
the averages used were truly representative of daily averages
reported by regulatory monitors. A higher threshold of com-
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pleteness was used for the PurpleAir data as they likely have
more error than FEM or FRM measurements.

3.2.2 PurpleAir temperature and RH errors

For correction model development, it was important
to start with the most robust dataset possible. In the
2 min or 80 s data, occasionally, an extremely high value
(i.e., 2 147 483 447) or an extremely low value (i.e., −224
or −223) was reported, likely due to electrical noise or a
communication error between the temperature sensor and
the PurpleAir microcontroller. The high error occurred in
24 of 53 sensors but occurred infrequently (34 instances in
∼ 107 points total), while the low error impacted only two
sensors (1 % of the full dataset). Temperature values above
540 ◦C (1000 ◦F) were excluded before calculating daily av-
erages since temperature errors were extreme and easily de-
tected above this level. After excluding these values, rea-
sonable 24 h averaged temperature values were generated
(min=−25 ◦C, max= 44 ◦C). Future work may wish to ap-
ply a narrower range of acceptable temperature ranges, ac-
counting for typical ambient conditions and the potential for
increased heat build-up inside sensors (discussed further in
Sect. 4.1). Similarly, the RH sensor occasionally read 255 %;
this problem was experienced by each sensor at least once
but still occurred infrequently (1083 points out of ∼ 107 to-
tal). No other values were found outside 0 %–100 % in the
2 min or 80 s data before averaging. These points were re-
moved from the analysis before 24 h averaging.

Missing temperature or RH impacted only 2 % of the
dataset (184 points), with eight sensors having one to four
24 h averages with missing temperature or RH. One sensor,
WI4, had 167 d (90 %) without temperature data. Most of
the available temperature data were recorded in the first few
weeks of operation. It is unclear what caused the temperature
data to be missing. All 184 points were missing temperature,
but only 17 were also missing RH (0.2 % of full dataset).

3.2.3 Comparison of A and B channels

The two Plantower sensors within the PurpleAir sensor
(channels A and B) can be used to check the consistency of
the data reported. All comparisons in this work have occurred
at 24 h averages. Anecdotal evidence from PurpleAir sug-
gests some disagreements may be caused by spiders, insects,
or other minor blockages that may resolve on their own. Data
cleaning procedures were developed using the typical 24 h
averaged agreement between the A and B channels expressed
as percent error (Eq. 1).

24 h percent difference=
(A−B)× 2
(A+B)

, (1)

where A and B are the 24 h average PM2.5 cf_1 concentra-
tions from the A and B channels; 24 h averaged data points
with percent differences larger than 2 standard deviations

(2 SD= 61 %) were flagged for removal. At low concentra-
tions, where a difference of a few micrograms per cubic me-
ter could result in a percent error greater than 100 %, an ab-
solute concentration difference threshold of 5 µg m−3, pre-
viously proposed by Tryner et al. (2020a), was effective at
removing questionable observations but was not appropriate
at higher concentrations, where a 5 µg m−3 difference was
more common but only represents a small percent difference.
Therefore, data were cleaned using a combination of these
metrics; data were considered valid if the difference between
channels A and B was less than 5 µg m−3 or 61 %.

As illustrated in Fig. 1, 24 h averaged PM2.5 concentra-
tions reported by channels A and B generally agree excep-
tionally well (e.g., AZ1 sensor). However, our observations
suggest there are some sensors where the two channels show
a systematic bias out of the box (AK3 is the most apparent
example), one channel reports zeros (e.g., CA4), or reported
concentrations do not match for a time but then recover (e.g.,
KS2). For this work, 24 h averages were excluded from the
dataset when the PurpleAir A and B channel [cf_1] PM2.5
concentrations differed by more than 5 µg m−3 and 61 %.
This resulted in removal of 0 %–47 % of the data from indi-
vidual sensors (Fig. 1, Table S6) and 2.1 % of the data in the
full dataset. Most sensors had little to no removal (N = 48,
< 10 % removed); five sensors had 10 % to 47 % removed
(AK2, AK3, CA4, CA7, WA5). Of these sensors, three had
average channel differences of more than 25 % (27 %–45 %)
after applying 24 h A–B channel comparison removal crite-
ria (AK3, CA7, WA5). These sensors, representing 3 % of
the dataset, were removed from further analysis because of
the additional error they could add into the correction model
building. In some cases, additional quality assurance checks
on either the part of PurpleAir or the purchaser could identify
problem sensors before they were deployed, but this would
not catch all issues as many occurred after sensors had op-
erated for a while. In addition, when errors occur between
channels some agencies cleaned the sensors with canned air
or vacuums as recommended by PurpleAir.

Previous work with PurpleAir sensors excluded sensors
for poor Pearson correlations, but our work shows that a more
targeted approach may be more efficient for ensuring good-
quality data. Previous work with PurpleAir sensors reported
that 7 of 30 sensors (23 %) were defective out of the box and
exhibited low Pearson correlations (r < 0.7) in a laboratory
evaluation (Malings et al., 2020). A total of 10 of 53 sensors
(19 %) in our study had r < 0.7 at 24 h averages (i.e., AK2,
CA3, CA4, CA7, IA10, KS2, WA2, WA3, WA5, WI2); only
2 of these were removed due to large average percent differ-
ences after removing outliers where A and B channels did
not agree (i.e., WA5, CA7); 6 of these 10 sensors had ≤ 4 %
of the data removed by data cleaning steps, and their Pear-
son correlation, on 24 h averages, improved to ≥ 0.98 (from
r < 0.7), suggesting that the low correlation was driven by
a few outlier points. Some sensors with low initial Pearson
correlations had high Spearman correlations (range: 0.69 to

https://doi.org/10.5194/amt-14-4617-2021 Atmos. Meas. Tech., 14, 4617–4637, 2021



4622 K. K. Barkjohn et al.: Development and application of a United States-wide correction for PM2.5 data

Figure 1. Comparison of 24 h averaged PM2.5 data from the Pur-
pleAir A and B channels. Excluded data (2.1 %) are shown in red
and represent data points where channels differed by more than
5 µg m−3 and 61 %. AK3, CA7, and WA5 were excluded from fur-
ther analysis. Pearson correlation (r) is shown on each plot.

0.98); this suggests, again, that the low performance was due
to a few outlier points. These results highlight that sensors
may fail checks based on Pearson correlation or overall per-
cent difference thresholds due to only a small fraction of
points, often making them poor indicators of overall sensor
performance. The removal of outliers after comparing the A
and B channels can greatly improve agreement between sen-
sors and between sensors and reference instruments.

3.2.4 Importance of PurpleAir data cleaning
procedures

This work did not seek to optimize data cleaning procedures
to balance data retention with data quality; instead it fo-
cused on generating a best-case dataset from which to build
a model. However, the removal of outlier points based on the
difference between the A and B channels appears to reduce
the errors most strongly (Supplement Sect. S3, Table S7)
when compared to removing incomplete daily averages or re-
moving problematic sensors. Since both channels are needed
for comparison, it makes sense to average the A and B chan-
nels to improve the certainty in the measurement. The data
completeness control provides less benefit and may not be
needed for all future applications of these correction meth-
ods. In addition, sensors with systematic offsets were uncom-
mon and did not largely impact the overall accuracy, so the A

and B channel comparison on the 24 h averaged data points
(e.g., 5 µg m−3 and 61 %) may be sufficient.

3.3 Data summary

After excluding poorly performing sensors (N = 3), 50 Pur-
pleAir sensors were used in this analysis. These sensors were
located in 16 states across 39 sites (Fig. 2, Table 1). Some
sites had several PurpleAir sensors running simultaneously
(N = 9), and one ran multiple sensors in series (i.e., one sen-
sor failed and was removed, and another sensor was put up in
its place). Some states had more than 2 years of data, while
others had data from a single week or season. Median state-
by-state PM2.5 concentrations, as measured by the FRM or
FEM, ranged from 4–10 µg m−3. A wide range of PM2.5 con-
centrations was seen across the dataset, with a maximum 24 h
average of 109 µg m−3 measured in California; overall the
median PM2.5 concentration of the dataset was 7 µg m−3 (in-
terquartile range: 5–11 µg m−3, average (SD): 9 (5) µg m−3).
These summary statistics were calculated after selecting a
random subset of the Iowa data. The median of the Iowa
dataset increased from 7 to 10 µg m−3 after subsetting since
more of the high-concentration data were conserved. Sensors
were located in several US climate zones (NOAA, 2020; Karl
and Koss, 1984), resulting in variable temperature and RH
ranges (Fig. S5). There were limited data above 80 % RH as
measured by the PurpleAir RH sensor, which, as discussed
in the following section, is known to consistently report RH
lower than ambient.

4 Model development

4.1 Model input considerations

To build a data correction model that could easily be applied
to all PurpleAir sensors, only data reported by the PurpleAir
sensor (or calculated from these parameters) were considered
as model inputs. The 24 h FRM or FEM PM2.5 concentra-
tions were treated as the independent variable (plotted on
the x axis), allowing the majority of error to reside in the
PurpleAir concentrations. We considered a number of redun-
dant parameters (i.e., multiple PM2.5 measurements, multiple
environmental measurements), and we considered a number
of increasingly complex models where parameters that were
not strongly correlated were included as additive terms with
coefficients or where they were multiplied with each other
to form more complex models, accounting for collinearity.
Increasingly complex models were evaluated based on the
reduction in root mean square error (RMSE; Eq. S1). Sub-
sequently, several of the best-performing model forms were
validated using withholding methods as described in the next
section.

In a multiple linear regression, all independent variables
should be independent; however, much previous work has
used models that incorporate additive temperature, RH, and
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Figure 2. State, local, and tribal (SLT) air monitoring sites with collocated PurpleAir sensors, including regions used for correction model
evaluation.

Table 1. Summary of the dataset used to generate the US-wide PurpleAir correction equation after three sensors with large A–B channel
discrepancies were removed. PM2.5 concentrations from both the FEM or FRM and the raw PurpleAir (PA), temperature (T ) and relative
humidity (RH), are summarized as median (min, max).

State Start date End date No. of No. of No. of FEM or FEM or FRM PA PA PA
(mm/dd/yyyy) (mm/dd/yyyy) PA Sites points FRM PM2.5 PM2.5 T (◦C) RH (%)

(µg m−3) (µg m−3)

CA 11/29/2017 12/29/2019 13 12 3762 Both 6 (−2, 109) 7 (0, 250) 22 (6, 42) 45 (2, 100)
IA 9/29/2017 1/13/2020 9 5 3762 Both 10 (0, 36) 19 (0, 69) 11 (−27, 35) 55 (21, 100)
WA 10/16/2017 10/28/2019 3 3 1035 FEM 6 (0, 41) 8 (0, 89) 13 (−2, 30) 63 (26, 84)
AZ 11/9/2018 12/31/2019 3 3 895 Both 7 (1, 43) 6 (0, 74) 24 (9, 44) 26 (5, 73)
WI 1/1/2019 11/18/2019 6 4 811 Both 6 (1, 32) 9 (1, 64) 18 (−25, 33) 53 (31, 82)
NC 3/25/2018 10/24/2019 1 1 700 Both 7 (0, 20) 13 (1, 43) 25 (−1, 35) 48 (16, 79)
AK 11/7/2018 9/30/2019 3 1 369 FRM 4 (0, 60) 4 (0, 131) 8 (−25, 29) 47 (21, 76)
KS 3/13/2019 9/30/2019 3 1 306 FEM 9 (2, 33) 11 (0, 50) 24 (9, 34) 52 (30, 71)
DE 7/27/2019 11/18/2019 1 1 205 Both 7 (1, 17) 9 (1, 35) 25 (6, 35) 51 (34, 75)
OK 7/10/2019 11/18/2019 2 2 190 Both 9 (1, 25) 11 (1, 35) 30 (1, 38) 57 (29, 86)
GA 8/2/2019 11/18/2019 1 1 184 Both 9 (3, 18) 15 (5, 34) 29 (5, 36) 55 (44, 77)
VT 3/30/2019 9/30/2019 1 1 146 Both 6 (2, 18) 8 (1, 31) 24 (12, 34) 52 (36, 71)
FL 5/31/2019 9/30/2019 1 1 119 FEM 6 (3, 17) 5 (1, 25) 32 (29, 35) 60 (49, 73)
CO 8/22/2019 11/18/2019 1 1 113 Both 7 (2, .25) 6 (1, 45) 18 (−5, 32) 33 (18, 70)
VA 10/27/2019 12/29/2019 1 1 30 FRM 5 (2, 20) 10 (2, 41) 12 (8, 25) 48 (35, 65)
MT 12/3/2019 12/10/2019 1 1 8 FEM 10 (5, 15) 22 (6, 36) 4 (2, 6) 54 (42, 62)

All 9/29/2017 1/13/2020 50 39 12 635 both 7 (−2, 109) 10 (0, 250) 19 (−27, 44) 51 (2, 100)

dew point terms that are not independent (Magi et al., 2019;
Malings et al., 2020). We have not considered these mod-
els and have considered models with interaction terms (i.e.
RH× T ×PM2.5) to account for interdependence between
terms instead. Strong correlations (r ≥±0.7) are shown be-
tween the 24 h averaged FEM or FRM PM2.5, PurpleAir-
estimated PM2.5 (cf_1and cf_atm), and each binned count
(Fig. S6). Since the binned counts include all particles
greater than a certain size, we also consider the correla-

tion between the delta of each bin (e.g., particles > 0.3 µm
– particles > 0.5 µm= particles 0.3–0.5 µm). The delta bin
counts were still moderately to strongly correlated (r = 0.6–
1), with the weakest correlation seen between the smallest
and largest bins (Fig. S7). Moderate correlations (r =±0.4–
0.6) are seen between temperature, RH, and dew point. Weak
correlations (r ≤±0.2) are seen between the PM variables
(i.e., PM2.5 and bin variables) and environmental variables
(i.e., temperature, RH, and dew point). The correlation be-

https://doi.org/10.5194/amt-14-4617-2021 Atmos. Meas. Tech., 14, 4617–4637, 2021



4624 K. K. Barkjohn et al.: Development and application of a United States-wide correction for PM2.5 data

tween variables was considered when considering model
forms.

For PM, we considered PM2.5 concentrations from both
the [cf_1] and [cf_atm] data columns as model terms. Pre-
vious work has found different columns to be more strongly
correlated under different conditions (Barkjohn et al., 2020;
Tryner et al., 2020a). Previous studies have suggested that
the binned particle count data from the Plantower are more
effective at estimating PM2.5 concentrations than the re-
ported PM2.5 concentration data from the newer Plantower
PMSA003 sensor (Zusman et al., 2020). However, the bins
are highly correlated, and so multilinear equations with ad-
ditive terms representing the bins were not considered.

Temperature, RH, and dew point, as calculated from the
reported temperature and RH data, were also considered
based on previous studies (Malings et al., 2020). Dew point
was considered since past work has shown that dew point
can, in some cases, explain error unexplained by temperature
or RH (Mukherjee et al., 2019; Malings et al., 2020). Pres-
sure was not a reported variable for 10 % of the dataset and
was therefore not considered as a possible correction param-
eter.

Both linear and nonlinear RH terms were considered.
Previous studies often used a nonlinear correction for RH
as opposed to a correction that changes linearly with RH
(Stampfer et al., 2020; Tryner et al., 2020a; Kim et al., 2019;
Malings et al., 2020; Zheng et al., 2018; Lal et al., 2020). A
nonlinear RH model was tested by adding an RH2 / (1−RH)
term (see Eq. 3) similar to what has been used in past work
for Plantower sensors and other light scattering measure-
ments (Tryner et al., 2020a; Malings et al., 2020; Chakrabarti
et al., 2004; Zheng et al., 2018; Zhang et al., 1994; Day and
Malm, 2001; Soneja et al., 2014; Lal et al., 2020; Barkjohn
et al., 2021). In Eq. (2), PA is the PurpleAir PM2.5 data, and
PM2.5 is the concentration provided by the collocated FRM
or FEM.

PA= s1×PM2.5+ s2
RH2

(1−RH)
×PM2.5

+ s3×
RH2

(1−RH)
+ i (2)

It is important to note that the meteorological sensor in
the PurpleAir sensor is positioned above the particle sen-
sors nestled under the PVC cap, resulting in temperatures
that are higher (2.7 to 5.3 ◦C) and RH that is drier (9.7 %
to 24.3 %) than ambient conditions (Holder et al., 2020;
Malings et al., 2020). In addition, these internal measure-
ments have been shown to be strongly correlated with ref-
erence temperature and RH measurements with high preci-
sion (Holder et al., 2020; Tryner et al., 2020a; Magi et al.,
2019). The well-characterized biases and strong correlations
between PurpleAir and ambient meteorological parameters
mean that the coefficients using these terms in a correction
equation account for the differences between the ambient and

PurpleAir-measured meteorology. Although not as accurate
as the reference measurements, the PurpleAir temperature
and RH measurements are good candidates for inclusion in
a linear model because they are well correlated with refer-
ence measurements and may more closely represent the par-
ticle drying that occurs inside the sensor. In addition, using
onboard measurements and information that would be avail-
able for all PurpleAir sensors allows us to gather corrected air
quality data from all PurpleAirs, even those in remote areas
far from other air monitoring or meteorological sites.

4.1.1 Selecting models

RMSE was used to determine the best models of each in-
creasing level of complexity moving forward (Table 2). The
PM2.5 [cf_1] data resulted in less error than the [cf_atm]
(Fig. 3) across all model forms (Table 2). The modest change
in RMSE reflects the fact that only 3.8 % of the dataset has
FRM or FEM PM2.5 concentrations greater than 20 µg m−3,
which is where these two data columns exhibit a different
relationship. Previous work with Plantower sensors in the
US has shown nonlinearity at higher concentrations > 10–
25 µg m−3, which we do not see, which appears due to the
use of the [cf_atm] data in the previous work (Stampfer et
al., 2020; Kelly et al., 2017; Malings et al., 2020).

The next most complex model considered adding a sin-
gle additive term representing the meteorological variables.
Including an additive, linear RH term to a model al-
ready including the [cf_1] PurpleAir PM2.5 data yielded
the lowest error (RMSE= 2.52), with dew point reduc-
ing error less than temperature (+D RMSE= 2.86 µg m−3,
+ T RMSE= 2.84 µg m−3). Since the linear model with RH
has the best performance of these combinations, it will be
further considered in the next section.

As in previous studies with Plantower sensors, the Pur-
pleAir sensors appear to overestimate PM2.5 concentrations
at higher RH (Tryner et al., 2020a; Magi et al., 2019; Mal-
ings et al., 2020; Kim et al., 2019; Zheng et al., 2018). Over-
estimation was observed in our dataset before correction as
shown in Figs. S8 and S9, with overestimation increasing be-
tween 30 % and 80 %. There are few 24 h averages above
80 % RH, so there is more uncertainty in the relationship
above that level, although it appears to level off. However,
the RH2 / (1−RH) had higher error than using the same
equation with just RH (nonlinear RH: RMSE= 2.86 µg m−3;
+RH term: RMSE= 2.52 µg m−3), so this model form will
not be used moving forward. This result suggests that there
may be other variations in aerosol properties and meteorol-
ogy in this nationwide dataset which are not well captured
just by considering hygroscopicity. This term may be more
significant in localized areas with high sulfate and nitrate
concentrations, where aerosol hygroscopicity plays an im-
portant role.

More complex models which add terms to account for in-
teractions between environmental conditions were also con-
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Table 2. Correction equation forms considered and the root mean square error (RMSE). The best-performing model from each increasing
level of complexity (as indicated with ∗) was validated using withholding methods in the next sections (Sect. 5).

Name Equation RMSE (µg m−3) RMSE (µg m−3)

(cf_1) (cf_atm)

Linear PA= PM2.5× s1+ b 2.88∗ 3.01

+RH PA= s1×PM2.5+ s2×RH+ i 2.52∗ 2.59
+T PA= s1×PM2.5+ s2× T + i 2.84 2.96
+D PA= s1×PM2.5+ s2×D+ i 2.86 2.99

+RH× T PA= s1×PM2.5+ s2×RH+ s3× T + s4×RH× T + i 2.52 2.60
+RH×D PA= s1×PM2.5+ s2×RH+ s3×D+ s4×RH×D+ i 2.52 2.60
+D× T PA= s1×PM2.5+ s2×D+ s3× T + s4×D× T + i 2.51∗ 2.61

+RH× T ×D PA= s1×PM2.5+ s2×RH+ s3× T + s4×D+ s5×RH× T 2.48∗ 2.57
+s6×RH×D+ s7× T ×D+ s8×RH× T ×D+ i

PM×RH PA= s1×PM2.5+ s2×RH+ s3×RH×PM2.5+ i 2.48∗ 2.53
PM×T PA= s1×PM2.5+ s2× T + s3× T ×PM2.5+ i 2.84 2.96
PM×D PA= s1×PM2.5+ s2×D+ s3×D×PM2.5+ i 2.86 3.00

PM× nonlinear RH PA= s1×PM2.5+ s2
RH2

(1−RH) ×PM2.5+ s3×
RH2

(1−RH) + i 2.86 2.99

PM×RH× T PA= s1×PM2.5+ s2×RH+ s3× T + s4×PM2.5×RH 2.46∗ 2.53
+s5×PM2.5× T + s6×RH× T + s7×PM2.5×RH× T + i

PM×RH×D PA= s1×PM2.5+ s2×RH+ s3×D+ s4×PM2.5×RH 2.54 2.57
+s5×PM2.5×D+ s6×RH×D+ s7×PM2.5×RH×D+ i

PM×T ×D PA= s1×PM2.5+ s2× T + s3×D+ s4×PM2.5× T 2.52 2.63
+s5×PM2.5×D+ s6× T ×D+ s7×PM2.5× T ×D+ i

PM×RH× T ×D PA= s1×PM2.5+ s2×RH+ s3× T + s4×D+ s5×PM2.5×RH 2.42∗ 2.51
+s6×PM2.5× T + s7× T ×RH+ s8×PM2.5×D
+s9×D×RH+ s10×D× T + s11×PM2.5×RH× T
+s12×PM2.5×RH×D+ s13×PM2.5×D× T
+s14×D×RH× T + s15×PM2.5×RH× T ×Di

Figure 3. Comparison of the 24 h raw PurpleAir (PA) cf_1 and cf_atm PM2.5 outputs (a) and both outputs compared to the FEM or FRM
PM2.5 measurements (b, c) across all sites, with the 1 : 1 line in red.

sidered (Table 2, rows 6–9). Lower error was observed
for the +D× T (RMSE= 2.51 µg m−3) compared to other
models of similar complexity, and slightly lower error
was observed when adding RH as well (+RH× T ×D
RMSE= 2.48 µg m−3). Adding interaction terms between
PM2.5 and the environmental conditions reduced error even

more, with PM×RH having the lowest error for a sin-
gle interaction term (RMSE= 2.48 µg m−3), although the
error was similar to the +RH× T ×D model. Adding a
second interaction term for T explains slightly more error
(PM×RH× T RMSE= 2.46 µg m−3), and the most error is
explained by the most complex model (PM×RH× T ×D
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RMSE= 2.42 µg m−3). These best-performing models are
further considered in the next section.

4.1.2 Models considered

Based on this analysis, the seven models with the lowest
RMSE were explored further. In those equations, shown be-
low, PA represents the PurpleAir PM2.5 [cf_1] data, PM2.5
represents the PM2.5 concentration provided by the collo-
cated FRM or FEM, s1–s7 are the fitted model coefficients, i
is the fitted model intercept, and RH and T represent the RH
and temperature as measured by the PurpleAir sensors.

1. Simple linear regression

PA= s1×PM2.5+ i (3)

2. Multilinear with an additive RH term

PA= s1×PM2.5+ s2×RH+ i (4)

3. Multilinear with additive T and D interaction terms

PA= s1×PM2.5+s2×D+s3×T +s4×D×T + i (5)

4. Multilinear with additive and multiplicative terms using
RH, T , and D

PA= s1×PM2.5+ s2×RH+ s3×RH×PM2.5+ i (6)

5. Multilinear with additive and multiplicative terms using
RH and PM2.5

PA= s1×PM2.5+ s2×RH+ s3×RH×PM2.5+ i (7)

6. Multilinear with additive and multiplicative terms using
T , RH, and PM2.5

PA= s1×PM2.5+ s2×RH+ s3× T

+ s4×PM2.5×RH+ s5×PM2.5× T

+ s6×RH× T + s7×PM2.5×RH× T + i (8)

7. Multilinear with additive and multiplicative terms using
T , RH, D, and PM2.5

PA= s1×PM2.5+ s2×RH+ s3× T + s4×D

+ s5×PM2.5×RH+ s6×PM2.5× T

+ s7× T ×RH+ s8×PM2.5×D

+ s9×D×RH+ s10×D× T

+ s11×PM2.5×RH× T
+ s12×PM2.5×RH×D
+ s13×PM2.5×D× T + s14×D×RH× T
+ s15×PM2.5×RH× T ×D+ i (9)

5 Model evaluation

5.1 Model validation methods

Building the correction model based on the full dataset could
lead to model overfitting, so two different cross-validation
structures were used: (1) “leave out by date” (LOBD) and
(2) “leave one state out” (LOSO). For the LOBD model vali-
dation method, the project time period was split into 4-week
periods, with the last period running just short of 4 weeks
(24 d). Each period contained between 179 and 2571 24 h
data points, with typically more sensors running continu-
ously during later chunks as more sensors were deployed
and came online over time. Thirty periods were available
in total, and, for each test-train set, 27 periods were used to
train the correction model, while three periods were selected
to test the correction model. Models were generated for all
27 000 combinations of test data. For the LOSO model vali-
dation method, the correction model was built based on sen-
sors from all but one state, and then the model was tested
on data from the withheld state. This resulted in 16 unique
models since there are 16 states represented in this dataset.
The LOSO method is useful for understanding how well
the proposed correction may work in geographic areas that
are not represented in our dataset. The performance of each
correction method on the test data was evaluated using the
RMSE, the mean bias error (MBE), the mean absolute er-
ror (MAE), and the Spearman correlation (ρ). Equations for
these statistics are provided in the Supplement (Sect. S1).
To compare statistical difference between errors, t tests were
used to compare normally distributed datasets (as determined
by Shapiro–Wilk), and Wilcoxon signed rank tests were used
for nonparametric datasets with a significance value of 0.05.
Both tests were used in cases where results were marginal.

5.2 Model evaluation

Figure 4 shows the performance of the raw and corrected Pur-
pleAir PM2.5 data using the seven proposed correction mod-
els for datasets of withheld dates (LOBD) or states (LOSO).
Both MBE, which summarizes whether the total test dataset
measures higher or lower than the FRM or FEM measure-
ments, and MAE, which summarizes the error in 24 h aver-
ages, are shown, with additional statistics and significance
testing shown in the Supplement (Tables S8, S9). Large re-
ductions in MAE and MBE are seen when applying a linear
correction (Eq. 3). Using LOBD, the MBE across withhold-
ing runs drops significantly from 4.2 to 0 µg m−3, with a sim-
ilar significant drop, from 2.8 to 0 µg m−3, for LOSO with-
holding as well. This is a large improvement considering the
average concentration in the dataset is 9 µg m−3. When ap-
plying an additive RH term (+RH), the MAE improves sig-
nificantly by 0.3 µg m−3 for LOBD and by 0.4 for LOSO.
Median LOSO and LOBD MBE do not change significantly.
The interquartile range (IQR) improves for both metrics and
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Figure 4. Performance statistics including mean bias error (MBE)
and mean absolute error (MAE) are shown by correction method
(0–7), where each point in the boxplot is the performance for either
a 12-week period excluded from correction building (“LOBD”) or
a single state excluded from correction building (“LOSO”).

withholding methods, showing that models typically have
more consistent performance across withheld datasets. Over-
all, the additive RH correction model improves performance
over the linear correction.

Increasing the complexity of the model (Eqs. 5–9) shows
similar performance to the additive RH model with no fur-
ther improvements in MBE or RMSE for LOSO withhold-
ing. When using the multiplicative RH model, the MAE
changes significantly (t test, Wilcoxon test); however, the
median values do not largely change (1.6 µg m−3). However,
because this dataset contains limited high concentration with
a limited range of RH experienced at higher concentration,
there is greater uncertainty in how this model would perform
when extrapolated into such conditions. Therefore, the addi-
tive RH model was used moving forward. However, future
work should look at larger datasets to understand whether
a multiplicative RH correction is more appropriate. Further,
model coefficients become more variable for more complex
models depending on the dataset that is excluded, suggesting
that individual states or short time periods may be driving
some of the coefficients in the more complex models (Ta-
ble S10). In addition, since temperature and relative humidity
are moderately correlated, they may be providing very sim-
ilar information to the model. Since more complex models
do not improve median MAE, MBE, or RMSE for LOSO
withholding and since more complex models will be appli-
cable for a narrower window of conditions, the additive RH
correction was selected as being the most robust.

5.3 Selected correction model

In the end, the additive RH model (Eq. 4) seems to opti-
mally summarize a wide variety of data while reducing er-
ror (MAE) compared to a simple linear correction. The fol-
lowing correction model (Eq. 10) was generated for the full
dataset, where PA is the average of the A and B channels
from the higher correction factor (cf_1), and RH is in per-
cent.

PM2.5 = 0.524×PAcf_1− 0.0862×RH+ 5.75 (10)

This work indicates that only an RH correction is needed
to reduce the error and bias in the nationwide dataset. Some
previous single-site studies found temperature to signifi-
cantly improve their PM2.5 prediction as well (Magi et al.,
2019; Si et al., 2020). Humidity has known impacts on the
light scattering of particles; no similar principle exists for
explaining the influence of temperature on particle light scat-
tering. Instead, the temperature factor may help account for
some local seasonal or diurnal patterns in aerosol properties
within smaller geographical areas. These more local vari-
ations may be why temperature does not substantially re-
duce error and bias in the nationwide dataset. More work
should be done to better understand this influence. These pre-
vious models also did not include a term accounting for the
collinearity between temperature and relative humidity that
may have been present. Figure 5 shows the residual error
in each 24 h corrected PurpleAir PM2.5 measurement com-
pared with the temperature, RH, and FRM or FEM PM2.5
concentrations. Error has been reduced compared to the raw
dataset (Figs. S8 and S9) and is unrelated to temperature,
RH, and PM2.5 variables. Some bias at very low temperature
<−12 ◦C and potentially high concentration (> 60 µg m−3)
may remain, but more data are needed to further understand
this relationship.

5.3.1 The influence of FEM and FRM type

We briefly considered whether the use of both FEM and FRM
measurements influenced these results. When subsetting the
data to develop models using the 24 h averaged PM2.5 data
from only the FEM versus only the FRM, only the coefficient
for the PA slope term changed. The coefficient was slightly
larger for FEM measurements (0.537) and smaller for FRM
measurements (0.492). Although the coefficients are signifi-
cantly different (p< 0.05), they are within 10 %, leading to
little difference in the interpretation of PurpleAir PM2.5 mea-
surements. We briefly considered whether the FEM coeffi-
cient was driven by the T640s and found that if we build this
model excluding all T640 and T640x data, it is not signifi-
cantly different (0.53). Concerns about error between differ-
ent types of FEM measurements cannot be explored using
this dataset. Further, FEM instruments are not randomly dis-
tributed across the US but rather clustered at sites operated
by the same air agency. Future work and a more concerted
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Figure 5. Error and ratio between corrected PurpleAir (PA) and FRM or FEM measurements are shown along with corrected PurpleAir
PM2.5 data (corrected using Eq. 10) as influenced by temperature, RH, and FRM or FEM PM2.5 concentration. Colors indicate states, and
black points indicate averages in 10 bins.

effort may be needed to explore this issue. Overall, all these
FEM and FRM methods have been determined to be accu-
rate enough for regulatory purposes, and so we have used all
to determine our US-wide correction. Although FRM mea-
surements are the gold standard, using only FRM measure-
ments would have severely limited our dataset. In addition,
the use of FEM measurements will be important in future
work to explore the performance of this model correction at
higher time resolutions. At higher time resolutions, the noise
and precision between different FEMs may impact perceived
performance, and future work should further explore this.

5.3.2 Error in corrected data by region

The performance of the selected model is summarized by re-
gion. Sites were first divided by the National Oceanic and
Atmospheric Administration’s (NOAA) US Climate Regions
(NOAA, 2020; Karl and Koss, 1984) and then were grouped
into broader regions (Fig. 2) if the relationships between
the sensor and FEM or FRM measurements were not sig-
nificantly different. Uncorrected PurpleAir sensors in this
work overestimate PM2.5 across US regions (MBE greater
than 0 µg m−3; Fig. 6). Figure 6 shows the regional per-

formance as displayed at http://purpleair.com (last access:
15 June 2021) (“raw”), with a linear correction and with the
final selected additive RH correction (Eq. 10). Linear regres-
sion improves the RMSE in each region, and the MBE also
decreases in all regions except for Alaska. When adding the
RH term to the linear regression, the bias is further reduced
across all regions, and the RMSE improves across all regions
except for the southeast, where it increases slightly (< 10 %).
Alaska shows the strongest underestimate, only 1 µg m−3 on
average, which appears to be driven by strong underestimates
of PM2.5 (by> 5 µg m−3) which occur in the winter between
November and February with subfreezing temperatures (−1
to −25 ◦C). Plantower reports that the operating range of the
sensors is −10 to 60 ◦C, so this may contribute to the er-
ror (Plantower, 2016). However, other states see subfreezing
temperatures (6 % of US dataset), but most of these subfreez-
ing data from other states do not have a strong negative bias
(> 98 %), even the points that are in a similar temperature
range as the Alaska data. This could suggest unique winter
particle properties or sensor performance in Fairbanks. How-
ever, information on particle size distribution or composition
is not available.
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Figure 6. Scatterplot of the daily FEM or FRM PM2.5 data with
the PurpleAir data by US region (see Fig. 2) prior to any correction,
after applying a linear correction, and after applying the final cor-
rection including RH. Data were corrected using the models built
for the full dataset.

To aid our air monitoring partner agencies, we have also
provided state-by-state performance results in the Supple-
ment (Sect. S2 and Fig. S10). It is important to note that the
reported performance may not accurately summarize state-
wide performance in states with less than a year of data or
those with a limited number of collocation sites.

5.3.3 Error in corrected data by AQI category

We summarize the performance of the sensors across the US
using the US daily AQI categories (Air quality index report-
ing, 1999). For this analysis we use the data corrected using
the LOSO withholding method, where a final correction is
built for all but one state and then applied to the withheld
state. This allows us to better understand how the correc-
tion will perform in locations not included in our analysis.
Figure 7 shows the AQI as generated by the corrected Pur-
pleAir (in colors) versus the AQI generated by the FEM or
FRM, with vertical lines indicating the break points between
categories. With correction, the PurpleAir sensors report the

Figure 7. The 24 h AQI categories as measured by the corrected
PurpleAir and the FEM or FRM for the full dataset generated with
the models built using the LOSO withholding method.

correct AQI category 91 % of the time while underestimat-
ing by one category 3 % of the time and overestimating by
one category 6 % of the time. Many of these categorical dis-
agreements occur near the AQI category break points where
the estimates between the sensor and FEM or FRM mea-
surements are within a few micrograms per cubic meter, but
this difference breaks the concentrations into different cat-
egories. In the moderate AQI category, as measured by the
FEM or FRM, we see examples (in orange) where the Pur-
pleAir shows large overestimates near the border between the
good and moderate categories. These points represent 0.1 %
of the total dataset and are from sensors in Washington and
California during times in both the summer (August) and
winter (November–January). This overestimate suggests that
the PurpleAir is measuring more light scattering per mass
than is typical in other US locations. Future work is needed
to identify the factors affecting the strong sensor overesti-
mates during these short time periods. From a public health
perspective, however, there is more concern when the sensor
strongly underestimates the PM2.5 AQI.

There is also some underestimation in the moderate cate-
gory. There are daily AQI values near the transition between
moderate and unhealthy for sensitive groups where the Pur-
pleAir is still in the good category (green). These occur pri-
marily in the west (California). Past work has shown that Pur-
pleAir sensors and their internal Plantower PMS5003 sen-
sors underestimate PM2.5 mass from larger particles includ-
ing during dust-impacted days (Kuula et al., 2020b; Robin-
son, 2020; Kosmopoulos et al., 2020). Dust impacts may be
driving the underestimates on these days in the west because
it is harder for larger particles to be sampled by the low-flow-
rate fans, especially under higher wind speeds, and also be-
cause larger particles scatter less light per mass than smaller
particles. Future work will be needed to develop an indicator
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and methodology to address the issue of dust. It may be im-
possible to use only the data from the PurpleAir (Duvall et
al., 2020; Pawar and Sinha, 2020). Alternatively, regional in-
formation from satellites or other sources or more advanced
sensor hardware may be able to improve these measurements
in the future. In all, this represents< 1 % of the dataset. Typi-
cally, the sensors provide accurate estimates of the AQI cate-
gory and have the potential to provide additional spatial den-
sity across the US where regulatory and AirNow monitors
are not currently found.

5.3.4 Comparison to existing correction equations

Lastly, we compared the US-wide correction equation to oth-
ers currently (as of 11 March 2021) available on the Pur-
pleAir map and to recent smoke-impacted corrections. The
map currently defaults to displaying the raw [cf_atm] PM2.5
data; however, a drop-down menu also allows you to select
from four corrections: the “US EPA” correction (detailed
in this paper); the Lane Regional Air Protection Agency
(LRAPA) correction or the AQ&U correction, both of which
use these raw [cf_atm] data in their correction equations
(Sayahi et al., 2019; Lance Giles, personal communication,
2020); and the wood smoke correction (Robinson, 2020) that
uses the cf_1 data. The US-wide correction, presented here
and displayed at PurpleAir.com, as the “US EPA” correction
uses the [cf_1] data. The difference between these two data
channels is discussed in Sect. 2.2.1 and Fig. 3.

The LRAPA correction is a basic linear equation devel-
oped by the Lane Regional Air Protection Agency in Ore-
gon, while the PurpleAir sensor was being impacted by wood
smoke from home heating in the winter. It was developed
specifically for the LRAPA’s local airshed. The LRAPA cor-
rection is similar to our US-wide correction equation without
an RH term: PM2.5 = 0.5×PAcf_atm−0.66 (LRAPA, 2018).
Assuming an RH of 70 %, both corrections would yield
similar results until roughly 25 µg m−3, when the [cf_atm]
and [cf_1] start to disagree; however, in reality the relation-
ships would vary as the RH varied. After this threshold, the
LRAPA correction will result in lower concentrations which
underestimate PM2.5 as measured by the FRM or FEM in
our dataset by about 33 %. Applying this correction to our
dataset results in an underestimate of PM2.5 by 3 µg m−3

(MBE=−3 µg m−3, 34 %) on average, with more scatter as
quantified by the RMSE (LRAPA= 4 µg m−3, US correc-
tion= 3 µg m−3).

The AQ&U correction is a linear correction developed for
Salt Lake City, UT (Sayahi et al., 2019). The AQ&U correc-
tion is updated as additional data become available and is,
at the time of this article, PM2.5= 0.778×PAcf_atm+ 2.65
(Sayahi et al., 2019). At high concentration (> 25 µg m−3)
the slopes in the AQ&U and US-wide corrections
are fairly similar (i.e., [AQ&U] 0.778×PAcf_atm= [US-
wide equation] 0.52×PMcf_1 = 0.52× 3/2×PMcf_atm =

0.795×PAcf_atm); at lower concentrations the AQ&U cor-

rection may provide somewhat higher estimates, although it
will depend on the RH. Since RH is typically low in Salt
Lake City, this may lead to some of the overestimate in us-
ing this equation in more humid parts of the country. Apply-
ing this correction to our dataset results in an overestimate
of PM2.5 of 4 µg m−3 (MBE= 4 µg m−3, 51 %), with more
scatter as quantified by the RMSE (AQ&U= 6 µg m−3, US
correction= 3 µg m−3).

The wood smoke correction is a linear correction devel-
oped for domestic wood-heating in New South Wales, Aus-
tralia (Robinson, 2020). The equation is similar to that gener-
ated in this work with a slope that is 5 % higher and a slightly
lower intercept, even considering the inclusion of an RH term
in our equation (0.55×PMcf_1+0.53). Overall, applying this
equation to our dataset results in a slight underestimate of
PM2.5 by 1 µg m−3 (MBE=−1 µg m−3, 12 %) on average,
with a similar scatter as measured by RMSE (both Wood
smoke and US correction= 3 µg m−3).

The US-wide correction developed in this work will likely
provide a more accurate correction across the US in compar-
ison to selecting either region-specific correction or the cor-
rection built for wood smoke in Australia. The US correction
is more robust in part because the RH term can help account
for meteorological variation across the US.

Air sensors are potentially of the greatest use during
wildland-fire-smoke-impacted times (Holm et al., 2020;
Durkin et al., 2020; Holder et al., 2020; Delp and Singer,
2020; Davison et al., 2021). A recent paper developed a
smoke-specific correction (0.51×PAcf_1− 3.21) for PM2.5
concentrations from PurpleAir sensors based on smoke im-
pacts from multiple types of fires in the US (Holder et al.,
2020). The slope is within 3 % of that calculated for the US-
wide correction. In the smoke study, RH was found not to
significantly improve the model. This lack of significance is
likely because the data did not come from as diverse of lo-
cations and seasons as the US-wide dataset. The median RH
in Holder et al. (2020) was around 40 %, which would make
the US correction intercept +2.312. The intercepts differ by
5 µg m−3. Since the US correction was built on more low-
concentration data, it likely provides a better constrained es-
timate of intercept, and this difference will be a small percent
difference under high-concentration smoke events. At a Pur-
pleAir PM2.5 concentration of 300 µg m−3, the smoke cor-
rection would give an estimate of 150 µg m−3, while the US-
wide correction would give an estimate of 160 µg m−3, a dif-
ference of only 6 %. Another recent paper developed smoke
adjustment factors, linear adjustments with zero intercepts,
for a variety of fires in California and Utah ranging between
0.44 and 0.53 (Delp and Singer, 2020). The slope calculated
in our study is also within this range. Although there were
limited smoke data included in the analysis in this paper, the
similarity between the correction generated here and under
smoke-impacted times suggests that this equation will work
well under smoke conditions.
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5.4 Limitations and implications

Because PM sensors use an optically based detector, they
will never be able to perfectly capture the PM2.5 mass be-
cause of the many factors affecting the optical-mass rela-
tionship (Liu et al., 2008). However, there are a number of
higher-complexity optical methods that are used frequently
with adequate accuracy (Heintzenberg et al., 2006; Chung et
al., 2001). Nephelometers are used for routine monitoring in
some parts of the US (OR DEQ, 2020) and are frequently
used in health effects research (Delfino et al., 2004). The
Teledyne T640 and T640x and Grimm EDM 180 are opti-
cally based monitors that have been approved as FEMs in
the past decade (U.S. EPA, 2021). Humidity tends to induce
large errors in these types of measurements (Chakrabarti et
al., 2004; Day and Malm, 2001), which is addressed using
a dryer or humidity control in FEMs (U.S. EPA, 2021). The
PurpleAir sensor provides minimal humidity control due to
the higher internal temperature caused by the small volume
containing the electronics.

The only reason a single US correction is possible is be-
cause the dual Plantower sensors within the PurpleAir sen-
sor typically have strong precision. It would not be possi-
ble to develop a single correction for sensors with high er-
ror or more variability among identical units. In addition,
having two Plantower sensors in each PurpleAir sensor en-
ables a data cleaning step based on sensor health, where we
compare the A and B channels and exclude data where they
agree poorly (Sect. 3.2.3). Alternative approaches would be
necessary for devices with only a single PM sensor. A sim-
ilar approach, as outlined in this work, could be applied to
develop US-wide corrections for other sensors with collo-
cation data from across the US. However, similar or better
precision among identical units and quality assurance meth-
ods that check sensor health and flag questionable data would
be needed. Adding data from additional types of air sensors
could further increase the spatial knowledge of air quality
across the US moving forward.

The proposed PurpleAir correction in this work relies on
RH data, and in some cases the internal RH sensor may drift
or fail. Users have two options if no valid RH data are re-
ported: (1) to discard data when the RH is missing or (2) to
assume an RH based on typical ambient conditions in the US
or specific geographical area. In our dataset,< 1 % of the RH
data was missing, but this may happen more often for indi-
vidual sensors or over time as RH sensors fail. There will
be additional uncertainty in the measurement if the RH term
is not available, but substituting a value of 50 % may limit
this error. RH sensor drift should result in less error than full
RH sensor failure, and future work should further explore the
performance of the RH sensor.

Although this dataset includes sites throughout the US (see
Fig. 2), some regions are oversampled, while others are un-
dersampled. The oversampled areas include Iowa and Cal-
ifornia (especially the South Coast Air Basin), which to-

gether represent 58 % of the dataset. Both Iowa and the South
Coast Air Basin have a higher fraction of nitrate in PM2.5
than many other areas of the US, which may impact the hy-
groscopicity of particles represented in this dataset. Utah in
winter has a similar composition, which may be why the
AQ&U correction is comparable. Undersampled areas as de-
fined by the NOAA climate regions include southern parts
of the south (i.e., Texas, Louisiana, Mississippi), the North-
ern Rockies (i.e., North and South Dakota, Nebraska, and
Wyoming), and also the Ohio Valley (i.e. Missouri, Illinois,
Indiana, Ohio, Kentucky, and Tennessee), where PM2.5 may
have different optical properties due to different air pollu-
tion emission sources. In addition, only three sites in the
dataset are classified as rural sites. It may be beneficial to
collocate additional sensors in rural areas, especially as sen-
sors may provide the most value where government monitors
are sparse. Furthermore, other localized source-oriented lo-
cations such as near major roadways, airports, and ports are
not well represented in this dataset and may not be well char-
acterized by our correction. The Alaska site is one location
included in this work where additional collocated sensors,
along with additional information about particle properties,
could help to better understand whether the proposed correc-
tion can be improved. Future work may be able to develop
additional correction factors based on aerosol types through a
concerted effort to collocate sensors with the Chemical Spe-
ciation Network (CSN) or Interagency Monitoring of Pro-
tected Visual Environments (IMPROVE) network. The ap-
plicability of this correction to areas outside of the US is
also uncertain because much higher concentrations of PM2.5
(likely with different size distributions and chemical com-
ponents) are common throughout the globe (van Donkelaar
et al., 2016). In addition, there is uncertainty in how higher
concentrations may damage sensors or lead to faster sensor
aging, potentially requiring more regular maintenance and/or
replacement (W.-C. V. Wang et al., 2020).

Since PurpleAir sensors were operated by air monitoring
agencies, the dataset used for this work is an ideal dataset
with potentially better performance than PurpleAir sensors
operated by the general public. Every sensor location was
confirmed, unlike sensors on the PurpleAir map that may
have been relocated, moved indoors, or assigned an incor-
rect location for privacy reasons. In addition, air monitoring
agencies have taken care to appropriately site the PurpleAir
sensors in places with good airflow, which may not be the
case for all community-deployed sensors. Future work may
be needed to explore how to identify and flag sensors with
incorrect locations and poor siting. In some cases, the perfor-
mance of the PurpleAir sensors used in this project was eval-
uated before deployment to check for any issues between the
A and B channels when the sensors arrived from PurpleAir.
In many cases, the agencies hosting the PurpleAir sensors
check the data regularly and may immediately address per-
formance issues. This may result in a higher data complete-
ness and better performance between the A and B channels

https://doi.org/10.5194/amt-14-4617-2021 Atmos. Meas. Tech., 14, 4617–4637, 2021



4632 K. K. Barkjohn et al.: Development and application of a United States-wide correction for PM2.5 data

than would be seen by sensors operated by the general pub-
lic; however, our A–B comparison methodology should flag
these performance issues. The criteria for this work were
specifically stringent so that the model would be built on re-
liable data. Future work could explore loosening the criteria
for A–B agreement and data completeness.

During regulatory monitoring, the site operator plays a sig-
nificant role in annotating the site data and metadata and in
maintaining records that document the monitoring effort. Al-
though we received some of these notes from agencies op-
erating sensors for this project, we would not expect any of
these data to be present for publicly available sensors on the
PurpleAir map. Since the insights of the site operator are not
incorporated into the PurpleAir data from ThingSpeak, the
job of annotating the raw data record passes to the data ana-
lyst, someone with likely little on-the-ground knowledge of
how the sensor is being operated. As a result, some questions
that arise that could explain sensor performance will be im-
possible to answer. Although some automated checks like the
A and B channel comparison can be applied, we will not be
able to attain the same level of confidence with a sensor as
we can with a monitor, since monitors are run by site oper-
ators who document events at the site and assure the quality
of the data.

There are still unknowns about sensor performance over
the long term and during extreme events. Large performance
deteriorations were not seen in this dataset, with sensors up to
2 years old, but more targeted analysis should be completed,
especially as the network continues to age. This work was
conducted using 24 h averages. It can be more challenging
to develop accurate corrections using shorter time-averaged
data (e.g., 1 h or 2 min averages) due to limitations in FRM
measurements and increased noise in higher-time-resolution
FEM measurements. Additional work is currently being done
to understand the performance of this correction when ap-
plied to shorter time averaging intervals and during high-
concentration smoke-impacted events when public interest in
air quality is high, and health and environmental impacts may
be of concern.

This correction equation is currently being applied to the
low-cost sensor data (currently supplied by PurpleAir) on
the AirNow Fire and Smoke Map (https://fire.airnow.gov/),
along with similar data cleaning methods, and data are pre-
sented in the form of the NowCast AQI. This allows the pub-
lic to see greater spatial variability in PM2.5 AQI than would
be available with only AirNow monitors. The AirNow Fire
and Smoke Map will be updated based on user feedback and
as additional data become available to improve the correction
and data cleaning methods. This website was well received
by state, local, and tribal partner air monitoring agencies and
the public and received over 7 million page views in the first 3
months. A current screenshot is available in the Supplement
(Fig. S11).

6 Conclusions

This work developed an effective methodology for clean-
ing PM2.5 data from the PurpleAir sensor by removing
poorly performing sensors and short-term outlier concentra-
tion measurements using channel A and B comparisons. A
single US correction model for the PurpleAir sensor was
developed which includes additive correction terms using
[cf_1] PM2.5 and onboard RH data. The US correction im-
proves PurpleAir measurement performance, reducing the
24 h averaged PM2.5 data RMSE from 8 to 3 µg m−3 when
evaluated against regulatory measurements across the US,
and reduced the bias to ±3 µg m−3 when validated on a
state-by-state basis and to ±1 µg m−3 when evaluating by
region. With correction, the PurpleAir reports the 24 h av-
eraged PM2.5 AQI within one category 100 % of the time
and reports the correct category 91 % of the time. Although
no previous work had attempted a broadly applicable correc-
tion, the correction developed in this paper is similar to those
developed for specific locations or sources (i.e., smoke),
strengthening the confidence that this correction is applica-
ble across the US. This national evaluation suggested that
any corrections that are not strictly local likely need to in-
clude RH or other environmental factors to represent the
wide range of conditions that can occur in the US. Corrected
PM2.5 data from the PurpleAir sensor can provide more con-
fidence in measurements of ambient PM2.5 concentrations
for a wide range of potential applications, including expo-
sure assessments and real-time public health messaging. Pur-
pleAir PM2.5 data with this US-wide correction are currently
displayed on a pilot sensor data layer on the AirNow Fire and
Smoke Map (https://fire.airnow.gov/).

More work is needed to understand if similar corrections
can be developed for other sensor types. If other highly
precise sensors with duplicate measurements are identified,
similar methodology could be used to develop data clean-
ing steps and a nationwide correction. However, it is rec-
ommended that sensors are first collocated with reference
measurements across the US (i.e., FEM and FRM methods),
ideally for a year or more to reduce uncertainties caused by
seasonal influences, over a range of meteorological condi-
tions, and across PM concentration ranges and source types.
Most other sensor types do not contain duplicate PM2.5 mea-
surements, which will make ensuring their data quality more
challenging, and more complex methods of data cleaning
may be required, or similar data quality may not be possible.
Developing correction methods and data cleaning method-
ology for additional sensor types could further increase the
number of data available to communities, epidemiologists,
decision-makers, and others.

Data availability. Data are available at https://doi.org/10.23719/
1522388 (Barkjohn, 2021).

Atmos. Meas. Tech., 14, 4617–4637, 2021 https://doi.org/10.5194/amt-14-4617-2021

https://fire.airnow.gov/
https://fire.airnow.gov/
https://doi.org/10.23719/1522388
https://doi.org/10.23719/1522388


K. K. Barkjohn et al.: Development and application of a United States-wide correction for PM2.5 data 4633

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/amt-14-4617-2021-supplement.

Author contributions. KKB and ALC conceptualized the work.
KKB and BG curated the data. KKB completed the formal analysis
and developed the methods and figure visualizations. ALC acquired
funding, cultivated relationships, and launched the field sampling
campaign. KKB, ALC, and BG wrote the original draft, reviewed,
and edited.

Competing interests. The authors declare that they have no conflict
of interest.

Disclaimer. The views expressed in this paper are those of the au-
thor(s) and do not necessarily represent the views or policies of the
US Environmental Protection Agency. Any mention of trade names,
products, or services does not imply an endorsement by the US
Government or the US Environmental Protection Agency. The EPA
does not endorse any commercial products, services, or enterprises.

Acknowledgements. This work would not have been possible with-
out the partnership of many SLT air monitoring agencies and
other partners, including the State of Alaska, Citizens for Clean
Air (Alaska), Maricopa County Air Quality Department, San Luis
Obispo County Air Pollution Control District, Mojave Desert Air
Quality Management District, California Air Resources Board,
Santa Barbara County Air Pollution Control District, Ventura
County Air Pollution Control District, Colorado Department of
Public Health and Environment, Delaware Division of Air Qual-
ity, Sarasota County Government, Georgia Environmental Protec-
tion Division, Iowa Department of Natural Resources, Polk and
Linn County (Iowa) Local Programs, the State Hygienic Laboratory
at the University of Iowa, Kansas Department of Health and Envi-
ronment, Missoula County, Montana Department of Environmental
Quality, Forsyth County Office of Environmental Assistance and
Protection, Clean Air Carolina, Quapaw Nation, Oklahoma Depart-
ment of Environmental Quality, Virginia Department of Environ-
mental Quality, State of Vermont, Puget Sound Clean Air Agency,
and Wisconsin Department of Natural Resources. These agencies
and organizations provided data and shared their experiences in us-
ing the PurpleAir sensors in their jurisdictions. For their help, we
would also like to thank Sean Fitzsimmons at the Iowa Air Qual-
ity Bureau; Ian VonWald, who is an ORISE postdoc hosted by the
EPA; Samuel Frederick, who is an ORAU student services contrac-
tor to the EPA; and Amara Holder, Rachelle Duvall, and Gayle Ha-
gler at the EPA. We thank PurpleAir for maintaining and managing
the repository of public and private data. We thank Adrian Dybwad
and the PurpleAir staff for their time discussing this work and the
addition of this correction as an option on the PurpleAir website.
We thank the United States Forest Service and the EPA’s AirNow
team for the incorporation of the air sensor pilot data layer on the
AirNow Fire and Smoke Map. We are grateful to our referees for
their constructive input.

This project was supported in part by an appointment to the Re-
search Participation Program at the EPA ORD’s Center for Envi-

ronmental Measurements and Modeling (CEMM), administered by
the Oak Ridge Institute for Science and Education through an inter-
agency agreement between the US Department of Energy and the
EPA.

Financial support. This research has been supported by a funds-out
interagency agreement between the U.S. Environmental Protection
agency and the U.S. Department of Energy (EPA IA, grant no. DW-
089-92525701).

Review statement. This paper was edited by Pierre Herckes and re-
viewed by three anonymous referees.

References

Air quality index reporting: 64 Fed. Reg 42530, Office of the Fed-
eral Register, National Archives and Records Administration,
Washington, DC, USA, available at: https://www.govinfo.gov/
app/details/FR-1999-08-04/99-19433/summary (last access:
17 June 2021), 1991.

Al-Thani, H., Koç, M., and Isaifan, R. J.: A review on the direct ef-
fect of particulate atmospheric pollution on materials and its mit-
igation for sustainable cities and societies, Environ. Sci. Pollut.
R., 25, 27839–27857, https://doi.org/10.1007/s11356-018-2952-
8, 2018.

Apte, J. S., Marshall, J. D., Cohen, A. J., and Brauer, M.: Address-
ing Global Mortality from Ambient PM2.5, Environ. Sci. Tech-
nol., 49, 8057–8066, https://doi.org/10.1021/acs.est.5b01236,
2015.

Ardon-Dryer, K., Dryer, Y., Williams, J. N., and Moghimi,
N.: Measurements of PM2.5 with PurpleAir under atmo-
spheric conditions, Atmos. Meas. Tech., 13, 5441–5458,
https://doi.org/10.5194/amt-13-5441-2020, 2020.

Barkjohn, K. K.: Dataset Development and Application of a United
States wide correction for PM2.5 data collected with the Pur-
pleAir sensor, U.S. EPA Office of Research and Development
(ORD) [Data set], https://doi.org/10.23719/1522388, 2021.

Barkjohn, K. K., Bergin, M. H., Norris, C., Schauer, J. J.,
Zhang, Y., Black, M., Hu, M., and Zhang, J.: Using Low-
cost sensors to Quantify the Effects of Air Filtration on In-
door and Personal Exposure Relevant PM2.5 Concentrations
in Beijing, China, Aerosol Air Qual. Res., 20, 297–313,
https://doi.org/10.4209/aaqr.2018.11.0394, 2020.

Barkjohn, K. K., Norris, C., Cui, X., Fang, L., Zheng, T., Schauer, J.
J., Zhang, Y., Black, M., Zhang, J., and Bergin, M. H.: Real-time
Measurements of PM2.5 and Ozone to Assess the Effectiveness
of Residential Indoor Air Filtration in Shanghai Homes, Indoor
Air, 31, 74–87, https://doi.org/10.1111/ina.12716, 2021.

Bell, M. L., Ebisu, K., and Belanger, K.: Ambient air pol-
lution and low birth weight in Connecticut and Mas-
sachusetts, Environ. Health Persp., 115, 1118–1124,
https://doi.org/10.1289/ehp.9759, 2007.

Bi, J., Wildani, A., Chang, H. H., and Liu, Y.: Incorporating Low-
Cost Sensor Measurements into High-Resolution PM2.5 Model-
ing at a Large Spatial Scale, Environ. Sci. Technol., 54, 2152–
2162, https://doi.org/10.1021/acs.est.9b06046, 2020.

https://doi.org/10.5194/amt-14-4617-2021 Atmos. Meas. Tech., 14, 4617–4637, 2021

https://doi.org/10.5194/amt-14-4617-2021-supplement
https://www.govinfo.gov/app/details/FR-1999-08-04/99-19433/summary
https://www.govinfo.gov/app/details/FR-1999-08-04/99-19433/summary
https://doi.org/10.1007/s11356-018-2952-8
https://doi.org/10.1007/s11356-018-2952-8
https://doi.org/10.1021/acs.est.5b01236
https://doi.org/10.5194/amt-13-5441-2020
https://doi.org/10.23719/1522388
https://doi.org/10.4209/aaqr.2018.11.0394
https://doi.org/10.1111/ina.12716
https://doi.org/10.1289/ehp.9759
https://doi.org/10.1021/acs.est.9b06046


4634 K. K. Barkjohn et al.: Development and application of a United States-wide correction for PM2.5 data

Brook, R. D., Rajagopalan, S., Pope, C. A., Brook, J. R., Bhatna-
gar, A., Diez-Roux, A. V., Holguin, F., Hong, Y., Luepker, R.
V., Mittleman, M. A., Peters, A., Siscovick, D., Smith, S. C.,
Whitsel, L., and Kaufman, J. D.: Particulate Matter Air Pollu-
tion and Cardiovascular Disease, Circulation, 121, 2331–2378,
https://doi.org/10.1161/CIR.0b013e3181dbece1, 2010.

Chakrabarti, B., Fine, P. M., Delfino, R., and Sioutas, C.: Per-
formance evaluation of the active-flow personal DataRAM
PM2.5 mass monitor (Thermo Anderson pDR-1200) designed for
continuous personal exposure measurements, Atmos. Environ.,
38, 3329–3340, https://doi.org/10.1016/j.atmosenv.2004.03.007,
2004.

Chung, A., Chang, D. P. Y., Kleeman, M. J., Perry, K. D.,
Cahill, T. A., Dutcher, D., McDougall, E. M., and Stroud, K.:
Comparison of Real-Time Instruments Used To Monitor Air-
borne Particulate Matter, J. Air Waste Manage., 51, 109–120,
https://doi.org/10.1080/10473289.2001.10464254, 2001.

Clements, A. L., Reece, S., Conner, T., and Williams, R.: Observed
data quality concerns involving low-cost air sensors, Atmos. En-
viron., 3, 100034, https://doi.org/10.1016/j.aeaoa.2019.100034,
2019.

Davison, G., Barkjohn, K. K., Hagler, G. S. W., Holder, A.
L., Coefield, S., Noonan, C., and Hassett-Sipple, B.: Creat-
ing Clean Air Spaces During Wildland Fire Smoke Episodes:
Web Summit Summary, Front. Public Health, 9, 508971,
https://doi.org/10.3389/fpubh.2021.508971, 2021.

Day, D. E. and Malm, W. C.: Aerosol light scattering measure-
ments as a function of relative humidity: a comparison between
measurements made at three different sites, Atmos. Environ.,
35, 5169–5176, https://doi.org/10.1016/S1352-2310(01)00320-
X, 2001.

Delfino, R. J., Quintana, P. J. E., Floro, J., Gastañaga, V. M.,
Samimi, B. S., Kleinman, M. T., Liu, L. J. S., Bufalino, C., Wu,
C.-F., and McLaren, C. E.: Association of FEV1 in asthmatic
children with personal and microenvironmental exposure to air-
borne particulate matter, Environ. Health Persp., 112, 932–941,
https://doi.org/10.1289/ehp.6815, 2004.

Delp, W. W. and Singer, B. C.: Wildfire Smoke Adjust-
ment Factors for Low-Cost and Professional PM2.5
Monitors with Optical Sensors, Sensors-Basel, 20, 3683,
https://doi.org/10.3390/s20133683, 2020.

Di, Q., Dai, L., Wang, Y., Zanobetti, A., Choirat, C., Schwartz, J. D.,
and Dominici, F.: Association of Short-term Exposure to Air Pol-
lution With Mortality in Older Adults, JAMA, 318, 2446–2456,
https://doi.org/10.1001/jama.2017.17923, 2017.

Dominici, F., Peng, R. D., Zeger, S. L., White, R. H., and Samet, J.
M.: Particulate air pollution and mortality in the United States:
did the risks change from 1987 to 2000?, Am. J. Epidemiol., 166,
880–888, https://doi.org/10.1093/aje/kwm222, 2007.

Durkin, A., Gonzalez, R., Isaksen, T. B., Walker, E., and Er-
rett, N. A.: Establishing a Community Air Monitoring Net-
work in a Wildfire Smoke-Prone Rural Community: The Motiva-
tions, Experiences, Challenges, and Ideas of Clean Air Methow’s
Clean Air Ambassadors, Int. J. Env. Res. Pub. He., 17, 8393,
https://doi.org/10.3390/ijerph17228393, 2020.

Duvall, R. M., Hagler, G. S. W., Clements, A. L., Benedict, K.,
Barkjohn, K. K., Kilaru, V., Hanley, T., Watkins, N., Kaufman,
A., Kamal, A., Reece, S., Fransioli, P., Gerboles, M., Gillerman,
G., Habre, R., Hannigan, M., Ning, Z., Papapostolou, V., Pope,

R., Quintana, P. J. E., and Lam Snyder, J.: Deliberating Per-
formance Targets: Follow-on workshop discussing PM10, NO2,
CO, and SO2 air sensor targets, Atmos. Environ., 246, 118099,
https://doi.org/10.1016/j.atmosenv.2020.118099, 2020.

Feenstra, B., Papapostolou, V., Hasheminassab, S., Zhang, H.,
Boghossian, B. D., Cocker, D., and Polidori, A.: Perfor-
mance evaluation of twelve low-cost PM2.5 sensors at an
ambient air monitoring site, Atmos. Environ., 216, 116946,
https://doi.org/10.1016/j.atmosenv.2019.116946, 2019.

Feinberg, S., Williams, R., Hagler, G. S. W., Rickard, J., Brown,
R., Garver, D., Harshfield, G., Stauffer, P., Mattson, E., Judge,
R., and Garvey, S.: Long-term evaluation of air sensor tech-
nology under ambient conditions in Denver, Colorado, Atmos.
Meas. Tech., 11, 4605–4615, https://doi.org/10.5194/amt-11-
4605-2018, 2018.

Ford, B., Martin, M. V., Zelasky, S. E., Fischer, E. V., Anen-
berg, S. C., Heald, C. L., and Pierce, J. R.: Future Fire
Impacts on Smoke Concentrations, Visibility, and Health
in the Contiguous United States, Geohealth, 2, 229–247,
https://doi.org/10.1029/2018gh000144, 2018.

Ford, B., Pierce, J. R., Wendt, E., Long, M., Jathar, S., Mehaffy,
J., Tryner, J., Quinn, C., van Zyl, L., L’Orange, C., Miller-
Lionberg, D., and Volckens, J.: A low-cost monitor for mea-
surement of fine particulate matter and aerosol optical depth –
Part 2: Citizen-science pilot campaign in northern Colorado, At-
mos. Meas. Tech., 12, 6385–6399, https://doi.org/10.5194/amt-
12-6385-2019, 2019.

Franklin, M., Zeka, A., and Schwartz, J.: Association be-
tween PM2.5 and all-cause and specific-cause mortality in
27 US communities, J. Expo. Sci. Env. Epid., 17, 279–287,
https://doi.org/10.1038/sj.jes.7500530, 2007.

Grande, G., Ljungman, P. L. S., Eneroth, K., Bellander,
T., and Rizzuto, D.: Association Between Cardiovascu-
lar Disease and Long-term Exposure to Air Pollution
With the Risk of Dementia, JAMA Neurol., 77, 801–809,
https://doi.org/10.1001/jamaneurol.2019.4914, 2020.

He, M., Kuerbanjiang, N., and Dhaniyala, S.: Perfor-
mance characteristics of the low-cost Plantower PMS
optical sensor, Aerosol Sci. Tech., 54, 232–241,
https://doi.org/10.1080/02786826.2019.1696015, 2020.

Heintzenberg, J., Wiedensohler, A., Tuch, T. M., Covert, D. S.,
Sheridan, P., Ogren, J. A., Gras, J., Nessler, R., Kleefeld, C.,
Kalivitis, N., Aaltonen, V., Wilhelm, R.-T., and Havlicek, M.:
Intercomparisons and Aerosol Calibrations of 12 Commercial
Integrating Nephelometers of Three Manufacturers, J. Atmos.
Ocean. Tech., 23, 902–914, https://doi.org/10.1175/jtech1892.1,
2006.

Holder, A. L., Mebust, A. K., Maghran, L. A., McGown, M. R.,
Stewart, K. E., Vallano, D. M., Elleman, R. A., and Baker,
K. R.: Field Evaluation of Low-Cost Particulate Matter Sen-
sors for Measuring Wildfire Smoke, Sensors-Basel, 20, 4796,
https://doi.org/10.3390/s20174796, 2020.

Holm, S. M., Miller, M. D., and Balmes, J. R.: Health ef-
fects of wildfire smoke in children and public health tools:
a narrative review, J. Expo. Sci. Env. Epid., 31, 1–20,
https://doi.org/10.1038/s41370-020-00267-4, 2020.

Jayaratne, R., Liu, X., Thai, P., Dunbabin, M., and Morawska, L.:
The influence of humidity on the performance of a low-cost
air particle mass sensor and the effect of atmospheric fog, At-

Atmos. Meas. Tech., 14, 4617–4637, 2021 https://doi.org/10.5194/amt-14-4617-2021

https://doi.org/10.1161/CIR.0b013e3181dbece1
https://doi.org/10.1016/j.atmosenv.2004.03.007
https://doi.org/10.1080/10473289.2001.10464254
https://doi.org/10.1016/j.aeaoa.2019.100034
https://doi.org/10.3389/fpubh.2021.508971
https://doi.org/10.1016/S1352-2310(01)00320-X
https://doi.org/10.1016/S1352-2310(01)00320-X
https://doi.org/10.1289/ehp.6815
https://doi.org/10.3390/s20133683
https://doi.org/10.1001/jama.2017.17923
https://doi.org/10.1093/aje/kwm222
https://doi.org/10.3390/ijerph17228393
https://doi.org/10.1016/j.atmosenv.2020.118099
https://doi.org/10.1016/j.atmosenv.2019.116946
https://doi.org/10.5194/amt-11-4605-2018
https://doi.org/10.5194/amt-11-4605-2018
https://doi.org/10.1029/2018gh000144
https://doi.org/10.5194/amt-12-6385-2019
https://doi.org/10.5194/amt-12-6385-2019
https://doi.org/10.1038/sj.jes.7500530
https://doi.org/10.1001/jamaneurol.2019.4914
https://doi.org/10.1080/02786826.2019.1696015
https://doi.org/10.1175/jtech1892.1
https://doi.org/10.3390/s20174796
https://doi.org/10.1038/s41370-020-00267-4


K. K. Barkjohn et al.: Development and application of a United States-wide correction for PM2.5 data 4635

mos. Meas. Tech., 11, 4883–4890, https://doi.org/10.5194/amt-
11-4883-2018, 2018.

Jiao, W., Hagler, G., Williams, R., Sharpe, R., Brown, R., Garver,
D., Judge, R., Caudill, M., Rickard, J., Davis, M., Wein-
stock, L., Zimmer-Dauphinee, S., and Buckley, K.: Commu-
nity Air Sensor Network (CAIRSENSE) project: evaluation of
low-cost sensor performance in a suburban environment in the
southeastern United States, Atmos. Meas. Tech., 9, 5281–5292,
https://doi.org/10.5194/amt-9-5281-2016, 2016.

Johnson, K. K., Bergin, M. H., Russell, A. G., and Hagler, G. S.:
Field test of several low-cost particulate matter sensors in high
and low concentration urban environments, Aerosol Air Qual.
Res., 18, 565–578, 2018.

Karl, T. R. and Koss, W. J.: Regional and National Monthly, Sea-
sonal, and Annual Temperature Weighted by Area, 1895–1983,
Historical Climatology Series 4–3, National Climatic Data Cen-
ter, Asheville, NC, USA, 38 pp., 1984.

Kelly, K. E., Whitaker, J., Petty, A., Widmer, C., Dyb-
wad, A., Sleeth, D., Martin, R., and Butterfield, A.:
Ambient and laboratory evaluation of a low-cost par-
ticulate matter sensor, Environ. Pollut., 221, 491–500,
https://doi.org/10.1016/j.envpol.2016.12.039, 2017.

Kim, S., Park, S., and Lee, J.: Evaluation of Performance of Inex-
pensive Laser Based PM2.5 Sensor Monitors for Typical Indoor
and Outdoor Hotspots of South Korea, Appl. Sci.-Basel, 9, 1947,
https://doi.org/10.3390/app9091947, 2019.

Kosmopoulos, G., Salamalikis, V., Pandis, S. N., Yannopoulos, P.,
Bloutsos, A. A., and Kazantzidis, A.: Low-cost sensors for mea-
suring airborne particulate matter: Field evaluation and calibra-
tion at a South-Eastern European site, Sci. Total Environ., 784,
141396, https://doi.org/10.1016/j.scitotenv.2020.141396, 2020.

Kuula, J., Mäkelä, T., Aurela, M., Teinilä, K., Varjonen,
S., González, Ó., and Timonen, H.: Laboratory evalua-
tion of particle-size selectivity of optical low-cost particu-
late matter sensors, Atmos. Meas. Tech., 13, 2413–2423,
https://doi.org/10.5194/amt-13-2413-2020, 2020a.

Kuula, J., Friman, M., Helin, A., Niemi, J. V., Aurela, M., Timonen,
H., and Saarikoski, S.: Utilization of scattering and absorption-
based particulate matter sensors in the environment impacted
by residential wood combustion, J. Aerosol Sci., 150, 105671,
https://doi.org/10.1016/j.jaerosci.2020.105671, 2020b.

Lal, R. M., Das, K., Fan, Y., Barkjohn, K. K., Botchwey, N., Ra-
maswami, A., and Russell, A. G.: Connecting Air Quality with
Emotional Well-Being and Neighborhood Infrastructure in a US
City, Environmental Health Insights, 14, 1178630220915488,
https://doi.org/10.1177/1178630220915488, 2020.

Levy Zamora, M., Xiong, F., Gentner, D., Kerkez, B., Kohrman-
Glaser, J., and Koehler, K.: Field and Laboratory Evaluations of
the Low-Cost Plantower Particulate Matter Sensor, Environ. Sci.
Technol., 53, 838–849, https://doi.org/10.1021/acs.est.8b05174,
2019.

Li, J. Y., Mattewal, S. K., Patel, S., and Biswas, P.: Eval-
uation of Nine Low-cost-sensor-based Particulate Mat-
ter Monitors, Aerosol Air Qual. Res., 20, 254–270,
https://doi.org/10.4209/aaqr.2018.12.0485, 2020.

Liu, X. G., Cheng, Y. F., Zhang, Y. H., Jung, J. S., Sug-
imoto, N., Chang, S. Y., Kim, Y. J., Fan, S. J., and
Zeng, L. M.: Influences of relative humidity and particle
chemical composition on aerosol scattering properties during

the 2006 PRD campaign, Atmos. Environ., 42, 1525–1536,
https://doi.org/10.1016/j.atmosenv.2007.10.077, 2008.

LRAPA: LRAPA PurpleAir Monitor Correction Factor History,
available at: https://www.lrapa.org/DocumentCenter/View/4147/
PurpleAir-Correction-Summary (last access: 10 June 2021),
2018.

Lu, Y., Giuliano, G., and Habre, R.: Estimating hourly PM2.5 con-
centrations at the neighborhood scale using a low-cost air sensor
network: A Los Angeles Case Study, Environ. Res., 195, 110653,
https://doi.org/10.1016/j.envres.2020.110653, 2021.

Magi, B. I., Cupini, C., Francis, J., Green, M., and Hauser, C.:
Evaluation of PM2.5 measured in an urban setting using a low-
cost optical particle counter and a Federal Equivalent Method
Beta Attenuation Monitor, Aerosol Sci. Tech., 54, 147–159,
https://doi.org/10.1080/02786826.2019.1619915, 2019.

Malings, C., Tanzer, R., Hauryliuk, A., Saha, P. K., Robin-
son, A. L., Presto, A. A., and Subramanian, R.: Fine particle
mass monitoring with low-cost sensors: Corrections and long-
term performance evaluation, Aerosol Sci. Tech., 54, 160–174,
https://doi.org/10.1080/02786826.2019.1623863, 2020.

Mannshardt, E., Benedict, K., Jenkins, S., Keating, M., Mintz, D.,
Stone, S., and Wayland, R.: Analysis of short-term ozone and
PM2.5 measurements: Characteristics and relationships for air
sensor messaging, J. Air Waste Manage. Assoc., 67, 462–474,
https://doi.org/10.1080/10962247.2016.1251995, 2017.

McFarlane, C., Isevulambire, P. K., Lumbuenamo, R. S., Ndinga,
A. M. E., Dhammapala, R., Jin, X., McNeill, V. F., Mal-
ings, C., Subramanian, R., and Westervelt, D. M.: First Mea-
surements of Ambient PM2.5 in Kinshasa, Democratic Re-
public of Congo and Brazzaville, Republic of Congo Using
Field-calibrated Low-cost Sensors, Aerosol Air Qual. Res., 21,
200619, https://doi.org/10.4209/aaqr.200619, 2021.

Mehadi, A., Moosmüller, H., Campbell, D. E., Ham, W.,
Schweizer, D., Tarnay, L., and Hunter, J.: Laboratory and
field evaluation of real-time and near real-time PM2.5
smoke monitors, J. Air Waste Manage., 70, 158–179,
https://doi.org/10.1080/10962247.2019.1654036, 2020.

Morawska, L., Thai, P. K., Liu, X., Asumadu-Sakyi, A., Ayoko, G.,
Bartonova, A., Bedini, A., Chai, F., Christensen, B., Dunbabin,
M., Gao, J., Hagler, G. S. W., Jayaratne, R., Kumar, P., Lau, A. K.
H., Louie, P. K. K., Mazaheri, M., Ning, Z., Motta, N., Mullins,
B., Rahman, M. M., Ristovski, Z., Shafiei, M., Tjondronegoro,
D., Westerdahl, D., and Williams, R.: Applications of low-cost
sensing technologies for air quality monitoring and exposure as-
sessment: How far have they gone?, Environ. Int., 116, 286–299,
https://doi.org/10.1016/j.envint.2018.04.018, 2018.

Mukherjee, A., Brown, S. G., McCarthy, M. C., Pavlovic,
N. R., Stanton, L. G., Snyder, J. L., D’Andrea, S., and
Hafner, H. R.: Measuring Spatial and Temporal PM2.5
Variations in Sacramento, California, Communities Using
a Network of Low-Cost Sensors, Sensors-Basel, 19, 4701,
https://doi.org/10.3390/s19214701, 2019.

NOAA: U.S. Climate Regions, available at: https://www.ncdc.
noaa.gov/monitoring-references/maps/us-climate-regions.php
(last access: 10 June 2021), 2020.

OR DEQ: 2020 Oregon Annual Ambient Criteria Pollutant Air
Monitoring Network Plan, available at: https://www.oregon.
gov/deq/FilterDocs/AQmonitoringplan.pdf (last access: 15 June
2021), 2020.

https://doi.org/10.5194/amt-14-4617-2021 Atmos. Meas. Tech., 14, 4617–4637, 2021

https://doi.org/10.5194/amt-11-4883-2018
https://doi.org/10.5194/amt-11-4883-2018
https://doi.org/10.5194/amt-9-5281-2016
https://doi.org/10.1016/j.envpol.2016.12.039
https://doi.org/10.3390/app9091947
https://doi.org/10.1016/j.scitotenv.2020.141396
https://doi.org/10.5194/amt-13-2413-2020
https://doi.org/10.1016/j.jaerosci.2020.105671
https://doi.org/10.1177/1178630220915488
https://doi.org/10.1021/acs.est.8b05174
https://doi.org/10.4209/aaqr.2018.12.0485
https://doi.org/10.1016/j.atmosenv.2007.10.077
https://www.lrapa.org/DocumentCenter/View/4147/PurpleAir-Correction-Summary
https://www.lrapa.org/DocumentCenter/View/4147/PurpleAir-Correction-Summary
https://doi.org/10.1016/j.envres.2020.110653
https://doi.org/10.1080/02786826.2019.1619915
https://doi.org/10.1080/02786826.2019.1623863
https://doi.org/10.1080/10962247.2016.1251995
https://doi.org/10.4209/aaqr.200619
https://doi.org/10.1080/10962247.2019.1654036
https://doi.org/10.1016/j.envint.2018.04.018
https://doi.org/10.3390/s19214701
https://www.ncdc.noaa.gov/monitoring-references/maps/us-climate-regions.php
https://www.ncdc.noaa.gov/monitoring-references/maps/us-climate-regions.php
https://www.oregon.gov/deq/FilterDocs/AQmonitoringplan.pdf
https://www.oregon.gov/deq/FilterDocs/AQmonitoringplan.pdf


4636 K. K. Barkjohn et al.: Development and application of a United States-wide correction for PM2.5 data

Pawar, H. and Sinha, B.: Humidity, density and inlet aspiration ef-
ficiency correction improve accuracy of a low-cost sensor dur-
ing field calibration at a suburban site in the north-western Indo-
Gangetic Plain (NW-IGP), Aerosol Sci. Tech., 54, 685–703,
https://doi.org/10.1080/02786826.2020.1719971, 2020.

Plantower: Digital universal particle concentration sen-
sor: Plantower PMS5003 series data manual, available
at: http://www.aqmd.gov/docs/default-source/aq-spec/
resources-page/plantower-pms5003-manual_v2-3.pdf?sfvrsn=2
(last access: 10 June 2021), 2016.

Pope III, C. A., Burnett, R. T., Thun, M. J., Calle, E.
E., Krewski, D., Ito, K., and Thurston, G. D.: Lung
cancer, cardiopulmonary mortality, and long-term exposure
to fine particulate air pollution, JAMA, 287, 1132–1141,
https://doi.org/10.1001/jama.287.9.1132, 2002.

R Development Core Team: A Language and Environment for Sta-
tistical Computing, Vienna, Austria, 2019.

Robinson, D. L.: Accurate, Low Cost PM2.5 Measurements
Demonstrate the Large Spatial Variation in Wood Smoke
Pollution in Regional Australia and Improve Modeling and
Estimates of Health Costs, Atmosphere-Basel, 11, 856,
https://doi.org/10.3390/atmos11080856, 2020.

Sayahi, T., Butterfield, A., and Kelly, K. E.: Long-term
field evaluation of the Plantower PMS low-cost par-
ticulate matter sensors, Environ. Pollut., 245, 932–940,
https://doi.org/10.1016/j.envpol.2018.11.065, 2019.

Schulte, N., Li, X., Ghosh, J. K., Fine, P. M., and Epstein, S. A.: Re-
sponsive high-resolution air quality index mapping using model,
regulatory monitor, and sensor data in real-time, Environ. Res.
Lett., 15, 10, https://doi.org/10.1088/1748-9326/abb62b, 2020.

Schwartz, J., Dockery, D. W., and Neas, L. M.: Is daily mortality
associated specifically with fine particles?, J. Air Waste Manage.,
46, 927–939, 1996.

Si, M., Xiong, Y., Du, S., and Du, K.: Evaluation and calibra-
tion of a low-cost particle sensor in ambient conditions using
machine-learning methods, Atmos. Meas. Tech., 13, 1693–1707,
https://doi.org/10.5194/amt-13-1693-2020, 2020.

Snyder, E. G., Watkins, T. H., Solomon, P. A., Thoma, E. D.,
Williams, R. W., Hagler, G. S. W., Shelow, D., Hindin, D. A.,
Kilaru, V. J., and Preuss, P. W.: The Changing Paradigm of Air
Pollution Monitoring, Environ. Sci. Technol., 47, 11369–11377,
https://doi.org/10.1021/es4022602, 2013.

Soneja, S., Chen, C., Tielsch, J. M., Katz, J., Zeger, S. L., Check-
ley, W., Curriero, F. C., and Breysse, P. N.: Humidity and gravi-
metric equivalency adjustments for nephelometer-based particu-
late matter measurements of emissions from solid biomass fuel
use in cookstoves, Int. J. Env. Res. Pub. He., 11, 6400–6416,
https://doi.org/10.3390/ijerph110606400, 2014.

Stampfer, O., Austin, E., Ganuelas, T., Fiander, T., Seto,
E., and Karr, C.: Use of low-cost PM monitors and a
multi-wavelength aethalometer to characterize PM2.5 in the
Yakama Nation reservation, Atmos. Environ., 224, 117292,
https://doi.org/10.1016/j.atmosenv.2020.117292, 2020.

Stavroulas, I., Grivas, G., Michalopoulos, P., Liakakou, E., Bougia-
tioti, A., Kalkavouras, P., Fameli, K. M., Hatzianastassiou, N.,
Mihalopoulos, N., and Gerasopoulos, E.: Field Evaluation of
Low-Cost PM Sensors (Purple Air PA-II) Under Variable Urban
Air Quality Conditions, in Greece, Atmosphere-Basel, 11, 926,
https://doi.org/10.3390/atmos11090926, 2020.

Tryner, J., Quinn, C., Windom, B. C., and Volckens, J.: Design and
evaluation of a portable PM2.5 monitor featuring a low-cost sen-
sor in line with an active filter sampler, Environ. Sci.-Proc. Imp.,
21, 1403–1415, https://doi.org/10.1039/c9em00234k, 2019.

Tryner, J., L’Orange, C., Mehaffy, J., Miller-Lionberg, D., Hofstet-
ter, J. C., Wilson, A., and Volckens, J.: Laboratory evaluation of
low-cost PurpleAir PM monitors and in-field correction using co-
located portable filter samplers, Atmos. Environ., 220, 117067,
https://doi.org/10.1016/j.atmosenv.2019.117067, 2020a.

Tryner, J., Mehaffy, J., Miller-Lionberg, D., and Volckens,
J.: Effects of aerosol type and simulated aging on perfor-
mance of low-cost PM sensors, J. Aerosol Sci., 150, 105654,
https://doi.org/10.1016/j.jaerosci.2020.105654, 2020b.

U.S. EPA: PM2.5 Continuous Monitor Comparability Assessments,
available at: https://www.epa.gov/outdoor-air-quality-data/
pm25-continuous-monitor-comparability-assessments, last
access: 11 March 2020a.

U.S. EPA: PM2.5 Data Quality Dashboard, available at: https://
sti-r-shiny.shinyapps.io/QVA_Dashboard/, last access: 11 March
2020b.

U.S. EPA: List of designated reference and equivalent methods,
available at: http://www.epa.gov/ttn/amtic/criteria.html, last ac-
cess: 15 June 2021.

van Donkelaar, A., Martin, R. V., Brauer, M., Hsu, N. C., Kahn, R.
A., Levy, R. C., Lyapustin, A., Sayer, A. M., and Winker, D. M.:
Global Estimates of Fine Particulate Matter using a Combined
Geophysical-Statistical Method with Information from Satellites,
Models, and Monitors, Environ. Sci. Technol., 50, 3762–3772,
https://doi.org/10.1021/acs.est.5b05833, 2016.

Wang, W.-C. V., Lung, S.-C. C., Liu, C. H., and Shui, C.-K.: Labora-
tory Evaluations of Correction Equations with Multiple Choices
for Seed Low-Cost Particle Sensing Devices in Sensor Networks,
Sensors-Basel, 20, 3661, https://doi.org/10.3390/s20133661,
2020.

Wang, Z., Delp, W. W., and Singer, B. C.: Performance
of low-cost indoor air quality monitors for PM2.5 and
PM10 from residential sources, Build. Environ., 171, 106654,
https://doi.org/10.1016/j.buildenv.2020.106654, 2020.

Williams, R., Duvall, R., Kilaru, V., Hagler, G., Hassinger, L., Bene-
dict, K., Rice, J., Kaufman, A., Judge, R., Pierce, G., Allen, G.,
Bergin, M., Cohen, R. C., Fransioli, P., Gerboles, M., Habre, R.,
Hannigan, M., Jack, D., Louie, P., Martin, N. A., Penza, M.,
Polidori, A., Subramanian, R., Ray, K., Schauer, J., Seto, E.,
Thurston, G., Turner, J., Wexler, A. S., and Ning, Z.: Deliberat-
ing performance targets workshop: Potential paths for emerging
PM2.5 and O3 air sensor progress, Atmos. Environ., 2, 100031,
https://doi.org/10.1016/j.aeaoa.2019.100031, 2019.

Zhang, X., Turpin, B. J., McMurry, P. H., Hering, S. V.,
and Stolzenburg, M. R.: Mie Theory Evaluation of Species
Contributions to 1990 Wintertime Visibility Reduction in
the Grand Canyon, J. Air Waste Manage., 44, 153–162,
https://doi.org/10.1080/1073161X.1994.10467244, 1994.

Zheng, T., Bergin, M. H., Johnson, K. K., Tripathi, S. N., Shirod-
kar, S., Landis, M. S., Sutaria, R., and Carlson, D. E.: Field
evaluation of low-cost particulate matter sensors in high- and
low-concentration environments, Atmos. Meas. Tech., 11, 4823–
4846, https://doi.org/10.5194/amt-11-4823-2018, 2018.

Zikova, N., Masiol, M., Chalupa, D. C., Rich, D. Q., Ferro, A. R.,
and Hopke, P. K.: Estimating Hourly Concentrations of PM2.5

Atmos. Meas. Tech., 14, 4617–4637, 2021 https://doi.org/10.5194/amt-14-4617-2021

https://doi.org/10.1080/02786826.2020.1719971
http://www.aqmd.gov/docs/default-source/aq-spec/resources-page/plantower-pms5003-manual_v2-3.pdf?sfvrsn=2
http://www.aqmd.gov/docs/default-source/aq-spec/resources-page/plantower-pms5003-manual_v2-3.pdf?sfvrsn=2
https://doi.org/10.1001/jama.287.9.1132
https://doi.org/10.3390/atmos11080856
https://doi.org/10.1016/j.envpol.2018.11.065
https://doi.org/10.1088/1748-9326/abb62b
https://doi.org/10.5194/amt-13-1693-2020
https://doi.org/10.1021/es4022602
https://doi.org/10.3390/ijerph110606400
https://doi.org/10.1016/j.atmosenv.2020.117292
https://doi.org/10.3390/atmos11090926
https://doi.org/10.1039/c9em00234k
https://doi.org/10.1016/j.atmosenv.2019.117067
https://doi.org/10.1016/j.jaerosci.2020.105654
https://www.epa.gov/outdoor-air-quality-data/pm25-continuous-monitor-comparability-assessments
https://www.epa.gov/outdoor-air-quality-data/pm25-continuous-monitor-comparability-assessments
https://sti-r-shiny.shinyapps.io/QVA_Dashboard/
https://sti-r-shiny.shinyapps.io/QVA_Dashboard/
http://www.epa.gov/ttn/amtic/criteria.html
https://doi.org/10.1021/acs.est.5b05833
https://doi.org/10.3390/s20133661
https://doi.org/10.1016/j.buildenv.2020.106654
https://doi.org/10.1016/j.aeaoa.2019.100031
https://doi.org/10.1080/1073161X.1994.10467244
https://doi.org/10.5194/amt-11-4823-2018


K. K. Barkjohn et al.: Development and application of a United States-wide correction for PM2.5 data 4637

across a Metropolitan Area Using Low-Cost Particle Monitors,
Sensors-Basel, 17, 1922, https://doi.org/10.3390/s17081922,
2017.

Zou, Y., Clark, J. D., and May, A. A.: A systematic in-
vestigation on the effects of temperature and relative
humidity on the performance of eight low-cost parti-
cle sensors and devices, J. Aerosol Sci., 152, 105715,
https://doi.org/10.1016/j.jaerosci.2020.105715, 2020a.

Zou, Y., Young, M., Chen, J., Liu, J., May, A., and Clark, J. D.:
Examining the functional range of commercially available low-
cost airborne particle sensors and consequences for monitoring
of indoor air quality in residences, Indoor Air, 30, 213–234,
https://doi.org/10.1111/ina.12621, 2020b.

Zusman, M., Schumacher, C. S., Gassett, A. J., Spalt, E.
W., Austin, E., Larson, T. V., Carvlin, G., Seto, E.,
Kaufman, J. D., and Sheppard, L.: Calibration of low-
cost particulate matter sensors: Model development for a
multi-city epidemiological study, Environ. Int., 134, 105329,
https://doi.org/10.1016/j.envint.2019.105329, 2020.

https://doi.org/10.5194/amt-14-4617-2021 Atmos. Meas. Tech., 14, 4617–4637, 2021

https://doi.org/10.3390/s17081922
https://doi.org/10.1016/j.jaerosci.2020.105715
https://doi.org/10.1111/ina.12621
https://doi.org/10.1016/j.envint.2019.105329

	Abstract
	Introduction
	Data collection
	Site identification
	Air monitoring instruments and data retrieval
	PurpleAir sensors
	Federal Reference Method (FRM) and Federal Equivalent Method (FEM) PM2.5


	Quality assurance
	FRM and FEM quality assurance
	PurpleAir quality assurance and data cleaning
	PurpleAir averaging
	PurpleAir temperature and RH errors
	Comparison of A and B channels
	Importance of PurpleAir data cleaning procedures

	Data summary

	Model development
	Model input considerations
	Selecting models
	Models considered


	Model evaluation
	Model validation methods
	Model evaluation
	Selected correction model
	The influence of FEM and FRM type
	Error in corrected data by region
	Error in corrected data by AQI category
	Comparison to existing correction equations

	Limitations and implications

	Conclusions
	Data availability
	Supplement
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

