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Abstract. Global high-resolution observations of atmo-
spheric composition from satellites can greatly improve our
understanding of surface emissions through inverse analyses.
Variational inverse methods can optimize surface emissions
at any resolution but do not readily quantify the error and in-
formation content of the posterior solution. The information
content of satellite data may be much lower than its coverage
would suggest because of failed retrievals, instrument noise,
and error correlations that propagate through the inversion.
Analytical solution of the inverse problem provides closed-
form characterization of posterior error statistics and infor-
mation content but requires the construction of the Jacobian
matrix that relates emissions to atmospheric concentrations.
Building the Jacobian matrix is computationally expensive at
high resolution because it involves perturbing each emission
element, typically individual grid cells, in the atmospheric
transport model used as the forward model for the inversion.
We propose and analyze two methods, reduced dimension
and reduced rank, to construct the Jacobian matrix at greatly
decreased computational cost while retaining information
content. Both methods are two-step iterative procedures that
begin from an initial native-resolution estimate of the Jaco-
bian matrix constructed at no computational cost by assum-
ing that atmospheric concentrations are most sensitive to lo-
cal emissions. The reduced-dimension method uses this esti-
mate to construct a Jacobian matrix on a multiscale grid that
maintains a high resolution in areas with high information

content and aggregates grid cells elsewhere. The reduced-
rank method constructs the Jacobian matrix at native reso-
lution by perturbing the leading patterns of information con-
tent given by the initial estimate. We demonstrate both meth-
ods in an analytical Bayesian inversion of Greenhouse Gases
Observing Satellite (GOSAT) methane data with augmented
information content over North America in July 2009. We
show that both methods reproduce the results of the native-
resolution inversion while achieving a factor of 4 improve-
ment in computational performance. The reduced-dimension
method produces an exact solution at a lower spatial reso-
lution, while the reduced-rank method solves the inversion
at native resolution in areas of high information content and
defaults to the prior estimate elsewhere.

1 Introduction

Satellite observations of atmospheric composition provide a
powerful resource to improve our knowledge of emissions
(Streets et al., 2013). However, the inverse analyses used
to infer emissions from observed atmospheric concentra-
tions are subject to large errors from the measurements and
from the inversion procedure. Conducting inverse analyses
of satellite data to quantify emissions at high resolution is of
considerable interest but may be limited by data quality in
ways that are difficult to quantify and that may compromise

Published by Copernicus Publications on behalf of the European Geosciences Union.



5522 H. Nesser et al.: Reduced-cost construction of Jacobian matrices

the results. Here we present two methods to conduct high-
resolution inversions of satellite observations that optimize
the information content of the observations while providing
full error statistics and minimizing computational cost.

Inverse analyses infer emissions by fitting the observed
atmospheric concentrations to a chemical transport model
(CTM) that simulates atmospheric concentrations as a func-
tion of emissions (Brasseur and Jacob, 2017). The CTM
represents the forward model for the inverse problem. The
solution is generally obtained in a Bayesian framework by
minimizing a cost function regularized by a prior emissions
estimate. The optimal (posterior) emissions estimate corre-
sponds to the minimum of the cost function. This minimum is
typically found using a numerical (variational) method, often
employing the adjoint of the CTM to compute the cost func-
tion gradient (e.g., Daescu et al., 2000; Elbern and Schmidt,
2001; Quélo et al., 2005; Henze et al., 2007). However, the
numerical solution provides no explicit characterization of
the solution’s error or information content. Methods of esti-
mating the error exist (e.g., Chevallier et al., 2007; Meirink
et al., 2008; Koohkan et al., 2013), but these approaches are
computationally expensive, incomplete, and rarely applied in
practice.

In the common case where the observed atmospheric con-
centrations depend linearly on emissions and the error statis-
tics can be assumed to be normally or log-normally dis-
tributed, the Bayesian optimization problem has an analyt-
ical solution, including closed-form expressions for the pos-
terior emissions estimate, its error statistics, and its informa-
tion content (Rodgers, 2000; Maasakkers et al., 2019). The
analytical solution requires explicit construction of the Ja-
cobian matrix of the forward model, K= ∂y/∂x ∈ Rm×n,
which represents the sensitivity of the simulated concentra-
tions y ∈ Rm to the emission state vector x ∈ Rn (Brasseur
and Jacob, 2017). The elements of y are individual obser-
vations, and the elements of x are the emissions optimized
by the inversion, often grid cells in a two-dimensional emis-
sions field. When m� n, as for inversions of satellite ob-
servations, the Jacobian can be constructed column-wise by
conducting n+ 1 CTM simulations to perturb each of the
state vector elements xi and obtain the corresponding col-
umn ∂y/∂xi . Even on massively parallel computing clusters,
the computational cost of conducting these simulations can
limit the size of the state vector x and, therefore, the reso-
lution at which inversions are conducted (Turner and Jacob,
2015). However, once the Jacobian matrix is constructed, in-
versions can be conducted at essentially no additional com-
putational cost, allowing the study of the solution’s sensitiv-
ity to changes in the specification of inversion parameters,
error statistics, prior assumptions, and the number and type
of observations.

An illustrative example is the inversion of satellite obser-
vations to infer methane emissions. Methane is an important
greenhouse gas, but the spatial and temporal distribution of
emissions is highly uncertain (Saunois et al., 2020). Satellite

observations of atmospheric methane columns can inform
emission estimates (Jacob et al., 2016). This was first shown
with data from the SCanning Imaging Absorption spectroM-
eter for Atmospheric CartograpHY (SCIAMACHY) satel-
lite instrument (2003–2012) with a nadir pixel resolution of
30× 60 km2 (Bergamaschi et al., 2009, 2013; Houweling et
al., 2014; Wecht et al., 2014). More recent inversions used
observations from the Thermal And Near-infrared Sensor
for carbon Observation – Fourier Transform Spectrometer
(TANSO-FTS) instrument aboard the Greenhouse Gases Ob-
serving Satellite (GOSAT; 2009–present), which has 10 km
diameter pixels approximately 250 km apart along-track and
cross-track (Monteil et al., 2013; Alexe et al., 2015; Turner
et al., 2015; Maasakkers et al., 2019). The TROPOspheric
Monitoring Instrument (TROPOMI) aboard the Sentinel-5
precursor satellite, launched in October 2017, now provides
daily, global retrievals of atmospheric methane columns at
5.5× 7 km2 nadir pixel resolution, increasing coverage by
orders of magnitude relative to GOSAT (Veefkind et al.,
2012). However, TROPOMI’s methane retrieval has only a
∼ 3 % success rate for daytime scenes limited by dark sur-
faces (water), clouds, high aerosol loadings, and variable
surface albedo and topography, resulting in heterogeneously
distributed observations (Hu et al., 2018; Hasekamp et al.,
2019). Inversions of TROPOMI data must attempt to cap-
ture the high resolution and density of observations, where
appropriate, while recognizing the limitations in information
content resulting from data sparsity and observational errors.

Several methods have been proposed to decrease the com-
putational cost of high-resolution analytical inversions by op-
timally reducing the dimension or rank of the observation
or state vector. Approaches that decrease the dimension of
the observation vector (e.g., Xu, 2007) reduce the compu-
tational cost of solving the inversion but not of construct-
ing the Jacobian matrix. Approaches that decrease the di-
mension of the state vector lower the cost of both compu-
tations. Reduced-dimension methods solve inversions on a
multiscale emission grid of dimension k <n for which the
construction of the Jacobian matrix K ∈ Rm×k is computa-
tionally tractable. Bocquet et al. (2011) and Bocquet and
Wu (2011) defined a method to select a multiscale grid from
a limited array of allowable grids that preserve resolution
where the observations have the highest information content.
Turner and Jacob (2015) used prior emissions information to
group together similar grid cells using a Gaussian mixture
model, but the criteria used to define similarity were sub-
jective and did not consider the information content of the
forward model or the observations. Other approaches that de-
creased the dimension of the state vector assumed knowledge
of the Jacobian matrix (e.g., Rigby et al., 2011; Thompson
and Stohl, 2014; Ray et al., 2015; Lunt et al., 2016; Liu et al.,
2017). Reduced-rank methods generate an approximation of
the posterior solution at the original dimension n by solving
the inversion in the directions of highest information content.
The reduced-rank method proposed by Spantini et al. (2015)
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assumed knowledge of the Jacobian matrix. Bousserez and
Henze (2018) and Miller et al. (2020) avoided explicit con-
struction of the Jacobian matrix by estimating the directions
of highest information content, but their approach is effec-
tive only if a small number of directions explain most of the
information content.

Here we present two methods to construct the Jacobian
matrix for a native n-dimensional state vector and maximize
the information content of the inverse analysis using k<n
forward model simulations. The reduced-dimension method
generates a multiscale grid that preserves native resolution
where information content is highest and aggregates grid
cells elsewhere. The resulting reduced-dimension Jacobian
matrix KRD ∈ Rm×k solves the inversion exactly on the mul-
tiscale grid. The reduced-rank method constructs a Jacobian
matrix K5 ∈ Rm×n along the dominant patterns of informa-
tion content in the system, allowing the approximation of the
inverse solution at native resolution. In both cases, a low-
cost initial estimate of the Jacobian matrix is updated using
k forward model simulations, where k is selected by the user
based on the information content of the observing system and
the available computational resources. We demonstrate both
methods in a 1-month inversion of satellite data.

2 Methods

This section presents the reduced-dimension and reduced-
rank methods of constructing the Jacobian matrix. Follow-
ing a review of the standard analytical inverse framework
(Sect. 2.1), we describe optimal reductions in both dimen-
sion and rank for an inverse system with a known native-
resolution Jacobian matrix K ∈ Rm×n (Sect. 2.2). We then
present a two-step approach to approximate an initially un-
known Jacobian matrix using reductions in dimension and
rank (Sect. 2.3 through 2.5). For the purposes of illustration,
we take the state vector to be a gridded field of static emis-
sions, but the methods apply to temporally variable emissions
and, more generally, to any state vector.

2.1 Analytical solution to the inverse problem

The optimal estimate x̂ of a state vector x, given a prior es-
timate xA, observation vector y, and normal error statistics
given by prior and observational error covariance matrices
SA and SO, respectively, is obtained by the minimization of
the Bayesian scalar cost function J (x) given by the follow-
ing (Brasseur and Jacob, 2017):

J (x)= (x− xA)
TS−1

A (x− xA)

+ (y−F(x))TS−1
O (y−F(x)) . (1)

Here F(x) represents the forward model that simulates the
observations y given x. In our application, the forward model
is a CTM. The observational error covariance matrix SO in-
cludes errors from both the measurement and the forward

model, which collectively form the observing system. If the
forward model is linear so that F(x)=Kx+ c, where K=
∂y/∂x is the Jacobian matrix calculated by finite difference
(see the Introduction) and c is a constant, then an analytical
solution to the cost function minimum exists that yields both
the posterior estimate x̂ and its error covariance matrix Ŝ as
follows:

x̂ = xA+SAKT(KSAKT
+SO

)−1
(y−KxA)

= xA+ ŜKTS−1
O (y−KxA) , (2)

Ŝ=
(

KTS−1
O K+S−1

A

)−1
. (3)

Comparison of Ŝ and SA defines the information content of
the observing system, quantified by the averaging kernel ma-
trix A= ∂x̂/∂x that represents the sensitivity of the posterior
emissions estimate x̂ to the true state x. A can be calculated
as A= I− ŜS−1

A or equivalently as follows:

A= SAKT(KSAKT
+SO

)−1K. (4)

Equation (4) expresses the dependence of the averaging ker-
nel matrix on the forward model and both error covariance
matrices. The diagonal elements of A are commonly referred
to as the averaging kernel sensitivities. They are highest in
highly observed locations with uncertain, high emissions and
lowest in poorly observed areas or in regions known to have
low emissions. The sum of the sensitivities, or the trace of
A, measures the number of pieces of information that can be
independently quantified by the observing system, known as
the degrees of freedom for signal or DOFS (Rodgers, 2000).

2.2 Optimal reductions in dimension and rank of
inverse systems

We first consider the problem of optimally reducing the di-
mension and rank of an inverse system, as described in
Sect. 2.1, with a known Jacobian matrix K ∈ Rm×n. Figure 1
illustrates dimension and rank reductions for an emission
grid over North America. The top left panel represents the
original n-dimensional state space, i.e., the native-resolution
grid. A linear transformation 0 ∈ Rk×n reduces the dimen-
sion of the state space from n to k. This transformation may
reduce dimension discretely, as in the case of grid cell ag-
gregation (top right panel), or non-discretely, in which case
the k state vector components are themselves n-dimensional
vectors (bottom right panel). A second linear transformation
0∗ ∈ Rn×k restores the dimension of the state space from k

back to the original n. The resulting space, depicted in the
bottom left, is a low-rank approximation of the original state
space. The matrix 5= 0∗0 transforms the original state
space to the low-rank subspace. The inverse problem can be
solved in any of these four spaces, although the eigenvector
corrections generated in the non-discrete reduced-dimension
space (bottom right panel) would be difficult to interpret.
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Figure 1. Dimension and rank reductions of a gridded emissions field. The linear transformation matrix 0 reduces the dimension of the
original state space (a), either discretely by aggregating grid cells to generate a multiscale grid (b) or non-discretely by projecting along the
patterns given by the rows of 0 (c, with positive values in red and negative in blue). The reverse transformation 0∗ restores the dimension but
not the rank, producing a low-rank subspace of the original state space (d). The projection 5= 0∗0 reduces the rank but not the dimension.

We wish to define matrices 0 and 0∗ that minimize the
information loss associated with reducing the dimension
or rank of the state vector. Bousserez and Henze (2018)
show that the projection 5 that maximizes the probabil-
ity of restoring the original full dimension state vector
x, given the reduced dimension state vector 0x, is given
by5= S1/2

A UUTS−1/2
A , where U= S1/2

A 0
(
0SA0

T)−1/2. For
a projection of this form, they show that information
loss is minimized by maximizing DOFS5 = Tr(A5)=
Tr
(

UTS−1/2
A AS1/2

A U
)

, where A5 and A are the reduced-rank
and native-resolution averaging kernel matrices, respectively.
They define as follows:

Q= S−1/2
A AS1/2

A =W6WT, (5)

where the columns of W are the eigenvectors of Q, and 6
is a diagonal matrix of the corresponding eigenvalues ranked
in descending order. The quantity Tr(A5) is maximized for
a rank-k subspace when U=Wk , where Wk is the matrix of
the first k columns of W. The corresponding optimal projec-
tion is then as follows:

5= S1/2
A WkWT

kS−1/2
A . (6)

This projection applies a dimension-reducing transformation
0 followed by a dimension-restoring transformation 0∗ as

follows:

0 =WT
kS−1/2

A , (7)

0∗ = S1/2
A Wk. (8)

The columns of 0∗ give an eigenvector basis for the averag-
ing kernel matrix, and the diagonal of 6 gives its eigenval-
ues, together defining the dominant patterns of information
content. The fraction of information content explained by
the first i columns of 0∗ is the sum of the i largest eigen-
values divided by the total DOFS (Bousserez and Henze,
2018). The eigenvalues can also be related to other measures
of information content, including the Shannon and relative
entropy differences (Rodgers, 2000; Xu, 2007). We will re-
fer to the ordered list of the eigenvalues as the information
content spectrum. On the basis of this spectrum, we can se-
lect k so that most of the information content is explained
by the first k eigenvectors. Alternatively, we can select k so
that all eigenvectors have a sufficiently large signal-to-noise
ratio. The signal-to-noise ratio SNR of the ith eigenvector is
given by the ith singular value of the pre-whitened Jacobian
matrix K̃= S−1/2

O KS1/2
A and is calculated as follows:

SNRi =
√

σi

1− σi
, (9)

where σi is the ith ordered eigenvalue of Q (Rodgers, 2000).
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2.3 Approximating the Jacobian matrix

Section 2.2 described optimal reductions in the dimension
and rank of a state vector assuming knowledge of the
native-resolution Jacobian matrix K. However, the n+1 for-
ward model simulations needed to construct K may be pro-
hibitively expensive. Here we present a two-step approach
to construct a reduced-dimension or reduced-rank Jacobian
matrix at much lower computational cost. We start from a
low-cost, native-resolution estimate K(0) (see below) and cal-
culate the corresponding averaging kernel matrix A(0). In the
reduced-dimension method, we use A(0) to construct a multi-
scale grid that maintains resolution in the areas of highest in-
formation content (top right panel of Fig. 1). We generate the
updated, reduced-dimension Jacobian matrix K(1)

RD ∈ R
m×k

on the resulting grid using the forward model. In the reduced-
rank method, we construct K(1)

5 ∈ R
m×n on the basis of the k

dominant eigenvectors of A(0) by perturbing those patterns in
the forward model, generating an approximation of the Jaco-
bian matrix in a reduced-rank state space (bottom left panel
of Fig. 1). In both methods, the updated Jacobian matrix im-
proves the estimate of the averaging kernel matrix and its
eigenvectors by incorporating information content from the
forward model. We use either K(1)

RD or K(1)
5 to conduct a sec-

ond update and construct the final Jacobian matrix.
In our demonstration case, we generate an initial esti-

mate of the native-resolution Jacobian matrix K(0) at no
cost by assuming that a local perturbation of methane emis-
sions 1x (kilograms per square meter per second; here-
after kg m−2 s−1) produces local dry column mixing ratio
enhancements1y (moles per mole; hereafter mol mol−1), as
determined by a simple column mass balance dependent on
local wind speed and parameterized turbulent diffusion. We
construct K(0) column-wise by assuming that observation i
responds to emissions in grid cell j as follows:

1yi = αij
Mair

MCH4

Lg

Up
1xj , (10)

so that the elements k(0)ij of K(0) are given by

k
(0)
ij =

∂yi

∂xj
= αij

Mair

MCH4

Lg

Up
, (11)

where αij ∈ [0,1] is a dimensionless coefficient providing a
crude parameterization of turbulent diffusion,Mair andMCH4

are the molecular weights of dry air and methane, respec-
tively, L is a ventilation length scale taken as the square root
of the grid cell area, g is gravitational acceleration, U is the
local wind speed taken here as 5 km h−1, and p is the sur-
face pressure. We assume αij = 0.4 for observations in grid
cell j and distribute the remaining mass over the three con-
centric rings surrounding that cell with αij = 0.3/8, 0.2/16,
and 0.1/24 from the inner to outer ring. Including a represen-
tation of turbulent diffusion increases the spatial coverage of
the dominant patterns of information content. The exact form

of the parameterization (e.g., the number of rings used or the
values of αij ) is unimportant.

The reduced-dimension and reduced-rank methods rely on
characterizing the dominant patterns of information content
of the observing system using the initial estimate of the aver-
aging kernel matrix A(0) corresponding to K(0). A(0) can pro-
vide a good approximation of A, even if the initial estimate
of the Jacobian matrix K(0) is crude, because the averaging
kernel matrix depends strongly on the specified prior and ob-
servational error covariance matrices SA and SO (Eq. 4) and
because, by assuming that observed concentrations are most
sensitive to local emissions, K(0) generates the highest infor-
mation content where the observations are densest. This in-
formation content structure can then be refined by a two-step
update.

2.4 Constructing the reduced-dimension Jacobian
matrix

In an inverse system with a known native-resolution Jaco-
bian matrix K, a reduced-dimension Jacobian matrix KRD
can be constructed on a multiscale grid that maintains the na-
tive resolution where the information content is highest and
aggregates grid cells elsewhere (top right panel of Fig. 1).
We refer to the state vector elements of this multiscale grid
as clusters. An optimal multiscale grid maximizes the total
DOFS and the averaging kernel sensitivities of each state
vector element, referred to here as the DOFS per cluster.
To construct this grid, we first define the state vector as a
single element encompassing the inversion domain. We then
add the native-resolution grid cells with the highest averaging
kernel sensitivities to the state vector one by one, removing
them from the original state vector element. For each new
element xi , we calculate the corresponding Jacobian matrix
column ∂y/∂xi and the resulting increase in DOFS. When
the DOFS stabilize, we add instead clusters of two or more
native-resolution grid cells and repeat this procedure. Clus-
ters can be generated by, for example, K-means clustering,
which aggregates spatially proximate grid cells. We repeat
this process, increasing cluster size, until all native-resolution
grid cells are allocated to the multiscale grid and the cor-
responding reduced-dimension Jacobian matrix KRD is con-
structed. The DOFS convergence criteria and the sequence
of cluster sizes can be selected to achieve the desired state
vector dimension.

We apply this approach, beginning with our initial esti-
mate K(0) (Sect. 2.3), in a two-step update that iteratively
improves the multiscale grid. Algorithm 1 describes this pro-
cess in detail. Briefly, the information content for the initial
multiscale grid is given by A(0), which we use to identify
the grid cells with the highest information content and con-
struct a multiscale grid as described above. We compute the
corresponding reduced-dimension Jacobian matrix K(1)

RD, in-
troducing information content from the forward model. We
identify the state vector elements where the forward model
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contributes the most information content by comparing the
sensitivities given by the updated reduced-dimension averag-
ing kernel matrix A(1)RD to the sensitivities given by A(0). We
disaggregate the clusters with the largest differences and up-
date the reduced-dimension Jacobian, generating K(2)

RD. Con-
vergence is rapid, and we find no need for further iteration.
The analytical inversion can then be solved exactly on the
multiscale grid with K(2)

RD.

2.5 Constructing the reduced-rank Jacobian matrix

In an inverse system with a known native-resolution Jacobian
matrix K, a reduced-rank approximation of the Jacobian ma-
trix K5 can be constructed by calculating the linear relation-
ship between emissions and observations for the most impor-
tant patterns of information content rather than for individual
or aggregate grid cells. A low-rank Jacobian corresponds to
the state space shown in the bottom left panel of Fig. 1. We
showed that the leading patterns of information content are
given by the columns of the dimension-restoring transforma-
tion 0∗ (Eq. 8). For any selected value of k, the k leading
patterns span a rank-k, dimension-n subspace of the original
information content space. A Jacobian matrix can be con-
structed within this space by calculating the model response
to perturbations of these patterns. The response of the for-
ward model F to the j th normalized eigenvector γ ∗j ∈ R

n,
given by the j th column of 0∗, is as follows:

yj =
F
(
xA+βγ

∗

j

)
−F(xA)

β
, (12)

where β is any scalar sufficiently large to ensure numer-
ical stability. The model responses yj ,j ∈ {1, . . .,k}, form
the columns of the matrix Kω ∈ Rm×k , which is the Jaco-
bian matrix for an inverse system with a reduced-dimension
state space spanned by the first k eigenvectors of the informa-
tion content, illustrated by the bottom right panel of Fig. 1.
This reduced-dimension Jacobian must be transformed to the
original state dimension to enable physical interpretation of
the posterior results. Bousserez and Henze (2018), follow-
ing Bocquet et al. (2011), show that the reduced-dimension
Jacobian matrix Kω is given by Kω =K0∗ and the reduced-
rank Jacobian matrix K5 by K5 =K5=K0∗0. Thus, the
reduced-rank Jacobian can be calculated from the reduced-
dimension Jacobian by K5 =Kω0. The resulting Jacobian
has dimension m× n and rank k.

In an inverse system without a known Jacobian matrix,
the reduced-rank Jacobian matrix approximation can be con-
structed in a two-step update that iteratively improves the
patterns of information content used as perturbations. Algo-
rithm 2 describes this process in detail. Briefly, we use the
initial estimate of the Jacobian matrix K(0) (Sect. 2.3) to cal-
culate the corresponding averaging kernel matrix A(0) and
the matrix of its eigenvectors 0∗(0). When calculating 0∗(0),
we select the k(0) eigenvectors that have a signal-to-noise ra-

tio greater than some threshold. We use the signal-to-noise
criterion, which is stricter than the information content crite-
rion, to account for the errors in the initial estimate of the in-
formation content. We compute the forward model response
to each of the eigenvectors using Eq. (12) and transform
the resulting reduced-dimension Jacobian K(1)

ω to the full-
dimension state space with K(1)

5 =K(1)
ω 0

(0). We calculate the
associated averaging kernel matrix A(1)5 and the matrix of its
eigenvectors 0∗5

(1). Because K(1)
5 is a reduced-rank approxi-

mation, its spectrum of information content is discontinuous
at k(0). We, therefore, use the spectrum of information con-
tent associated with the initial, full-rank estimate A(0) to se-
lect the rank k(1) of the second update and calculate 0∗5

(1).
We use the k(1) eigenvectors that span most of the informa-
tion content from the initial estimate and construct an up-
dated reduced-rank Jacobian matrix approximation K(2)

5 as
above. The resulting Jacobian matrix K(2)

5 is a rank ≈ k(1)

approximation that accurately quantifies the forward model
where the observing system has high information content,
and loses accuracy in areas with lower information content,
where the observations are least able to constrain emissions.
The resulting posterior solution is accurate in areas with high
information content and defaults to the prior estimate else-
where.

3 Results and discussion

We demonstrate the reduced-dimension and reduced-rank
Jacobian matrix construction methods in an analytical
Bayesian inversion of atmospheric methane columns ob-
served by the GOSAT satellite over North America in
July 2009. Although TROPOMI now provides higher den-
sity observations, using GOSAT allows us to use the inver-
sion framework of Maasakkers et al. (2021). We construct a
“native-resolution” inverse system at 1◦× 1.25◦ grid cell res-
olution (n= 2098; top left panel of Fig. 1) against which we
compare our reduced-dimension and reduced-rank methods.
To demonstrate the applicability of the methods to higher-
information observing systems such as TROPOMI, we arti-
ficially increase the information content of the GOSAT data
by introducing an amplification factor λ > 1 to the cost func-
tion that increases the weight of the observational terms as
follows:

J (x)= (x− xA)
TS−1

A (x− xA)

+ λ(y−F(x))TSO
−1 (y−F(x)) . (13)

The amplification factor functionally decreases the observa-
tional error covariance, increasing the DOFS. We set λ= 5,
which increases the native-resolution DOFS from 82 to 198.
Because of noise in the GOSAT data, this results in an overfit
solution, which is irrelevant in our demonstration.
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We use the nested North American GEOS-Chem CTM
(version 11-01) as the forward model to simulate atmo-
spheric methane column concentrations at 1◦× 1.25◦ reso-
lution for July 2009. The 2098 1◦× 1.25◦ grid cells consti-
tute our native-resolution state vector. The model is driven
with MERRA-2 (Modern-Era Retrospective analysis for Re-
search and Applications, Version 2) meteorological fields
(Bosilovich et al., 2016) from the NASA Global Model-
ing and Assimilation Office. We use boundary conditions
and initial conditions from a global posterior GEOS-Chem
4◦× 5◦ simulation from Maasakkers et al. (2019). The
GOSAT observations are from the University of Leicester
version 7 CH4 proxy retrieval over land (Parker et al., 2011;
Parker et al., 2015; ESA CCI GHG project team, 2018) for

July 2009. Prior emissions and observational error covari-
ances are as described in Maasakkers et al. (2021). We as-
sume uniform relative prior errors of 50 %. The demonstra-
tion has a sufficiently coarse resolution and is short enough
that the native-resolution Jacobian matrix K can be explic-
itly computed with 2099 model runs. After constructing K,
we use it as the forward model in lieu of additional GEOS-
Chem simulations.

Figure 2 (top left panel) shows the native-resolution aver-
aging kernel sensitivities, i.e., the diagonal elements of the
native-resolution averaging kernel matrix A. As discussed
in Sect. 2.3, the structure of the averaging kernel matrix is
largely determined by the prior error covariance matrix SA
and by the observation density, as reflected in both the ob-
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servational covariance matrix SO and the Jacobian matrix K.
This is apparent in the bottom panels of Fig. 2, which show
the distribution of the prior error standard deviations (left)
and observation density (right). The absolute errors on the
prior emissions estimate are largest for wetlands along the
southeastern coast of the USA (Bloom et al., 2017). The vari-
ability in the observation density is driven by sampling fre-
quency and retrieval success (Parker et al., 2015).

Figure 2 (top right panel) also shows the initial estimate
of averaging kernel sensitivities of A(0) derived from the
initial estimate of the Jacobian matrix K(0), constructed as
described in Sect. 2.3. No forward model simulations were
conducted to construct this initial estimate, yet the patterns
of information content reproduce those given by the native-
resolution averaging kernel matrix A because of the strong
dependence on the prior error standard deviations and the
observation density. A has a smoother structure than A(0) be-
cause of the effect of long-range transport in the CTM, but
this has little effect on the leading patterns of information
content.

For this demonstration, we aim to reduce the number of
forward model runs needed to construct the Jacobian ma-
trix by at least a factor of 4 relative to the native-resolution
inversion, from 2099 to ≈ 525 simulations. We first apply
the reduced-dimension method to construct a Jacobian ma-
trix on a multiscale grid generated with K-means cluster-
ing, following Sect. 2.4. The resulting initial multiscale grid
and reduced-dimension Jacobian matrix K(1)

RD constrain 380
clusters and required 381 model simulations. We disaggre-
gate 11 clusters with a sensitivity increase greater than 0.6,
adding 65 native-resolution grid cells and model simulations.
The resulting multiscale grid is shown in the top right panel
of Fig. 1. It has a dimension of 434, and the corresponding
reduced-dimension Jacobian matrix K(2)

RD required 446 for-
ward model simulations across 17 parallelized batches, rep-
resenting a factor of 5 decrease in computational cost relative
to the native-resolution solution. The grid has 137 native-
resolution grid cells and clusters of between 2 and 55 grid
cells.

Figure 3 shows the posterior emission scaling factors rel-
ative to the prior estimate (top) and averaging kernel sen-
sitivities (bottom) for the reduced-dimension solution (cen-
ter column) compared to the native-resolution solution (left
column). Both solutions are exact on the grids used. The
reduced-dimension solution generates fewer DOFS (95) than
the native-resolution solution (198) because the DOFS de-
pend on the dimension of the state vector. When compar-
ing the DOFS per cluster, a dimension-independent measure,
the reduced-dimension solution produces more than twice
the value of the native-resolution solution (0.22 compared
to 0.09), reflecting the consolidation of information content.
This is reflected in the reduced-dimension averaging ker-
nel sensitivities, which are more uniform than the native-
resolution values. The reduced-dimension posterior scaling
factors exhibit less variability than the native-resolution solu-

tion, which exhibits checkerboard patterns resulting, in part,
from the overfit of the posterior solution to observational
noise. The posterior scaling factors agree on regional scales.

We next apply the reduced-rank method (Sect. 2.5) to con-
struct a reduced-rank approximation of the Jacobian matrix.
We calculate the dominant eigenvectors of the initial aver-
aging kernel matrix estimate A(0), requiring that the signal-
to-noise ratio of all eigenvectors be greater than 1.25. This
yields k(0) = 90 eigenvectors, which account for 43 % of the
initial-estimate DOFS. We perturb these eigenvectors in the
forward model and construct the reduced-rank Jacobian ma-
trix K(1)

5 . We then calculate the averaging kernel matrix A(1)5
and its dominant eigenvectors, defining k(1) = 431 by requir-
ing that the improved eigenvectors capture 97 % of the infor-
mation content defined by A(0)5 . The resulting Jacobian ma-
trix K(2)

5 has a rank of≈ 431 and required 522 forward model
simulations across two parallelized batches. We solve the in-
version with K(2)

5 and find 137 DOFS, compared to the 198
DOFS generated in the native-resolution inversion, achieving
69 % of the DOFS at a quarter of the computational cost.

The DOFS of the reduced-rank inversion are only mod-
erately sensitive to the first- and second-update thresholds,
with a stronger dependence on the number of model runs
conducted in the second update. Figure 4 shows the reduced-
rank DOFS as a function of the number of first- and second-
update forward model runs. Among all possible partitions
of 522 total model runs (dashed line), our update scheme
(starred) nearly maximizes the DOFS, but the DOFS has
only moderate sensitivity to the choice of partition. Using a
signal-to-noise ratio threshold of 0.75 or 1.75 instead of 1.25
(dots) decreases the reduced-rank DOFS by 7 %. Lowering
the signal-to-noise ratio threshold increases the number of
eigenvectors drawn from A(0), which increases the effect of
errors in the initial Jacobian matrix estimate K(0). Increasing
the threshold fails to exploit the information content of A(0).
More generally, applying a signal-to-noise ratio threshold of
1.25 in the first update maximizes the DOFS, regardless of
the number of model runs conducted in the second update.
We show the DOFS generated by these optimal configura-
tions as a function of the total number of forward model runs
in the top panel of Fig. 4. After only 300 simulations, the op-
timal reduced-rank inversion generates 101 DOFS, achieving
half of the native-resolution DOFS at 14 % of the computa-
tional cost.

We solve the inversion (Eqs. 2–4) using the reduced-rank
Jacobian matrix K(2)

5 and compare the posterior to the native-
resolution solution. Figure 3 (right column) shows the dis-
tribution of the reduced-rank posterior scaling factors (top)
and averaging kernel sensitivities (bottom) compared to the
native-resolution inversion (left column). Because K(2)

5 was
constructed on the basis of the dominant patterns of informa-
tion content, it solves for the posterior scaling factors accu-
rately in the areas of the highest information content and de-
faults to the prior value (a scaling factor of 1) elsewhere. As a
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Figure 2. Averaging kernel sensitivities for the demonstration inversion of GOSAT observations with enhanced information content for
July 2009. The top panels show the sensitivities given by the diagonal elements of the averaging kernel matrix A of the native-resolution
inversion (a) and of the initial estimate of the averaging kernel matrix A(0) (b). The DOFS for each averaging kernel matrix are inset in the
corresponding panel. Panel (c) shows the error standard deviations on the prior emissions estimate given by the square roots of the diagonal
elements of SA. Panel (d) shows the GOSAT observation density.

Figure 3. Results from the demonstration inversion at native resolution compared to the reduced-dimension and reduced-rank methods. The
figure shows the posterior scaling factors with respect to the prior emissions estimate and the averaging kernel sensitivities for each inversion.
The degrees of freedom for signal (DOFS) give the number of pieces of information that the inversion can independently constrain.

result of the exclusion of grid cells with low native-resolution
information content, the reduced-rank DOFS (137) are lower
than native-resolution DOFS (198). However, in grid cells
with large averaging kernel sensitivities, the reduced-rank in-
version preserves most of the information content: 755 grid
cells have reduced-rank averaging kernel sensitivities greater

than 0.01 and generate 136 DOFS, amounting to 83 % of the
163 DOFS generated by the same grid cells in the native-
resolution inversion.

Figure 5 shows a statistical comparison of the reduced-
rank and native-resolution inversion results for grid cells
with a reduced-rank averaging kernel sensitivity above 0.01.
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Figure 4. The sensitivity of the reduced-rank inversion DOFS to the
number of forward model runs. Panel (b) shows the sensitivity of
the DOFS to the partitioning of model runs between the first (x axis)
and second (y axis) update. The lines represent the total number
of simulations. Our inversion uses a signal-to-noise ratio of 1.25
for the first update and an information content threshold of 97 %
for the second update (star), requiring 522 forward model runs and
generating 137 DOFS, accounting for 69 % of the native-resolution
DOFS at a quarter of the computational expense. Using a signal-
to-noise ratio of 0.75 or 1.75 with the same total number of model
simulations (dots) does not substantially decrease the DOFS. Panel
(a) shows the DOFS as a function of the total number of model runs
for all optimal first- and second-update partitions.

None of the reduced-rank quantities exhibit significant bias,
as shown by comparison to the 1 : 1 line. The elements of the
reduced-rank Jacobian matrix K(2)

5 correspond closely with
those of the native-resolution Jacobian matrix K (correlation
coefficient R = 0.97). The strong correlation of the averag-
ing kernel sensitivities (R = 0.93) confirms that the reduced-
rank inversion accurately identifies the native-resolution grid
cells with the highest information content. The posterior er-
rors and scaling factors agree well in these grid cells. The
posterior error standard deviations correlate strongly (R =
0.94), due, in part, to the common contribution of the prior
and observational error covariance matrices (Eq. 3). The out-
lier reduced-rank standard deviations tend to be larger than
the native-resolution values, reflecting the error introduced
by discarding information content. The posterior scaling fac-
tors also agree well, but the correlation coefficient is smaller
(R = 0.84) because of the smaller dynamical range and the
propagation of errors from the posterior error covariance and
Jacobian matrices (Eq. 2). Negative scaling factors reflect

the overfit from artificially increasing the information con-
tent but are of no consequence for our demonstration.

The reduced-dimension and reduced-rank methods re-
produce the native-resolution inversion with a factor of at
least 4 reduction in total computational cost. The reduced-
dimension method generates lower DOFS but higher DOFS
per state vector element due to the clustering of grid cells.
The resulting posterior solution is exact on the multiscale
grid and provides better spatial coverage than the reduced-
rank method at lower resolution. The reduced-rank method
generates a higher-DOFS, higher-resolution approximation
where the averaging kernel sensitivities are large. While the
calculation of large Jacobian matrices can take advantage of
parallel computing environments (Maasakkers et al., 2019),
the iterative nature of both methods proposed here puts
some limit on the parallelization. The limit is greater for the
reduced-dimension method, which requires an iteration for
each cluster size added to the state vector. The reduced-rank
method requires only two iterations. In both cases, these lim-
itations may not be meaningful because the native-resolution
Jacobian matrix is rarely generated in a fully parallel envi-
ronment in practice.

4 Conclusions

We proposed two methods to conduct analytical high-
resolution inversions of satellite observations of atmospheric
composition to infer emissions while maximizing informa-
tion content and minimizing computational cost. The com-
putational cost of analytical inversions is driven by the con-
struction of the Jacobian matrix, which expresses the sensi-
tivity of the observed concentrations to emissions. The Jaco-
bian matrix is constructed numerically by conducting pertur-
bation simulations with a chemical transport model (CTM)
that serves as the forward model for the inversion. Our meth-
ods exploit the dominant patterns of information content
in the observing system to build the Jacobian matrix. The
reduced-dimension method constructs the Jacobian matrix
on a multiscale grid that aggregates grid cells where infor-
mation content is lowest. The reduced-rank method approx-
imates the Jacobian matrix using the dominant patterns of
information content, discarding the weaker patterns. Beyond
the atmospheric application presented here, both methods
can be applied more generally to the problem of efficient nu-
merical approximation of high-dimension Jacobian matrices.

Both methods use a two-step update to improve an initial,
no-cost estimate of the Jacobian matrix and the correspond-
ing averaging kernel matrix. The initial estimate of the Ja-
cobian matrix is constructed here by assuming that observed
atmospheric concentrations are most sensitive to local emis-
sions. Because the averaging kernel matrix has a strong de-
pendence on the prior error covariance matrix and observa-
tion density, this initial estimate can accurately quantify the
fine structure of information content. The reduced-dimension
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Figure 5. Comparison statistics between the reduced-rank and native-resolution inversions for the grid cells with reduced-rank averaging
kernel sensitivity greater than 0.01. Individual panels compare binned counts for Jacobian matrix elements (parts per billion), posterior scaling
factors (dimensionless), posterior error standard deviations (dimensionless), and averaging kernel sensitivities (dimensionless). Correlation
coefficients are inset, and the 1 : 1 line (dotted) is shown.

method uses the initial estimate of the averaging kernel ma-
trix to generate a multiscale grid that maintains the native res-
olution where information content is the highest and consoli-
dates grid cells elsewhere. The forward model is used to build
the Jacobian matrix on this grid, and the resulting reduced-
dimension averaging kernel matrix is compared to the initial
estimate to identify the state vector elements where the for-
ward model contributed the most information content. These
elements are disaggregated to generate a second and final up-
date. The reduced-rank method uses the initial estimate of the
averaging kernel matrix to identify the dominant patterns of
information content. These patterns are perturbed in the for-
ward model, generating a first update of the Jacobian matrix.
This update serves as the basis for a second and final update.
In both methods, rapid convergence occurs after two updates.

We applied both methods in a demonstration inversion of
GOSAT column methane observations over North America
for July 2009 with artificially enhanced information content.
We compared the results to a native-resolution inversion that
optimized emissions on a 1◦× 1.25◦ grid. Both methods suc-
cessfully approximated the native-resolution results and de-
creased the total computational cost by a factor of at least
4. The reduced-dimension method produced only 50 % of
the native-resolution information content, as measured by the

degrees of freedom for signal (DOFS), due to spatial aver-
aging, but it generated twice the DOFS per state vector el-
ement and avoided the correlated errors found in the native-
resolution inversion. The reduced-rank method retained 70 %
of the native-resolution DOFS by solving the inversion accu-
rately in the grid cells with the highest information content
and defaulting to the prior emissions estimate elsewhere. In
sensitivity tests, the reduced-rank method retained 50 % of
the native-resolution DOFS while decreasing computational
cost by a factor of 7.

Code and data availability. All code and data are available at
https://github.com/hannahnesser/reduced_rank_jacobian (last ac-
cess: 5 August 2021), https://doi.org/10.5281/zenodo.5165262,
Nesser, 2021).
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