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Abstract. Satellite remote sensing aerosol optical depth
(AOD) and meteorological elements were employed to in-
vert PM2.5 (the fine particulate matter with a diameter be-
low 2.5 µm) in order to control air pollution more effectively.
This paper proposes a restricted gradient-descent linear hy-
brid machine learning model (RGD-LHMLM) by integrat-
ing a random forest (RF), a gradient boosting regression tree
(GBRT), and a deep neural network (DNN) to estimate the
concentration of PM2.5 in China in 2019. The research data
included Himawari-8 AOD with high spatiotemporal reso-
lution, ERA5 meteorological data, and geographic informa-
tion. The results showed that, in the hybrid model developed
by linear fitting, the DNN accounted for the largest propor-
tion, and the weight coefficient was 0.62. The R2 values
of RF, GBRT, and DNN were reported as 0.79, 0.81, and
0.8, respectively. Preferably, the generalization ability of the
mixed model was better than that of each sub-model, and
R2 (determination coefficient) reached 0.84, and RMSE (root
mean square error) and MAE (mean absolute error) were re-
ported as 12.92 and 8.01 µgm−3, respectively. For the RGD-
LHMLM, R2 was above 0.7 in more than 70 % of the sites
and RMSE and MAE were below 20 and 15 µgm−3, respec-
tively, in more than 70 % of the sites due to the correlation
coefficient having a seasonal difference between the meteo-
rological factor and PM2.5. Furthermore, the hybrid model
performed best in winter (mean R2 was 0.84) and worst in
summer (mean R2 was 0.71). The spatiotemporal distribu-
tion characteristics of PM2.5 in China were then estimated
and analyzed. According to the results, there was severe pol-
lution in winter with an average concentration of PM2.5 be-
ing reported as 62.10 µgm−3. However, there was only slight
pollution in summer with an average concentration of PM2.5

being reported as 47.39 µgm−3. The period from 10:00 to
15:00 LT (Beijing time, UTC+8 every day is the best time
for model inversion; at this time the pollution is also high.
The findings also indicate that North China and East China
are more polluted than other areas, and their average annual
concentration of PM2.5 was reported as 82.68 µgm−3. More-
over, there was relatively low pollution in Inner Mongolia,
Qinghai, and Tibet, for their average PM2.5 concentrations
were reported below 40 µgm−3.

1 Background

In recent years, pollutants have been discharged increasingly
in China where air pollution is becoming worse than ever
before due to rapid urbanization and industrialization (Wang
et al., 2019a). The fine particulate matter (PM2.5) with a di-
ameter below 2.5 µm is the main component of air pollu-
tants, having considerable impacts on human health, atmo-
spheric visibility, and climate change (Gao et al., 2015; Pan
et al., 2018; Pun et al., 2017; Qin et al., 2017). The global
concern about PM2.5 has increased significantly since it was
listed as a top carcinogen (Apte et al., 2015; Lim et al.,
2020). Currently, ground monitoring is the most efficient
method of measuring PM2.5 (Yang et al., 2018). However,
monitoring stations are not evenly distributed due to terrain
and construction costs; therefore, it is difficult to obtain a
wide range of accurate PM2.5 concentration data (Han et al.,
2015). To solve the problem, the method of estimating PM2.5
with satellite remote sensing was developed. Satellite remote
sensing is characterized by a wide coverage and high resolu-
tion (Hoff and Christopher, 2009; Xu et al., 2021). There is
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also a high correlation between aerosol optical depth (AOD),
obtained from satellite remote sensing inversion, and PM2.5;
therefore, AOD is a very effective method of monitoring the
spatiotemporal concentration characteristics of PM2.5.

After Engel-Cox et al. (2004) proposed using satellite
AOD to estimate PM2.5 concentration, several studies have
been reported in the literature to address this theory. Based
on the regression model, Liu et al. (2005) introduced AOD,
boundary layer height, relative humidity, and geographi-
cal parameters as the main controlling factors to estimate
PM2.5 in the eastern part of the United States, and the ver-
ification coefficient R2 obtained was 0.46. Tian and Chen
(2010) used AOD, PM2.5, and meteorological parameters
in Southern Ontario, Canada, to establish a semi-empirical
model to predict PM2.5 concentration per hour, and the
verification coefficient R2 obtained in rural and urban ar-
eas was 0.7 and 0.64, respectively. Hu et al. (2013) pro-
posed a geographically weighted regression model to esti-
mate the surface PM2.5 concentration in southeastern Amer-
ica by combining AOD, meteorological parameters, and
land use information. Their model average R2 was 0.6. Lee
et al. (2012) believed that the satellite remote sensing AOD
data would face interference from clouds and snow and ice,
and the reliability of the data was questionable. They pro-
posed a mixed model based on AOD calibration to predict
the ground PM2.5 concentration in New England, USA, and
achieved good results (R2

= 0.83). Li et al. (2016) used a
PM2.5 remote sensing method with remote sensing of ground
PM2.5. Combined with MODIS (Moderate Resolution Imag-
ing Spectroradiometer) AOD and ground observation data,
Lv et al. (2017) estimated the daily surface PM2.5 concentra-
tion in the Beijing–Tianjin–Hebei region and improved the
data resolution to 4 km. Using an interpretable self-adaptive
deep neural network, Chen et al. (2021) estimated daily spa-
tially continuous PM2.5 concentrations across China and ana-
lyzed the contribution of various characteristics to the PM2.5
model. The data used in these early studies are AOD products
obtained from polar-orbit satellite sensors. The daily obser-
vation frequency is limited. Due to the influence of cloud and
ground reflection, the dynamic change information of PM2.5
cannot be obtained. As a result, geostationary satellite obser-
vations can be used to overcome the problem of low temporal
resolution for estimating surface PM2.5 (Emili et al., 2010).

The Himawari-8 satellite commonly used in the Asia-
Pacific region is a geostationary satellite launched by the
Japan Meteorological Agency in 2014. The observation fre-
quency is 10 min, and the observation results can charac-
terize the aerosols and provide AOD data with a resolu-
tion of 5 km (Bessho et al., 2016; Yumimoto et al., 2016).
Due to its excellent performance, Wei et al. (2021a) use
Himawari-8 data to estimate ground PM2.5; results show
that the CV R2 (cross-validation coefficient of determina-
tion) is 0.85, with a root mean square error (RMSE) and
mean absolute error (MAE) of 13.62 and 8.49 µgm−3, re-
spectively. Wang et al. (2017) proposed an improved linear

model and introduced AOD, meteorological parameters, and
geographic information to estimate PM2.5 in the Beijing–
Tianjin–Hebei region, and the verification coefficient R2

was 0.86. T. X. Zhang et al. (2019) used the Himawari-8
hourly AOD product to estimate ground PM2.5 in China’s
four major urban agglomerations. The results showed sig-
nificant diurnal, seasonal, and spatial changes and improved
the temporal resolution of estimating PM2.5 concentration to
the hourly level. Yin et al. (2021) used Himawari-8 hourly
TOAR (top-of-the-atmosphere reflectance) data to estimate
ground PM2.5 in China, improving the data coverage area.

As research into ground-based PM2.5 estimation deepens,
traditional linear or nonlinear models cannot meet the re-
quirements of large-scale estimation and are gradually being
replaced by machine learning algorithms with strong non-
linear fitting abilities (Guo et al., 2021; Mao et al., 2021).
Liu et al. (2018) combined Kriging interpolation and a ran-
dom forest algorithm to obtain the concentration of high-
resolution ground PM2.5 in the United States. To demonstrate
the accuracy and superiority of the proposed method, the re-
sults were compared with the PM2.5 concentration in ground
measurement stations. Chen et al. (2019) stacked and pre-
dicted PM2.5 concentration based on a variety of machine
learning algorithms, discussed the influence of meteorolog-
ical factors on PM2.5, and achieved an R2 of 0.85. Li et al.
(2017a) established a GRNN (generalized regression neural
network) model for the whole of China to estimate PM2.5
concentration, and the results demonstrated that the perfor-
mance of the deep learning model was better than that of the
traditional linear model. In addition, there are some novel
algorithms such as the space-time extra-tree (STET) (Wei
et al., 2021b) and space-time random forest (STRF) (Wei
et al., 2019a) algorithms that are also used for PM2.5 inver-
sion research.

A large number of existing studies in the broader literature
have examined the estimation of ground PM2.5 concentra-
tions using satellite remote sensing AOD. However, the per-
formance of PM2.5 estimation models established in the ex-
isting studies varies greatly and is not stable in different sea-
sons and regions. To overcome this limitation, in this paper,
a restricted gradient-descent linear hybrid machine learning
model (RGD-LHMLM) based on a random forest (RF), gra-
dient lifting regression tree (GBRT), and deep neural network
(DNN) is proposed to estimate ground PM2.5 concentration.
The model performance is evaluated from time and space
to analyze its causes. Finally, spatiotemporal distribution of
PM2.5 concentration in China in 2019 is obtained.

2 Data

2.1 Ground PM2.5 monitoring data

PM2.5 concentration data for 2019 used in this study are
available from the China National Environmental Monitor-
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ing Center (CNEMC) real-time air quality publication sys-
tem. The PM2.5 datasets are calibrated and quality-controlled
according to national standard GB 3095-2012 (China’s Na-
tional Ambient Air Quality Standards) (China, 2012). The
system extracts hourly mean PM2.5 data. By the end of 2019,
China had 1641 monitoring stations built and in operation.
Figure 1 shows the spatial distribution of monitoring stations
in China.

2.2 Satellite AOD data

The Advanced Himawari Imager (AHI) on the Himawari-
8 satellite launched by the Japan Meteorological Agency is
a highly improved multi-wavelength imager. It adopts the
whole disk observation method and has 16 visible and in-
frared channels. It has the characteristics of fast imaging
speed and flexible observation area and time. Himawari-8
AOD is obtained by an aerosol retrieval algorithm based
on a Lambertian surface assumption developed by Yoshida
et al. (2018). The Level 3 hourly AOD product, released by
the Japan Aerospace Exploration Agency (JAXA), provides
500 nm AOD data with a spatial resolution of 5 km during
the day. In previous studies (Zang et al., 2018), Himawari-
8 AOD was compared with the AOD data of AERONET
(Aerosol Robotic Network) in China and achieved good per-
formance (Z. Zhang et al., 2019), so the results show that they
are consistent (R2

= 0.75); RMSE and MAE were 0.39 and
0.21, respectively (Wei et al., 2019b). The AOD data used
in this study are the Himawari-8 Level 3 hourly AOD data
in 2019 obtained from the Himawari Monitor website of the
Japan Meteorological Agency (see “Code and data availabil-
ity” section). In the study, we selected AOD with strict cloud
screening, that is, AOD data with low uncertainty.

2.3 Meteorological data

ERA5 reanalysis data comprise an hourly collection of at-
mospheric and land-surface meteorological elements that has
taken place since 1979 that the European Centre for Medium-
Range Weather Forecasts (ECMWF) has used with its pre-
diction model and data assimilation system to reanalyze
archived observations (Jiang et al., 2021). Data used in this
paper include surface relative humidity (RH, expressed as
a percentage), air temperature at a height of 2 m (T2 m, in
K), wind speed (U10, V10; in ms−1), surface pressure (SP,
in Pa), boundary layer height (BLH, in m), and cumula-
tive precipitation (RAIN, in m) at 10 m above the ground.
A series of studies have indicated that these parameters can
affect the concentration of PM2.5 (Fang et al., 2016; Guo
et al., 2017; Li et al., 2017b; Wang et al., 2019b; Zheng
et al., 2017; Gui et al., 2019). Uncertainty estimation of
ERA5 data has been described in detail on the following
website: https://confluence.ecmwf.int/display/CKB/ERA5%
3A+uncertainty+estimation (last access: 1 July 2021).

2.4 Auxiliary data

The auxiliary data used in this study include high and low
vegetation indices (LH, LL), ground elevation data (DEM),
and population density data (PD). The high and low vege-
tation indices are derived from ERA5 reanalysis data and
represent half of the total green leaf area per unit level
ground area of high and low vegetation type, respectively.
The ground elevation data are derived from SRTM3 (Shuttle
Radar Topography Mission, 90 m resolution) measurements
jointly conducted by NASA and the US Department of De-
fense National Imagery and Mapping Agency (NIMA), with
a spatial resolution of 90 m. The population data come from
the 2015 United Nations GPWv4-Adjusted Population Den-
sity data provided by NASA’s Socioeconomic Data and Ap-
plications Center (SEDAC), which is based on national cen-
suses and adjusted for relative spatial distribution.

3 Method

3.1 Random forest

Random forests (RF) are built based on the combination of a
bagging algorithm and decision trees (Breiman, 2001), which
are an extended variant of the parallel ensemble learning
method (Stafoggia et al., 2019). To construct a large num-
ber of decision trees, the random forest model takes multiple
samples of the sample data. In the decision trees, the nodes
are divided into sub-nodes by using the randomly selected
optimal features until all the training samples of the node
belong to the same class. Finally, all the decision trees are
merged to form the random forest. This method has proved
to be effective in regression and classification problems and
is one of the best-known machine learning algorithms used
in many different fields (Yesilkanat, 2020).

3.2 Gradient-boosted regression trees

Differently from the random forest, gradient boosting regres-
sion trees (GBRTs) are based on a boosting algorithm and de-
cision trees (Friedman, 2001). The basic principle of GBRTs
is to construct N different basic learners through multiple it-
erations and constantly add the weight of the learners with a
small error probability to eventually generate a strong learner
(Johnson et al., 2018). The core of this method is that af-
ter each iteration, a learner will be built in the direction of
residual reduction (gradient direction) to make the residual
decrease in the gradient direction (Schonlau, 2005). The ba-
sic learner of the GBRT is the regression tree in the decision
tree. During the prediction, a predicted value is calculated
according to the model obtained. The minimum square root
error is used to select the optimal feature to split the dataset,
and the average value of the child node is then taken as the
predicted value.
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Figure 1. Distribution diagram of environmental monitoring stations in China.

3.3 Deep neural networks

Deep neural networks (DNNs) comprise a supervised learn-
ing technique that uses a backpropagation algorithm to mini-
mize the loss function. They adjust the parameters through
an optimizer and have high computational power, making
them ideal for solving classification and regression problems
(Wang and Sun, 2019). The structure of a DNN includes an
input layer, an output layer, and several hidden layers. Each
layer takes the output of all nodes of the previous layer as the
input, and this process requires activation functions. Com-
pared with other activation functions, the linear rectifying
function (ReLU) has the advantages of simple derivation,
faster convergence, and higher efficiency. At the same time,
among the adaptive learning rate optimizers, the AdaMax
optimizer performs the best. It not only has the advantages
of Adam in determining the learning rate range and hav-
ing stable parameters in each iteration but also simplifies the
method of defining the upper limit range of the learning rate
and improves the iteration efficiency (Diederik and Jimmy,
2014). Therefore, in this paper, we selected the AdaMax op-
timizer and ReLU activation function to train the DNN.

3.4 Model establishment and verification

After data processing, an RF, GBRT, and DNN are used for
modeling.

PM2.5i,j = AODi,j +BLHi,j +RHi,j + T2 mi,j +LLi,j

+LHi,j +SPi,j +RAINi,j +U10i,j +V10i,j

+PDi,j +HEIGHTi,j +LONGi,j +LATi,j

+MONTHi,j +HOURi,j (1)

Equation (1) is applicable to the RF, GBRT, and DNN, where
PM2.5i,j is the PM2.5 at time i at station j .

To prevent model parameters from being controlled by
a large or small range of data and speed up the conver-
gence rate of the model, the data must be normalized be-
fore starting the training process. Finally, the three optimal
sub-models are linearly combined to achieve the final mixed
model. To verify the model performance, this paper uses the
“10-fold cross-validation” method (Adams et al., 2020). In
this method, the data are split into 10 copies, 9 copies for
training and 1 copy for verification; this process is repeated
10 times, and then the average of the 10 predictions is com-
puted as the final result. Finally, the predicted value and the
measured value are fitted linearly. At the same time, several
indicators are used to evaluate the model, including the mean
absolute error (MAE; when the predicted value and the true
value are exactly equal to 0, that is, the perfect model; the
larger the error, the greater the value), the root mean square
error (RMSE; when the predicted value and the real value are
completely consistent, this is equal to 0, that is, the perfect
model; the larger the error, the greater the value), the slope
of the fitting equation and the determination coefficient R2

(the greater the value, the better the model fitting effect), the
bias (Bias; the difference between the predicted values and
the true values, so models with larger bias performed worse),
and the GEB (generalization error of the bias; it is generally
believed that bias should be expressed as a square when us-
ing the generalization error). The calculation formula of each
indicator is shown as follows:

R2
= 1−

ssres

SStot
, (2)

MAE=
1
n

∑n

i=1

∣∣ŷi − yi

∣∣ , (3)
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RMSE=

√
1
n

∑n

i=1
(ŷi − yi)

2, (4)

Bias=
∑N

i=1ŷi − yi

N
, (5)

GEB=
∑N

i=1(ŷi − yi)
2

N
, (6)

where ŷi represents the predicted value, yi shows the true
value, ssres denotes the error between the regression data and
the mean value, SStot represents the error between the real
data and the mean value, and the mean value is the mean
value of the true value.

The research process is illustrated in Fig. 2.

4 Results and discussion

4.1 Modeling results

According to the above steps, the mixed model RGD-
LHMLM is obtained through modeling verification and is
compared with the RF, GBRT, and DNN. The fitting and ver-
ification accuracy results of each model are shown in Table 1.

The PM2.5 inversion results of a single machine learn-
ing model show that the DNN has the best inversion per-
formance, followed by the GBRT, and the RF has the worst
performance. The expression of the mixing model obtained
after linear mixing is as follows:

PM2.5RGD−LHMLM = 0.25PM2.5RF+ 0.17PM2.5GBRT

+ 0.62PM2.5DNN− 2.13. (7)

The weight coefficient of the DNN in the mixed model was
the largest (0.62). The R2 of RGD-LHMLM in the training
set was 0.98, and the RMSE was only 4.39 µgm−3, indicat-
ing that the model had an excellent data fitting effect. Mean-
while, the generalization ability of the mixed model is also
good, with R2 of 0.84 and RMSE of 12.92 µgm−3 on the
validation dataset. Among all the models, the deviation gen-
eralization error of the linear mixed model is also the lowest,
indicating that the difference between the results obtained
by this model and the real value is the lowest. Compared
with the RF, GBRT, and DNN, the inversion performance
of RGD-LHMLM is improved. In other words, the combi-
nation of multiple models can improve the robustness and
generalization ability of the model (Wolpert, 1992). The lin-
ear fitting equation coefficients between the predicted and
measured values in the training set and the verification set
were 0.98 and 0.84, respectively, indicating that the predic-
tion accuracy of the model reached a high level. The fitting
curve between the model-predicted value and the real value
is shown in Fig. 3. The RGD-LHMLM model has the small-
est degree of data dispersion, and the slope of the fitting line
reaches 0.84, indicating that 84 % of the prediction results
are accurate, higher than in the three sub-models. The accu-
racy of the model decreased in the site-based validation, in

which the R2 and RMSE values are 0.8 and 14.59 µgm−3,
respectively.

4.2 Model performance analysis

4.2.1 Bias analysis of model

The average bias of the mixed model in different PM2.5 con-
centration ranges was analyzed, and the result is shown in
Fig. 4. When the PM2.5 concentration is less than 60 µgm−3,
the average bias of the model is less than 0. As the PM2.5
concentration increases, the model deviation gradually in-
creases. In other words, when the PM2.5 concentration is
small, the predicted value of the model will generally over-
estimate PM2.5, and when the PM2.5 further increases, it will
underestimate the PM2.5 concentration.

4.2.2 Performance analysis of monitoring station model

The spatial performance of the model was analyzed by mea-
suring R2, RMSE, and MAE at the monitoring stations. Ac-
cording to Fig. 5, there are regional differences in the in-
version performance of RGD-LHMLM. At all monitoring
stations, the average R2 was reported as 0.74, and R2 was
above 0.7 at more than 70 % of the stations, especially in
the densely populated and industrially developed areas. The
model prediction accuracy was reported as low (R2 < 0.6) in
Xinjiang, Tibet, Qinghai, western Sichuan, and a few other
areas of Northeast China. The mean values of RMSE and
MAE were reported as 11.4 and 8.01 µgm−3, respectively.
In fact, the mean values of RMSE and MAE were below 20
and 15 µgm−3 in more than 95 % of stations, showing a low
estimation error.

Based on the analysis of spatial differences in the RGD-
LHMLM inversion performance, the following deductions
can be made. First, the environmental monitoring stations
in the central and eastern regions with better inversion per-
formance were distributed densely, and there are many data
available; therefore, the model had a satisfactory training
effect. Moreover, data matching was lower in the western
region than in other regions, something which resulted in
model over-fitting and reduced accuracy (Zhang et al., 2018).
Second, some areas of western and northeastern China are
covered by snow and the Gobi Desert has high surface
albedo. This reduces the accuracy of AOD obtained by satel-
lite observation and introduces errors into model training.
Finally, the Himawari-8 scanning range is limited, and the
satellite observation data obtained in western China are lim-
ited in terms of quantity and accuracy. In general, RGD-
LHMLM has a satisfactory spatial performance, especially
in areas with high annual average concentrations of PM2.5;
therefore, it can have a good inversion effect.
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Figure 2. Schematic diagram of model.

Table 1. Comparison of model accuracy.

Model Fitting Validation

R2 RMSE MAE GEB R2 RMSE MAE GEB

RF 0.95 6.99 4.05 114.19 0.79 14.89 9.33 208.97
GBRT 0.96 6.87 4.52 110.00 0.81 14.09 9.18 198.65
DNN 0.97 5.03 3.49 59.16 0.80 14.45 9.06 221.86
RGD-LHMLM 0.98 4.39 3.00 44.97 0.84 12.92 8.01 166.95

4.2.3 Timescale model performance analysis

Figure 6 shows the scatterplot fitted with the inversion re-
sults of the mixed model from 9:00–17:00 LT. The model
R2 ranged from 0.556 to 0.88 at different times. Except for
17:00 LT when the model had the worst performance, the
model R2 exceeded 0.7, indicating that the model had a good
performance. The optimal performance time is 13:00 LT
when R2 is 0.88. According to the results, the hourly dif-
ferences in model performance were significant.

Figure 7 shows the inversion performance results of the
hybrid model collected from January to December 2019.
The model performed the worst in the summer months –
June, July, and August – when R2 was reported as 0.73,
0.72, and 0.68, respectively; however, RMSE and MAE were
only 9.37, 9.22, 8.26 and 6.59, 6.34, and 5.91 µgm−3, re-
spectively, due to the lower average concentration of PM2.5
in summer. Winter and autumn models gained better per-
formance results with an average R2 over 0.8. However, in
contrast to those of summer, the estimation errors of these
two seasons were relatively large, with average RMSE of
20.10 and 10.72 µgm−3 and average MAE of 11.20 and
7.25 µgm−3, respectively. The mean R2 was 0.74, and the
mean RMSE and MAE were 13.71 and 8.39 µgm−3, respec-
tively.

4.2.4 Feature importance analysis

The model performance differences were also analyzed to
extract and rank the model features of the RF and GBRT
based on the feature importance. The higher the feature im-
portance, the greater the contribution of factors to the model.
Figure 8 shows that AOD, boundary layer height, 2 m surface
temperature, and relative humidity had the greatest effect on
the mixed model performance out of all variable characteris-
tic parameters. Accordingly, AOD is greatly affected by the
fine particulate matter and is the main factor in the inversion
of PM2.5. Changes in the boundary layer height can affect
the diffusion ability of the atmosphere. If the boundary layer
height is low, the accumulation of pollutants will be caused.
At the same time, the 2 m surface temperature has a great
impact on the boundary layer height (Miao et al., 2018). Fi-
nally, higher rates of atmospheric humidity can improve the
fine particulate matter accumulation.

As shown in Fig. 9, the correlation coefficients between
the monthly mean values of important meteorological pa-
rameters (AOD, BLH, T2 m, and RH) and R2 were also ana-
lyzed. According to the results of Table 2, the correlation co-
efficients between the meteorological parameters and PM2.5
were lower in summer. Furthermore, there are many rainy
days and large cloud coverage, which is not conducive to
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Figure 3. Accuracy of model fitting (the first row) and validation (the second row) (a: RF, b: GBRT, c: DNN, d: RGD-LHMLM (based on
sample), e: RGD-LHMLM (based on site)). R2 represents the determination coefficient; RMSE represents root mean square error; MAE
represents mean absolute error; N represents the number of samples. The equation with terms Y and X represents the fitting relationship
between the actual and estimated PM2.5 values. Dashed black line represents 1 : 1 line, and red line represents best-fit line from linear
regression.

Figure 4. Boxplots of resulting bias (y axis) for different PM2.5 concentration ranges in µgm−3 (x axis) (the green arrow symbol and dark
blue and red marks represent the average bias, the median of bias, and the extrema of bias, respectively. Data density is represented by the
light blue shading.)

satellite observation and decreases the accuracy of AOD data
in summer. Therefore, the summer model performance is
poor. There was a strong correlation between meteorologi-
cal parameters and PM2.5 in autumn. There were also similar
correlations between spring and winter; however, the winter
model performed better. The reasons can be interpreted as
follows. The winter temperature and boundary layer height
are low, whereas the atmosphere is stable but not conducive
to the diffusion of pollutants. Moreover, during the heating
period in winter, pollutant emissions soar greatly and result
in a sharp rise in the concentration of PM2.5. The increased

pollution in winter ensures the quality and quantity of data,
thereby improving the model performance effectively.

4.3 Temporal and spatial distribution characteristics of
PM2.5 concentration in China

In terms of spatial distribution, Shandong, Henan, Jiangsu,
and Anhui, as well as parts of Hubei and Hebei, were the
most polluted areas in China in 2019, with an annual aver-
age PM2.5 concentration of 82.86 µgm−3. On the one hand,
these areas are economically developed and densely popu-
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Figure 5. Spatial distributions of model precision in terms of (a) determination coefficient (R2), (b) root mean square error (RMSE), (c)
mean absolute error (MAE), and (d) mean PM2.5 concentration at each site in China. Colored circles represent different value ranges of
statistical parameters shown.

Table 2. Correlation coefficient between meteorological parameters
with PM2.5.

Season AOD BLH T2 m RH

Spring 0.47 −0.33 0.12 0.36
Summer 0.42 −0.21 0.06 0.19
Autumn 0.38 −0.29 0.24 0.41
Winter 0.44 −0.33 0.12 0.35

lated, resulting in a large quantity of pollutant emissions. On
the other hand, the barrier of the peripheral mountains (Tai-
hang Mountains, the Qinling, and the southern hills) leads
to the accumulation of pollutants that are difficult to diffuse.
The Sichuan Basin is a rare area with a high PM2.5 value
due to its unique topography (L. Zhang et al., 2019), with an
annual average PM2.5 concentration of 64.69 µgm−3. In ad-
dition, in Inner Mongolia, Qinghai, Tibet, and other places,
the pollution level is low: the average annual PM2.5 concen-
tration is less than 40 µgm−3.

The temporal distribution of PM2.5 is shown in Fig. 10,
The PM2.5 concentration began to rise from 09:00 LT, and
peaked at 55.65 µg m−3 between 10:00 and 11:00 LT ev-
ery day. After that, it maintained a high concentration until

15:00 LT and then began to decrease. In the most polluted
areas of China, the peak concentration of PM2.5 can reach
85.05 µgm−3, while the peak in the less polluted areas is only
about 40 µgm−3. On a national scale, daily PM2.5 concentra-
tions fluctuate slightly.

PM2.5 concentration in China varies significantly with the
seasons. As shown in Fig. 11, PM2.5 concentration in winter
is the highest, with an average value of 62.10 µgm−3. Jan-
uary 2019 was the most polluted month in China, with the
average PM2.5 concentration reaching 63.58 µgm−3. The av-
erage PM2.5 concentration was 47.39 µgm−3 in summer. The
average concentration of PM2.5 in spring and autumn was
54.21 and 52.26 µgm−3, respectively, indicating similar lev-
els of pollution.

5 Conclusions

It is essential to collect the spatiotemporal evolution charac-
teristics regarding the concentration of PM2.5 for air pollu-
tion prevention and containment. Based on the linear hybrid
machine learning model, this paper used the AOD data of
Himawari-8 to invert the concentration of PM2.5 in China
and obtain its distribution characteristics. The model perfor-
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Figure 6. Density scatterplot of actual hourly PM2.5 values (x axis) and model-estimated values (y axis) in hourly PM2.5 estimates in China
from (a) 09:00 LT to (i) 17:00 LT. R2 represents the determination coefficient; RMSE represents root mean square error; MAE represents
mean absolute error; N represents the number of samples. The equation with terms Y and X represents the fitting relationship between the
actual and estimated PM2.5 values. Dashed black line represents 1 : 1 line, and red line represents best-fit line from linear regression.

mance and inversion results are analyzed and summarized
below:

1. In the RGD-LHMLM obtained from linear fitting, the
DNN accounted for the largest proportion with a weight
coefficient of 0.62. The R2 of RGD-LHMLM was 0.84,
and its generalization ability was significantly better
than that of a single model (DNN, 0.80; GBRT, 0.81;
RF, 0.79). Moreover, RMSE and MAE were 12.92 and
8.01 µgm−3, respectively.

2. RGD-LHMLM was spatially stable, with R2 > 0.7 in
more than 70 % of sites as well as RMSE < 20 µgm−3

and MAE < 15 µgm−3 in more than 95 % of sites.
These sites are mainly located in densely populated and
industrially developed areas. The correlation difference
between the inversion factor and PM2.5 in various sea-
sons would lead to seasonal variations in the model per-

formance. In addition, the performance was the worst in
summer with an average R2 of 0.71; winter showed the
best performance with an average R2 of 0.84. The di-
urnal variation in the model inversion effect is also ob-
vious, and the 11:00–14:00 LT model usually has better
performance.

3. Changes in the spatiotemporal characteristics were ob-
vious in the concentration of PM2.5 in China. In other
words, North China and East China had the highest con-
centration of PM2.5 with an average annual concentra-
tion of 82.86 µgm−3, whereas Inner Mongolia, Qing-
hai, Tibet, and other regions had low pollution levels
with an average annual concentration of PM2.5 below
40 µgm−3. In winter, the concentration of PM2.5 was
higher with an average of 62.10 µgm−3, whereas the
pollution was lighter in summer with an average con-
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Figure 7. Same as Fig. 6 but for monthly PM2.5 estimates.

Figure 8. Score (y axis) for each model contributing feature factor (x axis) for the RF (blue) and GBRT (orange). Dashed line represents the
mean values.
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Figure 9. Annual variability (x axis) in monthly average of meteorological parameters AOD, BLH (m), T2 m (K), and RH (%) (right y axis)
and R2 (left y axis).

Figure 10. Hourly spatial distribution of PM2.5 concentration in China at different local times from (a) 09:00 LT to (i) 17:00 LT.

centration of PM2.5 being reported 47.39 µgm−3. In the
most polluted areas, the peak concentration of PM2.5
could reach 85.05 µgm−3, but the daily PM2.5 concen-
tration fluctuated slightly.

In conclusion, RGD-LHMLM can accurately measure the
concentration of PM2.5 and demonstrate the seasonal evolu-
tion of pollutants. These results can help control the local
pollution. This study also indicated that integrating multiple
machine learning models improved the accuracy of fitting re-
sults effectively. For more accurate pollutant data, such mod-
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Figure 11. Same as Fig. 10 but for monthly spatial distribution.

els can be employed to fit the PM2.5 in the future with more
parameters closely related to PM2.5. However, there are some
vacant values in the results of this study. There are also no
data for some areas. Thus, other satellite data can be used in
future studies to solve this problem.

Code and data availability. Datasets and code related to
this paper can be requested from the corresponding author
(chenbin@lzu.edu.cn). The PM2.5 data download address is
http://www.cnemc.cn (CNEMC, 2021); Himawari-8 AOD data pro-
vided by the Japan Meteorological Agency can be downloaded from
https://www.eorc.jaxa.jp/ptree/ (JAXA, 2021); ERA5 meteorologi-
cal data can be downloaded from the European Centre for Medium-
Range Weather Forecasts (ECMWF) at https://cds.climate.
copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land?tab=form
(ECMWF, 2021); the ground elevation SRTM3 data download ad-
dress is https://srtm.csi.cgiar.org/srtmdata/ (CGIAR Consortium for
Spatial Information, 2021); NASA’s Socioeconomic Data and Ap-
plications Center population density data download address is http:
//sedac.ciesin.columbia.edu/data/collection/gpw-v4/documentation
(SEDAC, 2021).
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