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Abstract. Organic matter (OM) is a major constituent of fine
particulate matter, which contributes significantly to degra-
dation of visibility and radiative forcing, and causes adverse
health effects. However, due to its sheer compositional com-
plexity, OM is difficult to characterize in its entirety. Mid-
infrared spectroscopy has previously proven useful in the
study of OM by providing extensive information about func-
tional group composition with high mass recovery. Herein,
we introduce a new method for obtaining additional charac-
teristics such as mean carbon number and molecular weight
of these complex organic mixtures using the aliphatic C−H
absorbance profile in the mid-infrared spectrum. We apply
this technique to spectra acquired non-destructively from
Teflon filters used for fine particulate matter quantification
at selected sites of the Inter-agency Monitoring of PRO-
tected Visual Environments (IMPROVE) network. Since car-
bon number and molecular weight are important character-
istics used by recent conceptual models to describe evolu-
tion in OM composition, this technique can provide semi-
quantitative, observational constraints of these variables at
the scale of the network. For this task, multivariate statistical
models are trained on calibration spectra prepared from at-
mospherically relevant laboratory standards and are applied
to ambient samples. Then, the physical basis linking the ab-
sorbance profile of this relatively narrow region in the mid-
infrared spectrum to the molecular structure is investigated
using a classification approach. The multivariate statistical
models predict mean carbon number and molecular weight
that are consistent with previous values of organic-mass-to-
organic-carbon (OM/OC) ratios estimated for the network

using different approaches. The results are also consistent
with temporal and spatial variations in these quantities as-
sociated with aging processes and different source classes
(anthropogenic, biogenic, and burning sources). For instance,
the statistical models estimate higher mean carbon number
for urban samples and smaller, more fragmented molecules
for samples in which substantial aging is anticipated.

1 Introduction

1.1 Organic aerosols and measurement methods

Organic matter (OM) is known to be an important constituent
of fine particulate matter (PM). It is estimated to consti-
tute 20 %–50 % of the total fine PM at midlatitudes and up
to 90 % in tropical forests (Kanakidou et al., 2005). This
organic fraction contributes significantly to aerosol-related
phenomena such as visibility and climate change, through
radiative forcing and affecting cloud formation, and causes
adverse health effects (Shiraiwa et al., 2017b; Hallquist et al.,
2009). Such effects underscore the importance of better
quantification of organic fraction in particulate matter, which
is a complex mixture of a multitude of compounds whose
compositions, concentrations, and formation mechanisms are
not yet completely understood (Turpin et al., 2000).

The determination of organic aerosol composition in-
volves a large range of analytical and computational tech-
niques. Among the widely known techniques are gas
chromatography/mass spectrometry (GC/MS), mid-infrared
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spectroscopy – often referred to as Fourier transform in-
frared spectroscopy (FT-IR) – and aerosol mass spectrometry
(AMS). GC/MS provides molecular speciation information
but is limited to a small mass fraction of the organic aerosols
as low as 10 % (Hallquist et al., 2009). AMS and FT-IR,
however, can be used to analyze most of the organic mass
in addition to providing information about either chemical
classes or functional groups (Hallquist et al., 2009). AMS
is an online technique with a relatively high size and time
resolution. Nevertheless, the extensive fragmentation caused
by commonly used ionization method in AMS, i.e., electron
impact (EI) ionization, makes the identification of original
species difficult (Canagaratna et al., 2007; Faber et al., 2017).
In recent years, soft ionization methods such as electrospray
ionization (ESI), photoionization (PI), and chemical ioniza-
tion (CI) have been used frequently for predicting physico-
chemical properties of organic aerosol (OA), e.g., volatility
(Li et al., 2016; Xie et al., 2020), phase state, and viscos-
ity (Li et al., 2020; DeRieux et al., 2018; Shiraiwa et al.,
2017a), as a function of measured elemental composition
and molecular weight. These methods minimize analyte frag-
mentation, providing better estimates of molar mass of in-
dividual molecules but often have other shortcomings such
as ionization efficiency, which varies by molecule (Nozière
et al., 2015; Iyer et al., 2016; Hermans et al., 2017; Lopez-
Hilfiker et al., 2019).

In mid-infrared spectroscopy, the vibrational modes of or-
ganic molecules, whose frequencies fall in the range of mid-
infrared electromagnetic radiation, are excited. The advan-
tages of mid-infrared spectroscopy over other common tech-
niques of quantifying OM are providing direct information
on functional groups, while minimizing sample alteration
during the analysis and having low sampling and analytical
cost (Ruthenburg et al., 2014). However, this method only
provides bulk functional group (FG) information and has un-
certainties regarding the absorption coefficient for group fre-
quencies (although this coefficient is roughly similar across
different compounds; Hastings et al., 1952). Moreover, inter-
pretation of mid-infrared spectrum is often complicated due
to presence of overlapping peaks. In previous studies, differ-
ent statistical methods were used to connect mid-infrared ab-
sorbances to molar abundance of different functional groups,
from which OM, OC (organic carbon), and the OM/OC ratio
were calculated with minimal assumptions (Coury and Dill-
ner, 2008; Ruthenburg et al., 2014; Takahama et al., 2016;
Boris et al., 2019). These studies showed good agreement be-
tween FT-IR measurements and other methods of OM char-
acterization. For example, Boris et al. (2019) showed that OC
measured by FT-IR is around 80 % of OC from thermal opti-
cal reflectance (TOR) measurements.

In addition to the abundance of organic functional groups,
mid-infrared spectroscopy is informative regarding the envi-
ronment in which organic bonds are vibrating (e.g., degree
of hydrogen bonding; Pavia et al., 2008); therefore, it can
be used to extract more detailed structural information about

OM. This ability of mid-infrared spectroscopy has been in-
vestigated to a lesser extent in the context of atmospheric
OM. In this work, we used this aspect to investigate two
important structural parameters in OM, i.e., mean molecular
weight, and mean carbon number. These two parameters are
important characteristics used by recent conceptual models
and parameterizations to describe evolution in atmospheric
OM, in terms of its volatility and phase state (Shiraiwa et al.,
2017a; Pankow and Barsanti, 2009; Kroll et al., 2011; Don-
ahue et al., 2011). Moreover, inspecting the spatial and tem-
poral variations of these parameters helps us understand the
processes involved in aerosol aging, especially fragmentation
(Murphy et al., 2012), and can be useful for identification
of the dominant sources (Price et al., 2017; Gentner et al.,
2012).

In this paper, the mean molecular weight, carbon num-
ber, and OM/OC ratio of ambient aerosols, which were col-
lected on polytetrafluoroethylene (PTFE) filters at selected
Inter-agency Monitoring of PROtected Visual Environments
(IMPROVE) sites, were estimated using FT-IR spectroscopy.
First, the aliphatic C−H region (2800–3000 cm−1) was ex-
tracted from the baseline-corrected spectra of laboratory
standards. The C−H spectral bands were then normalized to
eliminate abundance information. Then, partial least squares
regression (PLSR) was used to develop models on the high-
dimensional and collinear spectral data. Thereafter, the de-
rived statistical models were used to estimate the mean prop-
erties of ambient samples. Finally, a classification algorithm
was applied to the PLSR model estimates to provide a better
understanding of how they function.

1.2 Aliphatic C−H absorption and the molecular
structure

We have used the aliphatic C−H region (2800–3000 cm−1)
in the mid-infrared spectrum to build statistical models for
estimating molecular weight and carbon number. This sec-
tion describes the connection of that region of the spectrum
with the molecular structure of organic aerosols and com-
pares the approach used in this work with previous studies.

Recent studies using FT-IR and AMS have shown that
the aliphatic C−H is the most abundant functional group
in organic aerosols (Russell et al., 2009; Ruthenburg et al.,
2014; Zhang et al., 2007), highlighting its importance in OM.
This functional group also exhibits characteristics of “good
group” frequencies in the mid-infrared stretch region (Mayo
et al., 2004). Since the hydrogen atom is much lighter than
the carbon atom, most of the displacement during oscilla-
tion is related to the hydrogen; thereby, the carbon atom, and
consequently its connection to the rest of the molecule, is in-
volved to a much lesser extent in the stretch (Mayo et al.,
2004). This phenomenon results in a fairly consistent pro-
file for the C−H absorption band among different molecules
containing this functional group and makes it possible to re-
duce the dimensionality of spectrum to few independent vari-
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ables describing the band profile (advantageous when con-
structing statistical models using a limited number of sam-
ples). The light hydrogen atom also causes the aliphatic C−H
functional group to absorb at a relatively high stretch fre-
quency, making it isolated from most of other absorbing
bonds (Mayo et al., 2004) except the broad carboxylic acid
O−H stretch, which absorbs in the 2400–3400 cm−1 range
and the ammonium N−H stretch (Pavia et al., 2008). These
broad absorption profiles can be separated from the narrow
aliphatic C−H bands by baseline correction. The unsaturated
and aromatic C−H bonds, which absorb at a slightly higher
frequency than aliphatic C−H, were not considered in this
work. These bonds are not prevalent in atmospheric samples
(Russell et al., 2011; Decesari et al., 2000) and their absorp-
tion usually falls below the FT-IR detection limit (Russell
et al., 2009). The absorption bands attributed to unsaturated
and aromatic C−H were not visible in the mid-infrared spec-
tra of atmospheric samples of this study.

The aliphatic C−H (sp3-hybridized) stretching band in the
mid-infrared spectrum is composed of four absorption peaks
(two doublets) that are attributed to CH2 (methylene) and
CH3 (methyl) symmetric and asymmetric stretches (Mayo
et al., 2004). Methine (tertiary CH) also absorbs in this re-
gion but has a very weak absorption compared to methyl
and methylene (Pavia et al., 2008). The profile of these four
peaks (characterized by peak frequency, intensity, and width)
is affected by the structure of the molecule, inter- and intra-
molecular interactions that change electron distribution, and
the equilibrium geometry of the molecule (Atkins et al.,
2017; Kelly, 2013) as discussed below.

Group vibrational modes in a molecule are not completely
decoupled from the rest of the molecule (McHale, 2017).
Equation (1) describes a two-body harmonic oscillator model
of molecular vibration (from a classical point of view), for
which ν̄ is the fundamental wavenumber at which the bond
vibrates, c is the speed of light, K is the spring constant of
the chemical bond, mH is mass of hydrogen atom, and mM
is the mass of the rest of the molecule (assuming the rest
of the molecule is stiff). The reduced mass of the system,
µ, increases with increasing the molecular weight (Eq. 1),
resulting in a decreased vibrational frequency (wavenum-
ber). There are also effects that change the vibrational fre-
quency through changing the bond strength. For example, the
electron-withdrawing effect of neighboring polar groups and
ring structure strain elevate the absorption frequency of the
oscillator by increasing the equivalent spring constant (Pavia
et al., 2008). The Bohlmann effect, in which electron density
is transferred from the lone pair of a neighboring nitrogen
or oxygen into the C−H anti-bonding orbital, decreases the
frequency by weakening the C−H bond (Lii et al., 2004).
Hydrogen-bonding interactions and phase state can also af-
fect absorption frequency and intensity of bands correspond-

ing to vibrational modes (Fornaro et al., 2015; Kelly, 2013):

ν =
1

2πc

√
K

µ
,

where µ=
mHmM

mH+mM
.

(1)

The environment in which the molecules vibrate can affect
the absorption peak width through different homogeneous
and inhomogeneous broadening mechanisms. Slightly differ-
ent interaction of molecules in liquids and amorphous solids
(to a lesser extent in crystals) is the basis of inhomogeneous
broadening (Kelly, 2013). This phenomenon determines the
change in peak width due to phase state by changing the level
of interaction between the molecules. Hydrogen bonding can
also cause inhomogeneous broadening due to enhanced an-
harmonicity (Thomas et al., 2013). The weak hydrogen bond,
which can exists for aliphatic C−H functional group (Desir-
aju and Steiner, 2001), broadens its absorption band slightly
and shifts its absorption frequency.

The peak height ratios in the aliphatic C−H region are also
indicators of some structural features of the molecule. For ex-
ample, the ratio of peak heights of asymmetric CH3 stretch-
ing to asymmetric CH2 stretching shows the relative abun-
dance of these groups in the sample (Orthous-Daunay et al.,
2013). For straight-chain alkanes and some polymers, this
ratio is directly related to the chain length and can be used
to estimate the carbon number of a molecule (Lipp, 1986;
Mayo et al., 2004). This ratio as well as the tertiary C−H ab-
sorption are informative about the degree of branching in the
molecule. The ratio of symmetric to asymmetric CH2 peak
heights is an indicator of rotational and conformational order
in a molecule, and is related to chain length and phase state
(Hähner et al., 2005; Corsetti et al., 2017; Orendorff et al.,
2002). Price et al. (2017) compared that ratio between mid-
infrared spectra of emissions under different engine condi-
tions for ultra-low sulfur diesel (ULSD) and hydrogenation-
derived renewable diesel (HDRD) fuels, observed a slightly
greater ratio for the ULSD emissions, and suggested this was
due to the differences in the carbon number distribution of
the two fuel emissions. In addition, some other vibrational
bands can affect this region through forming overtones and
combination bands (Thomas, 2017).

Overall, the absorbance profile in the aliphatic C−H re-
gion contains direct and indirect information about carbon
number and molecular weight and shows significant varia-
tion in laboratory standards and atmospheric samples (Fig. 1)
related to their molecular structure. In this work, we adopt a
new approach for using mid-infrared spectra to characterize
OM. We use the variations in the aliphatic C−H region to es-
timate mean carbon number and mean molecular weight of
atmospheric samples. In previous studies on the mid-infrared
spectrum of atmospheric aerosols, functional group molar
abundance in laboratory standards or total OC from other
methods such as TOR were considered as the response vari-

https://doi.org/10.5194/amt-14-4805-2021 Atmos. Meas. Tech., 14, 4805–4827, 2021



4808 A. Yazdani et al.: Mean carbon number and molecular weight in atmospheric aerosols

Figure 1. Normalized aliphatic C−H spectra of the laboratory standards (a) and several atmospheric samples (b). This figure shows variation
in absorbance profile among the standards and atmospheric samples.

able, while non-normalized absorbances were considered as
independent variables (Takahama et al., 2013; Ruthenburg
et al., 2014; Reggente et al., 2016). In this manner, linear
models resembling the Bouguer–Lambert–Beer law were de-
veloped. In this study, however, molecular weight and carbon
number statistical models were developed using chemical
formulas of the laboratory standards (no molar abundance in-
formation) and their normalized aliphatic C−H absorbances
as independent variables. The current approach extracts de-
tailed information from the mid-infrared spectrum comple-
mentary to previous approaches (Fig. 2).

2 Methods

We will describe the atmospheric samples as well as the lab-
oratory standards for the calibration and test set in Sect. 2.1
and 2.2. Thereafter, the methodology for data analysis and
interpretation will be discussed in Sect. 2.3, 2.4, and 2.5.

2.1 IMPROVE network monitoring sites (sampling
and analysis)

Particulate matter with diameter less than 2.5 µm (PM2.5)
was collected on PTFE filters (25 mm diameter Teflo® mem-
brane, Pall Corporation) every third day for 24 h, midnight
to midnight, at a nominal flow rate of 22.8 Lmin−1 during
2011 and 2013 at selected sites in the IMPROVE network
(http://vista.cira.colostate.edu/improve/, last access: 8 Octo-
ber 2020). There are, in total, 814 samples collected at 7 sites
in the US in the year 2011 and 2161 samples collected at 16
different sites in the US 2013 (see Fig. 3). Overall, 1 out 7
sites in 2011 and 4 out of 16 of sites in 2013 are urban sites,
and the rest are rural. FT-IR analysis was performed on the
PTFE filters using a Bruker Tensor 27 FT-IR spectrometer
equipped with a liquid nitrogen-cooled, wideband mercury–
cadmium–telluride (MCT) detector and at a resolution of
4 cm−1 (data intervals of 1.93 cm−1; Nyquist sampling). For
samples with low molar abundance of organic compounds,

especially aliphatic C−H, baseline correction could not be
done properly in the aliphatic C−H region, resulting in irreg-
ular and negative absorbance profiles. These samples were
omitted from further analysis and only 798 were analyzed in
this work. As can be seen from Fig. 4, data recovery is higher
at urban sites than at rural sites due to a usually more promi-
nent aliphatic C−H peak. Due to this undersampling, gener-
alizing the results of this work to the whole of rural samples
should be done with caution.

2.2 Laboratory standards (sampling and analysis)

Compounds containing relevant functional groups to atmo-
spheric OM such as aliphatic C−H, alcohol and acid O−H,
carbonyl C=O, and with different structures (straight chain
and cyclic) and various chain lengths were used to produce
laboratory standards (Table 1). All compounds used for cre-
ating the standards contained aliphatic C−H, which is the
main focus of this study. Five of these compounds were
alkanes, just containing aliphatic C−H. Three were straight-
chain alcohols containing alcohol O−H as well. One was
cyclic alcohol, and one was a cyclic ketone having carbonyl
C=O; two were cyclic (not aromatic) sugar derivatives con-
taining several O−H groups. The calibration set also con-
tained an ester, a ketone, and one dicarboxylic acid. In ad-
dition to relevance to atmospheric OM, these standards were
selected based on the availability of spectroscopic data and
their suitability for atomization. These compounds had com-
parable absorption coefficients for aliphatic C−H, and the ef-
fect of other functional groups, heteroatoms, and the molec-
ular structure was analyzed indirectly via the change in the
aliphatic C−H absorbance profile. Some of the laboratory
standards and their resulting spectra were taken from Ruthen-
burg et al. (2014). The rest were created (using a similar
protocol) from methanolic solutions with a concentration
of 0.1 gL−1 and analyzed by FT-IR as follows. Atomized
aerosols of the desired compounds were first generated by
a TSI Model 3076 aerosol generator using the methanolic
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Figure 2. Diagram showing the relation between spectral features and molecular or physical properties. The way previous approaches (e.g.,
Ruthenburg et al., 2014; Takahama et al., 2013) and the current approach use the mid-infrared spectrum to estimate different parameters is
shown in blue and red boxes, respectively. Highlighted molecular properties can only be estimated using the current approach.

Figure 3. The location of IMPROVE sites used for this work (the
US and Alaska); the year in which samples are taken is differenti-
ated by color and the type of the site by point shape.

solutions. Then, these particles were conducted by the flow
system towards a 47 mm PTFE filter (Teflo® membrane, Pall
Corporation), where they were collected. The flow system
was composed of a silica gel dryer (for drying the aerosols
before collection), a sharp-cut-off 1 µm cyclone, and a diluter
system (which facilitated the adjustment of aerosol concen-
tration in the line). The pressure drop needed for the flow
through the filter was provided by a rotary vacuum pump
(Gast 0523-101Q-G588NDX), and the filter flow was con-
trolled by a gas-flow controller (Alicat MCR-100-SLPM-
D/5M). The mass on the filters ranged from few micrograms
to tens of micrograms. After collecting the aerosols on the
filters, FT-IR analysis was performed on the PTFE filters us-
ing a Bruker Vertex 80 FT-IR spectrometer equipped with
a deuterated lanthanum α alanine doped triglycine sulfate

Figure 4. Percentage of the samples which were recovered from
each category (sample type and season) after baseline correction.
The number of samples in each category is shown in red.

(DLaTGS) detector, with the same spectral resolution as the
spectra of the ambient samples.

In total, 168 laboratory samples with different composition
and molar abundance (absorption amplitude ranging from
0.001 to 2 before normalization) were used, from which a
subset of 43 samples was kept as a test set and the rest were
used as the calibration set. The test set was used solely for
the purpose of evaluation of the statistical models developed
using the calibration set. However, the final statistical mod-
els, which were applied to ambient samples, were developed
using all 168 laboratory standards to increase the precision.

2.3 Baseline correction and normalization

The baseline removal is often a useful step in mid-infrared
spectroscopy on PTFE filters, like in other methods of spec-
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Table 1. Chemicals used in the calibration set to analyze the effect of different physical or chemical properties of organic molecules on
aliphatic C−H absorbance profile.

Phase Molecular
state weight

Compound name Formula Class at 25 ◦C (gmol−1) OM/OC

Tetradecane C14H30 alkane liquid 198.4 1.18
Hexadecane C16H34 alkane liquid 226.4 1.18
Heneicosane C21H44 alkane solid 296.6 1.18
Docosane C22H46 alkane solid 310.6 1.18
Triacontane C30H62 alkane solid 422.8 1.17
1-Pentadecanol C15H32O alkanol solid 228.4 1.27
1-Eicosanol C20H42O alkanol solid 298.6 1.24
1-Docosanol C22H46O alkanol solid 326.6 1.24
Cyclohexanol C6H12O cyclic alcohol liquid 100.2 1.39
Cyclohexanone C6H10O cyclic ketone liquid 98.1 1.36
Fructose C6H12O6 sugars and their derivatives solid 180.2 2.50
Levoglucosan C6H12O5 sugars and their derivatives solid 162.1 2.25
Suberic acid C8H14O4 dicarboxylic acid solid 174.2 1.81
Arachidyl dodecanoate C32H64O2 ester solid 480.9 1.25
12-Tricosanone C23H46O ketone solid 338.7 1.23

troscopy. The baseline arises from light scattering by the fil-
ter membrane (Mcclenny et al., 1985) and particles collected
on the filter as well as electronic transitions of some car-
bonaceous materials (Russo et al., 2014; Parks et al., 2019).
For baseline removal, we used the smoothing spline method
on the 1500–4000 cm−1 region, where PTFE filter does not
absorb, with parameter selection criteria similar to the ap-
proach taken by Kuzmiakova et al. (2016). Briefly, a cubic
smoothing spline was fitted to the spectrum and then was
subtracted from the raw spectrum to obtain the pure con-
tribution of functional groups at each wavelength. The an-
alyte region (the aliphatic C−H absorption region; 2800–
3000 cm−1) was manually excluded from the baseline by set-
ting the weights in this region to zero in the smoothing spline
objective function (refer to Kuzmiakova et al., 2016). The
rest of the spectrum between 1500 and 4000 cm−1 was in-
cluded in the baseline by setting the weights to 1. After base-
line correction, the aliphatic C−H absorbances were scaled
between 0 and 1 (Fig. 1) for all spectra so that the absorbance
profiles were comparable regardless of the absorbance inten-
sity (functional group abundance).

2.4 Building the calibration models

In order to estimate molecular weight and carbon number
from the normalized aliphatic C−H absorbances in the mid-
infrared spectra, we seek the solution of the following linear
equation for the calibration models:

y = Xb+ e, (2)

where X is the normalized spectra matrix (the aliphatic C−H
absorption region, 2800–3000 cm−1), y is the vector of re-
sponse variable (molecular weight or carbon number), and

e is a vector of residuals (y and X are assumed to be cen-
tered). In spectroscopic applications, due to indeterminacy
(more independent variables than the number of samples)
and collinearity (inter-correlation between independent vari-
able), the ordinary least squares (OLS) method is not appli-
cable or is not robust unless regularized. Among the com-
mon methods developed for treating such a data structure, we
chose univariate (y is a vector, i.e., has one variable) partial
least squares regression (PLSR) for this work (Wold et al.,
1983). Univariate PLSR projects X onto P basis with orthog-
onal scores T and residual matrix E (Eq. 3) such that the
covariance between each score column and y is maximized
(in each step of deflation). Thereafter, the response variable
y is regressed linearly against the scores (Eq. 4). In Eq. (4),
c is the regression coefficient of y as a function of scores (T)
and f is the vector of residuals.

X= TP>+E (3)
y = Tc+f (4)

Determining the optimum number of latent variables
(LVs), which are linear combinations of original wavenum-
bers in this study, is an essential step for developing cali-
bration models with predictive capability. After solving the
PLSR problem for calibration models with different num-
ber of LVs, we ran a repeated 10-fold cross validation on
the calibration models and calculated the root mean square
error (RMSE) of predictions (for the calibration set) for
each model. Thereafter, the model whose RMSE was within
1 standard error from the calibration model with minimum
RMSE and had fewer LVs (i.e., a simpler model) was chosen
(Hastie et al., 2009). Based on the above-mentioned proce-
dure, the optimal number of LVs for molecular weight and
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carbon number calibration models was found to be 19 and
20, respectively.

2.5 Interpreting the calibration models using the basic
spectral features

Although the PLSR models have considerably fewer LVs
(approximately 20) than the original wavenumbers (105), the
lack of physical interpretability and remaining number of
LVs still hinders their physical interpretation. Therefore, we
first analyze the basic (physically interpretable) features of
the mid-infrared spectrum – peak frequencies, widths, and
ratios in the aliphatic C−H region – for the calibration set
and their relation with carbon number and molecular weight
(Sect. 3.1). Spatial and temporal variations of these patterns
in the atmospheric samples are also analyzed and related to
similar patterns in the laboratory standards.

The four basic features of the ambient sample spectra were
used to build a classification and regression tree (CART)
(Breiman et al., 1983) to approximate the PLSR predictions
of mean molecular weight and carbon number and to bet-
ter understand their connection with the underlying spec-
tral absorption characteristics. In this approach, binary deci-
sion trees are generated to classify the PLSR estimates based
on partitioned domains of their basic spectral features. The
CART algorithm expands the trees in the order of decreas-
ing explanatory power until certain stopping conditions (e.g.,
minimum number of observations in terminal nodes or mini-
mum improvement of explanatory power at each step of split-
ting) are satisfied.

3 Results and discussion

First, the basic features of the aliphatic C−H profile are dis-
cussed in the atmospheric and the laboratory samples, fol-
lowed by a similarity check between the two (Sect. 3.1).
Then, development of calibration models for predicting
molecular weight and carbon is described, followed by in-
vestigation of their performance in the calibration and test
(Sect. 3.2). Thereafter, the model estimates are discussed for
atmospheric samples and compared to the results reported in
literature (Sect. 3.3). Finally, the basic features introduced
earlier are used to classify the results of the sophisticated
(PLSR) models in order to obtain a better understanding of
the way they function (Sect. 3.4).

3.1 Basic features

Basic features of the spectrum in the aliphatic C−H region
were calculated for atmospheric samples and laboratory stan-
dards to study their temporal and spatial variation and their
relation with molecular properties such as molecular weight,
carbon number, and the OM/OC ratio. These variables, al-
though few, can give a good estimate of the absorbance pro-
file and make it more interpretable.

Figure 5. A sample C−H spectrum showing the convention of
peak parameters used in this study. The symmetric CH2 (ν̃s CH2)
wavenumber is denoted by ν̃1. The asymmetric CH2 (ν̃as CH2)
wavenumber is denoted by ν̃2 and the asymmetric CH3 (ν̃as CH3)
wavenumber by ν̃3. Absorbance and width of the ith peak are also
denoted by Ai and wi , respectively.

Figure 5 shows the convention of spectral features in the
aliphatic C−H (2800–3000 cm−1) region used in this study.
Apart from methine group (tertiary C−H), which has a very
weak absorption (Pavia et al., 2008), there are two doublets
in this region corresponding to CH2 and CH3 symmetric
and asymmetric stretching vibrations. The CH3 symmetric
peak is typically suppressed by the surrounding peaks and is
not completely distinguishable. Among the remaining peaks,
the symmetric CH2 (ν̃s CH2) wavenumber is denoted by ν̃1.
Likewise, the asymmetric CH2 (ν̃as CH2) wavenumber is de-
noted by ν̃2 and the asymmetric CH3 (ν̃as CH3) wavenumber
by ν̃3. Absorbance and peak width of the ith peak are also
denoted by Ai and wi , respectively.

In the next subsections, the variations of the mentioned
spectral features are studied in the laboratory standards and
atmospheric samples. For this purpose, the atmospheric sam-
ples are separated into urban, rural, and burning categories.
The burning category constitutes 95 samples of urban or ru-
ral sites and is taken from clusters 9a, 9b, and 10 of Bürki
et al. (2020) based on their spectral similarity. These samples
are believed to be influenced by residential wood burning or
wildfires since they were usually collected during a known
fire period (Rim Fire in California in 2013) or in Phoenix,
AZ, during winter months when residential wood burning
typically occurs (Pope et al., 2017).

3.1.1 Asymmetric CH2 peak wavenumber (ν̃2)

We calculated the second peak wavenumber (ν̃2) for the lab-
oratory standards and atmospheric samples using a simple
peak-finding algorithm based on the first and second numeri-
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Figure 6. Scatter plot showing the variation of the second peak
wavenumber (ν̃2) with molecular weight (MW) in the calibration
set, affected by the OM/OC ratio and phase state. The black line
shows the theoretical frequency with a spring constant equal to
103 Nm−1 for all C−H bonds. The OM/OC ratio and phase state
are shown for the samples. The error bars show uncertainty in cal-
culated peak frequency due to FT-IR scan resolution.

cal derivatives of the spectrum. For the laboratory standards,
the frequency generally decreases with increasing molecular
weight until it reaches an asymptotic state after 200 g mol−1

(Fig. 6). The curve in Fig. 6 shows the theoretical peak fre-
quency of the aliphatic C−H when the bond spring con-
stant is assumed to be 103 Nm−1 (Pavia et al., 2008), and
the reduced mass is calculated based on a ball-and-string as-
sumption composed of the hydrogen atom (first “ball”) and
the rest of molecule (second “ball”). The only effect consid-
ered in this model is the variation of the reduced mass of
the oscillator. The fact that the less-oxygenated laboratory
samples follow the theoretical line closely implies that the
value of the spring constant considered here is, on average,
a good approximation. However, especially for highly oxy-
genated (high OM/OC ratio) molecules and those with in
liquid phase (which have a lower molecular weight), the ab-
sorption frequency deviates from the theoretical line (higher
frequency) due to higher levels of intermolecular interaction.

Regarding the atmospheric samples, most of categories
have a peak density in 2915–2925 cm−1, close to that of
straight-chain molecules of the laboratory standards (Fig. 7,
first row). Urban samples have a wider shoulder on the right
side (around 2925 cm−1) in summer when the samples are
expected to be more aged. Other variations are believed to
be insignificant considering the scan resolution of the FT-IR
instrument.

3.1.2 Peak height ratios (Ai/A2)

Analyzing the laboratory standards shows that a relatively
linear but scattered relation exists between carbon number
and the A1/A2 ratio in the calibration set (Fig. 8a). Suberic
acid, which is the only dicarboxylic acid in the laboratory
standards, does not follow the general trend, probably due to

strong dimerization. As mentioned in Sect. 1.2, the A1/A2
ratio compares symmetric and asymmetric absorbance of
methylene, and its connection with carbon number has al-
ready been highlighted in FT-IR analysis of some types of
diesel fuels (Price et al., 2017). Increase in A1/A2 is also ob-
served between solid and liquids, consistent with the work
of Corsetti et al. (2017). We also observe a nonlinear rela-
tion between theA3/A2 ratio and carbon number with differ-
ent levels based on branching and terminal functionalization
(Fig. 8b). This ratio is equal to zero for molecules lacking
methyl group such as simple cyclic molecules while increas-
ing as the number of branches containing terminal methyl
increases.

Results show a clear separation in atmospheric samples
regarding the sample type and season for both A1/A2 and
A3/A2 ratios (Fig. 7, second and third row). The samples
influenced by burning usually have the lowest A1/A2 ratio
(Fig. 7, second row). This observation is consistent with the
presence of molecules with longer chains, as observed for
laboratory samples. Bürki et al. (2020) showed that the ur-
ban samples (in the same dataset) have their highest aver-
age OM/OC ratio in summer which is concurrent with their
highest A1/A2 ratio, which suggests shorter chain length.
The highest A1/A2 ratio for rural samples is observed in
spring when the aerosols are highly oxidized (Bürki et al.,
2020). This suggests that aged aerosols have lower carbon
number probably due to the fragmentation process. The mea-
sured A1/A2 ratio for the majority of the atmospheric sam-
ples ranges between 0.6 and 0.8, which is consistent with
the value for laboratory standards. Results also show that
the A3/A2 ratio is higher in rural samples compared to ur-
ban samples (with the exception of spring), suggesting a
higher CH3 to CH2 abundance in those samples. This ob-
servation can be due to lower carbon number or higher num-
ber branches containing CH3. Like the A1/A2 ratio, we ob-
serve fewer samples with low A3/A2 ratios at urban sites
in summertime. The A3/A2 ratio falls between 0.1 and 0.4
for the majority of the atmospheric samples, which is consis-
tent with the value for laboratory standards. It is worth not-
ing that peaks in atmospheric samples are more overlapped
than laboratory standards, which makes calculation of peak
ratios based on extrema of the original spectra imprecise. As
a result, a peak-fitting method based on Gaussian peaks was
applied to atmospheric samples in order to obtain the peak
ratios more precisely.

3.1.3 Peak width (wi)

We observe a clear correlation between w2 and the OM/OC
ratio in the calibration set when solid and liquid phases are
considered separately (Fig. 9). As mentioned in Sect. 1.2, hy-
drogen bonding increases the peak width, and the extent of
hydrogen bonding is usually a good indicator of the OM/OC
ratio. This is because hydroxyl, hydroperoxyl, and carboxyl
groups, which form hydrogen bonds, are among the most ef-
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Figure 7. Kernel density estimate of second peak wavenumber (ν̃2), the ratio of peak heights of symmetric CH2 to asymmetric CH2 stretching
(A1/A2), the ratio of peak heights of asymmetric CH3 to asymmetric CH2 stretching (A3/A2), and the second peak width (w2) of the
aliphatic C−H band in the mid-infrared spectra of the atmospheric samples segregated based on sample type and season.

fective functional groups in secondary organic aerosol (SOA)
formation due to the significant vapor pressure reduction they
cause (Seinfeld and Pandis, 2016). In this study,w2 is defined
as the peak width at 75 % of the maximum amplitude. This
position is chosen for robustness of the measurement algo-
rithm (to avoid interference with other peaks); however, it
can be converted to full width at half maximum (FWHM) as-
suming the proper peak profile (w2 is 65 % of FWHM for a
Gaussian peak). In addition to hydrogen bonding and phase
state, superposition of a multitude of peaks with slightly dif-
ferent profiles can also have a statistical positive or negative
effect on the peak width in mixtures (see Sect. S1 in the
Supplement). The observed peak width in the mid-infrared
spectra of the atmospheric samples is the result of all above-
mentioned factors. However, since all laboratory standards
are produced with pure compounds, the significance of the
mixture effect cannot be evaluated.

Figure 7 (fourth row) shows a distinct distribution of w2
considering spatial and temporal variations as well as sam-

ple category. Rural samples have a smaller value of w2 com-
pared to urban and burning samples, although the former are
usually more oxidized (have higher OM/OC ratio). This ob-
servation suggests that other factors such as phase state and
statistical effects likely outweigh the oxygenation effect on
absorption peak width.

3.1.4 Spectral similarity (dimension reduction)

In previous sections, the basic features of spectra in the
aliphatic C−H region were presented and discussed for the
atmospheric samples and laboratory standards. Here, we
check the spectral similarity between atmospheric complex
mixtures and laboratory pure standards by means of princi-
pal component analysis (PCA), before developing calibration
models.

The spectral data of laboratory standards are highly
collinear as can be seen from their correlation matrix heat
map (Fig. A1). In this case, PCA is efficient for reducing the
data dimension such that only the first six principal compo-
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Figure 8. Scatter plots showing the relation between carbon num-
ber (nC) and the ratio of peak heights of symmetric CH2 to asym-
metric CH2 stretching (A1/A2, a), and the ratio of peak heights of
asymmetric CH3 stretching to asymmetric CH2 stretching (A3/A2,
b), averaged for each substance in laboratory standards. Error bars
show ± 1 standard error from the average, and dashed lines are vi-
sual guides for the trends and levels.

Figure 9. The average value of second peak width (w2) measured
for each compound in the calibration set versus the OM/OC ra-
tio, colored based on compound phase state at laboratory condition
(25 ◦C). Error bars show ± 1 standard error from the average, and
dashed lines are visual guides.

nents (PCs) explain around 99 % of variance in the spectra
(Table 2). For the sake of comparison, we have projected the
spectra of atmospheric samples onto the six PCs. The results
show that their scores, when projected onto laboratory PCs,
are surrounded by laboratory standards. Many spectra, par-

Figure 10. Bi-plots showing the scores of normalized spectra of
laboratory standards (color) and normalized spectra of atmospheric
samples (filled circles) projected onto the first six principal compo-
nents calculated for laboratory standards and listed in Table 2.

ticularly urban ones, are clustered close to tetradecane for
the first four PCs (Fig. 10); greater differentiation is found
among the higher PCs. This observation suggests that the
laboratory standards are able to capture the main variations
in the spectra of atmospheric samples, which have a more
regular aliphatic C−H profile close to that of straight-chain
alkanes. We also found that PC3 appears to capture phase
state information (see Sect. S2).
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Table 2. Importance of the first six principal components in the laboratory standards.

PC1 PC2 PC3 PC4 PC5 PC6

Standard deviation 1.414 0.668 0.647 0.332 0.203 0.133
Proportion of variance 0.651 0.145 0.136 0.036 0.014 0.006
Cumulative proportion 0.651 0.796 0.932 0.968 0.982 0.988

3.2 Developing and evaluating the calibration models

PLSR with cross validation was used to develop quantita-
tive models for molecular weight (MW) and carbon number
(nC) with the calibration set composed of 143 samples in-
cluding all compounds over the available mass range. The
OM/OC ratio was then calculated from these two parame-
ters (OM/OC= MW

12.01nC
). The developed PLSR models gave

reasonably good fit results (r2 ranging from 0.94 to 0.99) for
molecular weight, carbon number, and indirect OM/OC ratio
in the calibration set (Fig. 11).

The prediction ability of the PLSR models was then evalu-
ated using a test set composed of 43 samples which were not
used for developing the models. The PLSR models also per-
formed reasonably well in predicting molecular weight, car-
bon number, and OM/OC ratio in the test set with r2 rang-
ing from 0.92 to 0.98 (Fig. 11). The predictions with high
relative error were attributed to laboratory samples with low
molar abundance (low signal-to-noise ratio), for which the
baseline correction had the highest uncertainty. This is not
a concern when applying the PLSR models to atmospheric
samples since the atmospheric samples with low signal-to-
noise ratio were omitted in the first step (Sect. 2.1).

3.3 Applying the calibration models to atmospheric
samples

After checking the performance of the PLSR models on the
calibration and test set, all laboratory standards were used
to build calibration models that were applied to the ambient
samples. In the following sections, the estimates of OM/OC,
mean molecular weight, and mean carbon number for the
ambient samples are shown in different categories based on
season and sample type (rural, urban, and burning) after
omitting the physically unreasonable values. Thereafter, the
trends and absolute values are compared to previous studies
(when available) and our expectations based on aging pro-
cess and aerosol emission sources.

In this work, we have assumed that we can obtain mean
mixture (atmospheric samples) properties from the normal-
ized spectrum of a mixture using the calibration models de-
veloped for pure compounds (laboratory standards). This as-
sumption relies on the linearity of the property estimation
models (which is consistent with our calibrations; Eq. 4) and
equality of the absorption coefficients of the compounds ex-
isting in the mixture (see Appendix B for more information).

Thus, the absorption coefficient of aliphatic C−H has been
assumed to be relatively similar between the compounds ex-
isting in atmospheric samples. Although the aliphatic C−H
absorption coefficients of the laboratory standards were sim-
ilar in this study, the variability of this absorption coefficient
is relatively less studied for compounds existing in the at-
mospheric OM and needs to be addressed in the future. This
assumption is a potential source of error that may change
the accuracy of the results, but the estimates for atmospheric
samples shown in the following sections suggest that this as-
sumption does not overwhelm the findings.

3.3.1 OM/OC ratio

The OM/OC ratio is the first parameter that we investigate
here since it has been studied extensively in atmospheric
aerosols (Bürki et al., 2020; Hand et al., 2019; Ruthenburg
et al., 2014; Takahama et al., 2011; Simon et al., 2011; Aiken
et al., 2008). Moreover, it can be used as an indirect evalua-
tion for mean molecular weight and mean carbon number es-
timates as the indirect OM/OC ratio is calculated from those
two. An indirect OM/OC estimate that is consistent with pre-
vious studies implies that estimates of molecular weight to
carbon number are also likely to be reasonable.

The OM/OC ratio is estimated to be generally lower for
urban samples (≈ 1.5) than rural samples (≈ 1.8; Fig. 14,
first row). The lower OM/OC ratio at urban sites is thought
to be related to emission sources that are generally hydro-
carbon, with low OM/OC ratio emitted from gasoline and
diesel vehicles (fuel combustion and unburned motor oil)
as a major part of anthropogenic SOA precursors (Gentner
et al., 2012), as well as cooking. These organic molecules
do not undergo significant oxidation and aging as the mon-
itoring sites are generally close to the emission sources. In
contrast, organic aerosols usually undergo several steps of
oxidation and receive substantial condensation of oxidized
vapors, which results in higher OM/OC ratio at rural and
remote sites. Previous studies using several different meth-
ods (including FT-IR and AMS) show the same trend at ur-
ban and rural sites (Ruthenburg et al., 2014; Zhang et al.,
2007; Simon et al., 2011; Bürki et al., 2020). In addition, the
majority of the samples are in the range that is usually con-
sidered for OM/OC ratio, i.e., 1.4–1.7 (Russell, 2003). We
also observe that samples influenced by burning, especially
residential wood burning, have lower OM/OC ratio (≈ 1.4)
than those associated with more oxidized aerosol such as ru-
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Figure 11. Scatter plot of fitted (predicted) indirect OM/OC ratio, MW, and nC against the values from chemical formula of the calibration
set (test set). The diagonal black lines indicate the perfect fit (1 : 1).

ral sites, consistent with OM/OC estimates of Bürki et al.
(2020).

The OM/OC ratio at urban sites is estimated to be higher
in summer compared to other seasons, especially winter
(Fig. 14, first row) which is believed to be caused by more
intense photochemical aging in summertime (Kroll and Se-
infeld, 2008). At rural sites, the trend becomes more compli-
cated, as vegetation, a major biogenic SOA emission source,
is more active in summertime (Yuan et al., 2018; Seinfeld and
Pandis, 2016). Samples influenced by burning are also esti-
mated to have higher OM/OC in summer when samples are
affected by wildfires compared to winter when burning sam-
ples are mostly affected by residential wood burning. How-
ever, the contribution of photooxidation relative to emission
sources is not clear in this case, as they are coupled in these
observations (Bürki et al., 2020).

In order to have a direct comparison with other methods,
we chose the Phoenix, AZ, monitoring site, for which re-
covery percentage of the baseline correction method is close

to 100 %, and compared our indirect OM/OC ratio esti-
mates to the corresponding ones calculated by Bürki et al.
(2020). The latter method uses molar abundance information
of functional groups in laboratory standards in addition to a
much wider region of non-normalized mid-infrared spectrum
(1500–4000 cm−1). The median seasonal OM/OC ratios of
this study underpredict that of Bürki et al. (2020) by 0.12 on
average, while reproducing the same temporal trends. Some
of the discrepancies may be due to insensitivity of spectral
features to molecular characteristics in certain domains – for
instance, the variation of peak frequency ν̃2 diminishes with
increasing molecular weight (Sect. 3.1.1). However, the over-
all agreement between the two methods is reasonable consid-
ering the indirect nature of estimates in our work (Fig. 12).

3.3.2 Molecular weight

The PLSR model estimates the mean molecular weight to
range between 100 and 350 gmol−1 for the majority of the
samples (Fig. 14, second row). To the best of the authors’
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Figure 12. Bar chart showing median OM/OC ratio calculated for
each season based on samples collected at the Phoenix, AZ, moni-
toring site using our method and the one used by Bürki et al. (2020).

knowledge, no extensive study has been performed on mean
molecular weight of ambient organic aerosol constituents.
Nevertheless, the estimated range is reasonably close to that
of the studies that have been done. Those studies measured
molecular weights up to 200 gmol−1 for SOA constituents
using GC/MS and ion chromatography (Cocker III et al.,
2001; Jang and Kamens, 2001b; Kalberer, 2004), an av-
erage molecular weight between 200 and 300 gmol−1 for
atmospheric humic-like substances (HULIS) using electro-
spray ionization (ESI) (Graber and Rudich, 2006), and an
average molecular weight between 300 and 450 gmol−1

for oligomers formed in a smog chamber, measured us-
ing laser desorption/ionization mass spectrometry (LDI-MS)
(Kalberer et al., 2006). Although particle-phase oligomer-
ization processes result in high-MW compounds (Jang and
Kamens, 2001a; Tolocka et al., 2004; Shiraiwa et al., 2014),
the abundance of these compounds is usually debated since
the available experimental results regarding the reversibility
of accretion reactions are contradictory (Kroll and Seinfeld,
2008). Moreover, oligomer formation may be overestimated
in laboratory conditions compared to atmospheric particles
(Kroll and Seinfeld, 2008; Kalberer, 2004; Trump and Don-
ahue, 2014).

The PLSR molecular weight model estimates a lower
mean molecular weight for rural samples (≈ 200 gmol−1)
compared to urban ones (≈ 240 gmol−1), while burning
samples are estimated to constitute the heaviest molecules (≈
290 gmol−1). This observation is consistent with our knowl-
edge of emission sources. Emissions in urban areas are influ-
enced by long-chain hydrocarbons from combustion prod-
ucts and motor oil (Gentner et al., 2012), while biomass
burning is accepted to be the primary source of high-MW
HULIS (Li et al., 2019). We also observe a decrease in mean
molecular weight peak density in urban samples from win-
ter to summer that is believed to be attributed to fragmen-

tation during more intense photooxidation in summer (Hand
et al., 2019; Jimenez et al., 2009) for emission sources that
do not change drastically between the two seasons. The same
phenomenon is observed in LDI mass spectra of some urban
samples in summer and winter reported by Kalberer et al.
(2006). Although the reduction in mean molecular weight
due to fragmentation can be compensated for by addition of
heavy atoms to the molecule during oxidation, our results
suggest that the overall direction of photooxidation at urban
sites is reduction of the mean molecular weight.

3.3.3 Carbon number

The PLSR carbon number model estimates that the recov-
ered rural samples usually have lower mean carbon number
compared to urban samples and the samples influenced by
burning (Fig. 14, third row). Higher mean carbon number
estimates at urban sites (highest probability density around
16), which are coincident with high elemental carbon (EC)
values from TOR measurements (Fig. C1), can be attributed
to major EC sources such as combustion of fossil fuel and
biomass. This is also consistent with high SOA formation po-
tential of molecules with 15–25 carbon in diesel fuel shown
by Gentner et al. (2012). Samples affected by burning are es-
timated to have the highest mean carbon number among all
samples. This observation is consistent with the emissions of
plant cuticle waxes, mainly composed of straight-chain hy-
drocarbons, observed during biomass burning (Hawkins and
Russell, 2010) as well as HULIS (Graber and Rudich, 2006).
We also observe a decrease in estimated mean carbon number
of urban samples from winter to summer, suggesting frag-
mentation during aging and photooxidation processes.

The carbon–oxygen estimates of the PLSR models are
consistent with the existing numerical simulation. We com-
pared our estimates with the numerical simulations by Jathar
et al. (2015). A multi-generational oxidation model used by
Jathar et al. (2015) (Statistical Oxidation Model, SOM, in a
3-D air quality model) for simulating SOA in Los Angeles
and Atlanta (two urban locations) shows that carbon num-
ber in SOA ranges from 3 to 15 with the concentration peaks
around 7, 10, and 15 (Fig. 13). For this comparison, we calcu-
lated the carbon–oxygen grid from our molecular weight and
carbon number estimates, assuming the organic molecules
have a chemical formula of CNcH2Nc+2−NoONo (a common
assumption and one used by Jathar et al., 2015). Our PLSR
models for the IMPROVE network estimate mean carbon
number peaks (number density) for rural, urban, and burn-
ing samples to be around 8, 16, and 18, respectively, while
the total range is limited to 3–19 (Fig. 13). We also estimate
the oxygen number to range from 2 to 6 for the majority of
the samples. It should be noted that this is an order of mag-
nitude comparison since the time frame and the location of
the two studies are different and the numerical simulation by
Jathar et al. (2015) only considers SOA.
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Figure 13. Comparison between the carbon–oxygen grid simulated
by Jathar et al. (2015) for Atlanta and Los Angeles with sample
points estimated for the IMPROVE network (2011 and 2013) from
the molecular weight and carbon number estimates of this study.
The dashed lines show the range of simulated carbon and oxygen,
and the triangles indicate the location of the highest SOA concen-
trations for the simulations of Jathar et al. (2015).

3.4 Calibration model interpretation

Reducing the spectrum to four basic features introduced in
Sect. 3.1 (ν̃2, A3/A2, A1/A2, w2) is a manual data compres-
sion onto a basis set of interpretable variables. Though infor-
mation loss is inevitable, it was shown in Sect. 3.1 that these
basic features are still sufficient for qualitative explanation of
spectral variations associated with different emission source
and aerosol aging process. In this section, predictions made
by the PLSR models on the ambient samples are grouped
based on the four basic features using CART (Fig. 15) in or-
der to form a better understanding of how the sophisticated
PLSR models function.

The regression trees show that the peak ratios are observed
to be the main grouping parameter for both carbon number
and molecular weight (Fig. 15). The inverse relation of peak
ratios with carbon number appears in most of the splitting
nodes of carbon number and molecular weight regression
trees (Fig. 15). This is consistent with the observed relation
between carbon number and peak ratios in the calibration set
(Fig. 8). Assuming that molecular weight is highly correlated
with carbon number, the classification of molecular weight
based on peak ratios is also expected. The peak frequency
(ν̃2) appears once as a node in molecular weight tree and clas-
sifies the estimates based on the same trend that was observed
in the calibration set (Fig. 6). The second peak width (w2)
also appears few times in the nodes, probably adding infor-
mation about the OM/OC ratio and phase state. The two trees
shown in Fig. 15 explain only around 50 % of the variation
of estimates made by the PLSR models. The explained vari-
ation can be increased to an arbitrarily high number through
the use of more branches in the fitting dataset, but the predic-
tive capability of regression trees for new samples depends
highly on their similarity to the training set.

In summary, regression trees show that the predictions of
the PLSR models are generally consistent with the observed
trends of the basic features in the calibration set (Sect. S3
supports this conclusion for individual spectra for which the
PLSR models estimate quite different parameters). This ob-
servation implies that the PLSR predictions of carbon num-
ber and molecular weight are not independent of these basic
features. However, the sophisticated PLSR models use other
fine features in addition to the mentioned basic features to
extract more detailed information and to reduce variabilities
stemming from different sources such as baseline correction.

4 Concluding remarks

Normalized aliphatic C−H absorbances in the mid-infrared
spectrum were used in this study to estimate carbon number
and molecular weight of the atmospheric OM. First, it was
shown that the spectral features, such as peak frequencies and
ratios are correlated with carbon number, molecular weight,
and the OM/OC ratio for laboratory standards. We also ob-
served a meaningful temporal and spatial variation of those
features in atmospheric aerosol samples. Thereafter, PLSR
models were developed on laboratory standards to estimate
the mentioned parameters in the atmospheric aerosol sam-
ples from the IMPROVE network. The estimated molecular
weight and carbon number reconstruct the OM/OC values
in the atmospheric aerosols that are consistent with previous
studies with a reasonable difference (an average underpre-
diction of 0.12). These new statistical models estimate lower
mean carbon number and mean molecular weight in more
aged aerosols of the same source highlighting the fragmen-
tation role in aging process (Murphy et al., 2012). Moreover,
they estimate relatively less oxidized, heavier molecules with
higher carbon number for samples influenced by burning.
The findings show that the new technique can help us bet-
ter understand characteristics of OM due to source emissions
and atmospheric processes. In addition, since carbon num-
ber and molecular weight are important characteristics used
by recent conceptual models or parameterizations (e.g., Shi-
raiwa et al., 2017a; Li et al., 2016; Pankow and Barsanti,
2009; Kroll et al., 2011; Donahue et al., 2011) to describe
evolution in OM composition, this technique can provide
semi-quantitative, observational constraints on these varia-
tions at the scale of the network as well as for laboratory
experiments. We also found that the phase state of the labo-
ratory standards clearly affects their spectroscopic features.
These features can be used to develop predictive models that
can estimate the phase state of atmospheric OM.

Only around 27 % of the existing samples could be ana-
lyzed with our approach due baseline correction limitations
posed by low OM mass (compared to inorganic mass) on the
filters. Undersampling is more severe at rural sites, although
expected trends (such as higher OM/OC ratio) are observed
even in the current subset. As a result, one should be cau-

Atmos. Meas. Tech., 14, 4805–4827, 2021 https://doi.org/10.5194/amt-14-4805-2021



A. Yazdani et al.: Mean carbon number and molecular weight in atmospheric aerosols 4819

Figure 14. Kernel density estimates of indirect OM/OC ratio, MW, and nC estimated from normalized aliphatic C−H mid-infrared ab-
sorbances by PLSR models (segregated by sample type and season).

Figure 15. Regression tree of MW and nC estimates in atmospheric samples based on the basic spectral features: second peak frequency
(ν̃2), the ratio of peak heights of symmetric CH2 stretching to asymmetric CH2 stretching (A1/A2), the ratio of peak heights of asymmetric
CH3 to asymmetric CH2 stretching (A3/A2), and second peak width (w2) of aliphatic C−H band.
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tious when extending the results of this study to draw general
trends. Although some inaccuracy in the results is likely due
to extrapolating from laboratory standards and the indirect
nature of the introduced approach (for which more research
is needed), estimates of molecular weight, carbon number,
and the OM/OC ratio were shown to be reasonable. Further
evaluation with different molecules and molecular mixtures
can better constrain these estimates.
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Appendix A: Correlation matrix heat map

Figure A1. Correlation matrix heat map (absolute values) of mid-infrared spectra of the laboratory standards in the aliphatic C−H region. In
this heat map, absolute values of the correlation coefficient of absorbances at each wavenumber with absorbances at other wavenumbers are
demonstrated (ranging between 0 and 1).
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Appendix B: Relating mixture property to pure
compound property

Laboratory standards which have been used for model de-
velopment are aerosols of single organic compounds, while
atmospheric organic aerosols are generally complex mixtures
of a multitude of species (Hallquist et al., 2009). This funda-
mental difference highlights the importance of investigating
the validity of the models for mixtures. Herein, the validity
of the models developed on pure compounds is rationalized
mathematically for estimating mean molecular properties of
a non-interacting mixture.

In the aliphatic C−H region, a particular absorbance pro-
file is observed due to different absorbance at each wavenum-
ber. The absorbance profile is dependent on areal molar den-
sity n (mole per area of the filter) and the absorption co-
efficient ε = ε(ν̃) of the compound, which is a function of
wavenumber (ν̃). Thus, the absorbance profileA can be writ-
ten as

A= nε, (B1)

In this work, spectra are normalized before applying the
models. This normalization step is done by a function de-
noted as g. The function g scales the profile between 0 and
1 regardless of the molar abundance and thus indicates scale
invariance, meaning that

g(x)= g(sx), (B2)

where s is a an arbitrary scalar. After the normalization step,
the model (function) f is applied to the spectra for estimating
a molecular property (carbon number or molecular weight) of
the laboratory standards or atmospheric samples. f is linear
if

f

(∑
i

xi

)
=

∑
i

f (xi) , (B3)

which is true for the linear calibration models used in this
work. A pure compound i with the absorption coefficient εi
is estimated to have the property 8i calculated by a scale-
invariant model f (g(.)) (combining the model with the nor-
malization step):

8i = f (g(Ai))= f (g(εi)) . (B4)

For a mixture, the true mean property 8true can be written as
a molar average of the model estimates for pure compounds
assuming no strong interaction between them in the mixture:

8true =

∑
ini8i∑
ini
=

∑
inif (g(εi))∑

ini
, (B5)

for which, if the model is linear,∑
inif (g(εi))∑

ini
= f

(∑
inig (εi)∑

ini

)
=8lin. (B6)

However, when applying the models to a mixture spectrum,
the actual value of 8 is estimated from the measured mix-
ture absorbance profile, which is the sum of pure compound
spectra,

∑
iAi , as

8mix = f

(
g

(∑
i

Ai

))
. (B7)

Since the normalization function g scales the profile between
0 and 1, i.e., g(x)= x/max(x), the true mixture mean as-
suming a linear model will be

8lin = f

(∑
inig(εi)∑

ini

)
= f

(∑
i

ξig(εi)

)

= f

(∑
i

ξiεi

max(εi)

)
, (B8)

where ξi = ni/
∑
ini is the mole fraction of the ith compo-

nent in the mixture. However, the estimated molecular prop-
erty for a mixture based on the mixture spectrum (8mix) is

8mix = f

(∑
i

Ai

)
= f

( ∑
iniεi

max(
∑
iniεi)

)

= f

( ∑
iξiεi

max(
∑
iξiεi)

)
= f

(∑
i

ξiεi

max(
∑
iξiεi)

)
.

(B9)

As a result, 8mix and 8lin are different because of their
different denominators (max(

∑
iξiεi) and max(εi)). This

means that the true mean property of a mixture is not nec-
essarily the property estimated by applying the model to
the mixture spectrum. The difference is, however, negligible
as long as the models are linear and the compounds in the
mixture have relatively similar absorption coefficients. These
two conditions are valid for the majority of compounds con-
sidered in the laboratory standards.
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Appendix C: Elemental carbon and carbon number

Figure C1. Scatter plot showing the relationship between collocated measurements of EC concentration and carbon number estimates by
PLSR models in the IMPROVE network in 2011 and 2013.
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