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Abstract. Sub-grid variability (SGV) in atmospheric trace
gases within satellite pixels is a key issue in satellite design
and interpretation and validation of retrieval products. How-
ever, characterizing this variability is challenging due to the
lack of independent high-resolution measurements. Here we
use tropospheric NO2 vertical column (VC) measurements
from the Geostationary Trace gas and Aerosol Sensor Opti-
mization (GeoTASO) airborne instrument with a spatial res-
olution of about 250m× 250m to quantify the normalized
SGV (i.e., the standard deviation of the sub-grid GeoTASO
values within the sampled satellite pixel divided by the mean
of the sub-grid GeoTASO values within the same satellite
pixel) for different hypothetical satellite pixel sizes over ur-
ban regions. We use the GeoTASO measurements over the
Seoul Metropolitan Area (SMA) and Busan region of South
Korea during the 2016 KORUS-AQ field campaign and over
the Los Angeles Basin, USA, during the 2017 Student Air-
borne Research Program (SARP) field campaign. We find
that the normalized SGV of NO2 VC increases with increas-
ing satellite pixel sizes (from ∼ 10 % for 0.5km× 0.5km
pixel size to ∼ 35 % for 25km× 25km pixel size), and this
relationship holds for the three study regions, which are also
within the domains of upcoming geostationary satellite air
quality missions. We also quantify the temporal variability
in the retrieved NO2 VC within the same hypothetical satel-
lite pixels (represented by the difference of retrieved values

at two or more different times in a day). For a given satellite
pixel size, the temporal variability within the same satellite
pixels increases with the sampling time difference over the
SMA. For a given small (e.g., ≤ 4 h) sampling time differ-
ence within the same satellite pixels, the temporal variability
in the retrieved NO2 VC increases with the increasing spatial
resolution over the SMA, Busan region, and the Los Angeles
Basin.

The results of this study have implications for future satel-
lite design and retrieval interpretation and validation when
comparing pixel data with local observations. In addition,
the analyses presented in this study are equally applicable in
model evaluation when comparing model grid values to local
observations. Results from the Weather Research and Fore-
casting model coupled with Chemistry (WRF-Chem) model
indicate that the normalized satellite SGV of tropospheric
NO2 VC calculated in this study could serve as an upper
bound to the satellite SGV of other species (e.g., CO and
SO2) that share common source(s) with NO2 but have rela-
tively longer lifetime.

1 Introduction

Characterizing sub-grid variability (SGV) of atmospheric
chemical constituent fields is important in both satellite re-

Published by Copernicus Publications on behalf of the European Geosciences Union.



4640 W. Tang et al.: Sub-grid variability within satellite pixels

trievals and atmospheric chemical-transport modeling. This
is especially the case over urban regions where strong vari-
ability and heterogeneity exist. The inability to resolve sub-
grid details is one of the fundamental limitations of grid-
based models (Qian et al., 2010) and has been studied exten-
sively (e.g., Boersma et al., 2016; Ching et al., 2006; Denby
et al., 2011; Pillai et al., 2010; Qian et al., 2010). Pillai et
al. (2010) found that the SGV of column-averaged carbon
dioxide (CO2) can reach up to 1.2 ppm in global models that
have a horizontal resolution of 100 km. This is an order of
magnitude larger than sampling errors that include both limi-
tations in instrument precision and uncertainty of unresolved
atmospheric CO2 variability within the mixed layer (Gerbig
et al., 2003). Denby et al. (2011) suggested that the average
European urban background exposure for nitrogen dioxide
(NO2) using a model of 50 km resolution is underestimated
by ∼ 44 % due to SGV.

In contrast, much less attention has been paid to the sub-
grid variability within satellite pixels (e.g., Broccardo et
al., 2018; Judd et al., 2019; Tack et al., 2021). Indeed, some
previous studies (e.g., Kim et al., 2016; Song et al., 2018;
Zhang et al., 2019; Choi et al., 2020) used satellite retrievals
to study SGV in models and calculated representativeness
errors of model results with respect to the satellite mea-
surements (e.g., Pillai et al., 2010). Even though satellite
retrievals of atmospheric composition often have lower un-
certainties than model results, it has not been until recently
that the typical spatial resolution of atmospheric composition
satellite products has reached scales comparable to regional
atmospheric chemistry models (.10 km).

Quantification of satellite SGV has historically been lim-
ited by insufficient spatial coverage of in situ measurements
and is a key issue in designing, understanding, validating,
and correctly interpreting satellite observations. This is es-
pecially important in the satellite instrument development
process during which the required measurement precision
and retrieval resolution need to be defined in order to meet
the mission science goals. In addition, when validating and
evaluating relatively coarse-scale satellite retrievals by com-
paring them with surface in situ observations, SGV intro-
duces high uncertainties on top of the existing uncertainty
introduced by imperfect knowledge of the trace gas ver-
tical profiles. Accurate quantification of satellite SGV can
therefore facilitate the estimate of sampling uncertainty for
satellite product validation and evaluation. Temporal vari-
ability within sampled satellite pixels is also an important
issue in satellite design, validation, and application. For
polar-orbiting satellites, knowledge of temporal variability
is necessary to analyze the representativeness of satellite re-
trievals at specific overpass times. For geostationary Earth
orbit (GEO) satellites, developing a measure of the tempo-
ral variability in fine-scale spatial structure will be impor-
tant for assessing coincidence during validation of the new
hourly observations. This work is partly motivated by val-
idation requirements and considerations for the upcoming

GEO satellite constellation for atmospheric composition that
includes the Tropospheric Emissions: Monitoring Pollution
(TEMPO) mission over North America (Chance et al., 2013;
Zoogman et al., 2017), the Geostationary Environment Mon-
itoring Spectrometer (GEMS) over Asia (Kim et al., 2020),
and the Sentinel-4 mission over Europe (Courrèges-Lacoste
et al., 2017).

Airborne mapping spectrometer measurements provide
dense observations within the several-kilometer footprint of
a typical satellite pixel. This feature of airborne mapping
spectrometer measurements provides a unique opportunity
to estimate satellite SGV in addition to its role in satellite
validation. For example, Broccardo et al. (2018) used air-
craft measurements of NO2 from an imaging differential op-
tical absorption spectrometer (iDOAS) instrument to study
intra-pixel variability in satellite tropospheric NO2 column
over South Africa, whilst Judd et al. (2019) evaluated the
impact of spatial resolution on tropospheric NO2 column
comparisons with in situ observations using the NO2 mea-
surements of the Geostationary Trace gas and Aerosol Sen-
sor Optimization (GeoTASO). GeoTASO is an airborne re-
mote sensing instrument capable of high-spatial-resolution
retrieval of ultraviolet–visible (UV–VIS) absorbing species
such as NO2 and formaldehyde (HCHO; Nowlan et al., 2018)
and sulfur dioxide (SO2; Chong et al., 2020), and it has mea-
surement characteristics similar to the GEMS and TEMPO
GEO satellite instruments. The GeoTASO data used here
were taken in gapless, grid-like patterns – or “rasters” – over
the regions of interest, providing essentially continuous spa-
tial coverage that was repeated during multiple flights up
to 4 times a day in some cases. As such, the GeoTASO data
(with a spatial resolution of ∼ 250m×250m) provide a pre-
view of the type of sampling that is expected from the GEO
satellite sensors, making the data particularly suitable for
our study. We focus on the GeoTASO measurements made
during the Korea–United States Air Quality (KORUS-AQ)
field experiment in 2016 (Crawford et al., 2021). The mea-
surements from KORUS-AQ have been widely used by re-
searchers for various air quality topics, including quantifi-
cation of emissions and model and satellite evaluation (e.g.,
Deeter et al., 2019; Huang et al., 2018; Kim et al., 2018;
Miyazaki et al., 2019; Spinei et al., 2018; Tang et al., 2018,
2019; Souri et al., 2020; Gaubert et al., 2020). We further
compare our findings from KORUS-AQ with flights con-
ducted during the NASA Student Airborne Research Pro-
gram (SARP) in 2017 over the Los Angeles (LA) Basin to
test the general applicability of our findings over a different
urban region. The KORUS-AQ mission took place within the
GEMS domain, while the SARP in 2017 is within the do-
main of TEMPO. Given the similarity between the TEMPO
and GEMS instruments in terms of spectral ranges, spectral
and spatial resolution, and retrieval algorithms (Al-Saadi et
al., 2015), such a comparison is reasonable and useful in fa-
cilitating the generalization of the results from the study.
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We use the tropospheric NO2 vertical column (VC) re-
trieved by GeoTASO as a tool to assess satellite SGV and
temporal variability for different hypothetical satellite pixel
sizes over urban regions. Because spatial SGV and temporal
variability both vary with satellite pixel size, the two need
to be considered together to enhance the accuracy of satel-
lite product analyses. NO2 is an important air pollutant that
is primarily generated from anthropogenic sources such as
emissions from the energy, transportation, and industry sec-
tors (Hoesly et al., 2018). It is a reactive gas with a typi-
cal lifetime of a few hours in the planetary boundary layer
(PBL), although it can also be transported over long dis-
tance in the form of peroxyacetyl nitrate (PAN) and nitric
acid. NO2 is a precursor of tropospheric ozone and secondary
aerosols and has a negative impact on human health and the
environment (Finlayson-Pitts and Pitts, 1997). The results
from this paper’s analysis of NO2 also have implications for
other air pollutants that share common source(s) with NO2
but that have somewhat longer lifetimes, for example, car-
bon monoxide (CO) and SO2.

In this study, we apply a satellite pixel random sampling
technique and the spatial structure function analysis to Geo-
TASO data (described in Sect. 2) to quantify the SGV of
satellite pixel NO2 VC over three urban regions at a vari-
ety of spatial resolutions. We analyze the relationship be-
tween satellite pixel size and satellite SGV, and the relation-
ship between satellite pixel size and the temporal variability
in NO2 observations (Sect. 3). We then discuss the impli-
cations for satellite design, satellite retrieval interpretation,
satellite validation and evaluation, and satellite and in situ
data comparisons (Sect. 4). Implications for general local ob-
servations and grid data comparisons are also discussed. Sec-
tion 5 presents our conclusions.

2 Data and methods

In this section, we describe the GeoTASO instrument, cam-
paign flights, and the different analysis techniques used to
characterize the satellite pixel SGV. We outline two ap-
proaches: satellite pixel random sampling to investigate sep-
arately both spatial variability and temporal variability and
the construction of spatial structure functions for an alterna-
tive measure of spatial variability.

2.1 GeoTASO instrument

In this study, we focus on GeoTASO retrievals of tropo-
spheric NO2 VC. GeoTASO is a hyperspectral instrument
(Leitch et al., 2014) that measures nadir backscattered light
in the ultraviolet (UV; 290–400 nm) and visible (VIS; 415–
695 nm). As one of NASA’s airborne UV–VIS mapping in-
struments, it was designed to support the upcoming GEO
satellite missions by acquiring high-temporal- and high-
spatial-resolution measurements with dense sampling for op-

timizing and experimenting with new retrieval algorithms
(Leitch et al., 2014; Nowlan et al., 2016; Lamsal et al., 2017;
Judd et al., 2019).

NO2 is retrieved from GeoTASO spectra using the dif-
ferential optical absorption spectroscopy (DOAS) technique.
The retrieval methods and level 2 data processing are de-
scribed in Lamsal et al. (2017) and Souri et al. (2020) for
KORUS-AQ and in Judd et al. (2019) for SARP. Although
beyond the scope of this work, it is important to recognize
that assumptions made in the retrieval process (e.g., assumed
vertical distribution of the NO2 profile) could affect the fi-
nal variability in the retrieved NO2 fields. GeoTASO has a
cross-track field of view of 45◦ (±22.5◦ from nadir), and
the retrieval pixel size is approximately 250m× 250m from
typical flight altitudes of 24 000–28 000 ft (7.3–8.5 km). The
dense sampling of airborne remote sensing measurements
such as GeoTASO is a unique feature that provides the op-
portunity to study the expected spatial and temporal variabil-
ity within satellite-retrieved NO2 pixels at high resolution.
We use cloud-free GeoTASO data in this study. GeoTASO
NO2 VC retrievals have been validated with aircraft in situ
data and ground-based Pandora spectrometer remote sensing
measurements during KORUS-AQ. Validation of GeoTASO
NO2 VC retrievals with aircraft in situ data suggested∼ 25 %
average difference, while agreement with Pandora is better
with a difference of ∼ 10 % on average. Mean difference be-
tween Pandora and aircraft in situ data is∼ 20 %. These vali-
dation results of GeoTASO NO2 VC retrievals are better than
that reported by Nowlan et al. (2016). GeoTASO NO2 VC
retrievals during 2017 SARP have also been validated with
Pandora data (Judd et al., 2019).

2.2 The 2016 KORUS-AQ field campaign

The KORUS-AQ field measurement campaign (Crawford et
al., 2021) took place in May–June 2016 to help understand
the factors controlling air quality over South Korea. One of
the goals of KORUS-AQ was the testing and improvement
of remote sensing algorithms in advance of the launches of
the GEMS, TEMPO, and Sentinel-4 satellite missions. It is
hoped that the high-quality initial data products from the
GEO missions will facilitate their rapid uptake in air qual-
ity applications after launch (Al-Saadi et al., 2015; Kim et
al., 2020). During KORUS-AQ, GeoTASO flew on board the
NASA LaRC B200 aircraft. We focus on the data taken over
the Seoul Metropolitan Area (SMA) that is highly urbanized
and polluted and the greater Busan region that is less urban-
ized and less polluted than the SMA (Fig. 1). Figure 2 shows
the 12 GeoTASO data rasters (i.e., gapless maps) acquired
over the SMA. It took ∼ 4 h to sample the large-area rasters
(i.e., May 11 AM, May 17 AM, May 17 PM, and May 28
PM) and∼ 2 h to sample small-area rasters (i.e., June 01 PM,
June 02 AM, June 05 AM, June 09 AM, and June 09 PM).
Figure S1 in the Supplement shows the two GeoTASO rasters
acquired over the Busan region.
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Figure 1. Domain of the study over South Korea and the land cover.
Boxes indicate location of the SMA (upper left) and the Busan re-
gion (lower right) domains. The bold polygons in the two boxes
represents the political boundaries (upper left) of Seoul and Busan
(lower right). Land cover data are from MODIS Terra and Aqua
MCD12C1 L3 product, version V006, annual mean at 0.05◦ resolu-
tion; Friedl and Sulla-Menashe et al. (2015).

2.3 The 2017 SARP field campaign

During the NASA Student Airborne Research Program
(SARP) flights in June 2017 (https://airbornescience.nasa.
gov/content/Student_Airborne_Research_Program, last ac-
cess: 7 June 2021), GeoTASO was flown on board the NASA
LaRC UC-12B aircraft over the LA Basin (Fig. S2, which
also shows the land cover). A detailed description and anal-
ysis of these data can be found in Judd et al. (2018, 2019).
In this study, we compare our analyses of the KORUS-AQ
GeoTASO data with that from SARP over the LA Basin to
test the general applicability of our findings.

2.4 Satellite pixel random sampling for spatial
variability

The sampling strategy with GeoTASO provides a raster of
continuous measurements in a mapped gapless pattern at
high spatial resolution (Figs. 2, S1, and S2). This dataset
allows us to sample and study the SGV of coarser-spatial-
resolution hypothetical satellite pixels sampling the same do-
main. To mimic satellite observations and quantify the satel-
lite SGV, we randomly sample the GeoTASO data with hy-
pothetical satellite pixels spanning 27 different pixel sizes
(0.5km× 0.5km, 0.75km× 0.75km, 1km× 1km, 2km×
2km, up to 25km× 25km). Because of the transition to bet-
ter spatial resolution for the future satellite missions and the

coverage limitation in the maximum hypothetical satellite
pixel size sampled using the random sampling method, the
analysis of SGV only goes up to 25km× 25km. This sam-
pling process is conducted for each hour of each selected
flight over the regions of interest during the KORUS-AQ and
SARP campaigns. For every sampled satellite pixel, the mean
(MEANpixel) and standard deviation (SDpixel) of the Geo-
TASO tropospheric NO2 VC data within the pixel are cal-
culated to represent the satellite SGV. Normalized satellite
SGV is calculated as the standard deviation of the GeoTASO
data within the sampled satellite pixel divided by the mean
of the GeoTASO data within the same sampled satellite pixel
(SDpixel/MEANpixel).

We use a set of 10 000 hypothetical satellite pixels at each
size to include all of the GeoTASO data in the analysis and
to cover as many locations as possible. Because the data are
located closely in space but may be sampled at slightly dif-
ferent times for the same flight, we separate GeoTASO data
into hourly bins for each flight before pixel sampling in order
to reduce the impact of temporal variability in the GeoTASO
data within a single satellite pixel sample.

As an illustration, we describe the procedure below for the
17 May afternoon flight (Fig. 3) that was conducted from
13:00 to 17:00 local time: (1) the GeoTASO data during this
flight were divided into four hourly groups according to the
measurement time, i.e., 13:00–14:00, 14:00–15:00, 15:00–
16:00, and 16:00–17:00; (2) for each of the 27 hypothetical
satellite pixel sizes, we randomly generate 10 000 satellite
pixel locations within each hourly group. Therefore, for each
hour, we sample 270 000 satellite pixels (27 different satel-
lite pixel sizes and 10 000 samples for each size), and for
this example flight, we have a total of up to 1 080 000 pos-
sible satellite pixels in each of the four hourly groups. Note
that only ∼ 10 % of these samples are used in the analysis
because we discarded a sampled satellite pixel if less than
75 % of its area is covered by GeoTASO data. After apply-
ing this 75 % area coverage filter, the actual sample size de-
creases when the pixel size increases. The number of samples
is sufficient as our sensitivity tests indicate that the results do
not change by halving the sample size. We also tested other
choices of the coverage threshold over the SMA in addition
to 75 % (not shown here). The results are similar for small
pixels (.10 km2) as they are more likely to be covered by
GeoTASO data regardless of the threshold value. For larger
pixels (&15 km2), the satellite SGV is slightly lower when
using 30 % or 50 % as the area coverage threshold because
larger pixels act like smaller pixels when only partially cov-
ered. The threshold of 75 % was chosen as a trade-off be-
tween sample size and representation.

2.5 Satellite pixel random sampling for temporal
variability

We also quantify the temporal variability in the retrieved
NO2 VC within the same satellite pixels for different satel-
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Figure 2. GeoTASO data of tropospheric NO2 vertical column (molec. cm−2) measured during KORUS-AQ over the Seoul region. Each
panel shows a separate raster. Panel titles show month, day, AM/PM, raster number on that date, and mean time of raster acquisition. There
were nine flights sampling rasters over Seoul. The 1 May AM, 17 May AM, 17 May PM, 28 May PM, 1 June PM, and 2 June AM flights
each sampled one raster. The 5 June AM, 9 June AM, and 9 June PM flights each sampled two rasters. As a result, there were two flights
and two rasters on 17 May, one flight and two rasters on 5 June, and two flights and four rasters on 9 June. The bold polygons in each panel
represent the political boundary of Seoul.

lite pixel sizes. To calculate temporal variability within a hy-
pothetical satellite pixel, we need GeoTASO data to cover
the hypothetical satellite pixel at different times during the
day. During the KORUS-AQ and 2017 SARP campaigns,
rasters were treated as single units (Judd et al., 2019). Each
raster produces a contiguous map of data that we consider as
roughly representative of the mid-time of the raster. Unlike
the calculation of SGV, which is based on data separated into
hourly bins (Sect. 2.4) to reduce the impact of temporal vari-
ability in the calculated spatial variability, the satellite pixel
random sampling to assess temporal variability is based on
rasters and is only conducted for days with multiple rasters.
This is to ensure that the sampled hypothetical satellite pixels
have multiple values at different times of the day and hence
to maximize the sample size.

To assess temporal variability within the hypothetical
satellite pixels, we randomly select 50 000 pixel locations for
each of the 27 hypothetical satellite pixel sizes and use this
same set of pixel locations to sample the GeoTASO data for
each raster across all flights for a given day. This process is
repeated for all days with multiple rasters, and the 75 % of
area coverage threshold is also applied. When there are two
or more raster values of MEANpixel for a given pixel location
separated by time Dt, the temporal mean difference (TeMD)

within the satellite pixel is calculated as follows:

TeMD(Dt)

= average
(∣∣MEANpixel(t)−MEANpixel(t +Dt)

∣∣) . (1)

This procedure is repeated for each satellite pixel size.

2.6 Spatial structure function

Structure functions have been applied to in situ measure-
ments and model-generated tropospheric trace gases to an-
alyze their spatial and temporal variability in previous stud-
ies (Harris et al., 2001). The spatial structure function (SSF)
(Fishman et al., 2011; Follette-Cook et al., 2015) is an al-
ternative measure to the satellite pixel random sampling de-
scribed above for quantifying spatial variability, and in this
work, we apply the SSF to GeoTASO data to assist our anal-
ysis of satellite SGV. The main difference between the two
measures is that the SSF is based on individual GeoTASO
data points, while the results from satellite pixel random sam-
pling are based on sampled satellite pixels. The locations of
the GeoTASO pixel centers are used to calculate the dis-
tances. The SSF as defined here follows Follette-Cook et
al. (2015):

f
(
NO2, VC,D

)
= average

(
|NO2, VC (x+D)−NO2, VC(x)|

)
, (2)
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Figure 3. Demonstration of the hypothetical satellite pixel random sampling method. Each subplot is 1 h during the 17 May PM flight. For
each hour, we randomly sample 10 000 hypothetical satellite pixels at each different pixel size (i.e., 0.5km× 0.5km, 0.75km× 0.75km,
1 km× 1km, 2km× 2km, . . .,25km× 25km) over the GeoTASO data of tropospheric NO2 vertical column (molec. cm−2) every hour. The
sampled pixel size (from 0.5km× 0.5km to 25km× 25km) are shown in the lower-left corner of each sub-plot. Only 100 samples for pixel
size of 7km× 7km (thick black box) and 100 samples for 18km× 18km are shown for demonstration purposes. Samples that fail to pass
the 75 % coverage threshold are not shown. Coastlines and provincial and metropolitan city boundaries are shown by solid gray lines. Main
roads are shown by dashed blue lines (data are from http://www.diva-gis.org/gdata, last access: 7 June 2021).

where NO2, VC is tropospheric NO2 VC, and f
(
NO2, VC,D

)
calculates the average of the absolute value of NO2, VC dif-
ferences across all data pairs (measured in the same hourly
bin) that are separated by a distance D. To calculate SSF,
the first step is the same as the first step of the satellite pixel
random sampling: we group GeoTASO data hourly for each
flight to reduce the impact of temporal variability in the Geo-
TASO data, and we only pair each GeoTASO data point with
all the other GeoTASO data in the same hourly bin. More de-
tails on structure functions can be found in Follette-Cook et
al. (2015).

2.7 WRF-Chem simulation

To briefly demonstrate the application of this technique on
model evaluation and other species, we show results of a
WRF-Chem simulation (Weather Research and Forecasting
model coupled with Chemistry) with a resolution of 3km×
3km over the SMA in Sect. 4. The simulation used NCEP
GDAS/FNL 0.25 Degree Global Tropospheric Analyses and
Forecast Grids (National Centers for Environmental Predic-
tion/National Weather Service/NOAA/U.S. Department of
Commerce, 2015) as initial and boundary conditions, and
the model meteorological fields above the PBL were nudged
6-hourly. KORUS version 3 anthropogenic emissions and

FINN version 1.5 fire emissions (Wiedinmyer et al., 2011)
were used.

3 Results

In this section, we discuss the results for SGV over the dif-
ferent regions considered. Results are presented for the hypo-
thetical satellite pixel random sampling for spatial variability
and temporal variability and for the spatial structure func-
tion analysis. We note that the three regions analyzed in this
study are urban. Although we expect the results here to be
generally applicable over urban regions, we have not tested
the approach over cleaner background areas that are charac-
terized by much less heterogeneity.

3.1 Sub-grid variability (SGV) within satellite pixels

The SMA, the Busan region, and the LA Basin have different
levels of pollution – the average values of the GeoTASO NO2
VC data over the SMA, the Busan region, and the LA Basin
are 2.3×1016, 1.1×1016, and 1.3×1016 molec. cm−2, respec-
tively. Over the three regions, the mean values (MEANpixel)
and standard deviation (SDpixel) of the hypothetical satellite
pixels sampled over GeoTASO NO2 VC data are different
(Fig. S3). This is consistent with previous studies suggest-
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Figure 4. Boxplot (with medians represented by red bars, interquar-
tile ranges between 25th and 75th percentiles represented by blue
boxes, and the most extreme data points not considered outliers
represented by whiskers) for the normalized satellite sub-grid vari-
ability (SGV) over the Seoul Metropolitan Area (a), the Busan re-
gion (b), and Los Angeles Basin (c). Normalized satellite SGV is
calculated as the standard deviation of the GeoTASO data within
the sampled satellite pixel divided by the mean of the GeoTASO
data within the sampled satellite pixel. The black lines represent the
mean of the normalized satellite SGV at a given size. The resolu-
tions of TEMPO, TROPOMI, GEMS, and OMI are highlighted by
the yellow shading in the figure.

ing SGV can vary regionally (Judd et al., 2019; Broccardo
et al., 2018). However, we find that the normalized satellite
SGV (calculated as the ratio of SDpixel to MEANpixel for a
sampled pixel) is similar over each of the areas regardless of
the absolute level of pollution as represented by MEANpixel
(Fig. 4). Over the SMA (Fig. 4a), the mean normalized satel-
lite SGV of tropospheric NO2 VC increases smoothly from
∼ 10 % for the pixel size of 0.5km× 0.5km to ∼ 35 % for
the pixel size of 25 km×25km. The interquartile variation in
the satellite SGV also increases with satellite pixel sizes. The
patterns of the sampled satellite pixels over the Busan region
(Fig. 4b) and LA Basin (Fig. 4c) are also found to be similar
to those over the SMA. Furthermore, Figs. S4 and S5 show
that even the normalized SGV of individual flights over the
three domains generally follows the same pattern, except in
the case of the 9 June PM flight.

We also compare normalized satellite SGV for differ-
ent levels of pollution regardless of their regions (Fig. S6).
The normalized satellite SGV for the less polluted pixels

(MEANpixel being lower than the average value of all pixels,
i.e., 2×1016 molec. cm−2) also shows an overall similar pat-
tern as for the more polluted pixels (MEANpixel being higher
than the average value of all pixels). We notice that at small
pixel sizes, less polluted pixels have higher normalized satel-
lite SGV, possibly contributed by relatively higher GeoTASO
retrieval noise at lower pollution levels.

We show the normalized SGV for individual rasters over
the SMA (Fig. 5) to indicate the uncertainty range of the
normalized SGV shown in Fig. 4. The spread of SGV
across different individual rasters represents the uncertain-
ties of using the averaged normalized SGV for a specific
case. Note that the variation in normalized SGV with pixel
size for individual rasters generally follows the same pat-
tern (i.e., increases with satellite pixel size), especially when
the pixel size is small (≤ 10km× 10km). The normalized
SGV increases from ∼ 10 % to ∼ 25 %, with the uncer-
tainty range consistently being ±5 % when the pixel size is
smaller than 10km×10km. When the pixel size is larger than
10km× 10km, the uncertainty range broadens with pixel
sizes from±5 % (10km×10km) to±15 % (25km×25km).
This means that when the satellite pixel size is large, us-
ing the mean normalized SGV in Fig. 4 to represent specific
cases may lead to higher uncertainties. Below the resolution
of 10km× 10km, SGV can be characterized by the mean
value with relatively lower uncertainty (±5 %) and hence
high confidence, even with large diurnal or day-to-day vari-
ations. The spatial resolutions of TEMPO, GEMS, Sentinel-
4, and TROPOMI (TROPOspheric Monitoring Instrument;
Veefkind et al., 2012; Griffin et al., 2019; van Geffen et
al., 2019) are within this ≤ 10km× 10km range, while the
resolution of the Ozone Monitoring Instrument (OMI; Levelt
et al., 2006, 2018) is not. This means that applying this study
(e.g., Fig. 4) to OMI for a specific case study (e.g., a specific
day) requires extra caution.

The GeoTASO data located closely in space may be sam-
pled at slightly different times for the same flight. To explore
the impact of temporal variability on this SGV analysis, we
performed two sensitivity tests. The typical time period for
a complete flight is ∼ 4 h. In the first test, we sampled Geo-
TASO data with hypothetical satellite pixels grouped by each
complete flight rather than grouping the data by each hour
(i.e., hourly bins). The resulting patterns and relationships are
similar to those derived from grouping data into hourly bins,
except that the normalized satellite SGV increases ∼ 5 % for
small pixels due to temporal variability (Fig. S7a). In the
second test, we sampled GeoTASO data with hypothetical
satellite pixels grouped by each raster. The results are still
similar to those derived from grouping data into hourly bins
(Fig. 4), except that the normalized satellite SGV increases
∼ 1 % for small pixels due to the inclusion of temporal vari-
ability (Fig. S7b). This is because sampling by raster includes
lower temporal variability than sampling by flight but higher
temporal variability than sampling by hourly bins.
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Figure 5. Average of the normalized satellite sub-grid variability (SGV) sampled individually from the 12 rasters (represented by the colored
lines) and sampled from all the 12 rasters together (represented by the black line) over the Seoul Metropolitan Area during KORUS-AQ.
Normalized satellite SGV is calculated by the standard deviation of the GeoTASO data within the sampled satellite pixel divided by the mean
of the GeoTASO data within the sampled satellite pixel.

The three regions investigated in this work have differ-
ent levels of urbanization and air pollution (Figs. 1 and S2).
PBL conditions are also different in the morning and af-
ternoon (Fig. S8). The similarity of the relationships be-
tween the satellite pixel size and the normalized satellite
SGV over these different regions (Fig. 4) suggests that this
relationship may be generalizable to NO2 VC over urban
regions with different levels of urbanization and air pollu-
tion and different PBL conditions. Moreover, Figs. 4 and 5
point to the possibility of developing a generalized look-
up table for the expected normalized satellite SGV for NO2
VC over urban regions at different satellite pixel sizes, es-
pecially for small pixel sizes (e.g., TEMPO, GEMS, and
TROPOMI). This would be useful in satellite design, satel-
lite retrieval evaluation and interpretation, and satellite and
in situ data comparisons. For example, the satellite pixel size
of tropospheric NO2 VC retrievals from GEMS, TEMPO,
TROPOMI, and OMI are highlighted in Fig. 4. Following
Judd et al. (2019), we choose 3km× 3km, 5km× 5km,
7km× 8km, and 18km× 18km pixels to represent the ex-
pected area of the satellite pixels for TEMPO (2.1km×
4.4km), TROPOMI (3.5km× 7km), GEMS (7km× 8km),
and OMI (18km× 18km), respectively. The expected nor-
malized satellite SGV for TEMPO, TROPOMI, GEMS, and
OMI are 15 %–20 %, ∼ 20 %, 20 %–25 %, and ∼ 30 %, re-
spectively. Taking the TEMPO example, this implies that the
satellite SGV could potentially lead to uncertainties of 15 %–
20 % in a validation exercise comparing a satellite retrieval
with local measurements of NO2 VC, from a Pandora spec-
trometer for example, that may be unrepresentative of the
wider pixel area.

3.2 Temporal variability (TeMD) within the same
satellite pixels

In addition to satellite spatial SGV, we also analyze the tem-
poral variability (i.e., TeMD) within the same hypothetical
satellite pixels. Figure 6 shows TeMD of satellite-retrieved
tropospheric NO2 VC over the SMA as a function of hypo-
thetical satellite pixel size and the separation time (Dt) be-
tween flight rasters as described in Sect. 2.5. The results for
27 satellite pixel sizes analyzed are shown by different col-
ors, while results for selected satellite pixel sizes are high-
lighted by thicker lines. For all the pixel sizes, TeMD in-
creases monotonically with the time difference Dt between
two sampled raster values within the same pixel. The TeMD
of tropospheric NO2 VC is around 0.75× 1016 molec. cm−2

for a Dt of 2 h over the SMA for all the sampled satellite pixel
sizes and increases to ∼ 2× 1016 molec. cm−2 for Dt of 8 h.
This indicates that, along with improvements in the satellite
retrieval spatial resolution with smaller pixels, improving the
satellite retrieval temporal resolution with higher frequency
measurements is also an effective way to enhance capability
in resolving variabilities in NO2.

To investigate the TeMD shown in Fig. 6 we consider the
particular factors driving NO2 variability over the SMA. NO2
has a relatively short lifetime (∼ a few hours) and a strong di-
urnal cycle due to emission activities, chemistry, and chang-
ing photolysis rate (Fishman et al., 2011; Follette-Cook et
al., 2015). The diurnal cycle of the PBL may also play a large
role because horizontal dispersion occurs as the PBL thick-
ens during the day. Early in the morning, the PBL is low
(∼ 1400 m during 09:00–11:00 in the SMA during KORUS-
AQ), and strong source locations are evident such as traffic
on major highways. As the day progresses, the PBL height
increases (∼ 1800 m during 15:00–17:00; Fig. S8) due to en-
hanced convection, which further induces a stronger horizon-
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Figure 6. Temporal mean differences (TeMDs) of hypothetical
satellite pixels (molec. cm−2) over the Seoul Metropolitan Area as
a function of time difference (Dt). Results for each pixel size are
color coded, with selected sizes shown with thicker lines for refer-
ence. See also text for details.

tal divergence at the top of the convective cell that allows for
greater horizontal dispersion to take place along with the di-
vergence. By early afternoon, emissions from all the major
sources in the central region have mixed together to form a
wide area of high pollution over the urban center with strong
gradients of decreasing NO2 out to the surrounding areas.
In addition, changing wind conditions (speed and direction;
Fig. S9) during the day can also lead to a shift in pollution
patterns and result in different pollution conditions for the
same pixel at different times of the day. For example, Raster
1 of June 09 AM (09:17) and Raster 2 of June 09 PM (17:00)
are used to calculate TeMD for Dt equals 8 h. The differ-
ences in wind conditions (Fig. S9) and the pollution patterns
(Fig. 2) are large. Judd et al. (2018) point out that the topog-
raphy over the SMA also plays a role in the ability to mix
horizontally as the PBL grows. Therefore, the TeMD can be
large between morning and afternoon (i.e., for Dt longer than
6 h).

For a small Dt (2 or 4 h), TeMD increases at higher spa-
tial resolution (i.e., smaller pixel size). This is especially true
for short time periods (e.g., 2 and 4 h), which is more im-
portant for the GEO satellite measurements. For example,
for Dt of 2 h, TeMD for satellite pixels of 1km× 1km is
about 0.80×1016 molec. cm−2, while TeMD for satellite pix-
els of 25km×25km is about 0.73×1016 molec. cm−2 (∼ 9 %
lower); when Dt is 4 h, TeMD for satellite pixels of 1km×

1km is about 1.3×1016 molec. cm−2, while TeMD for satel-
lite pixels of 25km× 25km is about 1.1× 1016 molec. cm−2

(∼ 15 % lower). This indicates that when decreasing pixel
size, the temporal variability in the retrieved values will in-
crease even though the normalized satellite spatial SGV de-
creases. This is expected because averaging over a larger
region with high small-scale spatial variability smooths out
temporal variability and therefore produces smaller hourly
differences. Our finding here is consistent with that of Fish-
man et al. (2011).

As the time difference Dt increases, the temporal variabil-
ity TeMD increases for all pixel sizes. However, the TeMD
is now greater at large pixel size which is in contrast to the
higher TeMD at small pixel size for shorter Dt. This is a re-
sult of the pollution pattern that develops over the SMA dur-
ing the day (9 June) as described above. The higher TeMD
reflects the fact that many of the large pixels now span the
strong NO2 gradient between the urban and surrounding area
resulting in a much higher spatial variability than earlier in
the day at a spatial scale not captured with the smaller pix-
els. As a caution, we note that TeMD for 8 h is determined
by only the difference between Raster 1 of June 09 AM and
Raster 2 of June 09 PM (Fig. 2) and that the regional cover-
age for Raster 2 of June 09 PM is different from the coverage
of the other PM rasters. Therefore, the relationship of TeMD
and spatial resolution for a large Dt (e.g., 6 or 8 h) over the
SMA requires further study.

GeoTASO data over the Busan region is limited. Given the
fewer flights, we are not able to show how TeMD changes
with Dt over the Busan region in this study. However, we
are able to show the relationship between TeMD and satellite
pixel sizes. During KORUS-AQ, there were only two rasters
sampled over Busan with a Dt of 2 h (Fig. S10). For this Dt
of 2 h, TeMD increases slightly at higher satellite retrieval
spatial resolution (smaller pixel size). More data over the Bu-
san region would help significantly for this analysis. For the
LA Basin GeoTASO data, sampled hypothetical satellite pix-
els show TeMD increases at higher spatial resolution for the
available Dt equal to 4 and 8 h (Fig. S11). However, TeMD
is fairly constant at these two time differences, which is dif-
ferent to what was observed over the SMA (Fig. 6). We note
that with only 2 flight days of flight data, the GeoTASO data
over LA is also limited, which may be the main driver of the
difference. Besides the limited data, one possible reason is
the different wind fields over the two regions. As mentioned
previously, Raster 1 of June 09 AM and Raster 2 of June
09 PM are used to calculate TeMD for Dt equals 8 h over
the SMA. The differences in wind direction (Fig. S9) for the
two rasters are large (almost opposite in some cases). How-
ever, over LA, the differences in wind direction (Fig. S12)
for the two rasters (rasters 1 and 3 for the June 27 flight) are
relatively small compared to the differences over the SMA.
Despite the limited sample sizes, TeMD increases when in-
creasing the satellite retrieval spatial resolution over both the
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Busan region and the LA Basin, which is consistent with the
relationships over the SMA for a small Dt.

3.3 Results from spatial structure function (SSF)

In this section, we show the analysis of SSF over the SMA
(Fig. 7) as a complement to our analysis in Sect. 3.1. As men-
tioned before, SSF and SGV are different measures of spatial
variability and are not directly comparable. This is because
SSF is calculated based on differences between a single Geo-
TASO measurement and all the other GeoTASO measure-
ments on the map, while SGV is derived based on variation
among all the GeoTASO measurements within a hypothetical
satellite pixel unit. SSF measures the averaged spatial differ-
ence at a given distance, while SGV directly quantifies the
expected spatial variability within a satellite pixel at a given
size. As both SSF and SGV are related to spatial variability,
we include SSF in this study as an extension to SGV.

Figure 7a shows that the SSF in the SMA initially in-
creases with the distance between data points, peaks at
around 40–60 km during most flights, and then decreases
with distance between 60 and 140 km. The number of paired
GeoTASO data points when the distance is larger than
100 km is relatively small (Fig. S13); therefore conclusions
beyond this distance are not included in this analysis. The in-
creases in SSF for distances in the range of 1–25 km (Fig. 7b)
are consistent with the relationship between pixel sizes and
the normalized satellite SGV shown in Fig. 4. For exam-
ple, over the 1–25 km range, Fig. 4a shows the median in-
creases from around 8 % to around 28 %, an increase by a
factor of 3.5, and the black line in Fig. 7 shows an approxi-
mately similar factor (from 0.33×1016 molec. cm−2 for 1 km
to 1.5× 1016 molec. cm−2 for 25 km). This increase in SSF
between 1–25 km is also seen over the Busan region and the
LA Basin (Fig. S14). We also notice that SSF shows a rela-
tively strong dependence on the particular GeoTASO flight,
while SGV is less sensitive, especially for small pixel sizes.

The shapes of the SSF are generally consistent with previ-
ous studies for modeled or in situ observations of NO2 (Fish-
man et al., 2011; Follette-Cook et al., 2015). Previous stud-
ies also suggest that different aircraft campaigns may share
the common shape of SSF but different magnitudes, which
is strongly related to the fraction of polluted samples ver-
sus samples of background air in the campaign (Crawford et
al., 2009; Fishman et al., 2011). Differences in the shape and
size of particular cities also contribute to the differences in
the SSF. For example, at a certain distance SSF may compare
polluted areas within the same urban region, while over a dif-
ferent smaller city, the comparison at the same distance re-
veals the gradient between the polluted city and cleaner sur-
rounding background air, thus resulting in different peak val-
ues. Valin et al. (2011) found that the maximum in OH feed-
back in a NOx−OH steady-state relationship corresponds to
a NO2 e-folding decay length of 54 km in 5 m s−1 winds.
This may partially explain the peak between 40 and 60 km

in SSF. As shown in Figs. 2 and S7, the overall spatial vari-
ability over the SMA is higher in the afternoon. Over the
SMA, the SSF in the morning is generally smaller than in
the afternoon, indicating higher spatial variability in tropo-
spheric NO2 VC in the afternoon (see also Judd et al., 2018).
As described in Sect. 2.6, SSF is calculated based on hourly
binned data. However, the overall shapes of SSF (Fig. S15)
calculated on a raster basis are similar to SSF calculated on
an hourly basis (Fig. 7).

Previous studies (Fishman et al., 2011; Follette-Cook et
al., 2015) used SSF values at a particular distance to in-
dicate the satellite precision requirement at a correspond-
ing resolution in order to resolve spatial structure over the
pixel scale. For GEMS, the expected spatial differences over
the scale of its pixel for the SMA and Busan regions are
∼ 7.5×1015 and∼ 3.5×1015 molec. cm−2, respectively, tak-
ing the SSF values at 5 km to be representative. For TEMPO,
the spatial difference is ∼ 2.8× 1015 molec. cm−2 over LA
Basin taking the SSF value at 3 km. Assuming the NO2 mea-
surement precision requirement to be 1× 1015 molec. cm−2

for both TEMPO and GEMS (Chance et al., 2013; Kim et
al., 2020), the expected spatial differences over the three re-
gions are considerably higher than the precision requirement
and should be easily characterized by both the GEMS and
TEMPO missions.

4 Discussions and implications

The relationship between satellite pixel sizes and the normal-
ized satellite SGV is fairly robust over the three different ur-
ban regions studied here, and Fig. 4 points to the possibility
of developing a generalized look-up table if more data were
available in other urban regions. We note that the GeoTASO
data used in this study were sampled during spring and sum-
mer. In our future study, we will include more GeoTASO data
in the analysis to test the applicability of the look-up table
approach under different seasonal conditions and sources. A
generalized relationship between satellite pixel sizes and the
temporal variability (Fig. 6) is not as evident as the relation-
ship between satellite pixel sizes and the normalized satel-
lite SGV due to limited data. However, it is still useful for
satellite observations over the SMA, which is in the GEMS
domain and should be helpful in satellite retrieval interpreta-
tion.

Previous studies recognized the challenges in satellite val-
idation and evaluation for NO2 retrievals due to satellite
SGV and representativeness error of in situ measurements
(e.g., Nowlan et al., 2016, 2018; Judd et al., 2019; Pinardi et
al., 2020; Tack et al., 2021). The gapless airborne mapping
datasets of GeoTASO with sufficient spatiotemporal resolu-
tion are a promising way to address the issue of satellite SGV
and representativeness errors in satellite validation and eval-
uation (e.g., Nowlan et al., 2016, 2018; Judd et al., 2019).
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Figure 7. (a) Spatial structure function (SSF) for GeoTASO data of tropospheric NO2 vertical column (molec. cm−2) over the Seoul
Metropolitan Area (SMA) during KORUS-AQ and (b) the zoom-in version of panel (a) for a distance range of 1–25 km. The SSF cal-
culates the average of the absolute value of NO2, VC differences (i.e., mean difference; y axis) across all data pairs (measured in the same
hourly bin) that are separated by different distances (x axis). The SSF based on GeoTASO data measured during morning flights are solid
colored lines while the SSF based on GeoTASO data measured during afternoon flights are dashed colored lines. The SSF based on all the
data is the solid black line.

Challenges due to SGV also have implications for other
trace gas column measurements. For example, in Tang et
al. (2020), satellite SGV and representativeness errors of in
situ measurements introduced uncertainties in the validation
of CO retrievals from the MOPITT (Measurement Of Pol-
lution In The Troposphere) satellite instrument. Normalized
SGV of the GeoTASO tropospheric NO2 VC might serve as
an upper bound to the SGV of CO, SO2, and other species
that share common source(s) with NO2 but with relatively
longer lifetimes than NO2, even if their spatial distributions
have different patterns (e.g., Chong et al., 2020). For exam-
ple, at the resolution of 22km× 22km (resolution of MO-
PITT CO retrievals), the expected normalized satellite SGV
of tropospheric NO2 VC is ∼ 30 %. Therefore, we might ex-
pect the normalized satellite SGV for tropospheric CO VC to
be lower than this value.

To demonstrate this idea, we use the WRF-Chem regional
model as an intermediary step. At the model resolution, if
the SGV of the WRF-Chem model and GeoTASO NO2 VC
agree reasonably well, then the model can be used to pre-
dict the SGV of other species that are chemically constrained
with NO2 at the model and coarser resolutions. This is shown
in Fig. 8 which illustrates how SGV varies with satellite pixel
size for NO2 VC, CO VC, SO2 VC, and HCHO VC cal-
culated from a WRF-Chem simulation. The modeled NO2,
CO, SO2, and HCHO concentrations are converted to VC
and are filtered to match the rasters of GeoTASO measure-
ments (Fig. S16). As expected, SGV of modeled NO2 VC is
higher than SGV of modeled CO VC, SO2 VC, and HCHO

VC. We also notice that SGV for modeled NO2 VC, CO VC,
SO2 VC, and HCHO VC increases with pixel size, which is
similar to that for GeoTASO measurements. The SGV for
GeoTASO NO2 shown in this figure (black lines) is calcu-
lated based on GeoTASO data that are regridded to the WRF-
Chem grid (3km× 3km), making it slightly different from
that in Fig. 4. We note that the modeled NO2 SGV is greater
than that calculated from the GeoTASO data, indicating that
further work is required to reconcile difference due to model
descriptions of emissions, chemistry, and transport. Ideally,
dense GeoTASO-type measurements of CO and other species
would allow for a more comprehensive assessment of this ap-
proach.

This study is also relevant to model comparison and eval-
uation with in situ observations. Whenever in situ observa-
tions are compared to grid data (e.g., comparisons between
satellite retrievals and in situ observations, comparisons be-
tween grid-based model and in situ observations, and in data
assimilation), SGV will introduce uncertainties that need to
be quantified to better interpret and understand the compar-
ison results. For example, we note that at the resolution of
14km× 14km (a typical resolution for the forward-looking
Multi-Scale Infrastructure for Chemistry and Aerosols Ver-
sion 0; MUSICA-V0, https://www2.acom.ucar.edu/sections/
multi-scale-chemistry-modeling-musica, last access: 7 June
2021; Pfister et al., 2020), Fig. 8 shows that the expected nor-
malized SGV of tropospheric NO2 VC is∼ 25 %–30 %. This
suggests that when comparing model simulations at coarser
resolution with local observations of tropospheric NO2 VC,
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Figure 8. Boxplot of hypothetical normalized satellite SGV of NO2 vertical column (VC), SO2 VC, CO VC, and formaldehyde (HCHO)
VC derived from the WRF-Chem simulation with a resolution of 3km× 3km (colored lines) and GeoTASO NO2 VC that gridded to the
WRF-Chem grid (black lines) over the Seoul Metropolitan Area. Medians are represented by red bars, interquartile ranges between 25th and
75th percentiles by blue boxes, and the most extreme data points not considered outliers by whiskers. The modeled NO2, CO, SO2, and
HCHO are filtered to match the rasters of GeoTASO measurements.

a larger normalized SGV than this ∼ 25 %–30 % might be
expected. If comparing for a specific vertical layer instead of
vertical column, an even larger normalized SGV may occur.

For data assimilation and inverse modeling application
(e.g., top-down emission estimations from satellite observa-
tions), it is essential to accurately characterize the observa-
tion error covariance matrix R (Janjić et al., 2018). The first
component of R is the instrument error covariance matrix
due to instrument noise and retrieval uncertainty in the case
of trace gas satellite data. The second component is the repre-
sentation error covariance matrix, arising from fundamental
differences of the atmospheric sampling typically when as-
similating a local point measurement into a grid-based model
(Boersma et al., 2016). The observation error covariance due
to representativeness error is difficult to define but can be pa-
rameterized when calculating super observations by inflating
the observation error variances (Boersma et al., 2016) and
quantified by a posteriori diagnostics estimation (Gaubert et
al., 2014). Knowledge of the fine-scale model sub-grid vari-
ability is therefore essential to verify those assumptions and
inform error statistics for application to chemical data assim-
ilation studies. Our results suggest large potential improve-
ments in emission estimates when assimilating high-spatial-
resolution TROPOMI and GEO satellite data with SGV of
∼ 10 %–20 % (Fig. 4), compared to OMI data with SGV of
∼ 30 % (Fig. 4), in line with the existing literature for NO2
(e.g., Valin et al., 2011). We have also shown that signifi-
cant temporal variability in NO2 is expected at higher spatial
resolutions. This observed signal will open new avenues for
space-based monitoring of atmospheric chemistry and will
reduce errors of inverse estimates of fluxes.

5 Conclusions

Satellite SGV is a key issue in interpreting satellite retrieval
results. Quantifying studies have been lacking due to limited
observations at high spatial and temporal resolution. In this
study, we have quantified likely GEO satellite SGV by using
GeoTASO measurements of tropospheric NO2 VC over the
urbanized and polluted Seoul Metropolitan Area (SMA) and
the less-polluted Busan region during KORUS-AQ and the
Los Angeles (LA) Basin during the 2017 SARP campaigns.
The main findings of this work are the following:

1. The normalized satellite SGV increases with pixel size
based on random sampling of hourly GeoTASO data,
from ∼ 10 % (±5 % for specific cases such as an in-
dividual day/time of day) for a pixel size of 0.5km×
0.5km to ∼ 35 % (±10 % for specific cases such as
an individual day/time of day) for the pixel size of
25km×25km. This conclusion holds for all of the three
urban regions in this study despite their different levels
of urbanization and pollution and for the time of day
being morning or afternoon.

2. Due to its relatively shorter atmospheric lifetime, nor-
malized satellite SGV of tropospheric NO2 VC could
serve as an upper bound to satellite SGV of CO, SO2,
and other species that share common source(s) with
NO2. This conclusion is supported by high-resolution
WRF-Chem simulations.

3. The temporal variability (TeMD) increases with sam-
pling time differences (Dt) over the SMA. TeMD ranges
from ∼ 0.75× 1016 molec. cm−2 at Dt of 2 h to ∼ 2×
1016 molec. cm−2 (about 3 times higher) at Dt of 8 h.
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TeMD is caused by temporal variation in emission activ-
ities, photolysis, and meteorology throughout the day.
Improving the satellite retrieval temporal resolution is
an effective way to enhance the capability of satellite
products in resolving temporal variability in NO2.

4. Temporal variability (TeMD) increases as pixel size de-
creases in the SMA when the time difference is less
than 4 h. Analysis confidence at greater time differences
would require more flight datasets with longer time sep-
arations during the day. For example, when Dt is 2 h,
TeMD for satellite pixels with the size of 25km×25km
is about 9 % lower compared to TeMD for satellite pix-
els with the size of 1km×1km. Thus, ideally, temporal
resolution should be increased along with any increase
in spatial resolution in order to enhance the representa-
tiveness of satellite products.

5. The spatial structure function (SSF) at first increases
with the distance between points, peaking at around
40–60 km during most flight days, before decreasing at
greater distances. This is generally consistent with pre-
vious studies.

6. SSF analyses suggest that GEMS will encounter NO2
VC pixel-scale spatial differences of ∼ 7.5× 1015 and
∼ 3.5× 1015 molec. cm−2 over the SMA and Busan
regions, respectively. TEMPO will encounter NO2
VC spatial differences at its pixel scale of ∼ 2.8×
1015 molec. cm−2 over the LA Basin. These differ-
ences should be easily resolved by the instruments at
the stated measurement precision requirement of 1×
1015 molec. cm−2.

7. These findings are relevant to future satellite design
and satellite retrieval interpretation, especially now
with the deployment of the high-resolution GEO air
quality satellite constellation, GEMS, TEMPO, and
Sentinel-4. This study also has implication for satel-
lite product validation and evaluation, satellite and in
situ data comparisons, and more general point-grid data
comparisons. These share similar issues of sub-grid
variability and the need for the quantification of repre-
sentativeness error.

We note that this study has some uncertainties and limi-
tations. (1) The variability at a resolution finer than 250m×
250m (i.e., GeoTASO’s resolution) may introduce uncertain-
ties to the analysis here, although this is beyond the scope of
this study. (2) Even though a large number of GeoTASO re-
trievals have been analyzed in this study, we would still ben-
efit from more GeoTASO flights with a broader spatiotem-
poral coverage. More GeoTASO-type data over the Busan
region and LA Basin will help in testing the consistence
in TeMD over different regions. (3) The KORUS-AQ cam-
paign was conducted in Spring (May and June), and the
2017 SARP campaign was also conducted in June. More

GeoTASO-type measurements over South Korea during dif-
ferent season(s) would be particularly helpful to understand
and generalize the findings in this study. (4) The three regions
analyzed in this study are urban regions, and the results are
not tested over cleaner background areas that may be charac-
terized by less heterogeneity.

This work demonstrates the value of continued flights of
GeoTASO-type instruments for obtaining continuous, high-
spatial-resolution data several times a day for assessing
SGV. This will be a particularly useful reference in the
comparisons of satellite retrievals and in situ measurements
that may have representativeness errors.
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