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Abstract. The majority of global anthropogenic CO2 emis-
sions originate in cities. We have proposed that dense net-
works are a strategy for tracking changes to the processes
contributing to urban CO2 emissions and suggested that a
network with ∼ 2 km measurement spacing and ∼ 1 ppm
node-to-node precision would be effective at constraining
point, line, and area sources within cities. Here, we report on
an assessment of the accuracy of the Berkeley Environmen-
tal Air-quality and CO2 Network (BEACO2N) CO2 mea-
surements over several years of deployment. We describe a
new procedure for improving network accuracy that accounts
for and corrects the temperature-dependent zero offset of the
Vaisala CarboCap GMP343 CO2 sensors used. With this cor-
rection we show that a total error of 1.6 ppm or less can be
achieved for networks that have a calibrated reference loca-
tion and 3.6 ppm for networks without a calibrated reference.

1 Introduction

The atmosphere has warmed approximately 1± 0.2 ◦C since
pre-industrial times, which is unequivocally due to an-
thropogenic emissions of CO2 and other greenhouse gases
(GHGs) (IPCC, 2021). Global initiatives are needed to limit
warming to 1.5 ◦C by achieving net zero GHG emissions
by 2050 and a 45 % emissions decline from 2010 levels by
2030 (Rogelj et al., 2021). As over 70 % of global anthro-
pogenic CO2 emissions originate from cities (United Na-
tions, 2011), effective CO2 monitoring strategies in urban

regions are needed to assess progress toward emissions com-
mitments.

Monitoring trends in CO2 emissions by tracking ambi-
ent CO2 in urban environments is challenging because of
the large diversity of emissions sources, complex spatial and
temporal patterns of emission rates, varied topography, and
the effects of meteorology on the observed concentrations
(e.g., Vardoulakis et al., 2003; Lateb et al., 2016). As a result,
most cities rely exclusively on economics and social data and
do not check whether their reported emissions match the ob-
served CO2 enhancements in the air over their city. To date,
most efforts to assess CO2 emissions from cities have re-
lied upon a small number of high-cost CO2 instruments that
provide precise and accurate representations of regional sig-
nals. Other approaches include use of correlations between
CO2 and other gases, measurements of 14C in annual grasses,
and use of satellite column CO2 observations such as from
OCO-2 (e.g., Pataki et al., 2003, 2006; Riley et al., 2008;
Thompson et al., 2009; Kort et al., 2013; Andrews et al.,
2014; Fu et al., 2019; Ye et al., 2020). Most of these ef-
forts have used as a target metric an annual average of fossil
fuel-related CO2 emissions from an entire city (e.g., McK-
ain et al., 2012; Kort et al., 2013; Bréon et al., 2015; Ver-
hulst et al., 2017). Simultaneous measurements of CO and
14CO2 have also provided information about sector-specific
emission sources (Turnbull et al., 2015). Other methods of
evaluating urban emissions have relied on emissions inven-
tories (e.g., Gurney et al., 2009; Gately et al., 2013, 2017).
These emissions inventories are frequently applied to inverse
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modeling approaches in combination with either short-term
mobile measurements or a small number of long-term mea-
surement sites to extract regional emissions (e.g., Brondfield
et al., 2012; Sargent et al., 2018; Nathan et al., 2018; Turnbull
et al., 2019). Several studies have also combined a network of
CO2 observations with inverse modeling approaches to eval-
uate the accuracy of emissions inventories and CO2 sources
(e.g., Lauvaux et al., 2016, 2020).

We are pursuing a distinct approach aimed at process-level
understanding of the components of an urban emissions in-
ventory. To do so, we are developing tools for the deployment
of spatially dense networks of CO2 measurements, in com-
bination with gases and aerosols that are co-emitted and that
affect air quality. The result is an ability to map emissions
with ∼ 1 km or “neighborhood scale” fidelity. The Berkeley
Environmental Air-quality and CO2 Network (BEACO2N)
(Turner et al., 2020; Kim et al., 2018; Shusterman et al.,
2018, 2016; Turner et al., 2016) is our platform for research
and development of tools for dense networks. New deploy-
ments in Glasgow, Scotland and Los Angeles, California are
bringing new collaborators and experience in different cities
to the project. BEACO2N has been operating since 2012 in
the San Francisco Bay area and consists of over 70 nodes sep-
arated by approximately 2 km (Fig. 1). The nodes incorporate
commercially available, low-cost sensors for measuring CO,
NO, NO2, O3, particulates, and CO2.

Turner et al. (2016) assessed the performance of a hypo-
thetical BEACO2N-like observing system coupled to an in-
verse model and demonstrated that a random measurement
uncertainty of 1 ppm between nodes was adequate to mean-
ingfully constrain CO2 emissions from a point, line, or area
source of 147, 45, and 9 t C h−1, respectively. With a 1 ppm
mismatch error, weekly CO2 emissions in the San Francisco
Bay area could be estimated to within 5 % error. In this paper
we describe advances in our approach to maintaining stable,
multiyear comparability among BEACO2N nodes in a city
and evaluate the accuracy achieved with these new proce-
dures. Our emphasis in the revised approach to sensor ac-
curacy is on tracking and correcting the temperature depen-
dence of the Vaisala CarboCap GMP343 CO2 instruments.
We present the development and evaluation of the meth-
ods using observations from the San Francisco Bay Area
BEACO2N deployment and then apply these ideas to the
BEACO2N network in Houston, Texas.

2 Development of a CO2 field calibration method for
Vaisala temperature dependence

The efficacy of a network of a large number of low-cost
nondispersive infrared (NDIR) CO2 sensors to evaluate CO2
emissions has been previously discussed (Shusterman et al.,
2016; Turner et al., 2016; Martin et al., 2017; Shusterman
et al., 2018; Müller et al., 2020). Martin et al. (2017) showed
that after correcting six SenseAir K30 carbon dioxide NDIR

Figure 1. Map of all Bay Area BEACO2N sites (small red dots),
BEACO2N sites discussed in this work (large blue dots), and the
Richmond Field Station (star).

sensors (with off-the-shelf reported errors of 5–20 ppm) for
environmental variables, the median root mean square error
could be reduced to below 2 ppm, making the sensors po-
tentially useful for ambient air-quality monitoring. Recently,
Müller et al. (2020) evaluated the potential applications of
a low-cost CO2 NDIR sensor network for resolving site-
specific CO2 signals in Switzerland. The calibration method
of Müller et al. (2020) involved laboratory chamber calibra-
tions of over 300 low-cost NDIR CO2 sensors and ambient
colocation with a reference instrument prior to deployment,
as well as regular monitoring and drift correction during a 2-
year deployment period. Shusterman et al. (2016) developed
an in situ method for calibrating and correcting for individual
instrument biases and temporal drifts of the Vaisala Carbo-
Cap GMP343 CO2 instruments deployed in the BEACO2N
nodes. Using this method, Shusterman et al. (2018) demon-
strated that the BEACO2N network could provide highly sen-
sitive detection of changes to traffic emissions at a scale rel-
evant to policy concerns. Shusterman et al. (2018) also il-
lustrated the efficacy of the BEACO2N network in show-
ing both regional CO2 emissions and local CO2 enhance-
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ments at the scale of a single neighborhood. In an analysis
of the BEACO2N observations for 6 weeks before and after
the COVID-19 shutdown, Turner et al. (2020) showed that
a 25 % change in emissions is easily derived by an inverse
model and that hourly variations in emissions can be inferred.

The use of a large number of low-cost CO2 sensors intro-
duces challenges regarding accuracy and inconsistent behav-
ior between instruments that often requires labor-intensive
regular calibration, data correction and filtering, and vali-
dation with comparison to a smaller number of frequently
calibrated high-accuracy instruments. In particular, the low-
cost NDIR absorption sensor used in each BEACO2N node
(Vaisala CarboCap GMP343) is susceptible to temporal drift
and fluctuations due to environmental variables that present
challenges to achieving a goal of 1 ppm network error (van
Leeuwen, 2010; Shusterman et al., 2016). Correction of the
Vaisala CarboCap GMP343 instruments (Vaisala, hereafter)
for changes in pressure, temperature, and humidity is re-
quired for accurate measurements (Vaisala, 2013). The typ-
ical correction for pressure and temperature accounts for
changes in the number density of CO2 according to the ideal
gas law (van Leeuwen, 2010; Vaisala, 2013; Shusterman
et al., 2016). The humidity effect on measured CO2 is ac-
counted for by considering the dilution effect of water vapor
according to Dalton’s law of partial pressures (van Leeuwen,
2010; Vaisala, 2013; Shusterman et al., 2016). However,
even after accounting for these factors, reported corrected
CO2 concentrations for the Vaisala instrument have been ob-
served to exhibit a strong temperature dependence of up to
1 ppm ◦C−1 (van Leeuwen, 2010). Using a laboratory cali-
bration procedure, van Leeuwen (2010) found that a linear
correction was necessary to account for the residual temper-
ature dependence. However, correcting for the temperature
dependence using lab calibrations is labor intensive, as the
temperature dependence is unique for each Vaisala sensor.
Regular laboratory temperature calibration would also be re-
quired to account for temporal variations in the temperature
correction as sensors age. For a high-density urban network
like BEACO2N, this would require substantial time invest-
ment by trained personnel. The associated high labor costs
defeat the purpose of using low-cost sensors. In situ field cal-
ibration of the Vaisala sensors thus presents a more attractive
method for correcting for the temperature dependence of the
CO2 measurements.

2.1 BEACO2N network

The Berkeley Environmental Air-quality and CO2 Network
(BEACO2N) Bay Area deployment currently consists of 73
nodes spaced at ∼ 2 km intervals with locations in Alameda,
San Francisco, Contra Costa, Sonoma, Sacramento, and
Solano counties. A full description of a BEACO2N node
can be found in Kim et al. (2018). Briefly, each node con-
tains a nondispersive infrared Vaisala CarboCap GMP343
CO2 sensor, along with a Shinyei PPD42NS nephelomet-

ric particulate matter sensor and several Alphasense elec-
trochemical sensors for measuring CO, NO, NO2, and O3
(CO-B4, NO-B4, either NO2-B42F or NO2-B43F, and ei-
ther Ox-B421 or Ox-B431). The most recent version adds
a Plantower PMS 5003 aerosol sensor. Sensors are assem-
bled into compact, weatherproof enclosures with air flow
through the enclosure provided by two 30 mm fans. Data
are compiled with a Raspberry Pi microprocessor and an
Adafruit Metro Mini microcontroller. Data are acquired ev-
ery 5 or 10 s and are transferred to a central server via an
Ethernet or Wi-Fi connection. Observations are posted on the
BEACO2N website within a few hours of measurement time
(http://beacon.berkeley.edu, last access: 14 June 2021).

The Vaisala CarboCap GMP343 instrument uses pulsed
light from a filament lamp, which is reflected and refocused
on an IR detector located behind a Fabry-Perot Interferom-
eter (FPI). The FPI is electrically tuned so that its passband
corresponds to either the absorption wavelength of CO2 or
a reference band (Vaisala, 2013). The calibration procedure
for the Vaisala CarboCap GMP343 CO2 sensor is as out-
lined in Shusterman et al. (2016, 2018). Briefly, deployed
Vaisala sensors operate with the internal relative humidity
(RH), temperature, and pressure compensation set to “off”
and the oxygen correction set to “on”, with oxygen input
as 20.95 %. A post hoc multiplicative scale factor is ap-
plied to convert the raw CO2 outputs to the mole fraction
of CO2 that would be measured if the observed air parcel
were dried and brought to standard temperature and pres-
sure (STP) ([CO2]STP). Raw CO2 data are adjusted using
temperature (T ) measured by the internal thermometer of
the Vaisala. Water vapor pressure (PH2O) and air pressure
(Ptot) are obtained from the pressure and dew point temper-
ature measured inside each node enclosure by a Bosch Sen-
sortec Adafruit BME280 sensor. The [CO2]STP is then ad-
justed to account for temporal drift in the instrument “zero”
by comparing the background signal of the Vaisala CO2 mea-
surement at each node to a reference Picarro G2301 sys-
tem, located at the Richmond Field Station in Richmond, CA
(Fig. 1). A moving 3-week window of the 10th percentile of
Vaisala CarboCap CO2 data

(Vaisala
[CO2]10 %

)
is generated

and compared with the 10th percentile of the reference Pi-
carro instrument

(Picarro
[CO2]10 %

)
. The difference between

Vaisala
[CO2]10 % and Picarro

[CO2]10 % is used to define the off-
set of the Vaisala instrument

(
[CO2]

drift
offset

)
. A linear correla-

tion between
(
[CO2]

drift
offset

)
and time is generated and used

to calculate the drift-corrected CO2 data,
(
[CO2]

drift
corrected

)
(Eqs. 1–2):(
[CO2]

drift
offset

)
=mt × days+ b (1)

[CO2]
drift
corrected = [CO2]STP−mt × days− b, (2)

where mt is the temporal drift (ppm d−1) and b is a constant
atemporal bias.
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2.2 Picarro reference instrument

A “supersite” with reference grade instruments is oper-
ated within the BEACO2N Bay Area network to provide
a reference for the network calibration. Instruments are in-
stalled within a temperature-controlled instrument shelter
at the U.C. Berkeley Richmond Field Station. Measure-
ments include basic meteorology, NOx (Thermo 42CTL with
a molybdenum NO2 to NO converter), O3 (Teledyne/API
T400), CO2, CH4, and CO (Picarro G2401 cavity ring down
analyzer). Air is sampled through Teflon tubes mounted to a
small tower affixed to the trailer roof, for a combined height
of 6 meters above the ground. The colocated BEACO2N
node is attached outside of the trailer to the same tower.

The NOx and Picarro analyzer calibrations are checked
against reference gases every 2 to 3 weeks. The reference
gas cylinders for NOx , CO, and CH4 are Certified Standard
grade from Praxair, and for CO2 are from the NOAA Global
Monitoring Laboratory (two levels: 403.61 and 687.47 ppm).
The Picarro checks are made by flowing the sequence of ref-
erences gases into a tee at the inlet of the instrument for
15 min per step. The sequence of steps is performed twice
during a check. The flow rate is set to be larger than the
instrument sample flow (0.4 L min−1) to overflow the inlet.
The O3 analyzer is checked against a photometric calibrator
(Teledyne/API 703E).

2.3 Identification of a temperature-dependent error in
Vaisala measurements

There exists an additional temperature dependence among
the Vaisala CarboCap GMP343 instruments that varies be-
tween instruments. The temperature dependence was first
identified from observations of CO2 diurnal cycles at cer-
tain Bay Area BEACO2N sites that were out of phase or
larger in magnitude than the diurnal cycles at nearby nodes
or measured by the Picarro. The presence of a temperature
dependence in suspect Vaisala instruments was confirmed by
examining the relationship between temperature in the node
and the difference between baseline CO2 signals measured
by the Vaisala and the Picarro reference instrument.

Diurnal cycles of urban CO2 typically exhibit a daily max-
imum at night or mid-morning (depending on influence from
traffic emissions) due to mixing in a shallow nighttime plan-
etary boundary layer (PBL), and reach a minimum during
the day as PBL height increases and vegetation takes up CO2
(Idso et al., 2002; Coutts et al., 2007; Turnbull et al., 2015;
Shusterman et al., 2016). The presence of an additional tem-
perature dependence in the Vaisala CO2 instrument is partic-
ularly pronounced and obvious in the measurements obtained
with the sensor located at the East Bay Municipal Utility Dis-
trict (EBMUD) BEACO2N site during 2020 (Fig. 2). The
magnitude of the diurnal cycle at EBMUD is larger and out
of phase with the Picarro reference instrument (Fig. 2a). The
result of this temperature dependence at EBMUD (Fig. 2c)

Figure 2. (a) CO2 mixing ratios from April 2020 at EBMUD and
measured with a Picarro instrument at the Richmond Field Station
supersite. (b) EBMUD 2020 diurnal cycle compared with Laney
College. (c) Temperature dependence of the CO2 signal at EBMUD.

is a diurnal cycle that peaks midday (Fig. 2b). Figure 2b
compares the CO2 diurnal cycle at EBMUD with the nearby
urban site Laney College (Fig. 1). In contrast to EBMUD,
Laney College exhibits a daily maximum at mid-morning–
a pattern more consistent with typical urban CO2 behavior
(Idso et al., 2002; Coutts et al., 2007; Turnbull et al., 2015;
Shusterman et al., 2016).

The Vaisala temperature dependence varies in magnitude
and sign. Figure 3 shows the CO2 mixing ratios and temper-
ature dependence at the Montclair Elementary School site.
Compared to the Picarro instrument, this site also demon-
strates higher amplitude diurnal cycles (Fig. 3a), but these
diurnal cycles are in phase with the reference instrument.
Unlike EBMUD, the Montclair site exhibits a negative tem-
perature dependence (Fig. 3c). Figure 3b shows the diurnal
cycles at Montclair and the nearby node located at College
Preparatory School (CPS). The comparison of these two sites
suggests there may indeed be an amplification of the diurnal
cycle at Montclair caused by a negative temperature depen-
dence of the Vaisala instrument.

2.4 Temperature correction method

The goal of our approach to accounting for the temperature
dependence of the Vaisala instruments is to rely exclusively
on the network itself and, if available, supplementary refer-
ence instruments, such as a Picarro, for derivation of correc-
tion factors to null sensor temperature dependence.

The method we developed builds on our method for ac-
counting for drift in the instrument zero. To derive a tem-
perature factor, we use hourly averaged [CO2]STP and node
measurements of temperature (T ). It is important to note that
a major factor contributing to the temperature inside the node
is whether the node is placed in the sun or shade. As a re-
sult, direct correlation with meteorological temperature mea-
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Figure 3. (a) CO2 mixing ratios from May 2018 at Montclair and
measured with a Picarro instrument at the Richmond Field Station
supersite. (b) Montclair 2018 diurnal cycle compared with College
Preparatory School. (c) Temperature dependence of CO2 signal at
Montclair.

sured outside the node is not strong. For a moving three-
week window, at each hour (h), the lowest 10th percentile
of [CO2]STP within ±1 ◦C of T (h) is calculated. A running
array of temperature-based 10th percentile data is created for
both the Picarro supersite

(Picarro
[CO2]

T
10 %

)
at the Richmond

Field Station and each Vaisala instrument
(Vaisala

[CO2]
T
10 %

)
using the temperature (T ) of the Vaisala instrument. The
Vaisala temperature is assumed to be the temperature that the
instrument is responding to.

(
1
[CO2]

T
10 %

)
is then calculated,

where

1
[CO2]

T
10 %=

Vaisala
[CO2]

T
10 %−

Picarro
[CO2]

T
10 %. (3)

A linear regression for 1[CO2]
T
10 % against T provides a

slope (mT ) and intercept (bT ) for a moving three-week time
window. We considered the possibility that the instrument re-
sponse to temperature could be a zero shift and/or a change
in the response to CO2. We were able to achieve similar re-
sults assuming the temperature effect is entirely due to one
or the other of these possibilities. As there is already sub-
stantial drift in the instrument zero, we proceed under the
assumption that the effect can be entirely attributed to the
temperature dependence of the instrument zero. The median
of mT (medmT )is calculated for the deployment period of the
Vaisala sensor to determine the temperature-corrected off-
set and CO2 mixing ratios of Vaisala CO2 measurements,
based on an additive error correction (Eqs. 4–5). When
it is observed that either the offset bias, the temperature-
dependent slope, or the time-dependent drift in the instru-
ment zero shifts dramatically during a deployment period,
the deployment is manually separated into different periods
that are calibrated separately. The occurrence and magnitude
of this varies between instruments (0–3 times during a two-
year-long deployment), and is typically identified by routine

checks for agreement between neighboring sensors. Shifts in
the offset bias, the temperature-dependent slope, or the time-
dependent drift appear as sudden or gradual offsets in mix-
ing ratios measured by a sensor and its neighbors. Typical
identified shifts in the offset bias, the temperature-dependent
slope, or the time-dependent drift are on the order of 10 ppm,
0.5 ppm ◦C−1, and 0.1 ppm d−1, respectively:

[CO2]
T
offset=

1
[CO2]

T
10 %−

medmT × T (4)

[CO2]
T
corrected = [CO2]STP−

medmT × T . (5)

An example calibration, demonstratingmT and [CO2]
T
offset

over time at EBMUD 2020, is shown in Fig. S1 in the Sup-
plement. Following calculation of the temperature-corrected
offset, the temporal drift slope and intercept of this corrected
offset are calculated and corrected using the methods de-
scribed above, resulting in the generation of the temperature-
and drift-corrected CO2 offset

(
[CO2]

T ,drift
offset

)
.

The final temperature- and drift-corrected CO2(
[CO2]

T ,drift
corrected

)
is then calculated as

[CO2]
T ,drift
corrected = [CO2]STP−

medmT × T − [CO2]
T ,drift
offset . (6)

The majority of the BEACO2N nodes examined demon-
strated a strong linear relationship between

(
1
[CO2]

T
10 %

)
and node temperature. However, the node at Elsa Widen-
mann Elementary School appeared to show a strong nega-
tive temperature dependence only on particularly warm days
(Fig. 4a, c). The temperature dependence of

(
1
[CO2]

T
10 %

)
for this node better fit a quadratic than a linear relationship.
To account for nodes with a nonlinear temperature depen-
dence, in cases where a quadratic fit improves the R2 of the
fit by more than 0.2, the

(
[CO2]

T
offset

)
and

(
[CO2]

T ,drift
corrected

)
are calculated via Eqs. (7)–(8):

[CO2]
T
offset=

1
[CO2]

T
10 %−

medm1
T × T−

medm2
T × T

2 (7)

[CO2]
T ,drift
corrected = [CO2]STP−

medm1
T × T−

medm2
T × T

2

− [CO2]
T ,drift
offset , (8)

where m1
T and m2

T are the first and second terms of the
quadratic fit of 1[CO2]

T
10 % against T .

We attempted to determine a relationship between Vaisala
sensor age and temperature-dependence slope, but mT was
only weakly correlated with sensor age (r ≈ 0.3). We did,
however find some evidence that older sensors had a larger
likelihood of having a larger temperature dependence. For
sensors less than 3 years since their initial deployment, 90 %
had mT < 1 ppm ◦C−1 and 64 % had mT < 0.5 ppm ◦C−1.
For sensors older than 3 years, 75 % had mT < 1 ppm ◦C−1.
and 47 % had mT < 0.5 ppm ◦C−1.
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Figure 4. (a) CO2 mixing ratios measured by the Picarro instrument at the Richmond Field Station (blue solid), uncorrected CO2 measured
at Elsa Widenmann Elementary School (orange solid), and node temperature measured at Elsa (green dashed). (b) CO2 mixing ratios at Elsa
Widenmann Elementary School with no temperature correction (green), temperature correction applied (green) and measured with a Picarro
instrument at the Richmond Field Station (blue). (c) Temperature dependence at Elsa Widenmann Elementary School of 1[CO2]

T
10 %.

3 Evaluation of calibration

Figures 5b, e, and 4c show the temperature dependence of
1
[CO2]

T
10 % nodes located at EBMUD, Montclair, and Elsa

Widenmann, respectively. Figures 5a, d, and 4b show a com-
parison of the data at EBMUD, Montclair, and Elsa, re-
spectively, with and without adjustment for a temperature-
dependent zero offset. With the application of the tempera-
ture correction, the magnitudes of the diurnal cycles are re-
duced and demonstrate much better agreement in amplitude
and phase with the Picarro instrument. The resulting diurnal
cycle at EMBUD shows a much more typical diurnal cycle
for an urban site, with a maximum occurring at mid-morning
(Fig. 5c). At Montclair, the magnitude of the diurnal cycle
is reduced, reaching a maximum of ∼ 430 ppm CO2 during
the early morning, and a minimum of∼ 412 ppm CO2 during
midday–a pattern much more aligned with the diurnal cycle
exhibited at CPS (Figs. 3b, 5c).

Following confirmation of the effectiveness of the temper-
ature correction method on the sensors deployed at EBMUD
in 2020 (EBMUD 2020, hereafter sensors will be referred to
with the name and site year) and Montclair 2018, we exam-
ined the temperature-corrected CO2 data at the Laney Col-
lege BEACO2N site during the spring (March–June) of three
different years when different Vaisala CarboCap GMP343
instruments were deployed. Given the hypothesis that the
observed temperature dependence is due to temperature-
dependent errors in the Vaisala CO2 signal, a successful cal-
ibration should be sensor specific, rather than site specific.
Figure 6b demonstrates the varying 1

[CO2]
T
10 % temperature

dependence during three different years with different instru-
ment deployments. Each deployment has a distinct offset and
slope of 1[CO2]

T
10 % vs. temperature. During all deployment

years, the temperature correction results in better agreement
between the reference instruments and the Vaisala data (e.g.,

14 April 2020), while preserving local signals (e.g., 15 June
2018) (Fig. 6a). The correction is also effective for the data
record before deployment of the Picarro reference instrument
in August 2017, when the Exploratorium CO2 Buoy, located
in the San Francisco Bay, was used as a reference instrument
(Fig. 6a). The correction of the CO2 diurnal cycle at Laney
College is most notable during 2017, although midday levels
of CO2 are reduced in the corrected data for 2018 and 2020
as well (Fig. 6c).

The temperature correction method was further validated
by examining neighboring sites in two regions of the Bay
Area during and before periods of high CO2 during Septem-
ber 2020 northern California fires. The Richmond sites
of Washington Elementary School, Nystrom Elementary
School, Dejean Middle School, and Peres Elementary and the
Vallejo sites of Beverly Hills Elementary School, Mare Is-
land Health and Fitness Academy, Grace Patterson Elemen-
tary School, and Highland Elementary School were com-
pared. The resulting temperature-dependent percent differ-
ences of CO2 between adjacent sites are reduced to approx-
imately 0 %–2 % from 1 %–5 % (Figs. S3, S6). Temperature
corrections also result in better agreement in CO2 mixing ra-
tios between adjacent sites in Richmond (Figs. 7 and S2) and
in Vallejo (Figs. S4, S5). The results were identical when a
multiplicative correction term, rather than additive, was con-
sidered (e.g., if the temperature effect was assumed to be on
the CO2 signal magnitude rather than entirely on the instru-
ment zero).

Comparison of nearest-neighbor sites

To assess the improvement in the network precision follow-
ing application of the temperature-dependence correction,
we combined observations from the entire Bay Area net-
work using data from all of 2020. All sites with available
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Figure 5. CO2 mixing ratios at (a) EBMUD and (d) Montclair with no temperature correction (orange), temperature correction applied
(green), and measured with a Picarro instrument at the Richmond Field Station supersite (blue). Temperature dependence of 1[CO2]

T
10 % at

(b) EBMUD and (e) Montclair. Diurnal cycle with and without temperature correction at (c) EBMUD and (f) Montclair.

Figure 6. Data from 2017 are in top panels, 2018 are in middle panels, 2020 are in bottom panels. (a) CO2 mixing ratios at Laney College
with no temperature correction (green), temperature correction applied (blue), and measured with a Picarro instrument at the Richmond Field
Station supersite (2018 and 2020) or with the Exploratorium Buoy (2017). (b) Temperature dependence at Laney College of 1[CO2]

T
10 %.

(c) Laney College diurnal CO2 cycle with (green) and without (orange) temperature correction.

data for more than one month of 2020 were included. Near-
est neighbor pairs of each site were identified, where nearest
neighbors to an individual site were considered as the closest
BEACO2N sites within a 2 km radius of the site. There are
53 unique nearest neighbor pairs.

For each nearest neighbor pair X and Y , an array
of the fractional differences between sites was cal-

culated as: ([CO2]X − [CO2]Y )/[CO2]X. This was
done using both the measurements before and after
correction for temperature-dependent instrument zero(
[CO2]

drift
corrected and [CO2]

T ,drift
corrected

)
. Figure 8a and d show

the fractional differences of each nearest neighbor pair as a
histogram calculated using [CO2]

drift
corrected and [CO2]

T ,drift
corrected,
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Figure 7. CO2 mixing ratios during and before 2020 September
wildfires at four adjacent sites in Richmond without (a) and with (b)
temperature correction.

respectively. Most nearest neighbor site pairs exhibit a
distribution of fractional differences centered close to zero,
with both positive and negative tails (Fig. 8a, d). The
temperature correction results in a clear improvement of
agreement between nearest neighboring sites, with the mean
of the absolute value of the average fractional differences of
all nearest neighbor pairs decreasing by a factor of 2 from
0.025 to 0.013. For [CO2]

T ,drift
corrected, this represents an average

difference of 6.5 ppm at [CO2] = 500 ppm. Figure 8b and e
express the fractional differences of nearest neighbor pairs
as a single distribution calculated using [CO2]

drift
corrected and

[CO2]
T ,drift
corrected, respectively. Fit to a Lorentz distribution,

the mean and scale parameter of the distribution of nearest
neighbor pairs using [CO2]

drift
corrected is 0.0026 and 0.014,

respectively, without accounting for temperature dependence
and there is a substantial narrowing of the distribution,
resulting in a mean and scale parameter of 0.005 and
0.007, respectively, after accounting for the effect of a
temperature-dependent offset.

Further analysis was performed to confirm that the tem-
perature correction method eliminates any temperature-
dependent disagreement between nearest neighboring sites.
The nearest neighbor fractional differences of CO2 data were
separated into 2 ◦C temperature bins. For each temperature
bin, the absolute value of the mean fractional difference be-
tween each nearest neighbor pair, using either [CO2]

drift
corrected

or [CO2]
T ,drift
corrected, was calculated. We then averaged the mean

fractional difference in each temperature bin over all nearest
neighbor pairs. A plot of the resulting network mean per-
cent difference vs. temperature is shown in Fig. 8c and f, us-
ing [CO2]

drift
corrected and [CO2]

T ,drift
corrected data, respectively. In the

original data, the mean percent differences were greatest at
both high and low temperatures. In the temperature-corrected
data, there is no clear dependence of nearest neighbor mean

Figure 8. Histogram of the fractional differences between nearest
neighbors sites (a) without and (d) with the temperature correction
applied. Different colors represent different pairs of neighboring
sites. Histogram of the fractional differences between all aggregated
nearest neighboring sites (b) without and (e) with the temperature
correction applied fit to a Lorentz distribution. Network mean of the
percent difference for each nearest neighbor pair averaged by 2 ◦C
bins (c) without and (f) with temperature correction applied.

percent differences on temperature. The mean percent differ-
ence at all temperatures is also reduced.

4 Assessment of the network error

Turner et al. (2016) suggested that a mismatch error of
∼ 1 ppm CO2 would be compatible with relevant constraints
on point, line, and area CO2 sources of 147, 45, and 9 t C h−1,
respectively. Minimizing the network measurement error to
close to 1 ppm is desirable, as at this measurement uncer-
tainty, the error in emissions estimates from inverse mod-
eling becomes dominated by model uncertainties (Turner
et al., 2016). Assessing network error in the field is, how-
ever, a complex problem. We approach the problem by ex-
ploring differences between adjacent nodes, which should be
an upper limit to the uncertainty. Although the site-to-site
variation is strongly influenced by local emissions sources,
there are also strong correlations with changes in urban-,
synoptic-, and global-scale CO2 signals that are spatially co-
herent across pairs of adjacent nodes. Variances between ad-
jacent nodes are due to a combination of true site-specific
signals and instrument biases. It is therefore difficult to know
the minimum variance in adjacent nodes for a hypothetical
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Figure 9. Semivariogram of BEACO2N sites for data with temper-
ature correction applied. Data are averaged by 0.1 km bins. Plot in-
cludes data from the Picarro instrument at Richmond Field Station.

“perfect” measurement. For nearest neighbor sites, the ma-
jority of the CO2 signal should show near-zero difference,
representing the background signal. In the observation record
we would also expect moments when either site in a pair has
a larger signal, driven by local emission sources and meteo-
rology. Sites closer to the highway also typically have larger
CO2 signals (Shusterman et al., 2018). In the following sec-
tion we describe a procedure for evaluating network error
and summarize the improvements following inclusion of the
temperature correction described above.

4.1 Site variance and correlation length scales

To evaluate the network error, a semivariogram of γnn vs. dis-
tance was constructed for [CO2]

T ,drift
corrected (Fig. 9). Using data

from all sites with more than three days of available data dur-
ing the summer of 2020, we calculated the semivariance be-
tween CO2 measurements at each BEACO2N node, i, and all
other sites in the Bay Area network (Eq. 9)

γnn =

∑N
j

(
[CO2]i − [CO2]j

)2
2N

. (9)

Summer months were chosen because the average and diur-
nal variability of CO2 mixing ratios are reduced, meaning
that measured site variances are relatively more influenced
by instrument error, rather than by “true” atmospheric vari-
ance, than in the winter. In Fig. 9 the square root of the
semivariance is plotted against the distance separating the
BEACO2N nodes and fitted with an exponential model. The
Picarro reference instrument at the Richmond Field Station
was included in this analysis.

Using the root semivariance as a correlation metric, in
temperature-corrected data, the e-folding length scale for
variation is 1.2± 0.3 km (1.7± 0.7 km using semivariance as
a correlation metric, not shown), supporting the BEACO2N
hypothesis that 2 km node spacing in a dense network
will capture important elements of local variability. The

temperature-correction results in a maximum root semivari-
ance of 5.5± 2 ppm (reduced from 8 ppm in the uncor-
rected data). Extrapolated to a distance of zero, the tempera-
ture correction method has a predicted root semivariance of
1.3± 0.9 ppm, representing the network error. This analysis
suggests that the temperature correction method provides a
meaningful reduction of network measurement uncertainties
toward our desired ∼ 1 ppm network error.

Length scales for correlations (r2) between sites calculated
by Shusterman et al. (2018) during the summer 2017 were
larger than the 1.2 km length scale identified here for root
semivariance (1.7 km for semivariance). To more directly
compare, we also performed the method of Shusterman et al.
(2018) on the temperature-corrected CO2 data for the sum-
mer of 2020. We examined the correlation of CO2 concentra-
tions for every pairing of Bay Area sites during this period for
all hours, during the day, and during the night (Fig. S7). The
e-folding distance for the decay of r2 correlation coefficients
was 2.8 km for all times, 3.7 km during the day, and 2.8 km
at night. This is in good agreement with the length scales
of 2.9 km at all times, 3.6 km during the day, and 2.2 km at
night found by Shusterman et al. (2018). The base-line cor-
relation for sites separated by more than 20 km was found
to be 0.46, larger than the correlation background of ∼ 0.3
of Shusterman et al. (2018). The temperature correction does
not affect the characteristic length scale of BEACO2N sites,
but improves the overall base-line correlations and variances.

4.2 Contribution of instrument error to site variance

We can represent the network instrument error also by exam-
ining the sources contributing to the semivariance between
nearest neighboring sites. The semivariance (γnn) of nearest
neighboring sites can be expected to have contributions from
both “true” variations in emissions and meteorology and er-
roneous differences caused by instrument error. “True” varia-
tions in emissions and meteorology are reflected in temporal
changes in CO2 concentrations due to emissions plumes and
changes in wind speed and direction. Here we used temporal
changes in CO2 concentrations at a certain site as a proxy for
“true” atmospheric variations in CO2. To estimate the portion
of the semivariance resulting from atmospheric phenomena,
an analogous quantity for the hourly variations in CO2 was
calculated for each site according to Eq. (10):

γhh =
1

2N

N−1∑
1
([CO2]h− [CO2]h+1)

2, (10)

where N is the number of hours of data and [CO2]h , and
[CO2]h+1 are the measured mixing ratios of CO2 at each
hour and 1 h later, respectively. The individual instrument er-
ror was then calculated as:

εinst =
√
γnn− γhh. (11)

The resulting upper-bound instrument error from the median
of individual instrument errors for the Bay Area network is
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2.5± 0.5 ppm. (This estimate for nontemperature corrected
data is 4.5± 0.9 ppm). We consider this an upper bound be-
cause hourly variations in the CO2 signal reflects the atmo-
spheric changes at an individual site, which may not match
with the atmospheric changes at the nearest neighbor sites.
Variations in emissions or wind velocity may result in larger
“true” differences between a site and its nearest neighbor
than are represented by the site’s hourly variability.

To reduce the influence from short-term atmospheric vari-
ations, the network error was also estimated using an individ-
ual site’s root mean squared error (RMSEi) as a metric for
“true” atmospheric variation (Eq. 12) and a “paired” RMSE
(RMSEpaired) using the mean CO2 signal of its nearest neigh-
bor site (nn[CO2]) as a measure of total variation (Eq. 13).
The site error was then calculated according to Eq. 14:

RMSEi =

√∑N
h=1

(
[CO2]h−[CO2]i

)
N

(12)

RMSEpaired =

√∑N
h=1

(
[CO2]h− nn[CO2]

)
N

(13)

εinst =

√
RMSE2

paired−RMSE2
i . (14)

The resulting network instrument errors were between 0.5
and 4 ppm, with a median of 1.6± 0.4 ppm, in good agree-
ment with the error calculated from the semivariogram fit.
Based on these analyses, we estimate the network error of
the Bay Area BEACO2N network to be less than 1.6 ppm,
close to our goal of 1 ppm network error.

5 Application to other city networks

The BEACO2N network has recently been extended to sev-
eral other cities, and will further expand to additional loca-
tions in coming years. Currently, locations where BEACO2N
nodes are deployed (in addition to the Bay Area) are Hous-
ton (19 nodes, network start November 2017), Glasgow in
collaboration with the University of Strathclyde (> 20 nodes,
network start May 2021), New York City (8 nodes, network
start April 2018), and Los Angeles, in collaboration with the
University of Southern California (12 nodes, network start
May 2021). The goal of the network is to be self-calibrated,
as not all locations at which the nodes will be deployed have
a highly precise and frequently calibrated reference instru-
ment. As such, an alternative method of obtaining a refer-
ence for the determination of drift, offset, and temperature
dependence is needed.

We find that the network median [CO2]STP
(
[CO2]

med
STP
)

can be used as a reference. To begin, we define the network
median

(
[CO2]

med
STP
)

as the median [CO2]STP of sites having
a temperature-dependent slope (mT ) less than 1 ppm ◦C−1.
[CO2]

med
STP is used as a “reference site” from which

temperature-based 10th percentile data
(med
[CO2]

T
10 %

)
is

Figure 10. (a) CO2 mixing ratios measured by the Picarro instru-
ment at the Richmond Field Station (blue) and the median CO2 of
all Bay Area nodes having a temperature-dependent slope less than
an absolute value of 1 ppm ◦C−1 (orange). (b) The difference in the
tenth percentile of CO2 mixing ratios measured by the Picarro in-
strument and the network median plotted versus date and (c) versus
temperature. (d) Histogram of the fractional differences between Pi-
carro CO2 mixing ratios and the network median. Data for (c) and
(d) include all of 2020.

calculated for the determination of 1[CO2]
T
10 %:

1
[CO2]

T
10 %=

Vaisala
[CO2]

T
10 %−

med
[CO2]

T
10 %. (15)

5.1 Bay Area tests

We observe good agreement between the Picarro refer-
ence instrument during 2020 and [CO2]

med
STP (Fig. 10). The

mean percent difference considering all 2020 data is 0.46 %,
representing an accuracy error of 2 ppm at 420 ppm CO2
(Fig. 10d). We also do not see evidence of a temperature-
dependent offset between the Picarro reference instrument
and [CO2]

med
STP.

The precision of the Bay Area network is negligibly af-
fected when the network median is used as the reference,
with the mean of the absolute value of the average frac-
tional differences of all nearest neighbor pairs equal to
0.015± 0.008 (compared to 0.013± 0.007 with the Picarro
as reference) (Fig. S8). The resulting maximum root semi-
variance is 5.5± 2 ppm and extrapolated root semivariance
at 0 km separation is 0.8± 0.9 ppm, respectively, approxi-
mately equal to the values calculated when the Picarro is
used as a reference. The network accuracy is however, more
appreciably altered. Figure 11 shows the fractional differ-
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Figure 11. (a) Histogram of the fractional differences between sites
with temperature-corrected CO2 calculated using the Picarro instru-
ment and the Bay Area network median as a reference. Different
colors represent different sites. The mean indicated is the average
of the absolute values of each neighboring pair’s mean fractional
difference. (b) Histogram of the aggregated fractional differences
between sites with temperature-corrected CO2 calculated using the
Picarro instrument and the Bay Area network median as a reference.
The mean and error indicated are the mean and 95 % confidence in-
terval of the distribution.

ence between [CO2]
T ,drift
corrected determined using the Picarro and

[CO2]
med
STP as a reference at each site. The resulting mean per-

cent difference is 0.51± 0.02 %, representing a network ac-
curacy error of 2 ppm at 420 ppm CO2. This accuracy error
is mainly driven by small differences in the offsets (2 ppm
on average) and mT (0.2 ppm ◦C−1 on average, see Supple-
ment) between [CO2]

T ,drift
corrected calculated using the Picarro and

[CO2]
med
STP as a reference. These results suggest that the net-

work precision can be expected to remain near 1 ppm CO2
with the use of [CO2]

med
STP as a reference, but additional ac-

curacy error of 2 ppm may be introduced. The influence of a
sea breeze in the Bay Area makes the median tenth percentile
CO2 measured by Bay Area nodes a regional background.
Although the median tenth percentile of other inland sensor
networks may not represent a regional background, it can be
expected to represent the overall network regional average
baseline.

Analysis of the Bay Area network was performed on the
36 nodes with sufficient data availability for 2020. However,
the newly established networks have fewer nodes than in the

Figure 12. Fractional difference between the Bay Area network me-
dian calculated from all Bay Area sites and the network median
calculated from a subset of between one and 26 nodes. A random
subset of n= 1–26 nodes were selected to calculate the mean frac-
tional difference between the network median CO2 and the median
calculated using the subset. This was repeated 100 times for each of
n= 1–26 nodes. The reported fractional difference and error bars
are the average and 95 % confidence interval of the mean fractional
difference from the 100 random samples.

Bay Area. To use [CO2]
med
STP as a reference, we must have suf-

ficient nodes from which to calculate the network median. To
evaluate this, for n= 1–26, a random subset of n Bay Area
nodes was selected 100 times. For each of the 100 random
subsets of n nodes, the mean fraction difference was calcu-
lated between the network median CO2 and the median cal-
culated using the subset. The average and standard error of
the 100 mean fraction differences was then calculated. The
results of this analysis are presented in Fig. 12. We suggest
that a minimum of 7 nodes with mT less than 1 ppm ◦C−1 is
required for the accuracy error to be lower than 2 %. For less
than 1 % error, at least 12 nodes are required.

5.2 Houston

Data from the Houston network were subsequently calibrated
using [CO2]

med
STP as a reference for determining temperature

dependence, drift, and offset. Temperature dependence cali-
bration of each site in the Houston network was performed
twice. All sites were first included in [CO2]

med
STP and sites

withmT greater than 1 ppm ◦C−1 were identified. These sites
were then excluded from [CO2]

med
STP and each site was recali-

brated. Histograms of the fraction differences between near-
est neighbor sites are shown in Fig. 13. The average mean
percent difference between nearest neighbors was 2± 1 %.
Though considerably larger than the differences between
nearest neighbors in the Bay Area network, it is not immedi-
ately clear whether this difference is caused by greater pre-
cision error in Houston or differing meteorology and CO2
sources that cause greater differences between CO2 mixing
ratios at adjacent sites. We attempted to perform a similar in-
strumental error analysis, but there are currently insufficient
overlapping CO2 data in Houston for uncertainty analysis.
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Figure 13. (a) Histogram of the fractional differences between near-
est neighbors sites in the Houston network with the temperature cor-
rection applied using the network median as a reference. Different
colors represent different pairs of neighboring sites. The mean in-
dicated is the average of the absolute values of each neighboring
pair’s mean fractional difference. The error is the associated 95 %
confidence interval. (b) Histogram of the fractional differences be-
tween all aggregated nearest neighbors sites with the temperature
correction applied. The mean and error indicated are the mean and
95 % confidence interval, respectively, of the distribution.

However, we do not have reason to expect the instrument er-
rors would be any larger in the Houston network.

6 Conclusions

We have assessed the accuracy of the BEACO2N network
following in situ calibration of the temperature-dependence
in Vaisala CO2 sensors. We report meaningful reduc-
tions in network uncertainties following application of a
temperature-dependence correction, and a resulting network
instrument error of 1.6 ppm CO2 or less.

A method for correcting Vaisala instrument temperature
dependence in BEACO2N has been established and eval-
uated using sites across the San Francisco Bay Area net-
work. The method corrects observations from individual in-
struments so that they exhibit a temperature dependence in
their lowest temperature-based 10th percentile of CO2 data
that is equivalent to that of a reference site, thus correct-
ing erroneous instrument temperature dependence while pre-
serving true diurnal cycles and local signals. This field cal-
ibration of temperature dependence can be entirely internal

to the network and does not necessarily require a reference
instrument, although the addition of a reference instrument
provides greater network accuracy. The implementation of
the temperature correction method produces more reasonable
diurnal cycles, diurnal cycles that are maintained for sites in-
fluenced by similar emissions sources, and better agreement
between adjacent sites. We additionally describe methods for
characterizing network scale uncertainties and site-to-site bi-
ases. The average variation between adjacent sites was found
to be 1.3 % following implementation of temperature correc-
tion (compared to 2.5 % prior to the correction). The temper-
ature correction greatly improves the precision of CO2 mea-
surements in the BEACO2N network.

We show that the network precision can be maintained at
1.3 % even in locations without a high-cost reference instru-
ment, using the network median as a reference, provided that
there are at least 12 sites with small temperature dependen-
cies. This has important implications for the expansion of
BEACO2N to additional cities globally, as well as for other
dense low-cost CO2 networks. However, without a reference
instrument, the network accuracy error increases relative to a
network that utilizes a reference instrument by ∼±2 ppm.
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