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S1 Mixture effect on absorption peak width

The mid-infrared spectrum of a mixture has particular features compared to that of a pure compound. For instance, a comparison
between the spectrum of n-hexane and mineral oil (Nujol) indicated that Nujol, which is a complex mixture of high-molecular-
weight alkanes has a simpler mid-infrared spectrum than hexane (Mayo et al., 2004). This is while the number of normal
vibrational modes of a molecule increases with the number of atoms existing in the molecule, thus more vibrational modes are5
expected for Nujol molecules. The simplification of the Nujol spectrum over that of n-hexane, however, can be explained by
considering the fact that in the mid-infrared spectrum of a large mixture of compounds, only those absorption bands which have
highly consistent wavenumber values absorb above the background level (Mayo et al., 2004). In addition to some absorption
bands disappearing in mixture spectrum, the absorbance profile, especially absorption line width, can vary between mixture
and pure compound. This effect, which is similar to inhomogeneous broadening in pure compounds, is mainly caused by the10
slightly different energy levels of the same functional group in different molecules of a mixture.

In this section, the mixture effect on absorption peak width is investigated through a simple statistical simulation. For this pur-
pose, we have assumed that there is a mixture composed of many compounds with hypothetical Lorentzian (y = 1

1+((x−µ)/σ)2 )
absorbance profiles (Kelly, 2013) with varying mean (µ) and standard deviation (σ) (equivalent to peak frequency and width,
respectively). The mid-infrared spectrum of this mixture is the superposition of Lorentzian profiles for which a certain distri-15
bution of mean and standard deviation is considered (µ= 0+N(0,m) and σ = 1+N(0,n), whereN is a normal distribution).
After superposing and normalizing, the resulting peak is compared to the reference Lorentzian peak (y = 1

1+(x)2 ; Fig. S1). We
observe that if the variation of mean (m) is small compared to variation in standard deviation (n), the resulting normalized
peak appears to be sharper than the reference profile close to the peak (Fig. S1, right). However, if the variation of mean is
very larger compared to peak width (m>> n, left) then the resulting peak will be broader (Fig. S1, right). In other words,20
peak width in mid-infrared spectrum of a mixture may vary form that of the pure compound due to superposition of slightly
different peaks.
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Figure S1. Normalized profile resulted from superposition of 10000 individual Lorentzian profiles (y = 1
1+((x−µ)/σ)2 where µ= 0+

N(0,m) and σ = 1+N(0,n); black profile) and reference Lorentzian profile (y = 1
1+(x)2

; red profile) when m<< n (right), and when
m>> n (left).

Previously it was discussed that absorption peak width is also affected by the OM/OC ratio and the phase state. An interesting
case of peak width is rural samples which have generally narrower absorption, especially close to the peak, compared to urban
ones although they are more oxidized (Ruthenburg et al., 2014; Bürki et al., 2020; Zhang et al., 2007). This suggests that either25
the mixture effect or the physical phase has dominant narrowing effect on the peak width.

S1



S2 Estimating atmospheric organic aerosol phase state

In this study, the measured melting point of the laboratory standards was taken as reference and standards with melting temper-
ature below the laboratory temperature were considered liquid and vice versa. In order to develop statistical models to estimate
phase state of atmospheric aerosols, first, PCA was applied on the normalized aliphatic C−H profiles of the laboratory stan-
dards. Thereafter, a logistic regression with a step-wise parameter selection algorithm was used to model their phase state using5
the PC scores. The resulting logistic regression only uses PC3 scores as can be seen from Fig. S2 (liquid and solid laboratory
standards are completely separated based on the PC3 scores).
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Figure S2. Phase state probability of the laboratory standards (liquid = 0, solid = 1) against their PC3 scores. Black curve indicates the
phase state probability estimated by the logistic regression.

In order to estimate the phase state of the atmospheric samples, their normalized aliphatic C−H profiles were projected onto
the PC space to calculate their PC3 scores. The logistic regression predicts that urban samples with lower OM/OC show more
liquid-like characteristics (Fig. S3). The glass transition temperature (Tg) (parametrized by Shiraiwa et al., 2017) was also10
calculated for the atmospheric samples using the estimated mean molecular weight and the O/C ratio of this study. As can be
seen from Fig. S3, PC3 scores and calculated Tg are roughly correlated, suggesting a physical connection between Tg and PC3
scores (i.e., spectral features related to phase state). Although the logistic regression appears to capture qualitative phase state
behavior, it should be noted that a calibration set with a limited number of samples was used in this study and a more diverse
calibration set is suggested for future phase state studies.15
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Figure S3. PC3 score (used in logistic regression for modeling phase state) regressed against glass transition temperature (Tg) calculated
using the estimated mean molecular weight and the O/C ratio of this study.
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S3 Individual samples

In order to have a better understanding of the way the PLSR models function, the spectra of some individual atmospheric
samples with different estimated properties were compared in this section. For this purpose, we took the estimates of the PLSR
model as reference and compared the spectra of two samples for which one of the carbon number or the OM/OC ratio estimates
was almost identical and the other was different. Since only two parameters among molecular weight (MW), carbon number5
(nC) and the OM/OC ratio are independent and the third one can be derived from the other two, we essentially observe the
effect of moving horizontally and diagonally in the estimated MW-nC space (Fig. S4) by this choice of samples. This kind of
analysis is useful as molecular weight and carbon number are highly correlated in the calibration set and differentiating the
factors affecting each is not straightforward.

MW

nC

Lines of constant OM/OC

Figure S4. MW-nC space considering the molecular weight (MW) and carbon number (nC) of organic aerosols as independent variables.
Dashed lines show constant OM/OC ratio lines.

S3.1 Similar OM/OC10

Here, two samples having similar estimated OM/OC ratio (≈ 1.4) and slightly different molecular weight and carbon number
are considered (Table S1). Both samples have similar peak width and frequency. However, the sample with higher carbon
number and molecular weight has a shorter first (A1) and third peak (A3) (Fig. S5), which is consistent with what observed in
the calibration set. This example shows that A1 is the main factor used by the models for carbon number estimates.
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Figure S5. Normalized baseline-corrected spectra of two ambient samples which have similar estimated OM/OC ratios, but different esti-
mated molecular weight and carbon number.

Table S1. Predicted molecular weight, carbon number and OM/OC ratio for individual samples having similar OM/OC ratio.

Site name/date MW (gmol−1) nC OM/OC
Phoenix 2011.01.12 288 17 1.40
Puget Sound 2013.04.04 268 16 1.40

S3.2 Similar carbon number (nC):

Two samples with similar estimated carbon number and fairly different molecular weight and OM/OC ratio are considered
(Table S2). The sample with higher molecular weight has slightly lower peak frequency (Fig. S6) although having the same
carbon number. However, this sample has lower frequency which is consistent with observations in the calibration set as well.
This shows that molecular weight estimation is probably based on peak ratio (due to its correlation with carbon number) as5
well as peak frequency besides some unidentified fine features.
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Figure S6. Normalized baseline-corrected spectra of two ambient samples which have similar carbon number but different molecular weight
and OM/OC ratio.
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Table S2. Predicted molecular weight, carbon number and OM/OC ratio for individual samples having similar carbon number.

Site name/date MW (gmol−1) nC OM/OC
Fresno 2013.01.13 280 16 1.5
Phoenix 2011.10.24 257 16 1.4

To conclude, studying the individual spectra shows that the predictions made by the PLS models in atmospheric samples
are generally consistent with the trend of the basic features in the calibration set. Nonetheless, there are also instances that the
predictions cannot be justified suggesting that the PLS models rely on a combination of basic feature (peak ratio, frequency
and width) as well as some fine structures in the spectra that are not captured by basic features.
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