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Abstract. Frozen hydrometeors are found in a huge range
of shapes and sizes, with variability on much smaller scales
than those of typical model grid boxes or satellite fields of
view. Neither models nor in situ measurements can fully de-
scribe this variability, so assumptions have to be made in
applications including atmospheric modelling and radiative
transfer. In this work, parameter estimation has been used
to optimise six different assumptions relevant to frozen hy-
drometeors in passive microwave radiative transfer. This cov-
ers cloud overlap, convective water content and particle size
distribution (PSD), the shapes of large-scale snow and con-
vective snow, and an initial exploration of the ice cloud repre-
sentation (particle shape and PSD combined). These parame-
ters were simultaneously adjusted to find the best fit between
simulations from the European Centre for Medium-range
Weather Forecasts (ECMWF) assimilation system and near-
global microwave observations covering the frequency range
19 to 190 GHz. The choices for the cloud overlap and the
convective particle shape were particularly well constrained
(or identifiable), and there was even constraint on the cloud
ice PSD. The practical output is a set of improved assump-
tions to be used in version 13.0 of the Radiative Transfer for
TOVS microwave scattering package (RTTOV-SCATT), tak-
ing into account newly available particle shapes such as ag-
gregates and hail, as well as additional PSD options. The pa-
rameter estimation explored the full parameter space using an
efficient assumption of linearly additive perturbations. This
helped illustrate issues such as multiple minima in the cost
function, and non-Gaussian errors, that would make it hard to
implement the same approach in a standard data assimilation
system for weather forecasting. Nevertheless, as modelling
systems grow more complex, parameter estimation is likely
to be a necessary part of the development process.

1 Introduction

Clouds and precipitation are some of the most uncertain pro-
cesses in the earth system, leading to systematic errors in
models (e.g. Klein et al., 2009; Forbes et al., 2016) and
big uncertainties in climate change predictions (e.g. Zelinka
et al., 2020). The parametrisations that represent hydromete-
ors1 in global models rely on physically informed heuristic
abstractions, such as the representation of convection by up-
ward and downward mass fluxes (e.g. Tiedtke, 1989). They
also rely on compressing reality into simple functional fits,
such as particle fall-speed and size distributions (e.g. Lo-
catelli and Hobbs, 1974; Field et al., 2007; Heymsfield et al.,
2013) or cloud overlap models (e.g. Hogan and Illingworth,
2000). Typically these parametrisations are informed by ob-
servations, but they also require tuning of uncertain and un-
constrained parameters and are dependent on expert knowl-
edge and trial and error. Although progress continues with
improved models and reduced systematic errors (e.g. Bech-
told et al., 2014; Forbes et al., 2011), there remain many un-
certainties and compensating errors, and increasing complex-
ity can bring additional problems of parameter tuning, mak-
ing new developments ever harder. This motivates a more
objective, automated, and observation-driven approach to
developing parametrisations, using machine learning (ML),
data assimilation (DA), or a mixture of both (e.g. Schneider
et al., 2017; Rasp et al., 2018; Morrison et al., 2020; Geer,
2021). The process of learning model parameters using data
assimilation is known as parameter estimation, with cloud
and precipitation parameters a major target (e.g. Norris and

1Here, the words hydrometeor and particle will be used inter-
changeably to describe liquid and frozen water particles in the at-
mosphere.
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Da Silva, 2007; Ruckstuhl and Janjić, 2020; Kotsuki et al.,
2020).

Physical assumptions also need to be made in the for-
ward models of satellite radiances that are required for mak-
ing cloud and precipitation retrievals (e.g. Kummerow et al.,
2001) or for assimilating such observations in weather fore-
casting (e.g. Geer et al., 2018). In particular, all-sky mi-
crowave observations are strongly sensitive to macrophys-
ical and microphysical parameters of cloud and precipita-
tion, most of which are not prognostic variables in forecast
models. For example there is typically only a prognostic de-
scription of hydrometeor mixing ratio, and if the particle size
distribution (PSD) and particle shape are constrained by as-
sumed diagnostic relationships in the model, these may not
give good results in the radiative transfer, due to the different
physical sensitivities of each context. Further, such assump-
tions are not even necessarily consistent among the differ-
ent components of one forecast model (Geer et al., 2017a).
Hence, setting the physical assumptions used in the radiative
transfer consistently with those of the forecast model is rarely
done (e.g. Sieron et al., 2017) and remains a long-term aim.
Instead, as with the development of forecast models, radia-
tive transfer assumptions have often been set independently
and by trial and error, expert knowledge (e.g. Di Michele
et al., 2012), or by closure studies (e.g. Kulie et al., 2010;
Ekelund et al., 2020). Similar to a closure study, a parame-
ter search by Geer and Baordo (2014) found a snow particle
shape by minimising the discrepancy between passive mi-
crowave observations and the equivalent radiances simulated
from a forecast model. The current work builds on this by
simultaneously estimating the values for six physical param-
eters relating to frozen hydrometeors and by using a more
sophisticated estimation framework.

This work has dual motivations: one is to explore param-
eter estimation as a way of using observations to improve
physical models; another is the more practical issue of updat-
ing the physical assumptions in the RTTOV model (Radia-
tive Transfer for TOVS Saunders et al., 2018) and in partic-
ular its microwave/sub-millimetre scattering radiative trans-
fer component, RTTOV-SCATT (Bauer et al., 2006). Since
the earlier study (Geer and Baordo, 2014), a wider and more
physical range of frozen particle representations has become
available (e.g. Kneifel et al., 2018; Eriksson et al., 2018), and
the observation operator offers additional PSD choices and
a more flexible representation of hydrometeors (Geer et al.,
2021). There is also a need to prepare for new satellite instru-
ments operating at sub-millimetre (sub-mm) wavelengths,
which will be more sensitive to the microphysical properties
of cloud ice, particularly the Ice Cloud Imager (ICI, Buehler
et al., 2007; Eriksson et al., 2020). The practical output of
this work is therefore to provide the default physical config-
uration for RTTOV-SCATT in v13.0 of RTTOV, which was
released in November 2020 (Saunders et al., 2020). Future
iterations of this work will also seek to include the forecast

model moist physics in the parameter estimation, but for the
moment this is excluded.

The weather forecasting system being used is the Inte-
grated Forecasting System (IFS, ECMWF, 2019) operated by
the European Centre for Medium-range Weather Forecasts
(ECMWF). This is described in Sect. 2.1, and the RTTOV-
SCATT observation operator is covered in Sect. 2.2. The ob-
servations used in the parameter estimation come from the
Special Sensor Microwave Imager/Sounder (SSMIS, Kunkee
et al., 2008) and are described in Sect. 2.3. The six different
microphysical and macrophysical parameters to be optimised
are described in Sect. 3. Overall, Sects. 2 and 3 will be seen
to contain a wealth of technical detail, but this is probably
inescapable in a successful parameter estimation, which still
relies on expert knowledge. The method for parameter esti-
mation is a complete but efficient search of parameter space;
this is described in Sect. 4. Section 5 describes the results of
global and situation-dependent parameter searches and tests
the robustness of the chosen parameter sets. Section 6 is a
discussion: first, reviewing what has been learnt about phys-
ical parameters (Sect. 6.1); second, placing this work in the
wider context of parameter estimation studies and Bayesian
inverse methods (Sect. 6.2). The conclusion is Sect. 7.

2 Observations and models

2.1 Weather forecasting system

The core of this work is to compare model simulations to real
observations, in other words model–observation closure. The
tools for this are provided within the IFS. The data assimi-
lation component provides high-quality initial conditions of
the earth system (the analysis fields); a short run of the fore-
cast model provides the “background” geophysical fields at
the observation time and location, and the observation op-
erator maps from model fields to the observations – here the
radiances measured by satellites. The parameter estimation is
done with passive monitoring experiments, which take their
background fields from a fixed reference run of the DA sys-
tem. Hence, the background geophysical fields are (with one
exception) held constant while only the physical assumptions
in the observation operator are varied.

Experiments were based around cycle 46r1 of the IFS
(ECMWF, 2019), but adding a development version of RT-
TOV that is described in the next section. The experiments
used a resolution of Tco399 or roughly 28 km horizontally2.
There were 137 levels in the vertical, from the surface to
0.01 hPa. The data assimilation process used to create the
fixed reference analyses used a 12 h cycling 4D-Var (Rabier
et al., 2000) with three inner-loops at TL59/TL255/TL255
resolution3 corresponding to 125 and 78 km respectively. De-

2T: triangular truncation of the spectral fields; co: cubic octahe-
dral reduced Gaussian grid for the gridded fields.

3L: linear reduced Gaussian grid.
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spite having a slightly lower horizontal resolution compared
to the operational version, this still provides high-quality
background fields and is the standard configuration for test-
ing at ECMWF. See Geer et al. (2017b) for a summary of
all-sky microwave data usage in the assimilation system and
Hersbach et al. (2020) for a broader overview of data usage
in the IFS.

Cloud and precipitation in the IFS are generated using
a set of physical parametrisations. Large-scale (stratiform)
cloud and precipitation mixing ratios are prognostic variables
that are subject to advection and whose interactions, sources,
and sinks are governed by the Tiedtke (1993) parametrisa-
tion with subsequent improvements (e.g. Tompkins et al.,
2007; Forbes and Tompkins, 2011). Large-scale cloud frac-
tion is also a prognostic variable in this scheme. Moist con-
vection is represented by a diagnostic mass-flux parametri-
sation (Tiedtke, 1989; Bechtold et al., 2014). The convec-
tive core hydrometeors are represented by the updraught and
downdraught mass fluxes, which are assumed to occupy a
fixed 5 % of the grid box. Cloud water and ice can be de-
trained into the large-scale scheme, allowing convection to
form anvil cloud.

2.2 Observation operator

The observation operator for satellite radiances in the IFS is
RTTOV (Saunders et al., 2018). Within this, RTTOV-SCATT
(Bauer et al., 2006) provides the all-sky microwave capabil-
ities. The all-sky radiance simulated by RTTOV-SCATT is
the weighted combination of radiances from two independent
column calculations: one that is completely clear, Iclear, and
one with horizontally homogeneous cloud and precipitation,
Icloud. The cloudy column is weighted by an effective cloud
fraction C to approximate the nonlinear effect of sub-grid
variability of cloud and precipitation, which is sometimes
known as the beam-filling effect (e.g. Geer et al., 2009a; Bar-
lakas and Eriksson, 2020). Hence the all-sky radiance is

Iall-sky = CIcloud+ (1−C)Iclear. (1)

This is then converted to black-body equivalent brightness
temperature (TB, in K), which is the usual, more intuitive
variable to represent satellite radiance observations. The ef-
fective cloud fraction C simplifies what could be a complex
3D arrangement of cloud and precipitation. Two options for
deriving C will be tested in the parameter search (Sect. 3.1).

In Eq. (1) the clear column accounts only for the surface
interaction and gaseous absorption. In the cloudy column,
scattering radiative transfer is represented using the delta-
Eddington approach (Joseph et al., 1976; Kummerow, 1993;
Bauer et al., 2006). Although simple compared to more exact
scattering methods, this is fast enough for use in a weather
forecasting system and still accurate compared to reference
models.

One simplification in the scattering radiative transfer is
the treatment of polarisation. Each polarisation is consid-

ered independent, and hydrometeor optical properties are in-
variant with polarisation. This neglects the polarising effects
of scattering from particles, which can transfer energy from
one polarisation to another, and causes optical properties to
vary as a function of polarisation and viewing angle. RT-
TOV v13.0 will have a simplified treatment of polarised scat-
tering from preferentially oriented frozen hydrometeors; this
reduces errors in the simulated vertical–horizontal polarisa-
tion difference by 10–15 K (Barlakas et al., 2021). This is not
used in the main study; however, the parameter estimation is
updated at the end, taking account of the new polarisation
scheme, to provide a self-consistent final configuration for
RTTOV v13.0 (Sect. 5.4).

The surface interaction is treated as specular reflec-
tion. Over ice-free ocean surfaces, this is handled by the
FASTEM-6 surface emissivity model (Kazumori et al.,
2016), which includes a simplified treatment for diffuse scat-
tering. Over sea ice and over land, an all-sky dynamic emis-
sivity retrieval operates at lower frequencies to supply the
surface emissivity for the 50 and 183 GHz sounding chan-
nels (Baordo and Geer, 2016). The TELSEM surface emis-
sivity database (Aires et al., 2011) is used for the other chan-
nels of SSMIS over land surfaces and also as a backup when
the retrieval is not possible. In the passive monitoring exper-
iments used here, a change to physical assumptions in the
radiative transfer can affect the dynamic emissivity retrieval.
In practice, the effect is negligible, and even in the convective
graupel experiment (the biggest change tested; see Table 2)
the maximum change in surface emissivity is tiny at around
1e−6.

The scattering solver requires the bulk optical properties
of each layer of atmosphere. Hydrometeor optical proper-
ties (extinction, single-scattering albedo, and the asymmetry
parameter) are supplied from lookup tables as a function of
frequency, temperature, hydrometeor type, and hydrometeor
water content. Changes to the microphysical assumptions ex-
plored in this work were made by changing these lookup ta-
bles, which are generated by an offline tool available within
RTTOV (Geer et al., 2021). This integrates single-particle
optical properties over the assumed particle size distribution,
given the water content. It offers a choice of hydrometeor
representations based on Mie spheres or non-spherical par-
ticles from the Liu (2008) and ARTS (Eriksson et al., 2018)
databases. Version 13.0 includes new options for particle size
distributions that were added in support of the current work.
From the available options, four sets of parameters relating to
large-scale snow, convective snow, and cloud ice were added
to the parameter estimation as will be described in Sect. 3.

As discussed, the IFS has four large-scale prognostic hy-
drometeors, a prognostic cloud fraction, and a diagnostic
large-scale precipitation fraction. Additionally, diagnostic
mass fluxes for snow and rain represent convection, which
is assumed to take 5 % of the grid box area. This is the com-
plete set of cloud and precipitation information provided to
RTTOV-SCATT, although some conversions are needed. To
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standardise the treatment with the convection fluxes, all six
hydrometeors (rain, snow, cloud ice, and cloud water from
the large-scale scheme; rain and snow from the convection
scheme) are extracted from the model as fluxes (kg m−2 s−1)
and then converted to mass mixing ratios (kg kg−1) before
input to RTTOV-SCATT (see Geer et al., 2007, Appendix
B). Strictly, this ratio is defined as the mass of the hydrome-
teor with respect the mass of moist air. However, due to the
lack of a widely used terminology to specify whether hy-
drometeor mixing ratios are based on dry or moist air, this
quantity is referred to throughout as just “mixing ratio”. The
assumptions involved in obtaining the mixing ratio from the
flux make the convective mixing ratio particularly uncertain
(Geer et al., 2017a), but rather than adjust the assumptions in
the model, here the parameter estimation is used to estimate
a scaling factor to adjust the convective snow mixing ratio
directly – further details in Sect. 3.

In the IFS, RTTOV-SCATT has been used in a four-
hydrometeor configuration until now (rain, snow, cloud wa-
ter, cloud ice) with the convective rain and snow mixing ra-
tios added together with the large-scale rain and snow re-
spectively; this provides the control setup. Going forward,
the aim is a five-hydrometeor configuration, adding a new
hydrometeor type specifically for convective snow, which
is no longer combined with the large-scale snow. Within
RTTOV-SCATT this hydrometeor is loosely referred to as
“graupel”, but strictly it is for convective snow, making no
assumptions on the particle habit. The most important causes
of uncertainty in the radiative transfer are these microphys-
ical assumptions, along with the representation of sub-grid
heterogeneity (Bennartz and Greenwald, 2011; Barlakas and
Eriksson, 2020) – hence the attempt to improve these aspects
through parameter estimation.

2.3 Observations

This study uses observations from the Special Sensor Mi-
crowave Imager/Sounder (SSMIS, Kunkee et al., 2008). This
is a conical-scanning microwave sensor, meaning that it has
an approximately fixed zenith angle and polarisation across
its swath. There are 24 channels on the instrument, of which
13 have been selected for use in this study (Table 1). Al-
though SSMIS has additional calibration issues (e.g. Bell
et al., 2008) compared to later microwave imagers such as the
GPM microwave imager (GMI, Draper et al., 2015), these are
mostly corrected by bias correction, which has been exten-
sively used at ECMWF for all-sky assimilation and parame-
ter estimation (Geer et al., 2017b; Geer and Baordo, 2014).
The advantage of using SSMIS is that, with its temperature
sounding channels around 50 GHz, it is a single instrument
that covers the majority of frequencies currently in use or
planned for use in all-sky assimilation (Geer et al., 2018),
with the main exception being frequencies above 190 GHz,
which will not be available from space until the launch of
ICI in 2024. For the IFS, the observations are superobbed

Figure 1. Number of SSMIS F-17 observations (superobs) selected
in the 13–22 June 2019 study period per 10◦ by 10◦ latitude–
longitude bin. The colour scale is logarithmic to highlight data-poor
areas. White areas have no observations. A total of 916 258 obser-
vations are included.

onto an 80 km by 80 km grid (Geer and Bauer, 2010) which
averages together at least nine original SSMIS observations.
This standardises the resolution across frequencies and helps
match the effective resolution of cloud in the forecast model
(note the simulations are made using the model grid point
nearest to the centre of the superob).

For the parameter estimation, SSMIS observations are
taken from the F-17 satellite over a 10 d study period from
13–22 June 2019 inclusive. The selection of observations
aims to include as much data as possible, even in situations
where the observations are not well-enough represented to be
used in active assimilation. The philosophy is that unless dif-
ficult situations are included as a constraint in the parameter
estimation, the quality of radiative transfer in those situations
will never become good enough to allow them to be used.
This accepts the risk that unrelated systematic errors, such as
poor surface emissivity, will lead to compensating biases in
the parameter estimation.

Figure 1 illustrates the number of observations available
in the study period, using a logarithmic colour scale. These
are accumulated in the same 10◦ by 10◦ latitude–longitude
bins that will be used in the cost function for the parameter
estimation (Sect. 4). Observations are only excluded in areas
of orography higher than 800 m, areas of sea ice, in mixed
scenes where the grid point land–water mask is neither com-
pletely land or completely ocean, and over land where both
the dynamic emissivity retrieval and the atlas backup failed.
In any one bin, observations must be all ocean or all land,
favouring the larger number. Typically around 3000 observa-
tions are available per bin over ice-free oceans and around
1000 observations over land areas; an approximate total of
1 million observations is used. The main losses are due to
sea ice, the orography check, and the restriction on mixed
scenes.

3 Microphysical and macrophysical options

This section will outline the six dimensions of the parame-
ter search, summarised in Table 2. This is a search among
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Table 1. SSMIS channels used in this study, ordered by frequency and polarisation.

ID Channel Frequency (GHz) Polarisation Main atmospheric sensitivity
number

19v 13 19.35 v rain
19h 12 19.35 h rain
22v 14 22.235 v TCWV
37v 16 37.0 v TCWV, water cloud, rain
37h 15 37.0 h TCWV, water cloud, rain
50h 1 50.3 h TCWV, water cloud
53h 2 52.8 h LT temperature
92v 17 91.655 v TCWV, water cloud, rain, snow
92h 18 91.655 h TCWV, water cloud, rain, snow
150h 8 150.0 h LT humidity, snow
183± 7h 9 183.31± 6.6 h MT humidity, snow, ice cloud
183± 3h 10 183.31± 3.0 h MT humidity, snow, ice cloud
183± 1h 11 183.31± 1.0 h UT humidity, snow, ice cloud

Pol.: polarisation; v: vertical polarisation; h: horizontal polarisation; TCWV: total column water vapour; LT: lower
troposphere; MT: mid-troposphere; UT: upper troposphere.

discrete possibilities, so the total number of possible config-
urations is the product of the dimension sizes: 2× 3× 2×
6× 6× 8= 3456. Along each dimension, Table 2 orders the
options according to the all-channel global mean change in
simulated brightness temperature when that parameter is var-
ied. The main impact of frozen hydrometeors at microwave
frequencies is to scatter radiation, which generally leads to
lower brightness temperatures at the top of the atmosphere.
Hence the dimensions are ordered from the least-scattering
options (which increase brightness temperatures compared
to the control) to the most scattering (which decrease them).
The biggest increase in scattering of any of the options is the
move to a convective graupel particle shape, which reduces
brightness temperatures globally by 0.187 K. Such global
mean changes are obviously small, but this is because cloud
and precipitation are localised processes. In heavy precipita-
tion there are still changes of up to around 100 K, as will be
illustrated later; see also e.g. Geer et al. (2021) for further
illustration of the very strong sensitivity of simulated bright-
ness temperatures to microphysical assumptions.

Although it would be tempting to add more dimensions
to the parameter search, it soon becomes cumbersome and
would ultimately become impossible due to the curse of di-
mensionality. The range of options already encompasses re-
search that will take many pages to summarise. More dimen-
sions could have been included, particularly in the forecast
model physics, but that is out of scope of the current study.

3.1 Cloud overlap over land

As described in Sect. 2.2, sub-grid variability of cloud and
precipitation has a huge effect on the simulated brightness
temperatures. This is represented by the effective cloud frac-
tion C in the two-column approach used by RTTOV-SCATT
(Eq. 1). Over ocean, C is computed as a hydrometeor-

weighted vertical average of the hydrometeor fractions (Cav),
which is a reasonable approximation to more accurate
multiple-independent column models (Geer et al., 2009a, b);
this remains fixed in the parameter estimation. But over land
surfaces, C has previously been set to the maximum cloud
fraction in the profile, Cmax, not because this is the most
physically correct approach but to counter systematic errors:
Geer and Baordo (2014) took advantage of the fact that Cmax
generates artificially high scattering TB depressions to com-
pensate for the apparent lack of convective cloud and precip-
itation over land in the IFS, as seen at frequencies from the
microwave to the infrared (e.g. Geer et al., 2019). The hope is
that the parameter search can find a configuration that does
not require a physically unjustified representation of cloud
overlap over land.

The choice of effective cloud fraction over land affects
mainly deep convective situations. In the IFS, convective lo-
cations are represented by a convective core occupying 5 %
of the model grid box; the anvil is represented by detrainment
into the large-scale cloud scheme, which typically results in
a thin capping ice cloud with a cloud fraction that is close to
1. In the computation of Cav, the convective core typically
dominates the mass-weighted average, and hence Cav can
be as low as 0.05 in convection. By contrast the maximum
cloud fraction Cmax is typically found in the anvil cloud and
is typically closer to 1. Hence, using Cmax in Eq. (1) gives
more weighting to the cloudy column and generates much
deeper TB depressions. Figure 2b shows that going to Cav in-
creases the mean simulated brightness temperature in many
land-surface areas. These locations are similar to those af-
fected by increasing convective snow amount (Fig. 2c, d; see
next section), confirming that it is mainly convective situa-
tions affected.
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Table 2. Possible microphysical and macrophysical changes. For details, see text.

Dimension Index Short name Description or dimension name Mean change
in TB (K)

1. Cloud overlap 1 Land Cav Cav effective cloud fraction over land 0.046
2 Control (Land Cmax) Cmax effective cloud fraction over land 0

2. Convective snow 1 −half CV snow Convective snow mixing ratio scaled by 0.5 0.057
mixing ratio 2 Control Convective snow mixing ratio not scaled 0

3 +half CV snow Convective snow mixing ratio scaled by 1.5 −0.046

3. Convective snow 1 Control (CV F07 T) Field et al. (2007) tropical PSD for all snow 0
PSD 2 CV MP48 Marshall and Palmer (1948) −0.067

4. Convective snow 1 CV ARTS column agg. ARTS large column aggregate 0.071
particle shape 2 Control (CV Liu sector) Liu (2008) sector snowflake for all snow 0

3 CV ARTS block agg. ARTS large block aggregate −0.029
4 CV ARTS column ARTS column type 1 −0.042
5 CV Liu 3-bullet Liu (2008) 3-bullet rosette −0.072
6 CV ARTS graupel ARTS gem graupel −0.187

5. Large-scale snow 1 LS ARTS sector ARTS sector snowflake 0.054
particle shape 2 LS ARTS 6-bullet ARTS 6-bullet rosette 0.043

3 LS ARTS plate agg. ARTS large plate aggregate 0.032
4 Control (LS Liu sector) Liu (2008) sector snowflake for all snow 0
5 LS ARTS column ARTS column type 1 −0.065
6 LS ARTS block agg. ARTS large block aggregate −0.090

6. Ice cloud particle 1 See Table 3
shape and PSD ...

8

3.2 Options for convective snow

The physical parameters of convective snow are not well
known and may explain many of the largest errors in the ob-
servation operator. In addition, the model-derived convective
snow mixing ratio is quite uncertain. One source of uncer-
tainty already mentioned (Sect. 2.2) is the conversion from
convective mass flux to mixing ratio, which makes assump-
tions on the PSD and the fall-speed distribution. The assumed
fall speeds are suspected of being too low for convective
particles (Geer et al., 2017a, Sect. 3.3). This could lead to
convective snow mixing ratios being overestimated by about
50 %. However, as discussed in the previous subsection, the
observational evidence from all-sky infrared assimilation is
consistent with the convective mixing ratio being too low,
particularly over land (Geer et al., 2019). This could come
from known deficiencies in the convection scheme, such as
insufficient convection at night over land (Bechtold et al.,
2014). To simplify the current parameter estimation, it was
not attempted to address these uncertainties at their physical
source but to treat the convective mixing ratio as an uncertain
parameter. Dimension 2 of the parameter search (Table 2)
allows the model-derived convective snow mixing ratio to
be increased or decreased by 50 %. This scaling is applied
across the whole vertical profile. Figure 2c and d show the

impact on mean brightness temperatures and reveal the loca-
tions where significant convection occurred during the 10 d
study period: around the ITCZ, in the SH storm tracks, and at
midlatitudes over land surfaces. Adding the convective mix-
ing ratio as a parameter is not intended to provide a scaling
factor to be included in a future observation operator but in-
stead to explore the robustness of the results to one of the
biggest uncertainties and to point to areas needing future im-
provement.

Turning to the other convection-related parameters, large
hail particles are important in the generation of extreme
brightness temperature depressions (e.g. Zipser et al., 2006).
Intense convection can generate hail in excess of 127 mm in
size (Allen et al., 2017); direct observations from within se-
vere convection are difficult, but an armoured research air-
craft has been able to sample PSDs of hail up to 50 mm in
size (Field et al., 2019). Hence, dimension 3 of the parameter
search (Table 2) explores the convective snow PSD. The con-
trol uses the Field et al. (2007, F07) tropical (T) PSD for all
frozen precipitation. However, this was derived from in situ
measurements of tropical anvils and midlatitude stratiform
clouds, so it may not be appropriate for the large frozen par-
ticles within the convective cores. The Marshall and Palmer
(1948) PSD is provided as an alternative in the parameter
search; as implemented here this boosts the number of large
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Figure 2. Mean change in simulated brightness temperatures when using some of the options from Table 2, compared to the control. Statistics
are based on a 10 d period and shown for SSMIS channel 150h, which is generally the channel with the largest impact from changes in the
physical assumptions for frozen hydrometeors.

particles (≥ 10 mm) by at least 2 orders of magnitude com-
pared to the F07 PSD and hence gives more scattering (see
Geer et al., 2021, for more details). The effects of this are
not illustrated as they are broadly similar to increasing the
convective snow mixing ratio by 50 %.

Another potential adjustment for convective snow is the
particle shape. Note that the particle shape also implies a
mass–size relation, and hence this affects the bulk scatter-
ing properties through adjustments to both the size distribu-
tion and the single-scattering characteristics (Eriksson et al.,
2015; Geer et al., 2021). The Liu (2008) sector snowflake is

https://doi.org/10.5194/amt-14-5369-2021 Atmos. Meas. Tech., 14, 5369–5395, 2021



5376 A. J. Geer: Physical characteristics of frozen hydrometeors inferred with parameter estimation

used in the control, since this was the best particle to repre-
sent the sum of convective and large-scale snow in the pa-
rameter search of Geer and Baordo (2014). However it is an
idealised smooth and solid particle that will be inadequate
to represent scattering in future sub-mm applications (Fox
et al., 2019). The ARTS database offers new options of ice
aggregates and graupel, and these may be more physically
representative (Eriksson et al., 2018). Hence in the fourth
dimension of the search, particle types have been chosen
to sample different levels of scattering and also some very
different physical representations: the ARTS column aggre-
gate4 generates less scattering than the Liu sector, whereas
the ARTS block aggregate, column, and gem graupel gen-
erate increasingly more scattering. The options also include
the Liu (2008) 3-bullet rosette, which was found by Geer and
Baordo (2014) to give the best results when convective snow
was represented separately to large-scale snow. It is striking
that the particle shape assumptions illustrated in Fig. 2e and f
have a larger impact on the simulated TB than a 50 % change
in the mass mixing ratio (as seen in Fig. 2c and d).

Figure 3 illustrates the frequency-resolved global mean
change in brightness temperature coming from changes in
convective particle shape. Graupel generates significantly in-
creased scattering down to 19 GHz and has its biggest effect
around 92 GHz. The other chosen particles do not change the
results so much at frequencies below 92 GHz, but there is
plenty of variability in the higher frequencies. For example,
the ARTS column and ARTS block aggregate would reduce
TBs by similar amounts at 92 GHz, but they have different
effects at 150 GHz. Hence there is a spectral signature asso-
ciated with the snow particle shape that should help resolve
any ambiguity with changes in mixing ratio. For further il-
lustration of the spectral signatures of these particles, see
Geer et al. (2021); in heavy cloud situations these choices
can change the simulated brightness temperature by up to
150 K.

3.3 Options for large-scale snow

The representation of large-scale snow is not perfect but
probably better than that of convection. Hence only a sin-
gle dimension is explored – that of particle shape, as shown
in Table 2. The Field et al. (2007) tropical PSD was retained
for large-scale snow in all experiments, mainly to reduce the
search space, but also because this PSD is well established in
this context (e.g. Fox et al., 2019). Among the particle shape
options, the ARTS sector snowflake is a separate option to
the Liu sector snowflake from the control, and it generates
warmer mean brightness temperatures (see Geer et al., 2021;
this is due to differing mass–size relations; the single-particle
optical properties are near identical). The ARTS column and

4The ARTS aggregates here are based on the “large” pris-
tine particles, but since there are no “small” versions available in
RTTOV-SCATT, the distinction is not always made.

ARTS block aggregate generate more scattering and lead to
colder brightness temperatures.

Figure 2g and h show the geographical effect of changing
the large-scale snow particle shape. This highlights areas of
significant large-scale precipitation during the 10 d study pe-
riod, including the SH storm tracks, the western Pacific and
the Atlantic coast of North America. Although there is some
overlap with the spatial pattern of convection seen in Fig. 2c
and d, there are also distinct differences – for example in
North America, convection dominates over the midwest and
large-scale precipitation over the Atlantic coast. This sug-
gests that the convective and large-scale physical parameters
should be independently identifiable through their spatial sig-
natures. And as with the convective snow particle choices,
there is also spectral differentiation between the large-scale
snow shapes that should further improve identifiability (see
Geer et al., 2021).

3.4 Options for cloud ice

The current representation of ice cloud in RTTOV-SCATT
uses a Mie sphere combined with a gamma PSD and is phys-
ically unrealistic (Geer and Baordo, 2014). Ice cloud is ex-
pected to have a small effect on radiances at 183 GHz (e.g.
Hong et al., 2005; Doherty et al., 2007), but in the control
configuration it has almost no effect (not shown). However
there is sensitivity at 183 GHz and below (Geer et al., 2021),
so it is hoped to find a baseline representation of ice cloud
that can be further improved once ICI has been launched.

Table 3 summarises the ice cloud options in the param-
eter search, and further details can be found in Geer et al.
(2021). The highest-scattering option is the combination of
the Field et al. (2007) PSD and Liu (2008) dendrite, simi-
lar to the configuration which gave the best results for ice
cloud in the fine search of Geer and Baordo (2014) but us-
ing the F07 PSD midlatitude option (M), rather than tropi-
cal option, to reduce the number of large particles. Figure 2j
shows this configuration decreases brightness temperatures
in many areas compared to the control. However, preliminary
experimentation suggested there was too much scattering in
this configuration. It is only with the new particle shapes and
PSDs in RTTOV-SCATT that lower-scattering options have
become available (Geer et al., 2021). From the ARTS parti-
cle database, the ARTS column aggregate and the Evans ag-
gregate generate less scattering. Also a range of alternative
PSDs help reduce the number of large particles and hence
reduce the overall amount of scattering. As shown in the ta-
ble, progressively less scattering can be generated using the
McFarquhar and Heymsfield (1997, MH97) and Heymsfield
et al. (2013, H2013) PSDs. Early attempts at the parame-
ter search suggested that even less-scattering options might
be required, so two ad hoc PSDs were created using the
all-purpose modified gamma distribution (MGD; Petty and
Huang, 2011); these are known as the MGD 2e4 and MGD
1e4 PSDs, with the number referring to the lambda parame-
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Figure 3. Global mean change in simulated brightness temperature when using different options for the shape of convective snow, compared
to the control in which the Liu sector snowflake is used for all snow.

Table 3. Possible microphysical changes for cloud ice.

Index Short name Particle shape PSD Mean change
in TB (K)

1 Control (gamma Mie) Mie sphere with ρ =900 kg m−1 MGD with µ= 2, 3= 2.05×105 m−1, γ = 1 0
2 CI MGD 2e4 ARTS large column aggregate MGD with µ= 0, 3= 2.0× 104 m−1, γ = 1 −0.004
3 CI MGD 1e4 ARTS large column aggregate MGD with µ= 0, 3= 1.0× 104 m−1, γ = 1 −0.019
4 CI MH97 ARTS large column aggregate McFarquhar and Heymsfield (1997) −0.030
5 CI H13 Evans ARTS Evans aggregate Heymsfield et al. (2013) stratiform −0.032
6 CI H13 col. agg. ARTS large column aggregate Heymsfield et al. (2013) stratiform −0.035
7 CI F07 M col. agg. ARTS large column aggregate Field et al. (2007) midlatitude −0.044
8 CI F07 M dendrite Liu (2008) dendrite Field et al. (2007) midlatitude −0.070

ter in the MGD. The configurations using these PSDs make
only small changes compared to the control (e.g. Fig. 2i).

Figure 2j shows that ice cloud effects can be seen in con-
vective and large-scale areas alike, so ice cloud has its own
distinct spatial signature; there are also some frequency sig-
natures (such as differences between the MH97 and H2013
options, thought to be due to different temperature depen-
dences in the PSDs, not shown). Hence there is hope that ice
cloud parameters will be identifiable in this work.

4 Parameter estimation method

4.1 Search

There are 3456 different parameter combinations available,
and it was not feasible to evaluate every combination directly,
since each would require a passive monitoring run of the
IFS. Instead the cost function was evaluated approximately
at each point in the search space. This was done using an
assumption of linearly additive perturbations, which will be

justified a posteriori. This meant that only one experiment
needed to be run for each of the parameter options described
in Sect. 3, in addition to the control – a total of 22 exper-
iments. An alternative to running the full IFS would have
been to archive the necessary geophysical inputs to RTTOV-
SCATT for around 106 observations, but significant storage
and computation resources would still have been needed.

The assumption of linearly additive perturbations is ex-
pressed mathematically as

Ti,j,v ' Tcontrol+
∑
k

(
Ti,j,vk − Tcontrol

)
. (2)

Here, T is the simulated brightness temperature, i the index
across the approximately 106 observations, and j the index
across the 13 selected channels of SSMIS. k is the index
across six search dimensions and vk the index within each
search dimension. v is a vector containing the six vk indices.
Tcontrol is the brightness temperature simulated in the control
experiment. As an example, the “intermediate” configuration
from Sect. 5.4 is
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vintermediate =


1
2
1
5
1
6

=


Land Cav
Control
Control

CV Liu 3-bullet
LS ARTS sector
CI H13 col. agg.

 . (3)

In the parameter search, the effect of these choices on
the brightness temperature was estimated as follows, using
Eq. (2):

Tvintermediate ' TLand Cav + TCI H13+ TLS ARTS sector

+ TCV Liu 3-bullet− 3× TControl. (4)

Note that for simplicity the i and j indices have been dropped
here.

Figure 4 illustrates the validity of the linear assumption for
the intermediate configuration. This is a scatter plot based on
the left and right sides of Eq. (4) after subtracting TControl.
The estimate falls around 30 % below the 1 : 1 line for the
largest perturbations (≥ 10 K); these points are located in
convective land areas (not shown), suggesting that the two
convection-related changes (Land Cav and CV Liu 3-bullet)
do not combine linearly, which can hardly be expected. How-
ever, the estimate has errors mostly less than 2 K for smaller
perturbations. The standard deviation of the difference be-
tween the estimated and actual perturbation is 0.96 K, sug-
gesting that the assumption is valid to reasonable accuracy in
most situations. On maps, the linear-estimated and nonlinear-
computed results are surprisingly difficult to tell apart by eye
(not shown; this applies both to the brightness temperatures
and the binned statistics like those used in the cost function,
Sect. 4.2). Similar levels of accuracy have been seen with
other configurations. However, for the same reason the as-
sumption is needed in the first place, it is hard to test it ex-
haustively; possible future improvements are discussed in the
conclusion.

4.2 Cost function

In order to choose a unique “best” configuration, there must
be a single objective way to measure the fit between the
model and the observations. Following the data assimilation
approach, this is provided by a cost function based on the de-
parture d between the observation and the simulated equiva-
lent:

di,j,v = T
observed
i,j − bi,j − T

simulated
i,j,v . (5)

Here bi,j is an observation bias correction estimated using
variational bias correction (VarBC, Dee, 2004; Auligné et al.,
2007) within the weather forecasting framework, which will
be discussed shortly. In a data assimilation cost function, the
equivalent “observation term” is usually based on the square

Figure 4. Scatter plot of change in channel 92v brightness temper-
ature, relative to control, when going to the “intermediate” physical
configuration from Sect. 5.4 (Land Cav, CV Liu 3-bullet, LS ARTS
sector, CI H13). On the y axis this is estimated using the assump-
tion of linearly additive perturbations, by subtracting TControl from
Eq. (4). On the x axis the intermediate configuration has been eval-
uated by running an experiment with exactly that configuration.

of the departure normalised by the observation error, follow-
ing an assumption of Gaussian errors (see e.g. Geer, 2021).
The best fit to observations, known as the analysis, is ob-
tained where the cost function has a minimum.

The square of the departure is a poor choice of cost met-
ric when it comes to cloud and precipitation. One reason
is that modelled and observed clouds are not always in the
same place, so it is often possible to reduce the squared
error by removing the simulated cloud or precipitation –
this is known as the double-penalty effect. As explored by
Geer and Baordo (2014), more appropriate cost functions
for cloud and precipitation parameter estimation could in-
clude the mean and skewness of departures, or measures of
fit between the observed and simulated probability distribu-
tion function (PDF) of brightness temperatures, using mea-
sures similar to the Kullback–Leibler divergence (Kullback
and Leibler, 1951). The PDF divergence approach was not
pursued here because it is hard to combine with geographi-
cal binning (see below) which is used to help make the pa-
rameters more identifiable. A vastly larger dataset would be
needed to ensure good sampling of the brightness tempera-
ture PDFs in each geographical bin.

In order to have a single cost function to minimise, a com-
bination of the mean and skewness of the departures was cho-
sen for the current parameter estimation. Section 5.2 explores
alternative choices. The mean and skewness are computed in
10◦ by 10◦ latitude–longitude bins (Fig. 1). Then the abso-
lute value in each geographical bin is combined, giving the
following cost function:
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J (v)=
1
m

∑
j

(
0.5

1
n

∑
l

∣∣Mean
(
Binl

(
di,j,v

))∣∣
+0.5

1
n

∑
l

∣∣Skew
(
Binl

(
di,j,v

))∣∣) . (6)

Here l is an index over all n geographical bins that con-
tain data (bins with 10 or fewer observations are ignored),
|·| computes the absolute value, Binl(·) represents the geo-
graphical subset of observations in bin l, Mean(·) computes
the mean of a set of departures, and Skew(·) computes the
skewness (with zero being a perfectly symmetric PDF of de-
partures). The inner sum is over geographical bins, and the
outer sum is over the m selected SSMIS channels j . The aim
of the parameter search is to find the set of physical choices
v that minimises the cost function J (v).

The form of cost function in Eq. (6) has a number of ad-
vantages. A single global mean is of little use, since it allows
different situation-dependent biases to be summed together.
A set of physical choices leading to compensating system-
atic errors could score as well as a set with smaller system-
atic error. As illustrated in Fig. 7, geographical separation
helps to implement an approximate regime-based separation
– for example the errors over tropical land surfaces are sepa-
rated from those in frontal cloud in the storm tracks and can-
not compensate for each other. It is also helpful to compute
the skewness in geographical bins, as this measure can oth-
erwise be dominated by the large departures in the vicinity
of tropical convection. As will be seen later, this is a signif-
icant advance on the use of a global skewness by Geer and
Baordo (2014) because it helps identify problems with the
use of Cmax over higher-latitude land surfaces, an issue that
was missed in the earlier work.

Unlike a typical data assimilation cost function, the er-
ror in the observations is not considered in Eq. (6). It is as-
sumed that given the large numbers of observations in most
bins (Fig. 1), the mean or skewness of the binned sample is
mostly insensitive to observation error. Normal data assimi-
lation also includes a background term measuring the devia-
tion from prior knowledge, and also serving to regularise the
problem. Section 6.2 discusses the issue of prior knowledge
further, and regularisation is not needed as the problem is
likely to be well determined, with six unknowns and around
106 observations.

The VarBC bias correction, bi,j in Eq. (5), is fixed
throughout the passive monitoring experiments conducted
here. A large part of the modelled bias, especially for SS-
MIS, is thought to come from the instrument calibration,
so it is necessary to include a bias correction. VarBC esti-
mates the bias as a linear combination of a globally constant
offset, a number of polynomial terms based on the instru-
ment’s scan angle, and a number of model-based predictors.
For surface-sensitive observations over ocean, these include

the total column water vapour (TCWV), skin temperature,
and surface wind speed. For sounding channels, they include
functions of the layer thickness (an average temperature, es-
sentially). None of the predictors is directly correlated with
cloud-related biases, so these do not map directly onto the
VarBC bias correction. In some channels the bias correction
aliases some of the latitude-dependent biases, such as dif-
ferences between tropical and midlatitude cloud simulations,
but the effect is generally small. Ideally VarBC would be al-
lowed to vary, but as a first approximation it is held constant.

5 Results

5.1 Global parameter search

The first application of the parameter search is to find a sin-
gle set of physical parameters that would provide the best fit
globally, a one-shape-fits-all approach. Figure 5 helps to vi-
sualise the six-dimensional cost function by showing slices
along its dimensions at the control configuration and at the
best configuration. At the control configuration, perturba-
tions in most directions would increase cost: for example, all
other choices of convective snow particle would make things
worse. This indicates that the configuration provided by Geer
and Baordo (2014) was already at a reasonably stable local
minimum.

The best configuration is summarised in Table 4. Here,
the shape of the cost function is very different (Fig. 5). The
largest difference is the reversal in the gradient of the cost
function with respect to cloud overlap. Cav overlap over land
is now clearly better than the Cmax overlap used in the con-
trol. Another big difference is that the choice of convec-
tive snow particle is now well bounded at the extremes: at
low-scattering the ARTS column aggregate has high cost
and is clearly inappropriate; at the high-scattering end the
ARTS graupel also gives a high cost. The ARTS column is
marginally the best, but the ARTS block aggregate or Liu
3-bullet would be a reasonable alternative. A final big differ-
ence is the change in the gradient of the cost function with
respect to convective snow mixing ratio. At the best configu-
ration, the mixing ratio should be increased by 50 %, whereas
the control configuration could have been improved by re-
ducing the mixing ratio by the same amount.

There are smaller changes in the other dimensions in
Fig. 5. For the large-scale snow, a small improvement is
found going to the ARTS sector, although the ARTS 6-bullet,
ARTS plate aggregate, or Liu sector (the control configu-
ration) would produce similar results. The lower-scattering
end is not bounded, so it might be possible to further im-
prove the simulations with a less-scattering configuration for
large-scale snow. The least constrained dimension is the ice
cloud microphysics: all configurations produce similar cost,
with the MGD 1e4 PSD being only marginally better than
the others. Only the F07M PSD with the Liu dendrite shows
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Figure 5. Slices through the six-dimensional cost function around the control configuration (dashed) and around the best configuration (solid;
see also Table 4). The dimensions are ordered from least-scattering to most-scattering options. The dots indicate the parameter settings for
the control and for the very best (lowest cost) configuration.
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Table 4. Results of parameter search.

Dimension/metric Best

Cloud overlap Land Cav
Convective snow mixing ratio +half CV snow
Convective snow PSD Control
Convective snow particle shape CV ARTS column
Large-scale snow particle shape LS ARTS sector
Ice cloud particle shape and PSD CI gamma 2e4

Cost function (control= 0.925) 0.908

a visibly increased cost; as previously mentioned this was
identified in initial work as having too much scattering. Ta-
ble 4 summarises the best global configuration: overall this
reduces cost to 0.908, compared to 0.925 at the control. This
is only a small improvement, despite major adjustments to
the parameters. As will be seen, these adjustments bring a
mix of improvements and degradations that is overall just
slightly better according to the cost function. Section 5.2 will
show that bigger improvements can only come about by mak-
ing the parameters situation-dependent.

Figure 6 examines the cost function broken down by SS-
MIS channel. The best option improves the fit to observa-
tions (reduced cost compared to control) in channels from
92v to 183± 1h. This can be contrasted with the worst pos-
sible option in the parameter search (the dotted line) which
makes the cost higher in channels down to 22v. The worst
possible option chooses all the most-scattering options avail-
able, such as the ARTS gem graupel particle for convective
snow, and generates significantly increased scattering at low
frequencies (20 to 50 GHz; see also Fig. 3), which does not
agree with observations; this was also one of the problems
with the Mie sphere snow representation rejected by Geer
and Baordo (2014). The high-scattering options, including
the ARTS graupel and the Mie sphere, tend to put deep TB
depressions everywhere there is convection. But in the ob-
servations, deep scattering TB depressions are seen at these
frequencies only in the very most intense convection (e.g.
Zipser et al., 2006). The new search continues to constrain
the choices to those that have relatively low scattering at the
lower frequencies, while still being able to produce signifi-
cant scattering at higher frequencies. This illustrates the im-
portance of including the lower frequencies in the cost func-
tion.

Figure 7 shows maps of the mean and skewness of depar-
tures in the geographical bins that make up the cost function
(Eq. 6). The best option improves the mean of binned de-
partures over extratropical land surfaces, particularly in the
NH at 183± 3 GHz. The skewness of binned departures in
the control is around +3 in many of these areas; the best
option reduces skewness mostly to the range −1 to +1, at
both 150 GHz and 183± 3 GHz. However, some areas show
worse levels of skewness. For example, there is more neg-

ative skewness in the ITCZ over central Africa at 150 GHz
and 183± 3 GHz and slightly more positive skewness over
the Southern Ocean at 183 GHz. To better understand these
changes, Fig. 8 shows the histograms of brightness tempera-
tures at 150 GHz over land, separated into broadly extratrop-
ical and tropical areas using a TCWV threshold. In extratrop-
ical locations the control has an order of magnitude too many
occurrences of strong scattering (TBs less than 210 K) com-
pared to observations, and the “best” configuration provides
a much better distribution. This change is consistent with the
move from positive to neutral skewness in extratropical land
areas in Fig. 7. It is mainly the result of changing from Cmax
to hydrometeor-weighted Cav cloud overlap over land sur-
faces.

In contrast to the improvements over extratropical land
surfaces, Fig. 8b shows that in tropical areas an overestimate
of strong scattering events has been replaced by a more se-
vere underestimation, consistent with the move to negative
skewness in tropical convective areas. This exposes the prob-
lem of missing convection that the Cmax overlap had previ-
ously helped to hide. The best configuration (Table 4) also
includes an increased convective mixing ratio and the move
to ARTS column to represent convective snow, both of which
significantly increase scattering (Table 2, Fig. 7); however,
this is not enough to fully compensate. This worsening of re-
sults over tropical land surfaces illustrates the trade-offs re-
quired by a global parameter estimation and helps explain
why the overall cost has not decreased by much.

Figure 9 illustrates the changes to the simulated SSMIS
150h brightness temperatures over Africa, Europe, and the
Atlantic, on a day with a broad variety of cloud and precip-
itation features across these areas. Brightness temperatures
below 240 K over land surfaces typically indicate scattering
from convective snow. Simulated brightness temperatures in
panels (c) and (d) are similar to the observations in panel (b),
but with the exact placement of convection often in different
locations – hence the need for a cost function that is resis-
tant to the double-penalty effect. Over land, simulated TBs
have increased by up to 100 K (panel a, where the changes
are off scale), corresponding to the changes in the TB his-
tograms discussed in previous paragraphs. Over the ocean,
there is a general slight decrease in brightness temperatures
and hence an increase in scattering. Here, the cloud overlap
is not changed, but the other four changes in the best config-
uration (Table 4) decrease brightness temperatures by up to
5 to 10 K in cloud and precipitation areas, such as convec-
tion in the ITCZ around 8◦N, and in an extratropical cyclone
in the North Atlantic. These changes are also present in the
southern extratropics and are likely responsible for the re-
duction in mean departures over the Southern Ocean in the
183± 7 GHz channel (Fig. 7c and d).
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Figure 6. Cost per channel of different sets of physical options in the parameter estimation. Shown are the configurations with the smallest
and highest cost (best and worst) and the control.

Figure 7. Maps of mean and skewness of background departure in the control and in the best configuration.
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Figure 8. Histograms of SSMIS 150h brightness temperatures over
land surfaces (greater than 0.5 land fraction): (a) locations with less
than or equal to 25 kg m−2 total column water vapour (TCWV, ap-
proximately 125 000 observations); (b) locations with more than
25 kg m−2 TCWV (approximately 81 000 observations).

5.2 Sensitivity tests

The global best solution from Fig. 5 is fairly stable. Figure 10
shows slices through the cost function around the best solu-
tions that can be obtained with the convective snow mixing
ratio fixed to one of the three possible options. Along the
dimensions representing cloud overlap, convective snow par-
ticle shape, and ice cloud particle shape and PSD, the cost
function has a stable form and produces similar solutions in
all cases. This suggests that all three choices are reasonably
insensitive to the convective snow mixing ratio. However, for
convective snow PSD and the large-scale particle, the shape
of the cost function, and the best choice, varies depending on
the convective snow mixing ratio. In particular the large-scale
particle shape has two possible minima – one at the ARTS
sector and one at the control (Liu sector) configuration. The
latter is found, along with a change to the convective PSD,
when the convective snow mixing ratio is halved.

Similar figures can be constructed by holding the choices
fixed across any other dimension (not shown). The cost func-
tion can be returned to something resembling its shape at
control (as seen in Fig. 5) by retaining Cmax hydrometeor-
weighted cloud overlap over land or by pushing the large-
scale snow to either of the two most scattering shapes. Hence
at the broadest scales the cost function has two stable areas
giving reasonable solutions, one around the control and one
around the new best configuration. Varying the convective

Figure 9. Example of SSMIS 150h brightness temperatures on
21 June 2019 (00:00–24:00 UTC): (a) change between control
and best configuration; (b) observations; (c) control simulations;
(d) best configuration simulations. The colour scale in (a) is opti-
mised to highlight the negative range; positive changes go off scale
to as much as 100 K.
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Figure 10. Slices through the six-dimensional cost function around the best configuration when the convective mixing ratio is prescribed at
−50 %, control, or +50 %. The +50 % lines are the same as the best solution in Fig. 5.

snow PSD or the ice cloud particle shape has little effect
on the shape of the cost function at solution, which remains
close to the new best, further confirming its stability. Finally,
setting the convective snow particle shape to the extreme pos-

sibilities can generate very different cost function shapes, but
these lead to low-quality (high cost) configurations.

Table 5 explores sensitivity to the choice of cost func-
tion itself. The mean and skewness find similar solutions to
those found using the average of both (Table 4). On their
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Table 5. Results of parameter search using alternative cost functions.

Dimension Mean of rms of Skewness of
departures departures departures

Cloud overlap Land Cav Land Cav Land Cav
Convective snow mixing ratio Control −half CV snow Control
Convective snow PSD Control Control Control
Convective snow particle shape CV ARTS column Control CV Liu 3-bullet
Large-scale snow particle shape LS ARTS sector LS ARTS plate agg. LS ARTS plate agg.
Ice cloud particle shape and PSD CI gamma 2e4 Control CI F07 M dendrite

Cost function (control= 0.925) 0.913 0.977 0.916

The cost given is that of the chosen configuration but calculated with the standard cost function (half mean, half skewness – Eq. 6).

own they identify some of the reasonable alternative choices,
such as the ARTS plate aggregate for large-scale snow, that
could already be identified from Fig. 5. Neither the mean nor
skewness-based cost function would on its own adjust the
convective mixing ratio, consistent with the lack of sensi-
tivity to adjustments in this parameter. A more unexpected
aspect of the skewness-based cost function is the choice of
the Liu dendrite and the Field et al. (2007) midlatitude PSD
for ice cloud, which was identified as a poor choice in early
experimentation (it causes significant degradation in obser-
vation fits in cycling data assimilation experiments). How-
ever, this choice increases the amount of scattering in tropical
convective areas, which improves the skewness (figures not
shown). The implications are discussed further in Sect. 6.1.

Table 5 also shows the results using a cost function based
on the rms of the geographically binned departures. This puts
most parameters towards the least-scattering end of the scale,
and in particular it reduces convective snow by 50 %. This is
not expected to be a valid solution: the double-penalty effect
typically means that rms error can be minimised by reducing
scattering, essentially by removing cloud from the simula-
tions. This creates a model with an incorrect PDF of bright-
ness temperatures, as measured by the skewness or by exam-
ining the PDF directly (not shown). Indeed the cost as mea-
sured by the standard cost function is increased substantially
to 0.977 at this solution.

5.3 Situation-dependent parameter choices

The global one-shape-fits-all approach has always had trou-
ble getting good results in the tropics and midlatitudes si-
multaneously (Geer and Baordo, 2014), and the new global
solution remains a trade-off with too little scattering in trop-
ical convection and too much scattering in the storm tracks
(Fig. 7h). Table 6 summarises the best configurations when
the globe is instead divided into three areas: ocean areas out-
side of tropical deep convection, ocean areas generally in or
near tropical deep convection, and land surfaces. The distinc-
tion of tropical convection is made roughly using a TCWV
threshold of 40 kg m−2 (this identifies a mostly equatorial

band covering the ITCZ but extending to around 30◦ lati-
tude in areas like the Pacific warm pool and the South Pacific
convergence zone, SPCZ). The non-convective ocean solu-
tion is similar to the global solution, which is not surprising
given these scenes dominate the global score numerically, but
there is an unexpected reduction of 50 % in convective mix-
ing ratio. Compared to Fig. 2, the skewness of background
departures is brought much closer to zero at latitudes around
60◦ over ocean (not shown). This is consistent with the con-
jecture that particle fall speeds in the flux to mixing ratio
conversion are too low (Geer et al., 2017a, and see earlier).
This also demonstrates the importance of correctly modelling
convection even in the midlatitudes.

The tropical convective ocean solution is very different to
the global solution. There is a 50 % increase in the convective
snow mixing ratio and a move to the Marshall and Palmer
(1948) PSD. Both of these changes significantly increase the
scattering from convection. Further, the ice cloud is repre-
sented with the Liu dendrite, which is the most-scattering
option. The solution over land is different again, boosting
scattering in convective scenes by retaining the Cmax cloud
overlap and again using the Liu dendrite for cloud ice. How-
ever, the convective and large-scale snow habits themselves
move to slightly less scattering options. These solutions both
make a substantial increase in the amount of scattering com-
ing from convection, again illustrating that the simulations do
not provide enough scattering in tropical areas over both land
and ocean (with the problem mitigated over land in the con-
trol using an incorrect cloud overlap model). These results
will be explored further in the discussion (Sect. 6.1). Using
the situation-dependent choices from Table 6, the global cost
function could be reduced to 0.886, more than doubling the
improvements that were made with the best global solution
(Table 4). However, the remaining cost is still high, suggest-
ing many further improvements need to be found.

5.4 Final version for RTTOV v13.0

One drawback of developing models using parameter esti-
mation is that they need to be updated when other com-
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Table 6. Results of a situation-dependent parameter search. “n/a” means not applicable.

Dimension Ocean with TCWV Ocean with TCWV Land
< 40 kg m−2

≥ 40 kg m−2

Number of geographical bins 323 86 119
(global= 528)

Cloud overlap n/a n/a Control
Convective snow mixing ratio −half CV snow +half CV snow Control
Convective snow PSD Control CV MP48 Control
Convective snow particle shape CV ARTS column Control CV ARTS column agg.
Large-scale snow particle shape LS ARTS sector Control LS ARTS plate agg.
Ice cloud particle shape and PSD CI gamma 1e4 CI F07 M dendrite CI F07 M dendrite

ponents change. Table 7 shows an intermediate and a final
configuration for v13.0 of RTTOV-SCATT. The intermedi-
ate configuration was found using the same global cost func-
tion from Sect. 4, but adjustments to the convective mixing
ratio were prevented, being poorly constrained as shown in
Sect. 5.2. Also the ice cloud was constrained to a solution
using the Heymsfield et al. (2013) PSD, which was initially
favoured as the most recent and hopefully most accurate PSD
for cloud ice available in RTTOV-SCATT. This configuration
is otherwise similar to the global best found in Sect. 4, but
with slightly different microphysical choices from within the
poorly constrained areas of the cost function (Fig. 5). This
configuration was important for testing the other develop-
ments towards v13.0. In particular, it was used by Barlakas
et al. (2021) to develop a representation of polarised scatter-
ing and to tune the required polarisation ratio parameter. In
areas affected by strong scattering, the new approach to po-
larisation increases brightness temperatures by up to around
7 K in vertically polarised channels and decreases them by
the same amount in horizontally polarised channels. Since
all the high-frequency channels of SSMIS are horizontally
polarised (≥ 150 GHz; see Table 1), this alters the reference
against which the results in the current work were derived.

Two other changes were made to RTTOV-SCATT in the
late stages of development for v13. First, there was a bug fix
to the downward scattering source terms, leading to changes
of up to around 1 K in simulated brightness temperatures in
some situations. Second, there was a change to the mini-
mum permitted effective cloud fraction, which gave changes
mostly within 2 K but occasionally up to around 8 K (for
more information on both, see Saunders et al., 2020). Mean
changes were an order of magnitude smaller than those ex-
amined in typical perturbations in the parameter search (not
shown), but, along with the polarisation update, it was impor-
tant to take these modifications into account in a final re-run
of the parameter estimation.

To come up with the final configuration for v13.0, the three
late changes were imposed as additional deltas in Eq. (2), re-
lying again on the linear additivity of the changes, which is
not significantly affected compared to what is illustrated in

Fig. 4. None of the changes was treated as optional, since
they all make the radiative transfer more physically correct,
and the tunable polarisation ratio parameter could not be con-
strained in the current work. The additional 3 deltas increased
the control cost slightly (to 0.932, Table 7). The convective
mixing ratio was held constant, given it is undesirable for fu-
ture developments to build in a tuning factor in this way, and
given the lack of sensitivity to this parameter (Sect. 5.2). Ta-
ble 7 gives the final chosen configuration, again just a slight
perturbation on the best configuration found earlier and still
within the uncertainty zone of Figs. 5 and 10.

The final chosen configuration is the best configuration
in the parameter estimation, but with an imposed change
for cloud ice. The true minimum was found at the control
settings for cloud ice (a Mie sphere). Any of the higher-
scattering options for cloud ice now generates significantly
increased cost, and although the shape of the cost function
is similar to Fig. 5f, the gradient is increased (not shown).
Hence it is not possible to force the choice of the preferred
Heymsfield et al. (2013) PSD any longer. However, the con-
trol configuration for ice cloud is undesirable for future sub-
mm applications since it uses the outdated Mie sphere ap-
proach. A compromise was possible, and the use of the MGD
1e4 PSD with the ARTS column aggregate has been imposed
since, after this change, the cost function is only slightly in-
creased.

6 Discussion

6.1 Improved physical assumptions

This section discusses whether the parameter estimation has
provided physical suggestions that may be generally applica-
ble, or whether the results just reflect tuning to fit the biases
of the forecast model used as the reference, and/or the limi-
tations of the radiative transfer model. The biggest improve-
ment was to change the effective cloud fraction over land,
which is not surprising as it is the more physically correct ap-
proach (Geer et al., 2009a). However, there may be a number
of more novel suggestions that could be generally applicable.
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Table 7. RTTOV v13.0 development and final choices.

Dimension Intermediate configuration Final configuration

Cloud overlap Land Cav Land Cav
Convective snow mixing ratio Control Control
Convective snow PSD Control Control
Convective snow particle shape F07T/Liu 3-bullet F07T/ARTS column
Large-scale snow particle shape F07T/ARTS sector snowflake F07T/ARTS (large) plate agg.
Ice cloud particle shape and PSD H13/ARTS (large) column agg. Gamma 1e4/ARTS (large) column agg.

Cost – control 0.925 0.932
Cost – best 0.908 0.910
Cost – chosen configuration 0.912 0.911

The first of these relates to convective cloud in the tropics.
When the search was confined to land areas (Table 6) it re-
tained the Cmax cloud fraction, despite the fact it is less phys-
ical. It is hence worth asking if the specified 5 % convective
fraction is too small to represent intense tropical convection
systems, noting that even in cloud-resolving models this is
an uncertain parameter (e.g. Varble et al., 2014). Radar cross
sections can show vertically spreading high-reflectivity areas
in the upper parts of these clouds (e.g. Hong et al., 2005, their
Fig. 1). Hence a hypothesis, based also on results from cloud-
resolving models, is that the frozen upper parts of the convec-
tive cores become more widely spread and merge together in
a gradual transition to anvil cloud (Geer et al., 2017a). The
basic representation of convection in the IFS and RTTOV-
SCATT, as a narrow vertical core and a thin high anvil, may
therefore be an overly severe truncation of reality.

Further justification for the hypothesis on the structure of
intense tropical convection is seen over tropical ocean sur-
faces in the situation-dependent search (Table 6). The results
over ocean are less affected by model bias: here the more
physically correct Cav cloud fraction is used, and the all-sky
infrared biases suggest only a slight overestimation of con-
vective cirrus in frequency or coverage (Geer et al., 2019).
But the parameter estimation still boosts scattering by in-
creasing the convective mixing ratio, by increasing the size of
the convective particles using the MP48 PSD, and by making
the cirrus more scattering too (using the F07M PSD and the
dendrite snow particle). All of these could suggest the need to
represent either broader convective cores in the frozen parts
of the cloud or, nearly equivalently, deeper convective anvils,
containing higher mixing ratios of larger and more scatter-
ing particles. Hence an option to improve the results may be
to represent convective anvil ice particles as a separate new
hydrometeor type for the purposes of radiative transfer.

Another interesting point is the level of constraint on the
convective snow particles. At the most scattering end, the
ARTS graupel particle is decisively rejected. This is always
a bad option, independent of the choice of cloud overlap
over land (Fig. 5) and independent of convective mixing ratio
(Fig. 10), because it generates too much scattering at lower

frequencies. However, the global search finds solutions (such
as the Liu 3-bullet or ARTS column) that strongly increase
scattering at 150 and 183 GHz and by nearly as much as the
ARTS graupel (Fig. 3). The parameter estimation prefers a
spectral signature of scattering that is strong around 183 GHz
but weak around 50 GHz. This eliminates a wide class of
dense particles (Geer et al., 2021) and similarly rejects the
least-scattering particles, particularly the ARTS column ag-
gregate, which strongly reduces scattering around 183 GHz
(Fig. 3). This spectral signature is hence strong enough to
be mostly independent of both the sub-grid structure and the
mixing ratio of the convective cloud.

The detectable influence of a particle model in this work
is its scattering signature, as a function of frequency and ge-
ographical location, and not directly its physical properties.
The scattering signature comes from the bulk scattering prop-
erties that arise from the combination of particle size dis-
tribution and the single-particle scattering properties. In the
approach used here the chosen particle model affects both
the single-particle scattering signature and the PSD, since the
particle choice also defines the mass–size relation. Changing
the mass–size relation changes the shape of the PSD (e.g.
Eriksson et al., 2015; Geer et al., 2021). In the mass–size re-
lation the ARTS graupel has an exponent of 2.96; the Liu
3-bullet and the ARTS column have exponents 2.37 and 2.05
(Geer et al., 2021). This suggests the scattering signature may
be as sensitive to the exponent in the mass–size relation as to
the actual particle shape. This would help explain how a habit
that is physically unlikely in convection, such as the ARTS
column, has ended up being chosen to represent convective
snow.

One aspect of convection that is not examined in this study
is the presence of supercooled raindrops above the freezing
level. These are not represented in the rain and snow fluxes
from the model’s mass-flux convection scheme, but they are
likely there in nature, where they help generate rimed parti-
cles and lightning (e.g. Kumjian et al., 2012; Fuchs and Rut-
ledge, 2018). Compared to snow, raindrops are much-less-
scattering particles (e.g. Geer et al., 2021) and could gener-
ate significant emission, warming the microwave brightness
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temperatures towards the physical temperature of the cloud
and possibly making it harder to generate significant scatter-
ing brightness temperature depressions in deep convection.
It would be important to address this in future work. An-
other aspect that could be improved is to use the recently
derived hail PSD (Field et al., 2019) to represent the “con-
vective snow” category rather than re-purposing other PSDs.

The results for ice cloud also provide some interesting re-
sults for further investigation. The parameter estimation re-
jected all the PSDs that were explored here as representa-
tions of ice cloud (McFarquhar and Heymsfield, 1997; Field
et al., 2007; Heymsfield et al., 2013). Note the rejection was
much clearer in the final search for RTTOV v13.0 in Sect. 5.4
than in the main search, presumably because the scattering
generated by ice cloud had been boosted by the parametri-
sation for polarised scattering. The PSDs from the literature
were trialled with the very-least-scattering particles available
to RTTOV-SCATT, i.e. the ARTS column aggregate and the
Evans snow aggregate (see Geer et al., 2021). Even so, the
observations could only be matched by creating a modified
gamma distribution (MGD) with the key property that it gen-
erated orders-of-magnitude-fewer centimetre-sized particles
than the PSDs from the literature (see Geer et al., 2021).
Therefore, although frequencies around 183 GHz are not ex-
pected to have strong sensitivity to smaller cloud ice parti-
cles, they still impose a constraint on the number of large
particles in the PSD.

It is difficult to compare directly to other studies. A main
reason is that the characterisation of frozen particles, into
large-scale snow, convective snow, and cloud ice, is specific
to certain types of global models. It is hard to map onto other
representations of ice particle, particularly those in which
no forecast model is available to categorise the hydrometeor
type (e.g. Ekelund et al., 2020). Further, many studies do not
attempt to fit such a range of frequencies or such a complete
sample of observations (either in frequency or location), so
they are able to find solutions that would not work here. Fi-
nally it is worth restating that the results are valid on the
80 km by 80 km smoothing/superobbing grid used for all-sky
assimilation in the IFS; hence results may be different from
a much-finer-scale cloud-resolving viewpoint. However the
following examples based on regional models illustrate that
there is plenty of common ground between them and the con-
clusions from the current parameter estimation.

Guerbette et al. (2016) used RTTOV-SCATT in combina-
tion with a tropical local area model to simulate all-sky mi-
crowave observations in the tropics around 183 GHz. Their
study applies to snow but with a focus on tropical cyclones,
so this is interpreted as mapping onto the convective snow
category. They tried all the Liu (2008) particles available to
RTTOV-SCATT, finding the best fit to observations using the
Liu block hex column and the F07T particle size distribu-
tion. However they did not include any lower frequencies to
help constrain their particle choice. If they had done that, the
choice of the Liu block hex column would not have worked.

At frequencies of 183 GHz and below, this particle is roughly
the highest scattering of any particle available in RTTOV-
SCATT. At 50 GHz, for example, it is much more scattering
even than the ARTS graupel (Geer et al., 2021). However,
what is consistent in their results compared to the current
study is the need to generate as much scattering as possible
in tropical convection at 183 GHz.

Fox (2020) performed a closure study between a regional
forecast model and airborne observations over northern Eu-
rope covering the frequency range 89 to 874 GHz, using
the ARTS model for radiative transfer. The regional fore-
cast model had a hydrometeor category known as “cloud ice”
which does not distinguish between suspended and falling
particles, e.g. between ice cloud and snow. Using the Field
et al. (2007) tropical PSD, the ARTS column aggregate
gave the best results. The study also showed that the ARTS
block aggregate produced too much scattering. Although
there is no direct equivalent to the combined ice category,
the choice of mid-to-less-scattering particles is still consis-
tent with the parameter estimation finding less-scattering par-
ticles in the IFS snow and ice cloud categories (along with a
less-scattering PSD in the ice cloud category).

Many other studies have explored the best representation
of frozen particles using non-spherical particles, but there is
no space for an exhaustive comparison (among them Kulie
et al., 2010; Eriksson et al., 2015; Duruisseau et al., 2019;
Fox et al., 2019; Ekelund et al., 2020). This discussion has
at least shown it is possible, with careful consideration, to
find consistency with other studies. However, it is important
to consider the precise hydrometeor definitions, the cloud
situations that are targeted, and even the level of constraint
(whether one frequency or a wider spectrum, whether a glob-
ally representative study or one focusing on a smaller area).
Since many of the results of this study can also be explained
in a physically plausible way, these conclusions probably can
be applied more widely than just to the modelling framework
in which they were derived.

6.2 Parameter estimation methodology

This section explores the current parameter estimation in the
context of wider efforts to learn models from data. Data as-
similation, along with machine learning, can be derived from
Bayesian principles (e.g. Bocquet et al., 2020) where knowl-
edge is represented quantitatively using probability distribu-
tion functions (PDFs): this gives a fundamental framework
for how observations can be combined with prior knowledge
to provide improved knowledge of physical states and pro-
cesses. The process of learning model parameters through
the Bayesian framework is known as parameter estimation.
In weather and ocean forecasting, the history of parameter
estimation is long but sparse (e.g. Yu and O’Brien, 1991;
Dee and Da Silva, 1999; Ruiz et al., 2013). Cloud and pre-
cipitation parameter estimation has been tried in simpler con-
texts (e.g. Norris and Da Silva, 2007; Posselt and Vukicevic,
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2010; Posselt and Bishop, 2012) and within more complete
atmospheric models (Ollinaho et al., 2013; Posselt, 2016;
Ruckstuhl and Janjić, 2020; Kotsuki et al., 2020). However
it has not yet reached a level of development to have been
used in operational weather forecasts. The ultimate goal has
been demonstrated in an idealised context by Zhu and Navon
(1999): a combined state and parameter estimation where the
improved model parameters benefit the quality of the fore-
casts, even at longer forecast ranges when the impact of im-
proved initial conditions becomes small.

Parameter estimation remains challenging. Parameters
may not be well constrained by the available observations
(an issue known as identifiability; see e.g. Dee and Da Silva,
1999). When there are model components that are not sub-
ject to parameter estimation but have compensating errors,
the estimated parameters will not be fully realistic (e.g. Ruiz
and Pulido, 2015). Especially in cloud and precipitation, the
uncertainty PDFs are highly non-Gaussian and quite often
multimodal (Posselt and Bishop, 2012). Equivalently, cost
functions have multiple minima, making for a difficult op-
timisation problem. The complexity of the cost function in
the current parameter estimation is clear from Figs. 5 and 10.
In the search for globally constant parameters, the parameter
estimation had to jump from the existing “control” configu-
ration to an area of parameter space that gave substantially
better fits to observations. Hence this work further confirms
the problem of multiple minima; this would make it hard to
apply typical data assimilation frameworks, which use gradi-
ent descent methods that could get stuck in a local minimum.

When the cost function is complex and has multiple min-
ima, it is important to search the parameter space broadly.
The current work has explored the whole of the search space.
In larger systems this would become infeasible due to the
curse of dimensionality. Here, the space has been kept small
(a total of 3456 discrete parameter combinations), and an as-
sumption of linear addition of perturbations allowed the en-
tire space to be approximated on the basis of only 22 simu-
lation experiments: one for each parameter setting plus the
control. The linear assumption has limited validity in the
presence of cloud and precipitation processes that are known
to be nonlinear, but with careful design and within the scope
of the current study it gave reasonable results, to a maximum
30 % error in the reconstructed brightness temperature in
one example. The method could be extended to much larger
search spaces, allowing parameters from the forecast model
to be included; however, the exhaustive evaluation of the cost
function (Eqs. 4, 5, and 6) would itself become a burden, and
the number of evaluations would have to be reduced by us-
ing a more efficient method such as Markov chain Monte
Carlo or other known approaches (e.g. Gelman et al., 2013).
In future work it would still be important to robustly test the
quality of the assumption of linear addition of perturbations.
One way to do this would be to re-run the underlying non-
linear experiments iteratively, a little bit like the incremental
4D-Var approach (Courtier et al., 1994); this would help im-

prove the solution and also provide increased confidence in
the use of the approximation.

Applying Bayesian methods in the form of data assimi-
lation, it is normal to use a Gaussian error assumption, or
equivalently a squared-error cost function (see e.g. Geer,
2021). This seems to be unsuitable for cloud and precipi-
tation parameter estimation, and hence many different cost
metrics (or equivalently, uncertainty representations) have
been proposed, including both higher and lower order sta-
tistical moments (e.g. means, skewness, and kurtosis), threat
scores, correlations, and PDF divergence (Geer and Baordo,
2014; Duan et al., 2017; Schneider et al., 2017; Ruckstuhl
and Janjić, 2018). In the current work, the geographically
binned mean and skewness have been used, and the rms er-
ror is shown to produce a false “minimum scattering” solu-
tion, in other words trying to remove cloud from the simu-
lations. To avoid this, the mean targets broad systematic er-
rors of the kind that can affect the model climate. The skew-
ness provides higher sensitivity to errors in extreme cloud
and precipitation situations and is a more feasible alternative
to computing the full divergence between simulated and ob-
served PDFs (Geer and Baordo, 2014). The statistics are ag-
gregated across latitude–longitude bins and across a range of
microwave frequencies from 19 to 183 GHz. Spatial binning
provides regime sensitivity and helps make the parameters
relating to large-scale snow, convection, and ice cloud more
separately identifiable. The spectral dimension helps identify
large-scale and convective snow particle shapes through their
distinct spectral signatures.

It is also interesting to compare the current work to the
ideal Bayesian approach (e.g. Gelman et al., 2013; Posselt
and Bishop, 2012; Posselt, 2016; Geer, 2021) even if that
is likely to be infeasible in a high-dimensional system. The
first point of difference is the treatment of prior knowledge,
which in a Bayesian approach is represented by a PDF, and
in variational methods this corresponds to the background
term in the cost function. Although substantial expert knowl-
edge exists, for example the way ice particle habits vary with
supersaturation and with temperature (e.g. Bailey and Hal-
lett, 2009), this is hard to transfer into a quantitative form
like a PDF or cost function. Further, as discussed by Geer
and Baordo (2014), the aircraft data on which much of this
knowledge is based can be limited to particular areas of the
globe, and hence current knowledge may not be universally
appropriate when trying to fit observations on a global basis.
Here, the lack of an explicit prior means that every position in
parameter space could be equally likely. This corresponds to
the common Bayesian approach of “uniform priors”, which
is a reasonable starting point when prior knowledge is hard
to quantify. However, the choice of discrete options presented
to the parameter search does encode substantial prior knowl-
edge. For example, completely unrealistic particle and PSD
choices have already been discarded. Where significant un-
certainty exists, such as in the modelling of convective ice
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cloud, there are three dimensions of variability available and
a broader range of options.

This severe restriction of the search space is perhaps the
biggest difference compared to the ideal approach. To find
the true best model configuration, every parameter should
be infinitely variable, and every model component should
be open to improvement, for example by changing the equa-
tions on which they are based. However, if the need for a new
search point becomes obvious from the cost function, for ex-
ample a 25 % increase in convective mixing ratio, it is still
possible to add one and hence to refine the solution further.
It is also possible to add new dimensions when they become
necessary. Other aspects also map onto the broader field of
Bayesian methods: the linear assumption is being used in a
similar way to which a statistical emulator is often used to
speed up a parameter estimation (e.g. Duan et al., 2017). Fi-
nally, although the current study is based on an ad hoc cost
function, that cost function implies a PDF that could give a
clue to the shape of the true, and non-Gaussian, likelihood
PDF that could be employed in a more formally Bayesian
approach.

7 Conclusion

This work presented a parameter search across six differ-
ent microphysical and macrophysical assumptions associated
with frozen cloud and precipitation in a scattering radiative
transfer model. The search used a cost function based on the
misfit (or departure) between observations and simulations
based on geophysical fields from the Integrated Forecasting
System (IFS). Precisely, this was based on the geographically
binned mean and skewness of departures, in equal weights.
A 10 d period of Special Sensor Microwave Imager Sounder
(SSMIS) observations was used, providing around 106 ob-
servations with near-global sampling (ice-covered polar re-
gions and high orography were the main exclusions) and fre-
quency coverage from 19 to 190 GHz. The practical output
was the recommended default configuration for version 13.0
of the Radiative Transfer for TOVS microwave scattering
module (RTTOV-SCATT), released in late 2020 (Saunders
et al., 2020). A main goal for the future is to optimise the
parameters of the moist physics of the forecast model along-
side those in the radiative transfer, to reduce the effect of
compensating model errors, but for the moment these were
held constant.

The new RTTOV-SCATT defaults (Table 7) are intended
to provide a reasonable global one-shape-fits-all configura-
tion for microwave and sub-mm scattering radiative transfer.
New microphysical settings are provided for three frozen hy-
drometeor types. Cloud ice is moved from a Mie sphere to an
ARTS large column aggregate, in order to provide more ac-
curate simulations for the future ICI instrument, which will
operate at frequencies high enough to be sensitive to the mi-
crostructure of cloud ice. However, standard ice PSDs from

the literature have been rejected as they produce too many
large (cm-sized) particles, which causes excessive scattering
even around 183 GHz. A newly proposed exponential PSD is
used to avoid this. The problem is likely to be the representa-
tion of separate snow and ice cloud categories, which is typ-
ical in global models like the IFS, whereas the PSDs based
on in situ observations may represent the sum of both. The
large-scale snow hydrometeor is moved from the Liu (2008)
sector snowflake to a more physically representative ARTS
large plate aggregate, which again should give better simu-
lations at high frequencies. Finally, the new convective snow
hydrometeor uses the Field et al. (2007) tropical PSD with
the ARTS column. Though the habit is physically unlikely,
it provides the best fit to the observed scattering signature
of minimal scattering at 50 GHz and maximum scattering
at 183 GHz. Apart from this one aspect, the settings can be
justified physically and there is some consistency with other
studies.

One issue that was clearly linked to a model bias was the
move to the hydrometeor-weighted effective cloud fraction
(Geer et al., 2009a) over land as well as ocean surfaces. This
has always been the RTTOV-SCATT default, but Geer and
Baordo (2014) used the maximum cloud fraction to boost
scattering in tropical convection over land. In the new param-
eter estimation, the use of geographically binned skewness
statistics gave a more appropriate representation of the extra-
tropics in the cost function. This highlighted that the maxi-
mum cloud overlap causes large errors in convection outside
the tropics. Going to the hydrometeor-weighted overlap re-
duced simulation errors in these conditions by up to around
50 K and was the single largest improvement compared to the
previous (control) configuration.

The new global configuration reduces the cost function
from 0.925 to 0.908, highlighting that many errors remain.
A possible way forward is to use situation-dependent param-
eter choices. Here an example was to split the data into land,
tropical ocean, and the rest of the ocean, as well as perform-
ing three separate parameter estimations. This allowed the
global cost to be further reduced to 0.886. However, some
of the chosen settings were unexpected, such as the retention
of the less-physical maximum cloud fraction for land areas
and the choice of the most scattering available representation
for cloud ice over land and tropical ocean. These highlighted
potential issues with the representation of tropical convec-
tion. A hypothesis is that the modelling should better repre-
sent the broadening of convective cores in the frozen upper
parts of tropical convection or, nearly equivalently, a deeper
anvil composed of larger and more scattering particles. Fu-
ture work should also consider the presence of supercooled
raindrops in convection (Kumjian et al., 2012) and try out the
new hail PSD from Field et al. (2019). Hence there is still a
way to go to better represent the true structure and micro-
physics of deep convection in the tropics.

Compared to the earlier work of Geer and Baordo (2014),
the parameter search methodology is a step forward in two
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ways: a total of six parameters were adjusted simultaneously,
and the quality of the parameter choices was measured using
a single cost function. This latter makes the method a form
of parameter estimation, which can be compared to a more
ideal Bayesian approach (e.g. Posselt and Bishop, 2012; Pos-
selt, 2016; Geer, 2021) in which the PDF of prior knowledge
is updated based on observations, given the knowledge of
the likelihood (conditional) PDF of those observations. Prior
knowledge is not explicitly represented in the current work,
but it is encoded in the range and choice of parameters for
optimisation. The likelihood PDF is implicitly represented
in the choice of cost function. The search space has been
kept deliberately small (3456 possible combinations) so that
it could be searched in its entirety. Even so, because the ex-
perimentation was done in a weather forecasting system, it
was too costly to explore each combination exactly. Instead
an approximate method was used, assuming that parameter
perturbations could be tested separately (in 22 experiments)
and then linearly added to explore the whole space. This as-
sumption appeared to work well in the current study, but it
should be carefully evaluated for every new configuration of
parameter search; an iterative relinearisation approach like
the one used in incremental 4D-Var (Courtier et al., 1994)
is one way to address this. Further, the many links to the
Bayesian approach should also help improve the method in
the future, taking further ideas from a wide body of work on
Bayesian inverse methods.

An important question in parameter estimation is whether
the parameters are identifiable. Here, it has been shown that
multiple physical parameters of large-scale snow, convective
snow, and cloud ice can be separately identified. The particle
model for convective snow is particularly well constrained,
being mostly insensitive to variations in the mass mixing
ratio. The constraint on the particle model comes from the
strong frequency variations in the bulk scattering properties
of frozen particles. This “spectral signature” of scattering is
generated by the combination of the particle size distribu-
tion, the mass–size relation implied by the particle, and the
effect of the particle habit on the single-particle scattering
properties. The spectral signature is constrained by the in-
clusion of frequencies from 19 GHz to 190 GHz in the study.
Particularly, the inclusion of lower microwave frequencies
(e.g. 50 GHz) helps eliminate many proposed particle mod-
els that generate far too much scattering at these frequencies,
such as the ARTS gem graupel. However it is important to
be clear that the particle habit itself is not being precisely
identified but rather the full “hydrometeor model” which is
controlled by the choice of particle habit in the current frame-
work but includes also an assumed mass–size relation (Geer
et al., 2021). An important future step will be to better sep-
arate the PSD, the mass–size relation, and the particle habits
in the parameter estimation.

There is an aspiration to do more cloud and precipitation
parameter estimation within the data assimilation systems
used at weather forecasting centres. The current work illus-

trates some difficulties: first, data assimilation usually makes
the assumption of Gaussian errors, but the suggestion here
is that they are far from Gaussian; second, the cost function
has multiple minima, making it hard for conventional tech-
niques to find the right solution and requiring a more com-
plete search of the parameter space than is normally possible;
third, it is difficult to quantify prior knowledge in the param-
eters. However, these issues might be addressed by including
an ever-wider selection of cloud and precipitation-sensitive
observations in the cost function, a strategy discussed by
Geer et al. (2017a) as “microphysical and macrophysical clo-
sure”. The Ice Cloud Imager (ICI), when it is launched in
2024, will add new frequencies from 243 to 664 GHz, which
will better constrain smaller frozen particles. Existing pas-
sive radiance observations in the infrared and visible parts
of the spectrum will add much information on cloud frac-
tion and the microphysics of ice and water cloud. Active
measurements from cloud radar and lidar will be particularly
useful in terms of the 3D structure of clouds, for example
bringing further constraints on the convective core fraction
and anvil coverage that has caused uncertainty in the current
work. It would also be extremely useful to include field site
and campaign data on clouds and precipitation directly in the
parameter estimation rather than using indirect representa-
tions such as PSDs from the literature. This additional infor-
mation could make any type of parameter estimation easier:
first, by making the cost function less complex (by reduc-
ing ambiguity between parameters and by eliminating phys-
ically implausible choices); second, by reducing the need to
quantify prior knowledge. Hence it is worth continuing to
develop cloud and precipitation parameter estimation both
inside and outside existing data assimilation systems, which
will be greatly helped by an ever-wider set of observations
from space- and ground-based instrumentation.
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