
Atmos. Meas. Tech., 14, 53–69, 2021
https://doi.org/10.5194/amt-14-53-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.

The development of rainfall retrievals from radar at Darwin
Robert Jackson1, Scott Collis1, Valentin Louf2, Alain Protat3, Die Wang4, Scott Giangrande4,
Elizabeth J. Thompson5, Brenda Dolan6, and Scott W. Powell7
1Argonne National Laboratory, 9700 Cass Ave., Lemont, IL, USA
2School of Earth, Atmosphere and Environment, Monash University, Clayton, VIC, Australia
3Bureau of Meteorology, 700 Clayton St., Docklands, VIC, Australia
4Brookhaven National Laboratory, 98 Rochester St., Upton, NY, USA
5National Oceanic and Atmospheric Administration Physical Sciences Laboratory,
325 Broadway, Boulder, CO 80305, USA
6Colorado State University, Department of Atmospheric Sciences, 3915 W Laport Ave, Fort Collins, CO 80523, USA
7Department of Meteorology, Naval Postgraduate School, Monterey, CA, USA

Correspondence: Robert Jackson (rjackson@anl.gov)

Received: 24 June 2020 – Discussion started: 7 July 2020
Revised: 21 October 2020 – Accepted: 9 November 2020 – Published: 4 January 2021

Abstract. The U.S. Department of Energy Atmospheric Ra-
diation Measurement program Tropical Western Pacific site
hosted a C-band polarization (CPOL) radar in Darwin, Aus-
tralia. It provides 2 decades of tropical rainfall characteris-
tics useful for validating global circulation models. Rainfall
retrievals from radar assume characteristics about the droplet
size distribution (DSD) that vary significantly. To minimize
the uncertainty associated with DSD variability, new radar
rainfall techniques use dual polarization and specific attenua-
tion estimates. This study challenges the applicability of sev-
eral specific attenuation and dual-polarization-based rainfall
estimators in tropical settings using a 4-year archive of Dar-
win disdrometer datasets in conjunction with CPOL obser-
vations. This assessment is based on three metrics: statistical
uncertainty estimates, principal component analysis (PCA),
and comparisons of various retrievals from CPOL data.

The PCA shows that the variability in R can be con-
sistently attributed to reflectivity, but dependence on dual-
polarization quantities was wavelength dependent for 1<
R < 10mmh−1. These rates primarily originate from strat-
iform clouds and weak convection (median drop diameters
less than 1.5 mm). The dual-polarization specific differen-
tial phase and differential reflectivity increase in usefulness
for rainfall estimators in times with R > 10mmh−1. Rainfall
estimates during these conditions primarily originate from
deep convective clouds with median drop diameters greater
than 1.5 mm. An uncertainty analysis and intercomparison

with CPOL show that a Colorado State University blended
technique for tropical oceans, with modified estimators de-
veloped from video disdrometer observations, is most appro-
priate for use in all cases, such as when 1<R < 10mmh−1

(stratiform rain) and when R > 10mmh−1 (deeper convec-
tive rain).

Copyright statement. Robert Jackson and Scott Collis’ copyright
for this publication is transferred to the Argonne National Labora-
tory.

1 Introduction

Accurate rainfall accumulation and rate estimates are crucial
for validating global circulation model (GCM) simulations
of precipitation and for nowcasting, severe weather alert is-
suing, and climatology. A known problem of many GCMs,
including the U.S. Department of Energy’s Earth Energy Ex-
ascale System Model (E3SM), is that GCMs do not ade-
quately resolve the phase and magnitude of the diurnal cy-
cle of precipitation (Golaz et al., 2019). This is due to the
fact that GCMs parameterize convection rather than explic-
itly resolve it (Del Genio, 2012). Multidecadal datasets, such
as those recorded at the U.S. Department of Energy’s At-
mospheric Radiation Measurement (ARM) program’s Tropi-
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cal Western Pacific (TWP) site in Darwin, Australia (Keenan
et al., 1998; Mather et al., 2016; Long et al., 2016), provide
unique opportunities to develop climatologies and process-
level parameterization constraints for GCM simulations. For
example, Kumar et al. (2013), Rauniyar and Walsh (2016),
and Jackson et al. (2018) have previously developed clima-
tologies of radar-estimated cloud top heights from 17 years
of C-band polarization (CPOL) data at the ARM TWP site
to be used for validation of E3SM. Dolan et al. (2013) also
identified the hydrometeor types present in the clouds and
precipitation sampled by CPOL over seven seasons.

In addition to cloud-top height and hydrometeor type
datasets, long-term datasets of accurate rainfall accumula-
tions and rates are also useful for evaluating or improv-
ing convective parameterizations in E3SM and other GCMs
(Tang et al., 2019). The aforementioned CPOL dataset pro-
vides 17 wet seasons of precipitation characteristics in trop-
ical convection, so developing rainfall estimates from ARM
radars in TWP aids model validation. However, developing
a suitable rainfall rate (R) climatology or similar rain ac-
cumulation statistics from a single radar dataset is a non-
trivial task. Several different methodologies exist for mea-
suring or estimating rainfall accumulations and/or instanta-
neous rainfall rates. For instance, at the ARM TWP site,
rain gauges and disdrometers provide estimates of rainfall
rate and collect individual particle statistics. Even if a perfect
rainfall estimation method is determined, using such data for
climatological-scale analysis is complicated by the fact that
the rainfall experienced at TWP is not representative of the
spatial variability in rainfall rate over GCM-scale domains
O([20–100 km]). In contrast, scanning radars such as the
CPOL may estimate rainfall accumulations over a wider spa-
tial domainO([100–150 km]) with a horizontal resolution of
O([100 m]) (e.g., Keenan et al., 1998).

However, scanning radars typically retrieve R using em-
pirical power-law relationships between R and the radar ob-
servables, which may be subject to uncertainty contingent
on the representativeness of these fits. These relations often
utilize conventional radar quantities such as the radar reflec-
tivity factor Zh and dual-polarization radar quantities such
as specific differential phase Kdp and differential reflectiv-
ity Zdr . Single-moment and blended empirical relationships
are commonplace in the literature (i.e., Marshall and Palmer,
1948; Aydin and Giridhar, 1992; Ryzhkov and Zrnić, 1995;
Matrosov, 2005; Matrosov et al., 2006; Wang et al., 2013;
Ryzhkov et al., 2014; Thompson et al., 2015, 2018; Wang
et al., 2018; Giangrande et al., 2019) and typically devel-
oped from simulated radar moments informed by the drop
size distributions (DSDs) sampled by disdrometers at various
global locations. Recently, studies have attempted to com-
bine the advantageous dual-polarization radar measurement
properties more seamlessly into a single radar quantity by
estimating the specific attenuation Ah for similar empirical
rainfall applications (e.g., Ryzhkov et al., 2014; Giangrande
et al., 2014b). Dual-polarization relationships have tradition-

ally been the preferable option for radar rainfall rate esti-
mates, as these have been found less sensitive to potential
biases owing to DSD variability, radar miscalibration, partial
beam blockage, and/or attenuation in rain (Doviak and Zrnić,
1993; Bringi and Chandrasekar, 2001; Ryzhkov et al., 2005).
Nevertheless, single- and/or dual-polarization power-law re-
lationships are often sensitive to the underlying differences in
DSD observations used to develop those relationships, which
vary over different regions of the globe due to the chang-
ing nature for dominant cloud dynamical–microphysical pro-
cesses (Bringi et al., 2003, 2009; Dolan et al., 2018). Simi-
lar issues are also anticipated for newer radar rainfall algo-
rithm concepts such as machine learning efforts using neural
network or Gaussian mixture concepts (e.g., Vulpiani et al.,
2009; Li et al., 2012) that are trained and/or validated with
DSD observations subject to comparable limitations.

An important consideration for applying radar rainfall
methods to different regions across the globe is that the ma-
jority of the aforementioned rainfall studies have emphasized
the properties of midlatitude continental clouds and often
over relatively modest data records (i.e., tens of events). For
many practical hydrological applications, the best references
are those for NOAA’s S-band (10 cm wavelength) Next
Generation Weather Radar (NEXRAD), with most opera-
tional relations weighted towards Oklahoma, Florida, Col-
orado, and/or deeper convective cloud conditions (Ryzhkov
et al., 2005). The relative absence of extended, ground-based
rainfall retrieval validation datasets outside of midlatitude
regions poses several challenges for potential global rain-
fall applications and possible model evaluation. The Depart-
ment of Energy (DOE) Atmospheric Radiation Measurement
(ARM) facility operates multiple fixed sites in distinct global
regimes, including the Darwin TWP site, Oklahoma South-
ern Great Plains (SGP) site (Sisterson et al., 2016), and East-
ern North Atlantic (ENA) site in the Azores (Giangrande
et al., 2019). Prior studies that focused on Darwin (Keenan
et al., 1998; Bringi et al., 2003, 2009; Thurai et al., 2010) in-
dicate that midlatitude R estimators and DSD variability are
less applicable outside of the midlatitudes.

Therefore, as a vital step in providing improved rainfall
statistics for model validation, this study focuses on devel-
oping R estimators at the C-band and X-band over Darwin,
Australia, for the purpose of developing long-term statistics
of rainfall estimates from C- and X-band (5 cm/3 cm wave-
length) scanning ARM precipitation radars (C/XSAPRs)
and CPOL radar at the ARM TWP site (Keenan et al.,
1998). Recently, Giangrande et al. (2014b) found that for
the ARM SGP site CSAPR during the Midlatitude Conti-
nental Convective Clouds Experiment, Kdp-based retrievals
generally provide an optimal estimate of rainfall for accu-
mulations greater than 10 mm when compared to Ah-based
retrievals. For the tropical oceans, Thompson et al. (2018)
showed that the root-mean-square error (RMSE) between the
disdrometer- and radar-estimated R at the C-band and X-
band was lowest when the Colorado State University (CSU)
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blended technique for tropical oceans was used with rela-
tions formed from tropical DSD measurements. The algo-
rithm, originally developed by Cifelli et al. (2011), uses Zh,
Zdr , and/or Kdp as input depending on whether values of
these fields are significantly above noise thresholds. In the
same study, RMSE was slightly higher for R estimated by
Ah at these wavelengths. However, these retrievals were de-
veloped using data over Manus and Gan islands. These small
atolls experience open-ocean conditions, such that large rain-
drops from melted hail were rare, even in strong convection
(Thompson et al., 2015). For the ARM TWP site in Darwin,
deep mixed-phase convection, formed by sea breeze conver-
gence, is common (Rutledge et al., 1992; Williams et al.,
1992; May and Rajopadhyaya, 1999; Kumar et al., 2013;
May and Ballinger, 2007; Jackson et al., 2018). Therefore,
there is greater potential for the impact of cold rain processes
(melted hail or graupel that forms large droplets) on deter-
mining the surface DSD in Darwin compared to Manus and
Gan islands.

Creating accurate multidecadal, climate-research-quality
rainfall rate datasets at TWP Darwin at the C- and X-band,
as mentioned previously, is useful for evaluating and improv-
ing model predictions. Lately, more radar rainfall estimators
at shorter wavelengths have been developed. However, these
estimators use data from relatively short field campaigns or
a handful of case studies of extreme events. In this regard,
these efforts are valuable but potentially not well-matched
to the challenges of creating multidecadal datasets at TWP
Darwin with a mixture of typical and extreme rainfall events.
This therefore stresses the importance of further assessing
R retrievals for CPOL and other ARM radars at the ARM
TWP site for developing such long-term datasets. To accom-
plish this task, this study uses 4 years of co-located two-
dimensional video disdrometer (VDIS) and CPOL data at the
ARM TWP site, providing a longer and therefore hopefully
more representative dataset than used in prior Darwin-based
studies.

This study is organized as follows. In order to provide im-
proved R estimates from ARM radars for Darwin, this study
uses simulated radar observables and specific attenuation Ah
generated from the VDIS observations collected during trop-
ical convective events over the ARM TWP site. Data and
methods are introduced in Sect. 2. Observational results from
these data are shown in Sect. 3. Section 4 assesses the impor-
tance of Zh, Zdr , Kdp, and Ah, in determining or informing
the rainfall rate estimates over this dataset using principal
component analysis (PCA). These analyses are performed at
the C- and X-band radar wavelengths utilized by the ARM
program. To evaluate the C-band-radar-based R estimates,
Sect. 4 also compares VDIS rainfall rates againstR estimates
from CPOL data at the ARM Darwin TWP site. Section 5 in-
cludes the main conclusions of this study.

Figure 1. Map of CPOL and JW/VDIS locations. Range rings rep-
resent distances 50 and 100 km from the radar.

2 Datasets

2.1 CPOL

The C-band polarization radar (CPOL) (Keenan et al., 1998)
provided plan position indicator (PPI) scans of Z, Zdr , and
differential phase φdp at elevations of 0.5, 0.9, 1.3, 1.8, 2.4,
3.1, 4.2, 5.6, 7.4, 10.0, 13.3, 17.9, 23.9, 32.0, and 43.1◦ every
10 min from 1998 until 2017 except during 2008 and 2009.
Figure 1 shows the location of CPOL and the 2D video dis-
drometer (VDIS, also referred to as 2DVD). The maximum
unambiguous range of CPOL is 150 km. The Python ARM
Radar Toolkit (Py-ART) was used to process and visualize
the CPOL data (Helmus and Collis, 2016). Clutter and sec-
ond trip echoes were removed using a technique based on
the texture of the Doppler velocity field previously applied
to CPOL data by Jackson et al. (2018).

Data from the 2011 to 2015 seasons are used in this study,
which correspond to the times VDIS observations were avail-
able at the ARM TWP site in Darwin 30 km from CPOL.
In total, these datasets correspond to a window in time over
which the Darwin location recorded 4884 mm of rainfall.
CPOL provides radar variables at 250 m along-gate resolu-
tion and 1◦ azimuthal resolution. At 30 km range, the gate
dimensions are 250 m by 260 m, much smaller than a con-
vective cell so the effects of nonuniform beam filling should
be minimal. In addition, R estimation errors at the C-band
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due to beam broadening are on the order of 0.2 mm h−1 at a
30 km range (Gorgucci and Baldini, 2015). The comparisons
in this paper define the point as the average of the data in ra-
dial coordinates from the 0.5◦ PPI scan from the four gates
closest to the VDIS. This covers a horizontal distance of 0.5–
1 km from the VDIS and is about 0.56 km above the VDIS at
ground level and 30 km away from CPOL. This definition is
chosen as it is consistent with the scales considered in past
comparisons by Ryzhkov et al. (2005) and Giangrande et al.
(2014a).

For rainfall retrievals, a robust calibration and attenuation
correction of Zh and Zdr are paramount. Therefore, in this
study, Zh was calibrated using the relative calibration adjust-
ment (RCA) technique (Wolff et al., 2015), previously ap-
plied to CPOL data, that integrates the use of ground clutter
with spaceborne radar observations and the self consistency
of the polarimetric radar moments to monitor for changes in
the radar calibration (as for Darwin CPOL; see Louf et al.,
2019). The RCA technique calibrated Zh to 1 dBZ accuracy
and for Zdr to 0.2 dB accuracy (Louf et al., 2019). In addi-
tion, Zh and Zdr at the C-band are prone to (differential) at-
tenuation from heavy rainfall which may bias (overestimate)
R. The Z-PHI approach provides an estimate of the spe-
cific (differential) attenuation (Adr ) Ah as a linear function
of φdp that varies depending on the presence of convective
”hot spots” (Gu et al., 2011). The Adr and Ah are then inte-
grated along the ray to provide the (differential) attenuation-
corrected Zh and Zdr . The φdp was dealiased in order to en-
sure that it monotonically increases with range. We then ap-
plied a linear programming (LP) phase processing technique
of Giangrande et al. (2013) to estimate the Kdp from these
dealiased φdp profiles.

2.2 Disdrometers

Disdrometers are the primary method by which rainfall rates
and DSD parameters are recorded in this study. Previous
disdrometer efforts at the ARM TWP Darwin site have ex-
plored the extended Darwin Joss–Waldvogel (J–W) disdrom-
eter record (e.g., Giangrande et al., 2014a). However, J–W
disdrometers are potentially less optimal for calculating dual-
polarization radar quantities in lighter rain and/or small-drop
conditions than in heavier rain. Recently, ARM ENA dis-
drometer comparisons suggested that the VDIS provided im-
proved estimates of the DSD in light rain (Giangrande et al.,
2019) compared to the J–W disdrometer. Therefore, we opt
to explore the VDIS record to characterize the DSDs and
perform subsequent dual-polarization radar quantity calcu-
lations from them. In order to ensure quality DSDs, artifacts
that are due to splashing or other causes need to be removed.
Following the analysis of Wang et al. (2018) and Giangrande
et al. (2019) of VDIS DSDs, thresholds that check drop fall
speed and particle diameter were applied to filter out splash-
ing. After the application of these thresholds, the DSDs were
averaged to 1 min to reduce noise and then fitted to a normal-

ized gamma distribution of the form N(D)=NwF(D/D0)

determined by two parameters Nw and D0 (Testud et al.,
2001). These fits were produced using the method of mo-
ments technique in PyDSD (Ulbrich and Atlas, 1998; Hardin
and Guy, 2017) utilized in past ARM efforts analyzing VDIS
and J–W DSDs (Giangrande et al., 2014a; Giangrande et al.,
2019; Wang et al., 2018). In order to ensure a statistically sig-
nificant sample required to calculate the gamma distribution
parameters, only DSDs with greater than 100 drops and rain-
fall rates greater than 0.5mmh−1 were included. After these
thresholds, 35 211 raining minutes of rain rate and DSD data
remained available for use in this study. Changing the drop
number threshold to 50, 200, and 500 did not significantly
impact the results that follow.

2.3 Radar moment simulations from DSD

For each of the 1 min DSDs in the VDIS dataset shown in
Fig. 2, the simulated observables Zh,s , Zdr,s ,Kdp,s , and Ah,s
were calculated by performing T-matrix scattering simula-
tions (Mishchenko et al., 1996) at the C- and X-band using
Py-TMatrix and PyDSD (Leinonen, 2014; Hardin and Guy,
2017) that has been utilized in past ARM efforts (Wang et al.,
2018; Giangrande et al., 2019). A drop shape model is re-
quired for these simulations. We used the drop size model of
Brandes et al. (2002) and a standard deviation of the cant-
ing angle of 12◦, following the CPOL Zh calibration of Louf
et al. (2019). The air temperature was assumed to be 20 ◦C
for all of the simulations similar to tropical surface air condi-
tions at Darwin. Ah estimates appeared physically consistent
with measurements of liquid water content W , which are re-
lated to either nearly or exactly the third moment of the DSD,
respectively.

3 DSD observations and simulated radar variables
from DSD

3.1 DSD parameters

Figure 2 shows Nw, D0, and R estimated from the VDIS
for all DSDs considered. The D0 distribution is right-tailed
and spans values from 0.5 mm up to 4.5 mm. A total of 90 %
of the D0 values are less than 1.8 mm. The Nw spans 5 or-
ders of magnitude and R reached up to 150mmh−1. Much of
this DSD variability is typically attributable to differences in
whether the precipitation originates from stratiform or con-
vective clouds and how great of a role is played by ice-based
or mixed-phase precipitation (i.e., Tokay and Short, 1996;
Bringi et al., 2003, 2009; Thompson et al., 2015; Dolan et al.,
2018). Therefore, it is important to divide the DSD data by
whether they were produced by stratiform and convective
clouds. However, different studies have defined stratiform
and convective clouds using different thresholds for classi-
fication depending on cloud conditions. Bringi et al. (2003),
Bringi et al. (2009), and Giangrande et al. (2014a) applied
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Figure 2. Frequency histogram of (a) Nw and D0, (b) R and Nw , and (c) R and D0 from the VDIS for all of the DSDs containing more
than 100 drops in each sample. The criteria used to classify stratiform and convective DSDs from Bringi et al. (2009) (BR09) and Thompson
et al. (2015) (T15) are shown by the lines.

a two-moment DSD-based classification to Darwin datasets
such that any DSD having log10Nw > 6.3−1.6D0 is labeled
as convective, whereas remaining DSDs are marked as strat-
iform. This relationship, shown by the solid line in Fig. 2a,
(herein, BR09) was developed using disdrometer data in Dar-
win, Colorado, and other land locations, enabling deep con-
vective rainfall to be distinguished from widespread strati-
form precipitation.

More recently, Thompson et al. (2015) (T15) proposed
a definition for Manus and Gan islands that classifies all
DSDs with log10Nw > 3.8, as convective, which was consis-
tent with prior work by Bringi et al. (2003, 2009) and Thurai
et al. (2010). The T15 relationship is shown as the dashed
line in Fig. 2a. The T15 definition separated the full range
of tropical oceanic convection (weak to strong) from strati-
form precipitation. Confirmation for these T15 DSD separa-
tions have been subsequently reported by Giangrande et al.
(2019) using disdrometers coupled with cloud radar over
the ARM oceanic-mid-latitude ENA facility and by Dolan
et al. (2018). Nevertheless, both the oceanic dataset and re-
cent ENA findings of Thompson et al. (2015) do not cover
continental-based, deep-ice-based convection with hail. Such
mixed-phase deep convection and organized convective sys-
tems are common over the Darwin region (Williams et al.,
1992; Rutledge et al., 1992; May and Rajopadhyaya, 1999;
May and Ballinger, 2007; Bringi et al., 2009; Thurai et al.,
2010; Jackson et al., 2018). Prior studies find that both
tropical-oceanic cloud and continental cloud behaviors drive
surface rainfall here. These considerations may be analogous
to other displays for tropical-continental conditions (Tokay
and Short, 1996; Wang et al., 2018), wherein BR09 is typi-
cally sufficient to distinguish deeper convective cores from
other forms of precipitation. Therefore, this study applies
the BR09 convective-stratiform classification to distinguish
between the strong convective DSDs and other rain types.
We isolate and focus on deep convection in order to study

the phenomena most likely to contribute to strong magni-
tude variability in R. As shown by Thompson et al. (2015)
and Dolan et al. (2018), DSDs not classified as convection
by BR09 could include contributions from both weak ocean-
based convection and stratiform clouds. Here, we simply re-
fer to all non-convective rain classified by BR09 as strati-
form.

Figure 3 shows normalized frequency histograms of Nw,
D0, and liquid water contentW , separated by the B09 classi-
fication. In addition, summary statistics of these variables are
given in Table 1. There are 35 211 DSDs in total that fit the
filtering criteria used to generate Fig. 2. The BR09 classifi-
cation indicated that 26 131 of these DSDs were not convec-
tion. In total, 750 mm, or 21 % of the total rainfall accumu-
lation, originated from stratiform rain (Table 1). Past studies
in Darwin by Tokay and Short (1996) and Giangrande et al.
(2014b) reported that about 30 % of the total rainfall accu-
mulation originated from stratiform clouds. Their data and
the data here are consistent with the notion that rainfall in
Darwin primarily originates from convection. For these strat-
iform DSDs,W is generally less than 1gm−3 (Fig. 3 and Ta-
ble 1), from which less attenuation of the radar beam by liq-
uid water is expected and quantified by T15. The W and D0
values in Table 1 are lower in stratiform DSDs compared to
convective DSDs. The smaller drops in stratiform DSDs for a
given R shows that these DSDs more likely originated from
crystal aggregation aloft in stratiform rain devoid of melting
hail (Thurai et al., 2010; Dolan et al., 2018). These relative
differences in W , D0, and N0 have been shown in Darwin
previously (Thurai et al., 2010; Giangrande et al., 2014a).

Convective DSDs exhibited right-tailed distributions ofD0
and left-tailed distributions of N0 and W (Fig. 3). In Fig. 2,
the right tail of D0 is associated with lower N0 and W ,
consistent with fewer and larger drops. This tail has been
observed in previous studies in Darwin (Giangrande et al.,
2014a) as well as in other regions such as the Amazon (Wang
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Table 1. Mean DSD parameters for given R ranges and BR09 convective-stratiform classification.

R range No DSD Mean R log10Nw D0 [mm] Zh [dBZ] W [g m−3]
[mmh−1] [mmh−1] [m−3 mm−1]

C S C S C S C S C S C S

0.5–2 679 15 052 1.06 1.07 2.40 1.17 2.29 3.38 4.0 24.8 0.06 0.05
2–4 443 6568 2.97 2.85 3.08 3.66 1.96 1.26 32.1 30.5 0.14 0.13
4–6 436 2694 5.00 4.84 3.38 3.89 1.79 1.27 34.8 33.2 0.24 0.23
6–10 1216 1536 8.08 7.36 3.85 4.13 1.54 1.23 36.3 35.2 0.39 0.36
10–20 2422 257 14.3 12.6 4.07 4.34 1.52 1.24 39.5 39.7 0.69 0.60
20–40 2036 24 28.5 25.4 4.19 4.53 1.66 1.32 44.2 48.3 1.33 1.24
40–60 956 0 48.9 n/a 4.32 n/a 1.75 n/a 48.1 n/a 2.30 n/a
60+ 887 0 85.9 n/a 4.54 n/a 1.77 n/a 51.5 n/a 4.11 n/a

n/a: not applicable.

Figure 3. Normalized frequency histograms of (a) Nw , (b) D0, (c) W , and (d) R separated by the BR09 stratiform-convective classification.

et al., 2018) and the ARM ENA site (Giangrande et al.,
2019). This tail is likely caused by different stages of deep
convection being sampled. Large hail grown by accretion that
then melts and falls to the ground has very low N0 and very
high D0 (Bringi et al., 2003, 2009). At the edges of deep
convective clouds, size sorting favors fewer but much larger
drops hitting the ground before the more numerous smaller
drops do (Gunn and Marshall, 1955; Thompson et al., 2015).
In addition, for given ranges of R, there are lower values of
Nw and higher values of D0 in Table 1 for convective DSDs
compared to stratiform DSDs. This is consistent with land-
based convective-stratiform classification proposed by BR09
using data from Darwin and also other mid-latitude regions
such as Colorado.

When looking at histograms of R in Fig. 3, it is clear
that there is some overlap between convective and strat-

iform rain DSDs (the stratiform category of BR09 could
also include weak oceanic convection, T15). We find that
95.7 % of the DSDs with R > 10mmh−1 are classified as
convective, while 9.7 % of the DSDs with R < 10mmh−1

are convective. This is consistent with prior studies of trop-
ical rain (T15; Rutledge et al., 2019). Therefore, these Dar-
win data show that the majority of cases withR < 10mmh−1

are likely produced by stratiform rain and weak convection
while the cases R > 10mmh−1 are likely the result of deep
convection. Therefore, the DSDs collected here are the re-
sult of different modes of raindrop formation. Warm rain
processes in narrower DSDs are more likely present when
R < 10mmh−1 (T15). Meanwhile, deeper convection where
cold rain processes (melting hail) occur is more likely to be
present during times when R > 10mmh−1. Past studies have
used R = 10mmh−1 as a threshold for separating convective
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and stratiform DSDs (Tokay and Short, 1996; Nzeukou et al.,
2004), so this separation threshold is consistent with past lit-
erature examining DSDs in Darwin. However, as shown here
and in Giangrande et al. (2014a), thresholds based on R ex-
clude some weak convective events and the lateral edges of
strong convection when number concentration is still low.

3.2 Simulated radar moments from DSD

Figure 4 shows scatter plots of R as a function of simulated
Zh, Kdp, and Ah at the C- and X-band from the VDIS DSDs
in Fig. 2. The different color lines represent the best fits of
R to each Zh, Kdp, and Ah. In addition, consistent with
what has been done in many past studies (i.e., Marshall and
Palmer (1948); Aydin and Giridhar (1992); Matrosov (2005);
Matrosov et al. (2006); Wang et al. (2013); Ryzhkov et al.
(2014); Thompson et al. (2015, 2018); Wang et al. (2018);
Giangrande et al. (2019)), Fig. 4 and Table 2 show power-
law fit relationships in the form of R = aXb or R = aXbY c.
The fits in Table 2 take the linear forms of Zh, Zdr , and Ah
as inputs, denoted as zh, zdr , and ah respectively. Following
Wang et al. (2018), Table 2 shows confidence intervals cal-
culated from 1000 fits from 10 000 randomly chosen DSDs,
with replacement, from the VDIS dataset. The fit curves from
each of the 1000 fits are plotted in Fig. 4 as black lines. The
width of the 95 % confidence intervals (O([10−4–10−3

])) of
a, b, and c of each fit (Table 2) are less than 5 % of the mean
a, b, and c (O(1)) for each randomly generated fit. Further-
more, the randomly generated fits, shown by the black lines
in Fig. 4, are overlapping in Fig. 4, with differences in R less
than 10 %. This therefore shows that the generated fits are
robust.

4 Assessment of applicability of different power-law
retrievals

Using the 4-year Darwin dataset of DSDs, R, and simulated
radar moment data shown in Sect. 3.2, this section assesses
the applicability of dual-polarization moments and specific
attenuation for R estimation in Darwin. Three criteria will
be examined. Firstly, this study estimates the parametric un-
certainty in R using the spread in the probability distribu-
tion function of R for given ranges of radar observables.
Secondly, we use principal component analysis to determine
whether dual-polarization quantities or specific attenuation
best contribute to the variability in R. This exercise is de-
signed to guide R retrieval development. Finally, the R es-
timators developed in Sect. 3.2 are applied to the CPOL
dataset and compared against VDIS-observed R in order to
test the performance of these retrievals with observed C-band
radar data.

4.1 Parametric uncertainty

One metric by which the applicability of given radar re-
trievals can be assessed is by examining the parametric un-
certainty of R. While in Sect. 3.2 the bootstrap approach
showed that there is little difference in the power-law fits due
simply to random sampling, there can be an order of mag-
nitude variability in the distribution of R for a given Zh,s ,
Kdp,s ,Zdr,s , orAh,s , showing the potential for large paramet-
ric uncertainty. This is why many studies used multiple linear
regression, with multiple input variables, to form more con-
strained power-law R estimators. This study therefore calcu-
lates the parametric uncertainty ofR for a given radar observ-
able by subtracting the first quartile of R from the third quar-
tile ofR taken over 40 log-uniformly spaced bins of the given
radar observable (Kirstetter et al., 2015). The ranges of these
bins are 0 to 70 dBZ for Zh,s , 10−3 dBkm−1 to 100dBkm−1

for Ah,s , 10−3 ◦ km−1 to 10 ◦ km−1 for Kdp,s , and 0 to 10 dB
for Zdr,s . The results of these parametric uncertainty calcula-
tions as a function of the mean R over each radar observable
bin are shown in Fig. 5 for the C- and-X band simulated radar
quantities.

In Fig. 5a, b, theAh-based estimators give the lowest para-
metric uncertainty, followed by Kdp – then Zh-based esti-
mators for time periods when R < 10mmh−1 when only a
single radar observable is considered. However, it is impor-
tant to note that, at these R < 10mmh−1, the noisier nature
of Kdp and hence Ah makes the applicability of these quan-
tities to R estimators questionable. Zdr from CPOL is ques-
tionable to use for times when R < 10mmh−1 as it needs
to be accurate within 0.1 dB, less than the quoted 0.2 dB ac-
curacy, for providing reasonable estimates of R in light rain
(Ryzhkov et al., 2005). In addition, numerous past studies us-
ing CSAPR and XSAPR have found the use ofKdp- and Ah-
based estimators to be only applicable or preferable for con-
ditions withZh > 35–40 dBZ, present at rainfall rates greater
than roughly 10mmh−1 (Park et al., 2005b, a; Ryzhkov et al.,
2005; Giangrande et al., 2014b). Algorithms by Cifelli et al.
(2011) and Thompson et al. (2018) use data quality thresh-
olds to avoid noisy input data in R estimators. Given that
Table 1 shows that the mean Zh,s is under 40 dBZ for R <
10mmh−1, this suggests that using the Zh-based estimators
is the most viable option when 1<R < 10mmh−1, similar
to results using the CSU blended algorithm in Cifelli et al.
(2011), Thompson et al. (2018), and Rutledge et al. (2019).
However, these Zh-based estimators produced the highest
parametric uncertainty, shown in Fig. 5 and also quantified
by Thompson et al. (2018). The current analysis and these
prior studies highlight limitations in estimating light rainfall
rates from scanning radars, since they must rely on Zh in
1<R < 10mmh−1.

Looking at R > 10mmh−1, the parametric uncertainty
of R from Kdp-based estimators is lowest at both the C-
and X-band in Fig. 5 when only a single radar observ-
able is considered. In the blended algorithm used by Cifelli
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Table 2. The 95 % confidence intervals of the generated fit parameters, RMSE, and correlation coefficient for each fit.

Relationship a b c RMSE Correlation
[mmh−1] coefficient

C-band

R(zh) 0.0208± 0.00 0.66± 0.0002 16.66 0.95
R(zh) convective 0.0607± 0.00002 0.60± 0.0001 35.30 0.91
R(zh) stratiform 0.0438± 0.00005 0.56± 0.0002 2.75 0.90
R(Kdp) 26.116± 0.01 0.77± 0.0001 4.67 0.96
R(ah) 258.89± 0.31 0.87± 0.0002 12.76 0.79
R(zh,zdr ) 0.0122± 0.0000 0.85± 0.0002 −4.25± 0.006 4.09 0.97
R(Kdp,zdr ) 46.2347± 0.06 0.90± 0.0002 −1.69 ± 0.006 3.86 0.99

X-band

R(zh) 0.0369± 0.00004 0.61± 0.000 16.03 0.94
R(zh) convective 0.1056± 0.00003 0.53± 0.000 35.2 0.88
R(zh) stratiform 0.0369± 0.00006 0.67± 0.000 2.79 0.89
R(Kdp) 17.5432± 0.006 0.77± 0.0001 4.38 0.97
R(ah) 49.54± 0.027 0.80± 0.0001 5.56 0.79
R(zh,zdr ) 0.011± 0.00001 0.89± 0.0001 −5.35± 0.002 4.20 0.98
R(Kdp,zdr ) 31.794± 0.017 0.94± 0.0001 −1.99± 0.002 3.88 0.98

Figure 4. R from VDIS as a function of (a) Zh, (b) Ah, and (c) Kdp , for the simulated radar moments from VDIS at the C-band. Panels
(d–f) are as in (a–c) but for the X-band. Each colored line represents a power-law best fit of the variables. Each black line represents a fit
produced by the bootstrap technique applied to the data in each panel.
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Figure 5. The parametric uncertainty of R estimated using the methodology of Kirstetter et al. (2015) as a function of mean R for given
ranges of radar moments at the C-band (a) and X-band (b).

et al. (2011), Thompson et al. (2018), and Rutledge et al.
(2019), Kdp is used much more frequently for R estima-
tion at R� 10mm h−1 because it exceeds necessary data
quality thresholds. The D0 was higher in convective DSDs
withR > 10mmh−1 (Table 1), meaning the drop populations
were more oblate, produced more total liquid water and rain,
and therefore produced significant Kdp (Bringi and Chan-
drasekar, 2001). For instance, in Table 1, D0 increases from
1.54 to 1.77 mm with increasing R when R > 10mmh−1

for the convective DSDs, also shown by Thompson et al.
(2018). By definition, Kdp becomes proportional to W and
R once drops are large enough to be oblate (Bringi and
Chandrasekar, 2001). This is consistent with results that
show Kdp,s is highly correlated with R when large, oblate
drops are present when R > 10mmh−1. The parametric un-
certainty in the R−Kdp,s relationship is lower for ranges
of R > 10mmh−1 compared to the other observables at the
ARM TWP Darwin site when a single radar observable is
considered.

Figure 5 shows that the parametric uncertainty is lower
when multiple radar observables are considered over the en-
tire range of R compared to when a single observable is
used. In particular, the parametric uncertainty of R is low-
est when Kdp,s and Zdr,s are constrained for time periods
when R > 1.5mm h−1. Even the use of Zh,s , and Zdr,s as
constraints lowers the parametric uncertainty of R compared
to using a single radar observable. (Kdp, Zdr )-based esti-
mators are used to estimate R when R > 10mmh−1 in the
blended algorithm used by Cifelli et al. (2011), Thompson
et al. (2018), and Rutledge et al. (2019). In addition, the
0.2 dB accuracy of Zdr from CPOL is adequate for R esti-
mation in heavier rainfall (Ryzhkov et al., 2005). Therefore,
similar to past studies in Colorado, Oklahoma, and Manus
and Gan islands, this shows that using multiple linear regres-

sion reduces the uncertainty in R due to the use of fits for the
CPOL data in Darwin.

4.2 Principal component analysis

The previous subsection revealed which rainfall rate estima-
tors most minimize the parametric error in R for these Dar-
win datasets. Now, this section explores the utility of using
Zh,s , Zdr,s , Kdp,s , or Ah,s to estimate R. To do this, prin-
cipal component analysis (PCA) reduces the dimensionality
of the feature space by factoring in potential correlations be-
tween the variables Zh,s , Zdr,s , Kdp,s , and Ah,s and creating
a new phase space of uncorrelated features. This PCA is con-
ducted on the simulated VDIS radar moments and Ah,s . For
PCA, we define a vector x = (Zh,s, Ah,s, Kdp,s, Ah,s) for
each DSD sampled by the VDIS. All such x values are then
the columns of a matrix X. The first n principal components
(PCs) of XTX are then defined to be the first n normal eigen-
vectors of XTX. The normal eigenvalues λn of these eigen-
vectors show how the variability in the phase space of X is
determined by each PC of X. Since the PCs can be affected
by the scale of each row of X, each row of X is standardized
before conducting the PCA. Each column of X is then pro-
jected into a new coordinate system whose basis vectors are
each PC and stored into a matrix Xp. From this information,
the variable importance matrix I= |XTXp|, or the absolute
value of the cross-covariance matrix between X and Xp. We
then standardize each column of I to have unit variance so
that the values in I are the absolute values of z scores. The
resulting I values for the simulated radar variables are shown
in Figs. 6 and 7. Three PCs were chosen as over 95 % of
the variance in X is explained using three PCs. Finally, in
order to determine which PCs contribute to variability in R,
we compute the correlation coefficient of the logarithm of R
with each row of Xp, as shown in Table 3.
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Figure 6. The variable importance matrix for the three principal components of X (a) when all data are considered, (b) when R is 1 to
10 mmh−1, (c) 10 to 100mmh−1, and (d) more than 100mmh−1.

Table 3. Correlation coefficients between R and each PC.

C-band PC1 PC2 PC3

All data 0.84 −0.48 0.12
1 to 10mmh−1 0.66 −0.42 0.54
10 to 100mmh−1 0.73 −0.62 0.18
100+ mmh−1 0.53 −0.67 0.39

X-band

All data 0.86 0.33 −0.35
1 to 10mmh−1 0.69 −0.64 −0.13
10 to 100mmh−1 0.80 −0.54 −0.20
100+ mmh−1 0.52 −0.76 0.00

Table 1 and Fig. 3 show that stratiform and possibly weak
convective clouds primarily contribute to rainfall for times
when R < 10mmh−1 while stronger convective rain classi-
fied by BR98 had higher R. Since we expect rainfall from
stratiform and convective clouds to have DSDs with different

characteristics for a given R, and R = 10mmh−1 was a suit-
able threshold to distinguish deep convection from weaker
convection and stratiform rain, the PCAs in Figs. 6 and 7 are
further stratified by R in order to account for this DSD vari-
ability. When restricting the PCA to 1<R < 10mmh−1, we
see that R has a stronger correlation (> 0.65) with PC1 than
with PC2 and PC3 in Tables 6b and 7b. Zh,s and Ah,s have
the greatest contribution to PC1 at the C-band, but Zh,s and
Zdr,s do at the X-band. Therefore, the importance of dual-
polarization radar quantities and Ah to the variability R for
these weaker rainfall conditions is dependent on radar wave-
length, but the high importance of Zh for determining R is
consistent across wavelengths. Zh from CPOL is accurate to
within 1 dB (Louf et al., 2019), adequate for R estimation in
light rain (Ryzhkov et al., 2005), but the calibration of Zdr
is not adequate. This is consistent with past efforts that have
preferred Zh estimators for estimating these lighter rainfall
rates from scanning radars (Cifelli et al., 2011; Park et al.,
2005b; Ryzhkov et al., 2005; Giangrande et al., 2014a; Gi-
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Figure 7. As Fig. 6 but for the X-band.

angrande et al., 2019; Thompson et al., 2018; Wang et al.,
2018; Rutledge et al., 2019).

For 10<R < 100mmh−1, the correlation with R with
PC1 is still higher (> 0.7) than with PC2 and PC3. How-
ever, at R > 100mmh−1, the correlation of R with PC2 is
higher (<−0.6) compared to PC1 and PC3 in Table 3. Zh,s
and Zdr,s are the two variables contributing most to the vari-
ability in PC1 in Figs. 6c and 7c. This relationship is consis-
tent across wavelengths. Kdp,s and Zdr,s contribute most to
the variability to PC2 in Figs. 6c, d and 7c, d. Therefore, as
R increases, Kdp,s and Zdr,s become better predictors of R.
This further confirms and quantifies prior studies that showed
Kdp-based estimators forR are successful at higher rain rates
(Sachidananda and Zrnić, 1985, 1987). This is also consistent
with previous studies recommending the use of Kdp-based
estimators overAh-based estimators for CSAPR and XSAPR
at the ARM SGP site to sample deep convection (Giangrande
et al., 2014b). Finally, this is also consistent with the use of
R− (Zdr , Kdp) estimators in the CSU blended techniques

by Cifelli et al. (2011) and Thompson et al. (2015) for these
rainfall rates.

In this analysis, Ah,s is shown to have lower importance to
PC1 and PC2 for R > 10mmh−1 in Figs. 6b, c, d and 7b, c,
d compared to Kdp,s and Zdr,s . While Ryzhkov et al. (2014)
demonstrated that, R−Ah are appropriate for use in convec-
tion sampled by NEXRAD in Oklahoma, past ARM efforts
at SGP have shown that, for XSAPR radars, severe attenua-
tion prohibited accurate rainfall estimation for this range of
R (Giangrande et al., 2014b). Therefore, this and the PCA
shows that using multiple radar observables in these coastal
tropical regions will provide better predictive capability than
using Ah alone.

5 Comparisons of CPOL retrievals with VDIS

As a final metric for evaluating the applicability of various
radar quantities to the development of R estimators for ARM
radars deployed at the TWP ARM site, the R estimators for
C-band radars in Sect. 2.2 were applied to the point above
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the VDIS as defined in Sect. 2.1. First, in order to com-
pare the estimators, Fig. 8 shows scatter plots of R observed
from VDIS compared to observed Zh, Kdp, and Ah from
CPOL with the R estimator developed from the VDIS data
overlaid as a dashed line on the scatter plot. It is apparent
that there is 1 to 2 orders of magnitude of scatter in R, and
RMSE> 8.5mmh−1, in all panels of Fig. 8. For Fig. 8a, c,
the Zh values are generally lower than the fit-produced val-
ues for R > 50mm h−1. While the Zh values are, to the best
of possible efforts, adjusted for attenuation, there is still the
possibility that Zh remains affected by attenuation at these
high R values that was uncorrectable. In addition, factors
including the horizontal advection and breakup of drops as
they travel from the CPOL sample gate to the VDIS, as well
as noise in the Kdp and Ah fields at R < 10mmh−1, likely
induce scatter. Figure 8 therefore shows that a single radar
observable does not adequately describe the full variability
of R. As shown in many prior studies, R estimation could
be improved by applying a blend of R estimators depending
on rain conditions or radar multivariable conditions, or by
employing multiple linear regression with more variables in
each R estimator.

In order to determine the blend, or set of R estimators
based on rain conditions, that can provide the best agree-
ment with VDIS observations, Fig. 9 shows comparisons
of 10 min averages of R estimated from CPOL Zh, Ah,
and Kdp. The input data to the R estimators are from the
CPOL gate immediately over VDIS. The rain branch of the
CSU blended technique, originally developed for Colorado
by Cifelli et al. (2011), and then subsequently modified for
the tropical oceans by Thompson et al. (2018), is also in-
cluded in Fig. 9. The CSU blended technique uses a deci-
sion tree based on data quality thresholds for Zh, Kdp, and
Zdr to select an R estimator. The modifications by Thomp-
son et al. (2018) were developed for conditions in Manus and
Gan islands where stronger convection that produces hail that
can further melt into large surface raindrops is not common.
Therefore, since such convection is common in Darwin, the
estimators used by the CSU blended technique to generate
Fig. 9 were changed to those in Table 2 in order to more ac-
curately represent the local DSDs sampled in Darwin over
several years. The data quality thresholds used by Thompson
et al. (2018) for tropical oceans were also used here, so only
the coefficients of the R estimators were changed.

The analysis, here, and in previous studies, shows that
different microphysical processes likely occur at different
ranges of R. Namely, raindrops forming from melting hail
are unlikely at 1<R < 10mmh−1 but more likely during
times when R > 10 mmh−1. Therefore, in order to analyze
how the agreement between estimated R and VDIS-observed
R changes for these different conditions, the mean, and
5th and 95th percentiles of the CPOL estimated R for log-
uniformly spaced intervals of VDIS-observed R are shown
in Fig. 9. The first focus is on time periods with 1<R <
10mmh−1 where stratiform rain and weaker convection are

more likely present. While the Kdp-, (Kdp,Zdr )-, and Ah-
based estimators are within a factor of 2 of VDIS-observedR
(Fig. 9b, c, e), there is greater spread in Fig. 9b, c, d compared
to Fig. 9a, e, f. However, the mean R from both the CSU
blended technique and the Zh-based estimators is on aver-
age 12 % higher than the mean VDIS-observed R (Fig. 9a,
f). Consistent with the previous analysis, this again supports
the notion that Zh-based estimators, and the modified CSU
blended technique, are most appropriate for use in these con-
ditions characterized by stratiform and weak convective rain-
fall.

Switching focus to analyzing conditions of
R > 10mmh−1, in which strong convection that is ca-
pable of forming hail that melts into raindrops is much
more likely, R values from CPOL calculated from Zh-
and (Zh,Zdr)-based estimators underestimate the VDIS-
observed R (Fig. 8a, e). On average, the mean estimated R
from the modified CSU blended technique is 40 % lower
than the mean observed R (Fig. 9f), while theKdp-estimated
R is 28 % lower (Fig. 9c), Ah-estimated R is 52 % lower
(Fig. 9d), and Kdp,Zdr -estimated R is 78 % lower (Fig. 9d)
for these time periods. However, the spread in Fig. 9f is
lower than in Fig. 9c, showing better correlation between
the R estimated from the CSU blended technique than R
from a single estimator. This therefore demonstrates that
R estimated from the CSU blended technique, on average,
provides the best agreement with VDIS-observed R for
these time periods dominated by stronger convection. The
CSU blended technique also gave estimates of R in best
agreement with VDIS-observed R for the time periods dom-
inated by stratiform rain and weaker convection. Therefore,
this demonstrates that the use of the CSU blended technique,
with modifications to the coefficients of the R estimators for
Darwin DSDs, provides the optimal estimate of R for the
CPOL data in Darwin.

6 Conclusions

The C-band polarization (CPOL) radar at the U.S. De-
partment of Energy Atmospheric Radiation Measurement
(ARM) Tropical Western Pacific (TWP) site in Darwin has
been operating for over a decade and thus provides an ample
dataset for developing essential rainfall climatologies. These
long-term datasets are useful for understanding rainfall vari-
ability and for validation of global climate models as well as
severe weather forecasts. A crucial quantity in this dataset
includes the rainfall rate R. R is not detected directly by
radars but is retrieved from radar observables such as radar
reflectivity factor Zh, differential reflectivity Zdr , specific
differential phase Kdp, and specific horizontal attenuation
Ah. R−Ah estimators at the S-band have been successful
for the NOAA NEXRAD radars, but studies utilizing ARM
C- and X-band scanning radars at the ARM Southern Great
Plains site have shown that retrievals using Kdp without Zdr
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Figure 8. R from the VDIS as a function of (a) Zh for convective DSDs, (b)Kdp , (c) Zh for stratiform DSDs, and (d) Ah from CPOL. Solid
lines are the R estimators in Fig. 4.

are most successful. Most prior studies are based on lim-
ited data compared to the 4-year dataset available from the
ARM TWP Darwin site. This, therefore, motivated a study
to determine which of these radar observables are most ap-
plicable for retrieving rainfall estimates for the CPOL and
ARM radars in Darwin. We used a much larger dataset than
previous efforts. We first developed R estimators from sim-
ulated Zh,s , Zdr,s , Kdp,s , and Ah,s from video disdrometer
(VDIS) data in Darwin for C- and X-band radar wavelengths.
The VDIS observations generally showed that Darwin rain-
fall is typically stratiform (in terms of frequency), having me-
dian drop diameters D0 less than 1.5 mm at R < 10mmh−1.
Rainfall here contributed by convection hadD0 > 1.5mm for
R > 10mmh−1, consistent with past observations in Darwin.

Using the simulated data, we examined which radar quan-
tities would likely provide the most utility in developing rain-
fall estimates from ARM radars in Darwin using a three-
step approach. First, we assessed the parametric uncertainty
of each R estimator produced from the VDIS data. We
found that estimators that used multiple observables at once,

namely (Zh,Zdr) and (Kdp,Zdr), had the lowest paramet-
ric uncertainty. Considering constraining rainfall rates by pa-
rameters that are related to both the shape of the raindrops
(Kdp, Zdr ) and the size and number (Zh), it is not surprising
that the parametric error in R is lower when multiple radar
observables are considered. This result is similar to those ob-
tained from previous studies. Therefore, multiple radar ob-
servables are required to develop quality rainfall statistics
from ARM radars in Darwin.

Secondly, a principal component analysis (PCA) was con-
ducted on Zh,s , Zdr,s , Kdp,s , and Ah,s from the VDIS DSDs
as another metric for determining which quantities had the
greatest utility in estimating R. While the importance of
Zdr,s and Ah,s was not consistent across wavelengths when
1<R < 10mmh−1, Zh,s was a consistent predictor of R for
1<R < 10mmh−1. Generally, there was a higher number
of smaller drops with increasing R in stratiform rain, consis-
tent with crystal aggregation aloft in stratiform rain devoid of
melting hail (Thurai et al., 2010; Dolan et al., 2018). Kdp,s
and Zdr,s become increasingly important for explaining R
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Figure 9. Normalized frequency distribution 10 min averages of R estimated from the lowest gate from CPOL over VDIS using given
estimators in Fig. 4 as a function of 10 min averages of R recorded by the VDIS. Estimators used to estimate R from CPOL are shown in
each panel. Solid lines denote medians, and dashed lines are the 5th and 95th percentiles of the estimated R from CPOL.

variability at R > 10mmh−1. Generally, higher median drop
sizes were observed in this regime with mostly convective
rainfall where melting hail aloft is more likely to be present
(Thurai et al., 2010; Dolan et al., 2018). Therefore, since
raindrops become more oblate as they increase in size, the
increasing importance of Zdr,s andKdp,s in determining R is
consistent with the presence of larger drops at higher R. In
general, the PCA shows that estimators using multiple radar
quantities best characterize the variability observed in R in
the simulated VDIS data.

For the third step of this assessment, these different R
estimators (formed from simulated VDIS radar variables)
were tested on point CPOL observations co-located with the
VDIS. Each R estimator was tested individually and also in
the rain-based branch of the CSU blended algorithm that
chooses between estimators based on data quality thresh-
olds (Cifelli et al., 2011; Thompson et al., 2018; Rutledge
et al., 2019). Considering single estimators, R estimated
fromZh was in best agreement with the VDIS when 1<R <
10mmh−1 and R estimated from Kdp and Zdr was when
R > 10mmh−1, similar to the choices of estimators used
in the CSU blended algorithm. Not surprisingly, from this,
the highest-performing estimation techniques for X- and C-

band at Darwin were the CSU blended technique for rainfall
rates of 1<R < 10mmh−1 as well as whenR > 10mmh−1.
This demonstrates that the CSU blended technique is best for
stratiform and weak convective rain as well as strong convec-
tion in Darwin. Local R estimators were used in the blended
algorithm to more accurately represent DSDs in Darwin. The
three steps of this methodology arrive at a consistent conclu-
sion: blended techniques using multiple radar quantities pro-
vide the most optimal estimates of R in Darwin due to the
wide variability of DSDs observed in Darwin. The method-
ology used in this study could be used in future studies to
quantify uncertainty in R estimation methods.

Code and data availability. The code used for the analysis of the
CPOL data is available at http://www.github.com/EVS-ATMOS/
cmdv-rrm-anl/ (EVS-ATMOS, 2016). The CPOL data can be
downloaded from the Atmospheric Radiation Measurement Facil-
ity archive at https://www.archive.arm.gov/discovery/ ARM Data
Center, 2019. All further datasets are currently available from the
authors upon request.
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