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Abstract. In air quality research, often only size-integrated
particle mass concentrations as indicators of aerosol parti-
cles are considered. However, the mass concentrations do
not provide sufficient information to convey the full story of
fractionated size distribution, in which the particles of differ-
ent diameters (Dp) are able to deposit differently on respi-
ratory system and cause various harm. Aerosol size distribu-
tion measurements rely on a variety of techniques to classify
the aerosol size and measure the size distribution. From the
raw data the ambient size distribution is determined utilis-
ing a suite of inversion algorithms. However, the inversion
problem is quite often ill-posed and challenging to solve.
Due to the instrumental insufficiency and inversion limita-
tions, imputation methods for fractionated particle size dis-
tribution are of great significance to fill the missing gaps or
negative values. The study at hand involves a merged parti-
cle size distribution, from a scanning mobility particle sizer
(NanoSMPS) and an optical particle sizer (OPS) covering
the aerosol size distributions from 0.01 to 0.42 µm (electri-
cal mobility equivalent size) and 0.3 to 10 µm (optical equiv-
alent size) and meteorological parameters collected at an
urban background region in Amman, Jordan, in the period
of 1 August 2016–31 July 2017. We develop and evaluate
feed-forward neural network (FFNN) approaches to estimate
number concentrations at particular size bin with (1) meteo-
rological parameters, (2) number concentration at other size

bins and (3) both of the above as input variables. Two lay-
ers with 10–15 neurons are found to be the optimal option.
Worse performance is observed at the lower edge (0.01<
Dp < 0.02 µm), the mid-range region (0.15<Dp < 0.5 µm)
and the upper edge (6<Dp < 10 µm). For the edges at both
ends, the number of neighbouring size bins is limited, and
the detection efficiency by the corresponding instruments is
lower compared to the other size bins. A distinct performance
drop over the overlapping mid-range region is due to the de-
ficiency of a merging algorithm. Another plausible reason
for the poorer performance for finer particles is that they are
more effectively removed from the atmosphere compared to
the coarser particles so that the relationships between the in-
put variables and the small particles are more dynamic. An
observable overestimation is also found in the early morn-
ing for ultrafine particles followed by a distinct underestima-
tion before midday. In the winter, due to a possible sensor
drift and interference artefacts, the estimation performance
is not as good as the other seasons. The FFNN approach
by meteorological parameters using 5 min data (R2

= 0.22–
0.58) shows poorer results than data with longer time resolu-
tion (R2

= 0.66–0.77). The FFNN approach using the num-
ber concentration at the other size bins can serve as an al-
ternative way to replace negative numbers in the size dis-
tribution raw dataset thanks to its high accuracy and relia-
bility (R2

= 0.97–1). This negative-number filling approach
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can maintain a symmetric distribution of errors and comple-
ment the existing ill-posed built-in algorithm in particle sizer
instruments.

1 Introduction

Particulate matter (PM) is the principal component of air
pollution. PM includes a range of particle sizes, such as
coarse particles (1< particle diameter, Dp, < 10 µm), fine
particles (0.1<Dp < 1 µm) and ultrafine particles (UFPs,
Dp < 0.1 µm). Through humans’ inhalation, coarse particles
usually are partly deposited in the head airway (5–30 µm) by
the inertial impaction mechanism and are partly deposited
in the tracheobronchial region mainly through sedimentation
(1–5 µm). The particles may be further absorbed or removed
by mucociliary clearance (Gupta and Xie, 2018). The re-
maining fine and ultrafine particles, due to their high surface-
area-to-mass ratios (Kreyling et al., 2004), penetrate deeply
into the alveolar region, where removal mechanisms may be
insufficient (Gupta and Xie, 2018). Evidence suggests that
the adverse associations of short-term UFP exposure with
acute and chronic problems ranging from inflammation, ex-
acerbation of asthma, metal fume fever to fibrosis, chronic
inflammatory lung diseases and carcinogenesis (Spinazzè et
al., 2017) might be at least partly independent of other pol-
lutants (Ohlwein et al., 2019). Various studies have demon-
strated that inhaled or injected UFPs could enter systemic
circulation and migrate to different organs and tissues (Lon-
dahl et al., 2014; Xing et al., 2016).

Other than health effects, particles of various sizes also
contribute to Earth’s ecosystem and climate differently. For
instance, fine and ultrafine particles are capable of grow-
ing up to diameters of 0.02–0.1 µm within a day (Kulmala
et al., 2004; Kerminen et al., 2018), where they consti-
tute a fraction of cloud condensation nuclei, thus indirectly
affecting the climate (Kerminen et al., 2012). The drivers
behind aerosol particles vary between natural and anthro-
pogenic as well as primary and secondary. Primary particles
are emitted to the atmosphere as particles, such as sea salt
or dust particles, while secondary particles form in the at-
mosphere through gas-to-particle transformation, which has
been known as new particle formation (NPF) observed in
various environments and contributing to a major fraction
of the total particle number budget (Kulmala et al., 2004;
Kerminen et al., 2018). In addition, while fine particles cool
the climate by predominantly scattering shortwave radiation,
coarse particles warm the climate system by absorbing both
shortwave and longwave radiation (Kok et al., 2017). Indeed,
the complexity of urban aerosols is tribute to the fact that
several sources can contribute in the same particle size range
(Rönkkö et al., 2017).

Currently, the most commonly reported aerosol variables
are particle mass concentration and particle number concen-

tration. The former metric, which is dominated by coarser
particles, is included as air quality indicators (e.g. mass con-
centrations of both thoracic particles, PM10, and fine parti-
cles, PM2.5); however, it has been argued that this might ig-
nore the potential adverse effect of UFPs on health (Zhou et
al., 2020). The latter one describes better the distribution of
finer particles, but it neglects the influence of coarse particles.
Using either particle mass concentration or particle number
concentration solely is not enough to fully review the health
effects and the Earth’s climate system by aerosol particles.
Therefore, in order to understand the origin of atmospheric
aerosol particles and their potential impacts at a specific lo-
cation, the whole size distribution of these particles needs to
be studied (Zhou et al., 2020).

Recently, due to urbanisation and increased population,
megacities have increased their contribution to atmospheric
aerosol pollution massively (Lelieveld et al., 2015). The Mid-
dle East and North Africa (MENA) region, with an average
annual growth rate of 1.74 % in 2019 (World Bank Group,
2019), has one of the world’s most rapidly expanding popu-
lations. With a population of 578 million, several cities in the
MENA region are among the 20 most polluted cities in the
world. The annual average concentrations of some pollutants,
for example PM2.5 in MENA (54.0 µgm−3), often exceed 5
times the WHO-recommended levels (10.0 µgm−3) (World
Health Organisation, 2019). Many countries in MENA are
dealing with negative impacts of air pollution in terms of
both economic burden and health aspect (Ahmed et al., 2017;
Goudarzi et al., 2019). Air Pollution in this region is esti-
mated to cause 133 000 premature deaths annually, almost
half of which are attributed to natural sources of air pollu-
tion, such as windblown sea salt and desert dust (Gherboudj
et al., 2017). Apart from natural pollutants, anthropogenic ac-
tivities also play a major role in driving the air quality. They
include the extensive development of petrochemical indus-
try, vehicular emissions and open burning of waste (Arhami
et al., 2018).

However, aerosol studies in this region have not paid
attention to the aerosol number size distribution so far.
Among the few studies published, most report mass concen-
tration (Goudarzi et al., 2019; Arhami et al., 2018; Borgie
et al., 2016), while some focused on the total particle num-
ber in MENA regions. Studies on the size-fractionated num-
ber concentrations are, nonetheless, scarce (e.g. Hakala et
al., 2019) due to the unavailability of instruments for measur-
ing UFPs in many air quality monitoring stations (Spinazzè
et al., 2017). Determining aerosol number size distribution
for a wide size range in a reliable manner is a challeng-
ing task. The fact that the ambient distributions range from
nanometres to several micrometres dictates the use of multi-
ple sizing techniques. For the submicron size range, electri-
cal mobility equivalent diameter is commonly used as the
size parameter, and the measurements are performed with
differential mobility particle sizer (DMPS) or scanning mo-
bility particle sizer (SMPS) instruments (e.g. Wiedensohler
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et al., 2012). These systems determine the aerosol size ac-
cording to electrical mobility equivalent size. The larger par-
ticles (approximately > 0.3 µm) can be classified according
to their aerodynamic or optical size (Kulkarni et al., 2011).
In order to obtain the full aerosol size distribution, these data
need to be merged. Unfortunately this task is not trivial as
the merging requires knowledge of the chemical composition
(influencing the refractive index and thus the optical size),
shape (influencing electrical mobility equivalent size) or ef-
fective density (influencing aerodynamic size) (Kannosto et
al., 2008).

In addition, the raw data from these instruments must be
inverted to obtain the particle size distribution. This is not a
straightforward problem. A proper inversion algorithm is re-
quired to restore the particle size distribution from the raw
response (Cai et al., 2018) using recorded kernel functions
which describe the probability of particles of a certain size
being measured at a certain flow rate, influenced by the mea-
sured activation curves and the detection efficiencies of the
instruments (Lehtipalo et al., 2014). Depending on the in-
struments used and the measurement environments, some use
a built-in inversion algorithm in the instruments, which re-
place negative raw values with artificial non-negative num-
bers. Some develop their own inversion methods; however,
they all have their drawbacks. For example, the least-squares
method may magnify the random errors in the raw counts
in the condensation particle counter (CPC) into relatively
large uncertainties (Enting and Newsam, 1990), the step-
wise method may cause non-negligible errors (Lehtipalo et
al., 2014) and the smoothing step method may introduce bias
in the shape of the inverted distribution function (Markowski,
1987). Kandlikar and Ramachandran (1999) pointed out that
there is not a single universal inversion algorithm applicable
to all situations. In this study, the built-in inversion algorithm
was used. This algorithm can lead to negative values when
the kernel functions are not optimally configured, especially
in the size range of low number concentration. These nega-
tive values have no physical meanings. Some experts in the
in situ measurement community might just omit the negative
values or simply use nearest-neighbour linear interpolation
to replace the negative values. However, the former method
might cause asymmetric error for very small measured num-
ber concentration values (Viskari et al., 2012), while the lat-
ter could result in too high values concurrently. To fill this
knowledge gap, statistical estimation methods can serve as
an alternative to estimate of size-fractionated number con-
centration by using other available measurements.

The main objective of the paper is to estimate particle
number concentration and/or fill the negative values making
up for the shortcomings of the built-in inversion algorithm in
particle sizer instruments. Extending from the previous study
by Zaidan et al. (2020), we build our imputation method with
a finer temporal and size-bin resolution. In order to do so, we
place emphasis on estimating the particle number concen-
tration of a specific size bin using the interaction with other

size bins and meteorological variables. In this study, we pro-
pose three approaches in terms of different input variables
by means of neural networks: (1) only meteorological pa-
rameters, (2) only particle size distribution, and (3) both par-
ticle size distribution and meteorological parameters. Based
on the general data analysis of the particle size distribution
and the meteorological condition, we explain the source of
different size bins at certain weather conditions and the cor-
relation among the particle size distribution and meteorolog-
ical parameters in Sect. 3. We evaluate the proposed neural
network method and compare it with other simpler methods
in Sect. 4.1. In Sect. 4.2, we further discuss the temporal pat-
tern of the proposed method in terms of its diurnal cycle,
weekend effect and seasonal variation. Besides, we examine
the possible technical reasons for the pattern found and the
application of the proposed method.

2 Methods

2.1 Measurement sites and instruments

In this study, we collected a dataset obtained from a mea-
surement campaign in Amman, the capital city of Jordan, be-
tween 1 August 2016 and 31 July 2017. The city represents
an area with Middle Eastern urban conditions within the
Middle East and North Africa (MENA) region. This region
serves as a compilation of different aerosol particle sources
including natural dust, anthropogenic pollution (e.g. gener-
ated from the petrochemical industry and urbanisation) and
new particle formation.

The database includes particle size distribution and me-
teorological parameters, as mentioned in the first step in
Fig. 1. The aerosol measurement was carried out at the
aerosol laboratory located on the third floor of the De-
partment of Physics of the University of Jordan (32◦00′ N,
35◦52′ E) in the neighbourhood of Al Jubeiha. The cam-
pus is situated in an urban background region in northern
Amman. In particular, the campaign measured the particle
number size distribution using a scanning mobility particle
sizer (NanoScan SMPS 3910, TSI, MN, USA) with default
settings. It monitors the particle size distributions as elec-
trical equivalent diameter 0.01–0.42 µm (13 channels). The
size range of the SMPS system can be extended to coarse
particles with an additional compact instrument: an opti-
cal particle sizer (OPS 3330, TSI, MN, USA). OPS mea-
sures optical diameters from 0.3 to 10 µm (13 channels). This
optical sizing method reports an optical particle diameter,
which is often different from the electrical mobility diam-
eter measured by the SMPS technique. The measurements
were combined to provide a particle size distribution of a
wider particle diameter range from 0.01 to 10 µm, which is
further described in Sect. 2.2. The SMPS inlet consists of
copper tubing with a diffusion drier (TSI 3062-NC). The
inlet flow rate was 0.75 L min−1 (±20 %), while the sam-
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Figure 1. The block diagram describing the methodology of the proposed FFNN method.

ple flow rate was 0.25 L min−1 (±10 %). The flow rate of
OPS was about 1 L min−1. The aerosol transport efficiency
and losses through the aerosol inlet assembly and the dif-
fusion drier were determined experimentally in the labora-
tory: ambient aerosol sampling alternatively with and with-
out sampling inlet as well as the aerosol data were cor-
rected accordingly. The penetration efficiency was ∼ 47 %
for 0.01 µm, ∼ 93 % for 0.3 µm and ∼ 40 % for 10 µm (Hus-
sein et al., 2020). This deficiency of measurement at the up-
per and lower edges is somewhat in agreement with other
literature. Particle size measured by NanoSMPS (Tritscher et
al., 2013) tended to be underestimated for spherical particles
larger than 0.2 µm by up to 34 % (Fonseca et al., 2016). Liu et
al. (2014) clearly portrayed that the detection limit of particle
size below 0.03 µm is about 80–500 cm−3, which is up to 10
times larger than that of coarser particles, for other versions
of SMPS. Stolzenburg and McMurry (2018) explained that
discrepancies could result from differential mobility anal-
ysers (DMAs) with transfer functions that were degraded
(i.e. broadened) by flow distortions caused by particle de-
position within the classifier tube, sizing errors due to errors
in flowmeter calibrations or leaks, CPC concentration errors
due to improper pulse counting, and continuity failure in the
DMA high-voltage connection.

The meteorological measurement was performed with a
weather station (WH-1080, Clas Ohlson model 36-3242,
Helsinki, Finland) with a time resolution of 5 min. The me-
teorological data were comprised of ambient temperature
(T , resolution 0.1◦), relative humidity (RH, resolution 1 %),
wind speed (WS), wind direction (WD, 16 equal divisions)
and air pressure (P , resolution 0.3 hPa) (Hussein et al., 2019,
2020; Zaidan et al., 2020). Wind direction is resolved into
north and east direction, as WD-N and WD-E, respectively.
The data collection process is illustrated in the first step in
the database block in Fig. 1.

2.2 Data pre-processing

The next step in the database block in Fig. 1 is data pre-
processing. Since the sampling time resolution of SMPS and
OPS was 1 and 5 min, respectively, we synchronised the data
into 5 min averages. Since parts of the size ranges in both in-
struments are overlapping with each other, the last two size
bins in SMPS and the first size bin in OPS were neglected. Fi-
nally, we merged the size range of electrical mobility diame-
ter 0.01–0.25 µm by SMPS and optical diameter 0.32–10 µm
by OPS, and we obtained a wider particle size distribution
which covers the diameter range 0.01–10 µm. Merging the
electrical mobility diameter and optical diameter can be a
challenge, and the overlapping region is often calculated with
high uncertainty (DeCarlo et al., 2004; Tritscher et al., 2015).
The challenge arises because the optical diameters are mea-
sured based on the refractive index of the particles, which
depends on their chemical composition. Therefore, the siz-
ing will vary over time. There is also a slight dependency
with the SMPS system that is linked to the shape of the par-
ticles, which influences their sizing.

We also calculated the particle number concentration
with four particle diameter modes (size-fractionated number
concentration): nucleation (0.01–0.025 µm), Aitken (0.025–
0.1 µm), accumulation (0.1–1 µm) and coarse mode (1–
10 µm). Subsequently, the total number concentration was
obtained as the sum of all these fractions. The size-
fractionated number concentrations were obtained by sum-
ming up the measured particle number size distribution over
the specified particle diameter range.

In order to perform data imputation with neural networks,
aerosol and meteorological data were first linearly interpo-
lated in time in case of short missing data periods. For
missing data over longer periods, the whole rows are elim-
inated. The shorter missing data period occurs due to techni-
cal faults, while the longer missing periods are attributed to
instrument maintenance (Zaidan et al., 2020). Only 71.8 % of
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total data were retained for the next step in the measurement
period. Since the data were obtained from different measured
variables with various physical units and magnitudes, it was
crucial to normalise the data. The scaling factor depends on
which activation function is chosen. In this case, the datasets
were scaled so that it has a mean of 0 and a standard devi-
ation of 1 to transform them into the range of the activation
function. The standardised data were then separated into dif-
ferent months for the reason of the seasonal variation in the
atmospheric condition. The data were further divided into a
training set (70 %) and testing set (30 %). The processed data
were also converted to hourly and daily averages for report-
ing purposes.

2.3 Setting of the neural network

After data collection and data pre-processing procedures,
the next step is method optimisation (Fig. 1). ANN mod-
els have been utilised in predicting air quality (Freeman et
al., 2018; Maleki et al., 2019; Cabaneros et al., 2019; Zaidan
et al., 2020; Fung et al., 2020). Neural networks provide a ro-
bust approach for approximating real-valued target functions
because they can mimic the non-linearity of the functions
and their optimisation methods are well developed (Zaidan
et al., 2017). The architecture of neural networks consists
of nodes as an activation function (Fig. 2), and the activa-
tion function in each layer determines the output value of
each neuron that becomes the input value for neurons in
the next hidden layer connected to it. In this paper, a feed-
forward neural network (FFNN) is used instead of a more
sophisticated time delay neural network (TDNN) because
some of the rows in the dataset were removed in the data
pre-processing step due to the existence of missing data, and
TDNN cannot be performed without time continuity. FFNN
usually consists of a series of layers. The first layer has a con-
nection from the network input. Each subsequent layer has a
connection from the previous layer. The final layer produces
the network’s output. A neuron can be thought as a combina-
tion of two parts:

z
(L)
j = σ

( n∑
i=1

w
(L)
ji xi + b

(L)
j

)
, (1)

where z(L)j and b(L)j are the intermediate output and the bias

term for the j th neuron at the Lth layer, respectively. w(L)ji is
the j th weight for each data point xi at theLth layer. The sec-
ond part performs the activation function (sigmoid function
in this study) on zj to give out the output of the neuron:

σ
(
z
(L)
j

)
=

1

1+ exp−z
(L)
j

. (2)

The FFNN method was created, trained and simulated
with MATLAB (version: 8.3.0.532), using the Neural Net-
work Toolbox. We initialised the weights randomly, and the

weights were updated through Levenberg–Marquardt algo-
rithm optimisation, which was the fastest available back-
propagation training function (Chaloulakou et al., 2003). We
performed several iterations within a cycle to minimise the
training loss with Bayesian regularisation. These steps were
done iteratively until the best combination of the number of
hidden layers and the corresponding number of neurons that
provided the minimum error were found. According to the
review paper by Cabaneros et al. (2019), a shallow neural
network with one hidden layer and enough neurons in the
hidden layers can fit any finite input–output mapping prob-
lem for non-linear relationship. In the network training pro-
cess, the number of neurons varied (i) from 2 to 10 neurons
per layer with an incremental factor of 2 neurons in each sim-
ulation and (ii) from 10 to 25 per layer with an incremental
factor of 5 neurons in each simulation. To keep the method
simple, we consider only one or two layers in the simula-
tion process because the computing requirements could rise
exponentially with the number of layers and neurons. Once
we pick the suitable method configuration, the method esti-
mates number concentration using testing data. Finally, the
selected performance metrics, described in Sect. 2.4, can be
calculated, and we evaluate which approach is the most suit-
able for size distribution estimation.

2.4 Other methods as comparison with the neural
network method

In order to demonstrate the performance of the FFNN
method, we perform similar procedures applying other sim-
pler methods, which have been widely used as means of
data imputation (Junger and Ponce De Leon, 2015). They
include univariate and multivariate methods. The former in-
cludes unconditional mean (UM), median (MD), linear in-
terpolation (LinI), logarithmic interpolation (LogI), next-
neighbour interpolation (nNI) and previous-neighbour inter-
polation (pNI), where nNI was implemented as the next value
carried backward, while pNI was implemented as the pre-
vious value carried forward. The multivariate methods used
in this study are the conditional mean based on a linear re-
gression of meteorological parameters and other particle size
number concentrations as inputs (CM–met and CM–PSD, re-
spectively). These methods are implemented as a comparison
with the FFNN method.

2.5 Performance metrics

We choose the optimal combination of the number of hidden
layers and the corresponding number of neurons by check-
ing its mean absolute error (MAE), which is a simple way to
illustrate the residuals of the estimated values by the estima-
tion method. In order to identify which size bin manages to
be predicted best, two metrics are used, namely coefficient
of determination (R2) and normalised root-mean-square er-
ror (NRMSE). R2 measures how well the observed outcomes
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Figure 2. Schematic diagram of a neural network with one hidden layer of sigmoid activation function.

are replicated by the estimation method, based on the pro-
portion of total variation of outcomes explained by the es-
timation method. NRMSE represents the standard deviation
of the estimated errors with respect to its mean. NRMSE is
used rather than the commonly used RMSE because the num-
ber concentrations of the different size range are of different
magnitudes. The comparison of the different size range be-
comes different if RMSE is not normalised with its mean.

MAE=

∑n
i=1

∣∣yi − ŷi∣∣
n

, (3)

R2
= 1−

∑n
i=1(yi − ŷi)

2∑n
i=1(yi − y)

2 , (4)

NRMSE=

√∑n
i=1(yi−ŷi )

2

n

y
, (5)

where yi , ŷi and y represent the ith measurement value, the
yth estimated value by the estimation method and the mean
of the all the measurement data, respectively. n denotes the
total number of the valid measurement data.

3 General data analysis

3.1 Environmental condition

Hussein et al. (2019) and Zaidan et al. (2020) investigated
and described the effect of local weather conditions, respec-

tively. Here we describe briefly the meteorological condi-
tions during the measurement period as background infor-
mation. Starting from August 2016, the daily temperature
decreased gradually from 40◦ to its minimum 0◦ in Febru-
ary 2017. It rose gradually to 40◦ in August 2017. During
the measurement period, the hourly median value was 19.9◦

(Fig. 3a). RH varied quite a lot from 10 % to 100 %, with an
hourly median of 52.3 %, and did not seem to have a sea-
sonal pattern (Fig. 3b). In summer months, wind appeared be
stronger, but the wind direction was more stable, mostly from
the northwest (270–360◦). In cold months, averaged wind
speed was lower but wind blew from a fluctuating direction.
During the whole measurement period, wind speed ranged
between 0–6 m s−1, and its median was 1.39 m s−1 (Fig. 3c–
d). Air pressure varied in a range from 892 to 912 hPa, and
its hourly median was 900 hPa. In spite of the narrow range
of variation, winter months seem to have slightly higher air
pressure than summer months (Fig. 3e).

Meteorological conditions have been suggested to influ-
ence particle number concentration. Hussein et al. (2019)
demonstrated that number concentration had a rather com-
plex relationship with temperature. Furthermore, number
concentration of submicron particles had a decreasing trend
with respect to the wind speed, which indicates that most of
the submicron fraction originated from local sources such as
combustion processes. Meanwhile, the number concentration
of coarse particles had higher concentrations at stagnant con-
ditions and when the wind speed is higher than 5.5 m s−1. It
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Figure 3. Time series of meteorological conditions during the measurement period August 2016–July 2017. (a–e) Temperature, relative
humidity, wind speed, wind direction and air pressure, respectively. Black and red represent hourly and daily averaged data, respectively.

Figure 4. Wind rose diagram of total particle number concentration at a different direction (in the theta axis) and different wind speed (in
the radical axis). Wind direction and wind speed data are grouped in every 10◦ and 0.5 m s−1. Warmer colour represents higher total particle
number concentration. (a) Total number concentration, log scale; (b) coarse mode, linear scale. Note the colour scales are different.

is mainly because of road dust resuspension and might also
be attributed to dust storm via long-range transport (Hussein
et al., 2019). In this study, we further explore how wind di-
rection influences the particle number concentration (Fig. 4).
Wind coming from the northwest (225–325◦) was generally
stronger, but lower particle number concentration was de-
tected because the measurement area is at the outskirts of
downtown. Wind from the east and south (45–225◦) has a
lower wind speed, but a more intense hourly particle number
concentration can be detected. From that direction is situated
the Amman urban city where all kinds of industrial activ-

ities take place. When considering only coarse particles, a
relatively high number concentration is found when south-
westerly wind is strong. This can further serve as evidence
that the source of coarse particles in that region might come
mostly from long-range sea salt from the Dead Sea or dust
particles from nearby deserts.

3.2 General pattern of particle size distribution

Hourly total number concentration ranged from 1.90× 103

to 1.52× 105 cm−3, and its median was 1.36× 104 cm−3.
Figure 5a shows a moderate seasonal pattern in general:
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Figure 5. Time series of total particle number concentration (in cm−3) of 0.01–10 µm (a). (b–c) The contribution in percentage of nucleation
mode and Aitken mode, respectively. (d–e) The number concentration in accumulation mode and coarse mode, respectively. Black and red
represent hourly and daily averaged data, respectively.

Table 1. Table showing the descriptive statistics (in cm−3) of total number concentration, nucleation mode, Aitken mode, accumulation
mode and coarse mode. The statistical values include mean, standard deviation (SD) and percentile (10 %, 25 %, 50 %, 75 % and 90 %).

Mean SD 10 % 25 % 50 % 75 % 90 %

Total (×104) 1.70 1.26 0.57 0.85 1.35 2.16 3.31
Nucleation (×104) 0.48 0.32 0.16 0.26 0.41 0.63 0.90
Aitken (×104) 1.09 1.01 0.29 0.45 0.77 1.37 2.35
Accumulation (×104) 0.13 0.08 0.05 0.08 0.11 0.15 0.21
Coarse 2.13 2.80 0.55 0.84 1.29 2.33 4.3

lower in summer months and higher in colder months. Hus-
sein et al. (2019) also characterised the modal structure of
the particle number size distribution for the same site. Four
modes have been detected by the automatic lognormal fit-
ting algorithm (DO-FIT, Hussein et al., 2005, 2019), which
revealed that the mode number concentrations of the nu-
cleation, Aitken and coarse modes were lognormally dis-
tributed around their geometric mean values: 0.022, 0.062
and 2.3 µm respectively. However, the accumulation mode
number concentration had two distinguished modes with par-
ticle diameter centred at 0.017 and 0.39 µm. As seen in Ta-
ble 1, the total number concentration of all particle size
fractions (1.70± 1.26× 104 cm−3) is mostly accounted for
by the Aitken mode (45 %–80 %, average: 1.09± 1.01×
104 cm−3) followed by the nucleation mode (10 %–50 %,
average: 0.48± 0.32× 104 cm−3). The accumulation mode
(0 %–15 %, average: 0.13±0.08 cm−3) comes third, and only
less than 0.5 % of the total particle number concentration

contains coarse particles with an average of 2.13±2.80 cm−3

(Fig. 5b–e). The seasonal pattern of the total number con-
centration resembles the Aitken composition: lower propor-
tion in summer months and higher in colder months. The
ratio of the nucleation mode performs in an opposite way.
The seasonal variation of the total number concentration is
due to the more suppressed boundary layer in winter (Teinilä
et al., 2019) and the elevated wood combustion (Hellén et
al., 2017). The particle number of accumulation and coarse
mode steadily stay at a low proportion line, which did not
account for the total number concentration. It is also noticed
that dust episodes occurred with the concentrations that often
exceeded 2 cm−3, and the daily concentration in the course of
these episodes can rise to 20 cm−3. These episodes were of-
ten found in spring from February to May, and some episodes
can last for up to 1 week.

Similar to many other urban environments, the diurnal
pattern observed in this study reflects the combustion emis-
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Figure 6. (a) Diurnal cycle of the (i) nucleation mode, (ii) Aitken mode, (iii) accumulation mode and (iv) coarse mode in warm (red) and
cold months (blue) during workdays (solid) and weekends (dashed). (b) Particle size distribution in (i) cold and (ii) warm months, coloured
by particle number concentration (cm−3). Cold and warm months refer to December–February and June–August, respectively.

sions from traffic activity, which is higher during the work-
days (Hussein et al., 2019). The two peaks of the nucleation
mode and Aitken mode in the cold months are relevant for
the morning and the afternoon traffic rush hours, which are
similar to those noticed in most cities in other countries. In
warmer months, the diurnal cycles are not as distinct, but
a sharp peak of the nucleation mode around noon is found,
which is associated with the occurrence of new particle for-
mation. These events occurred very often in the summer as
suggested by Hussein et al. (2020). The amplitude of diur-
nal cycles of the coarse mode is small, while the patterns of
accumulation are not clear (Fig. 6).

3.3 Correlation analysis

Figure 7 demonstrated the interaction among the whole mea-
sured spectrum shows three range clusters based on their cor-
relation with the number concentration at other bin sizes:
0.01–0.205, 0.205–0.875 and 0.875–10 µm. The sizes 0.01–

0.205 and 0.875–10 µm fall entirely within the size range de-
tected by SMPS and OPS, respectively. The 5 min number
concentration of smaller size and larger size bins have clear
and strong correlation with the concentration of its neigh-
bouring size bin. However, particles of size 0.205–0.875 µm
are located in the overlapping regions by the two instruments;
as a result, they do not correlate well with the other size bins.
The correlation of 5 min particle size distribution with mete-
orological parameters is generally low. Temperature appears
to be the most correlated parameters for all bin sizes among
all the parameters we used in this study. Smaller size ranges
have a higher Pearson correlation coefficient (R) than larger
size ranges for WD, WS and P .

The 5 min averaged data show a similar correlation for the
particle size distribution except for the smallest size bin. The
hourly and daily data have higher correlation with the other
size bins, which are also monitored by SMPS. The 5 min av-
eraged data show different correlation from the hourly and
daily averaged data performed by Zaidan et al. (2020). The
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Figure 7. Matrix plots showing the Pearson correlation coefficient (R) of particle size distribution of (a) 5 min, (b) hourly and (c) daily
averaging with (i) particle size distribution itself and (ii) meteorological parameters. Darker colour represents a higher correlation.

correlations of 5 min size distribution with all meteorologi-
cal variables are below 0.5 for all size ranges. However, for
hourly and daily averaged data, R is much higher in spe-
cific size bins. Hourly and daily temperature, in particular,
show increasing R with larger particle size for accumulation
and coarse mode. Overall, the correlations increase with the
longer averaging windows. This might be due to the buffer
period in which the meteorological conditions act on the dis-
persion of particles. Based on this result, using data with finer
temporal resolution might be considered to be less influential
to the estimation accuracy.

4 Evaluation of the proposed method

4.1 General evaluation

Figure 8 illustrates how well the three approaches of the pro-
posed FFNN perform in terms of R2 and NRMSE.

4.1.1 Approach 1 (size distribution estimation based on
meteorological parameters only, FFNN–met)

For more than half of the 23 size bins, two layers and 15
neurons is the best combination where the residuals are the
lowest (Table 2). Owing to the poor correlation with meteo-
rological condition, we expect a low correlation of determi-
nation even using the optimal configuration neural network
(R2
= 0.22–0.58). The R2 values are low at the nucleation

mode (0.01<Dp < 0.03 µm) of the whole size distribution
(R2
∼ 0.2). The rest of the size bins have better and more
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Figure 8. Bar chart showing the evaluation of the FFNN approach with (a) only meteorological parameters (approach 1, FFNN–met), (b) par-
ticle size distribution itself (approach 2, FFNN–PSD), and (c) both particle size distribution and meteorological parameters (approach 3) as
inputs. The evaluation metrics for the proposed method include the (i) coefficient of determination (R2) and (ii) normalised root-mean-square
error (NRMSE).
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stable performance (R2
= 0.4–0.58). This shows that the in-

strument might have a poor detection efficiency for particles
of smaller size. The performance of the FFNN method us-
ing 5 min data for all size bins (R2

= 0.22–0.58) is worse
than using daily data (R2

= 0.77) performed in Zaidan et
al. (2020). Compared with hourly data (R2

= 0.66), the over-
all performance of the method using 5 min data is compara-
ble (R2

= 0.67).

4.1.2 Approach 2 (size distribution estimation based on
other particle sections only, FFNN–PSD)

This approach works well with most combinations of num-
ber of layers and neurons. They do not show a clear differ-
ence among the combinations we choose. There is no sin-
gle combination which entirely outperforms the others in all
size bins. We summed up the MAE for all size bins and de-
cided to stick to two layers and 10 neurons with the overall
lowest residuals (Table 2). R2 values are all above 0.97 for
all bin sizes, and NRMSE values are 0.01–0.25 for all bin
sizes. The results are expected because there are 22 inputs
and one output. Relatively worse correlation at the edges of
size bins (0.01<Dp < 0.02 µm; 6<Dp < 10 µm) is found
because of the lack of nearby size bins which have high
correlation with the corresponding size bin. Another reason
could be that the instrument has a higher detection limit for
smaller particles (Liu et al., 2014). The poorer performance
for smaller sizes might be due to a coarser size resolution
compared to other SMPS components (Tritscher et al., 2013),
so that NanoSMPS does not reflect the real-enough size dis-
tribution in the atmosphere. Relatively poor estimation per-
formance at the middle size range (0.15<Dp < 0.5 µm) in
the whole measured spectrum is because of the overlapping
of instruments. This also ascertains the importance of creat-
ing a better algorithm when we merge two or more size distri-
butions by different instruments. In this study, the measuring
techniques and the measuring targets are different between
the SMPS and OPS. The merging of the two measuring tar-
gets, the optical particle diameter and the electrical mobility
diameter, might create significant uncertainties (DeCarlo et
al., 2004; Tritscher et al., 2015). The estimation of certain
bin size by other bin sizes can be thought of replacing nega-
tive values in the raw data by particle sizers. While some in-
strument manufacturers create built-in algorithms to replace
with artificial non-negative numbers, most end users simply
remove the seemingly impossible negative values from the
dataset. The perfect way to do it is to have a parallel instru-
ment that overlaps with that particle size range. However, in
many cases, this is not possible as a result of financial con-
straints. Therefore, we shall rely on the mutual relationship
between the size sections in the aerosol population. Nega-
tive values appear often at size bins with very low number
concentration (usually in coarse mode). Instead of eliminat-
ing them, this alternative could maintain the symmetry of

the error distribution of the number concentration (Viskari
et al., 2012) and minimise the uncertainties caused.

4.1.3 Approach 3 (size distribution estimation based on
meteorological parameters and other particle
sections)

The general results are similar to those in PSD. However,
more input variables do not enable the approach to work bet-
ter. At some bin size the R2 values are even slightly smaller
than PSD solely, since meteorological data show low corre-
lation with most portions of the measured spectrum. In that
approach, the addition of meteorological parameters is not
beneficial to the estimation process. Due to the lack of im-
provement in the method development, we will only focus
on the two methods: FFNN–met and FFNN–PSD.

In order to highlight the performance of the FFNN meth-
ods in terms of accuracy and reliability, we compare the
FFNN methods with other simpler methods; the results are
shown in Table 3 for R2 and Table 4 for NRMSE. The
R2 values of the univariate methods UM and MD are close
to 0 because their imputation is oversimplified and implies
the replacement of a missing value by a constant. This can
be further validated by the narrow range of the estimated
particle concentrations in Fig. 9a–b. The remaining univari-
ate interpolation methods LinI, LogI, nNI and pNI showed
good results in general (R2

= 0.82–0.92, NRMSE= 0.57–
0.88) but failed to perform even fairly at some particle size
bins. This implies that these methods are not stable for the
whole spectrum of the particle size distribution. Some of the
estimated particle concentrations are off from the 1 : 1 line,
which implies that the estimation of some particle bins are
not as accurate (Fig. 9c–f). The performance results of the
multivariate methods CM–met and CM–PSD are compara-
ble to FFNN–met and FFNN–PSD, but both CM methods
show weaker performance than FFNN methods in terms of
R2 and NRMSE regardless of whether meteorological data
(CM–met: R2

= 0.52, NRMSE= 1.39; FFNN–met: R2
=

0.67, NRMSE= 1.13) or particle size distribution data (CM–
PSD: R2

= 0.99, NRMSE= 0.17; FFNN–PSD: R2
= 1.00,

NRMSE= 0.07) are used as inputs. The pattern of perfor-
mance of the multivariate methods is also similar to those
of FFNN, i.e. relatively poor performance at the edges of
size bins (0.01<Dp < 0.02 µm; 6<Dp < 10 µm) and the
overlapping region (0.15<Dp < 0.5 µm). When combining
the whole spectrum, FFNN methods (Fig. 9i–j) appear to
have narrower bands than CM methods (Fig. 9g–h) along the
1 : 1 line, which indicates the methods work similarly across
the particle size spectrum. Although the multivariate method
CM–PSD (Fig. 9h) also relies on the mutual relationship be-
tween the size sections in the aerosol population, this method
is not as accurate and stable as our proposed FFNN–PSD.

From the perspective of physics, particles in the nucleation
mode (0.01<Dp < 0.03 µm) are more sensitive to transfor-
mation processes due to their volatility and rather unstable
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Table 2. Table showing the best configuration in the form of (the number of layers; the number of neurons) for the approach by meteorological
parameters (FFNN–met) and the number concentration at the other size bins (FFNN–PSD) as inputs. Mean absolution error (MAE, in cm−3),
coefficient of determination (R2) and normalised root-mean-square error (NRMSE) are listed for different size bins on each row. The last
row concludes the overall selection of the approach with the best configuration and its corresponding evaluation metrics.

Particle size (µm) Approach 1 (FFNN–met) Approach 2 (FFNN–PSD)

Best setting MAE (cm−3) R2 NRMSE Best setting MAE (cm−3) R2 NRMSE

0.012 2; 10 2640 0.20 0.69 2; 10 334 0.99 0.11
0.015 2; 15 4850 0.42 0.59 2; 8 216 1.00 0.031
0.021 2; 15 6120 0.38 0.58 2; 15 97.8 1.00 0.014
0.027 2; 15 8470 0.41 0.62 1; 25 34.0 1.00 0.0032
0.037 2; 20 8240 0.46 0.66 2; 15 26.3 1.00 0.0024
0.049 2; 15 6610 0.48 0.74 2; 25 33.7 1.00 0.0049
0.066 2; 15 4690 0.46 0.83 2; 10 56.7 1.00 0.013
0.088 2; 15 3040 0.52 0.71 2; 4 66.2 1.00 0.018
0.12 2; 15 1810 0.52 0.54 2; 8 63.1 1.00 0.021
0.15 2; 10 917 0.29 0.49 2; 15 72.5 0.99 0.052
0.21 2; 6 327 0.55 0.71 2; 8 114 0.91 0.31
0.37 2; 10 95.8 0.43 0.54 2; 20 12.9 0.99 0.072
0.49 2; 15 12.1 0.50 0.61 2; 25 0.9630 1.00 0.043
0.66 2; 15 3.03 0.58 0.56 2; 15 0.1995 1.00 0.029
0.88 2; 15 5.65 0.62 1.43 2; 10 0.2202 1.00 0.040
1.17 2; 15 1.43 0.53 0.81 2; 8 0.0680 1.00 0.026
1.56 2; 20 1.44 0.54 0.81 2; 8 0.0816 1.00 0.031
2.08 2; 15 1.84 0.49 0.97 2; 8 0.0825 1.00 0.028
2.77 2; 15 1.02 0.44 1.09 1; 4 0.0573 1.00 0.037
3.70 2; 15 0.52 0.41 1.07 1; 8 0.0329 1.00 0.046
4.92 2; 15 0.28 0.44 1.00 1; 4 0.0254 1.00 0.068
6.56 2; 9 0.11 0.42 0.97 1; 6 0.0206 0.99 0.13
8.75 2; 10 0.06 00.39 0.95 2; 6 0.0169 0.98 0.20

Overall 2; 15 2120 0.67 1.13 2; 10 76.6 0.999 0.067

nature (Morawska et al., 2008). This leads to a relatively
short lifetime in the atmosphere (Al-Dabbous et al., 2017);
hence, the relationships between the input variables and the
nucleation mode are not well established. Al-Dabbous et
al. (2017) demonstrated that accumulation mode particles
(0.1<Dp < 0.3 µm) have much longer lifetimes compared
to smaller particles, causing them to be transported for larger
distances (Laakso et al., 2003); therefore, the mapping of
the relationships between long-range-transported accumula-
tion mode particles and covariates is not well understood.
However, the relative prediction ability in this study is not
lower given that local meteorological variables were used
as input variables. The possible reason is that this mode
falls exactly in the instrumental overlapping regions, which
leads to a lower predictability. The locally produced Aitken
mode particles (0.03<Dp < 0.1 µm) are less effectively re-
moved by transformation processes (e.g. evaporation and co-
agulation) from the atmosphere, compared with nucleation
mode particles (0.01<Dp < 0.03 µm), allowing the estima-
tion methods to better understand their relationships with the
input variables, which is in agreement with Al-Dabbous et
al. (2017).

4.2 Temporal pattern

Figure 10 shows the diurnal discrepancies during work-
days and weekends. Relative particle number concentration
was defined by the estimated concentration with respect to
the measured concentration. Values above 1 indicate over-
estimation, while values below 1 suggest underestimation.
For approach 1 (FFNN–met), except for the overlapping
size bin, which is underestimated by more than 50 % at all
time ranges, the difference between estimated and measured
hourly number concentration is within 50 % during both
workdays and weekends. Overestimation is found in the early
morning before 03:00 UTC+2 (UTC+3 in summer) during
workdays for all size bins, especially for UFPs. Following
the overestimation, at about 06:00 in the morning, the es-
timated number concentration appears to be understated by
up to 40 %, especially at size bins below 0.1 µm. During the
day, the estimation uncertainties are rather small until in the
evening from 06:00 to 23:00, where estimated UFP num-
ber concentration shows moderate overestimation one more
time. This reveals that FFNN–met fails to detect the diurnal
pattern from 18:00 to 07:00 in particular for UFPs. The pat-
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Table 3. Table showing the comparison of different estimation methods, including unconditional mean (UM, column 2), median (MD, col-
umn 3), linear interpolation (LinI, column 4), logarithmic interpolation (LogI, column 5), next-neighbour interpolation (nNI, column 6),
previous-neighbour interpolation (pNI, column 7), and conditional mean by regression of meteorological parameters and other particle size
number concentrations as inputs (CM–met and CM–PSD, columns 8 and 9, respectively) and the feed-forward neural network with meteo-
rological parameters and other particle size number concentrations as inputs (FFNN–met and FFNN–PSD, columns 10 and 11, respectively).
The coefficient of determination (R2) of each method is listed for different size bins on each row. Negative R2 values are represented by “0”
to indicate poor accuracy at the particular particle size bin, while “NA” means the data are not available. The last row concludes the overall
evaluation metrics.

Particle size Methods/R2

(µm) UM MD LinI LogI nNI pNI CM–met CM–PSD FFNN–met FFNN–PSD

0.012 0 0 0 0 1.00 NA 0.04 0.91 0.20 0.99
0.015 0 0 0.66 0.71 0 0.49 0.14 0.85 0.42 1.00
0.021 0 0 0.92 0.91 0.62 0.33 0.1 1.00 0.38 1.00
0.027 0 0 0.91 0.93 0.69 0.90 0.11 1.00 0.41 1.00
0.037 0 0 0.97 0.97 0.91 0.85 0.12 1.00 0.46 1.00
0.049 0 0 0.98 0.99 0.80 0.80 0.13 1.00 0.48 1.00
0.066 0.14 0 0.96 0.97 0.66 0.81 0.14 1.00 0.46 1.00
0.088 0.31 0 0.97 0.98 0.60 0.64 0.12 1.00 0.52 1.00
0.12 0.41 0 0.92 0.96 0 0 0.07 1.00 0.52 1.00
0.15 0 0 0 0.20 0 0 0.03 0.97 0.29 0.99
0.21 0 0 0 0 0 0 0.24 0.65 0.55 0.91
0.37 0 0 0 0 0 0 0.04 0.9 0.43 0.99
0.49 0 0 0 0 0 0 0.06 0.97 0.50 1.00
0.66 0 0 0 0 0 0 0.07 0.96 0.58 1.00
0.88 0 0 0.20 0.19 0.23 0.11 0.09 0.76 0.62 1.00
1.17 0 0 0 0 0 0.99 0.04 1.00 0.53 1.00
1.56 0 0 0.97 0.97 0.99 0.85 0.04 1.00 0.54 1.00
2.08 0 0 0.84 0.83 0.91 0.67 0.03 1.00 0.49 1.00
2.77 0 0 0.90 0.96 0 0.60 0.02 1.00 0.44 1.00
3.70 0 0 0.76 0.87 0 0.62 0.02 1.00 0.41 1.00
4.92 0 0 0.85 0.94 0 0.41 0.02 1.00 0.44 1.00
6.56 0 0 0.27 0.55 0 0.57 0.03 0.99 0.42 0.99
8.75 0 0 0 0 NA 1.00 0.05 0.97 0.39 0.98

Overall 0.05 0 0.92 0.92 0.82 0.82 0.52 0.99 0.67 1.00

tern of the performance for weekends does not appear to be
as distinctive as on workdays. This shows the overestimation
not only for UFPs in the early morning around 03:00, but
also at the upper edge larger than 5 µm from 03:00 to 16:00.
From 19:00 until midnight, an underestimation is found at all
size bins. For approach 2 (FFNN–PSD), except for the over-
lapping size bin, which has a significant overestimation from
18:00 to 07:00, most size bins show a negligible 10 % uncer-
tainty during both workdays and weekends. The performance
over weekends shows relatively stronger uncertainties. The
smallest bin at 0.01 µm is slightly understated for all hours of
a day. Other than these, FFNN–PSD manages to detect the
diurnal pattern for all size bins fairly well.

Figure 11 further shows the monthly deviation in estima-
tion performance. For approach 1 (FFNN–met), higher R2

is found in November, February and April in the range of
SMPS. Other than that, there is no observable variation in R2

in approach 1 (FFNN–met). For approach 2 (FFNN–PSD),
except in January when all the rows were eliminated be-

cause of the lack of wind information, performance in the
other months is steady for most size ranges. At 0.21 µm,
the difference in estimation performance varies across differ-
ent months. R2 values in winter months are 0.76, 0.36 and
0.61, in November, December and February, respectively,
while R2 exceeds 0.9 in other months. This unexpectedly
low R2 only occurs in the winter months at the overlapping
size range. It can be speculated that the measurements by the
two instruments differ in a larger extent during winter. This
might be attributed to sensor drift and a number of interfer-
ence artefacts for particle measurements associated with sev-
eral factors, such as relative humidity, temperature and other
gas-phase species, which were demonstrated by several re-
searchers (e.g. Lewis et al., 2016; Popoola et al., 2016). An-
other reason for the difference in estimation performance can
be that the percentages of complete rows in these months are
lower than the other months. The drop in data points might
influence the estimation performance. Especially in June, at
the few size bins close to the larger edge, R2 ranges from 0.9
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Figure 9. Scatter plots showing the estimated particle concentration (y axis, in cm−3) against the in situ-measured particle concentration
(x axis, in cm−3). (a–f) Univariate methods including unconditional mean (UM), median (MD), linear interpolation (LinI), logarithmic
interpolation (LogI), next-neighbour interpolation (nNI) and previous-neighbour interpolation (pNI), respectively, in dark grey dots. (g–
h) Multivariate methods including conditional mean by regression of meteorological parameters and other particle size number concentrations
as inputs (CM–met and CM–PSD, respectively) in light grey dots. (i–j) The proposed feed-forward neural network with meteorological
parameters and other particle size number concentrations as inputs (FFNN–met and FFNN–PSD, respectively) in red dots. The black solid
line is the 1 : 1 line, which gives a reference of perfect estimation. The coefficient of determination (R2) and the normalised root-mean-square
error (NRMSE) of each method for all particle size bins are shown on the corresponding subplots.

Figure 10. Heat map showing the hourly median relative particle number concentration of the approach with (a) meteorological parameters
(approach 1, FFNN–met) and (b) particle size distribution (approach 2, FFNN–PSD) as inputs across different hours of a day (i) on workdays
and (ii) on weekends. The relative particle number concentration is defined as the estimated concentration with respect to the measured
concentration. Red colour shows overestimation while blue shows underestimation.
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Table 4. Table showing the comparison of different estimation methods, including unconditional mean (UM, column 2), median (MD, col-
umn 3), linear interpolation (LinI, column 4), logarithmic interpolation (LogI, column 5), next-neighbour interpolation (nNI, column 6),
previous-neighbour interpolation (pNI, column 7), and conditional mean by regression of meteorological parameters and other particle size
number concentrations as inputs (CM–met and CM–PSD, columns 8 and 9, respectively) and the feed-forward neural network with meteo-
rological parameters and other particle size number concentrations as inputs (FFNN–met and FFNN–PSD, columns 10 and 11, respectively).
The normalised root-mean-square error (NRMSE) of each method is listed for different size bins on each row. NA means the data are not
available. The last row concludes the overall evaluation metrics.

Particle size Methods/NRMSE

(µm) UM MD LinI LogI nNI pNI CM–met CM–PSD FFNN–met FFNN–PSD

0.012 0.84 1.24 1.62 1.73 NA 1.62 0.74 0.23 0.69 0.11
0.015 0.92 1.26 0.45 0.42 0.79 0.55 0.72 0.30 0.59 0.03
0.021 0.91 1.24 0.21 0.22 0.46 0.61 0.70 0.02 0.58 0.01
0.027 1.04 1.28 0.24 0.22 0.46 0.25 0.77 0 0.62 0
0.037 1.08 1.34 0.15 0.15 0.27 0.35 0.85 0 0.66 0
0.049 1.09 1.43 0.13 0.12 0.46 0.46 0.95 0 0.74 0
0.066 1.04 1.50 0.23 0.18 0.66 0.49 1.04 0.01 0.83 0.01
0.088 0.84 1.42 0.16 0.13 0.65 0.61 0.96 0.02 0.71 0.02
0.12 0.59 1.25 0.22 0.16 0.86 0.80 0.74 0.03 0.54 0.02
0.15 1.59 1.13 0.66 0.53 1.64 0.96 0.58 0.10 0.49 0.05
0.21 11.6 1.61 3.7 3.24 4.93 1.53 1.26 0.85 0.71 0.31
0.37 23.8 1.42 1.35 1.12 3.12 1.06 0.70 0.22 0.54 0.07
0.49 185 14.4 4.16 3.53 7.98 1.00 0.83 0.15 0.61 0.04
0.66 672 54.5 2.42 2.32 3.62 2.79 0.82 0.17 0.56 0.03
0.88 485 39.4 2.06 2.07 2.02 2.18 2.20 1.12 1.43 0.04
1.17 1750 143 4.45 3.88 7.84 0.11 1.16 0.07 0.81 0.03
1.56 1750 143 0.19 0.22 0.11 0.46 1.16 0.05 0.81 0.03
2.08 1510 124 0.54 0.57 0.40 0.78 1.34 0.04 0.97 0.03
2.77 2880 236 0.47 0.30 1.48 0.92 1.43 0.04 1.09 0.04
3.70 5750 472 0.69 0.50 1.83 0.86 1.38 0.05 1.07 0.05
4.92 11 000 902 0.51 0.34 1.64 1.02 1.32 0.09 1.00 0.07
6.56 27 100 2220 1.09 0.86 2.51 0.83 1.26 0.12 0.97 0.13
8.75 52 600 4320 4.95 3.33 1.62 NA 1.2 0.21 0.95 0.20

Overall 1.95 2.23 0.58 0.57 0.88 0.88 1.39 0.17 1.13 0.07

Figure 11. Heat map showing the coefficient of determination (R2) of the approach with (a) meteorological parameters (approach 1, FFNN–
met) and (b) particle size distribution (approach 2, FFNN–PSD) as inputs for different months at different size bins. Darker colour represents
a higher R2.
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to 0.7. Besides that, some low R2 values can be also found
in individual months at both edges of the size range, which
does not appear to show any patterns.

In short, the estimation ability for the lower edge (0.01<
Dp < 0.03 µm) is found to be worse in both approaches. The
performance of the FFNN method in the mid-range (0.15<
Dp < 0.5 µm) and upper edge (6<Dp < 10 µm) is relatively
worse for the approach with other fractionated size bins as
input variables according to the aforementioned statistical
performance indicators. All statistical estimation simulations
are based on the previous history of relationships between
the inputs and outputs. As a result, the estimation simula-
tions for different size ranges have significantly unique con-
nections. The approach by meteorological parameters con-
siders only six predictor variables so the accuracy is lower
than FFNN–PSD. It might not seem surprising that the devi-
ations between the measured and estimated size distribution
were not substantial (R2 > 0.97, NRMSE< 0.25) because
FFNN–PSD takes 22 other size bins as predictor variables.
This, nevertheless, gives a clue that the proposed FFNN
method can provide adequate solutions to particle size distri-
bution prognostic demands. Furthermore, this FFNN method
outperforms the other selected widely used methods in terms
of its accuracy and reliability. The estimation of certain bin
size by other bin sizes can be thought of as replacing neg-
ative values in the raw data by particle sizers, including the
SMPS which we used in this paper. Instead of eliminating
the negative values, they can be estimated by other size bins
with a high accuracy in order to keep the symmetry in data
error distribution (Viskari et al., 2012).

5 Conclusion

This paper presents the evaluation of imputation methods by
means of a feed-forward neural network (FFNN) for estimat-
ing particle number concentration at various particulate size
bins. Input predictors include a merged particle size distribu-
tion, by a scanning mobility particle sizer (NanoSMPS) and
an optical particle sizer (OPS), which covers the size range
from 0.01 to 10, and meteorological parameters, including
temperature (T ), relatively humidity (RH), wind speed (WS),
wind direction (WD) and ambient pressure (P ). The mea-
surements were collected in an urban background region
in Amman, the capital of Jordan, in the period of 1 Au-
gust 2016–31 July 2017. The total number concentration
(1.70± 1.26× 104 cm−3) in the measurement period shows
moderate seasonal variability owing to the more suppressed
boundary layer (Teinilä et al., 2019) and the elevated wood
combustion (Hellén et al., 2017) in wintertime. Similar to
many other urban environments, the diurnal pattern observed
in this study reflects the traffic activity, which has a more pro-
nounced pattern during workdays (Hussein et al., 2019). The
amount of coarse particles is negligible in terms of number

concentration, but dust episodes were found often in spring
during the measurement period.

We proposed three approaches with different input vari-
ables: (1) only meteorological parameters, (2) only number
concentration at the remaining size bins and (3) both of the
above. We performed an optimisation to obtain the optimal
configuration of the FFNN methods, which are two layers
with 10–15 neurons, balancing the accuracy and the comput-
ing resources. The 5 min averaged meteorological parame-
ters give a varying number concentration estimation for var-
ious size bins (R2

= 0.22–0.58), which is outperformed by
hourly and daily averaged data (R2

= 0.66–0.77), as demon-
strated by Zaidan et al. (2020). The methods using the num-
ber concentration at the remaining size bins, both with or
without meteorological data, show the expected perfect per-
formance (R2 > 0.97). We also compared the FFNN meth-
ods with other commonly used methods, and the results high-
light the high accuracy and reliability of methods by means
of neural networks.

Relatively poor performance of the proposed FFNN meth-
ods is found in three regions. At the lower edge (0.01<Dp <

0.02 µm) and the upper edge (6<Dp < 10 µm), the num-
ber of neighbouring size bins is limited, and also the de-
tection efficiency by the corresponding instruments is lower
compared to the other size bins. Another noticeable region
(0.15<Dp < 0.5 µm) is the overlapping section measured
by the two particle sizers, and the reason is because of the
deficiency of the merging algorithm. For all the above ap-
proaches, the poorer performance for smaller particles in the
nucleation mode could be due to the fact that it is more ef-
fectively removed from the atmosphere compared to other
modes (Al-Dabbous et al., 2017). An observable overestima-
tion is also found in the early morning for ultrafine parti-
cles followed by a distinct underestimation before midday.
A larger derivation between the measured and the estimated
number concentration is found in the winter, which might be
caused by sensor drift and interference artefacts (e.g. Lewis
et al., 2016; Popoola et al., 2016). Despite the high number of
input predictors, the good estimation performance provides
an alternative method to fill up the negative values in the size
distribution raw dataset, which often exist due to miscon-
figuration problems. Instead of removing the factually im-
possible data point, this way of replacing negative numbers
can maintain a symmetric distribution of errors (Viskari et
al., 2012) and minimise the uncertainties caused.
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