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Abstract. Low-cost air pollution sensors often fail to at-
tain sufficient performance compared with state-of-the-art
measurement stations, and they typically require expensive
laboratory-based calibration procedures. A repeatedly pro-
posed strategy to overcome these limitations is calibration
through co-location with public measurement stations. Here
we test the idea of using machine learning algorithms for
such calibration tasks using hourly-averaged co-location data
for nitrogen dioxide (NO) and particulate matter of parti-
cle sizes smaller than 10 um (PMjg) at three different lo-
cations in the urban area of London, UK. We compare the
performance of ridge regression, a linear statistical learning
algorithm, to two non-linear algorithms in the form of ran-
dom forest regression (RFR) and Gaussian process regres-
sion (GPR). We further benchmark the performance of all
three machine learning methods relative to the more common
multiple linear regression (MLR). We obtain very good out-
of-sample R? scores (coefficient of determination) > 0.7,
frequently exceeding 0.8, for the machine learning calibrated
low-cost sensors. In contrast, the performance of MLR is
more dependent on random variations in the sensor hardware
and co-located signals, and it is also more sensitive to the
length of the co-location period. We find that, subject to cer-
tain conditions, GPR is typically the best-performing method
in our calibration setting, followed by ridge regression and
RFR. We also highlight several key limitations of the ma-
chine learning methods, which will be crucial to consider in
any co-location calibration. In particular, all methods are fun-
damentally limited in how well they can reproduce pollution

levels that lie outside those encountered at training stage. We
find, however, that the linear ridge regression outperforms
the non-linear methods in extrapolation settings. GPR can
allow for a small degree of extrapolation, whereas RFR can
only predict values within the training range. This algorithm-
dependent ability to extrapolate is one of the key limiting
factors when the calibrated sensors are deployed away from
the co-location site itself. Consequently, we find that ridge
regression is often performing as good as or even better than
GPR after sensor relocation. Our results highlight the poten-
tial of co-location approaches paired with machine learning
calibration techniques to reduce costs of air pollution mea-
surements, subject to careful consideration of the co-location
training conditions, the choice of calibration variables and
the features of the calibration algorithm.

1 Introduction

Air pollutants such as nitrogen dioxide (NO;) and particu-
late matter (PM) have harmful impacts on human health, the
ecosystem and public infrastructure (European Environment
Agency, 2019). Moving towards reliable and high-density
air pollution measurements is consequently of prime impor-
tance. The development of new low-cost sensors, hand in
hand with novel sensor calibration methods, has been at the
forefront of current research efforts in this discipline (e.g.
Mead et al., 2013; Moltchanov et al., 2015; Lewis et al.,
2018; Zimmerman et al., 2018; Sadighi et al., 2018; Tanzer
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et al., 2019; Eilenberg et al., 2020; Sayahi et al., 2020). Here
we present insights from a case study using low-cost air pol-
lution sensors for measurements at three separate locations
in the urban area of London, UK. Our focus is on testing
the advantages and disadvantages of machine learning cali-
bration techniques for low-cost NO, and PM g sensors. The
principal idea is to calibrate the sensors through co-location
with established high-performance air pollution measure-
ment stations (Fig. 1). Such calibration techniques, if suc-
cessful, could complement more expensive laboratory-based
calibration approaches, thereby further reducing the costs of
the overall measurement process (e.g. Spinelle et al., 2015;
Zimmerman et al., 2018; Munir et al., 2019). For the sen-
sor calibration, we compare three machine learning regres-
sion techniques in the form of ridge regression, random for-
est regression (RFR) and Gaussian process regression (GPR),
and we contrast the results to those obtained with standard
multiple linear regression (MLR). RFR has been studied in
the context of NO; co-location calibrations before, with very
promising results (Zimmerman et al., 2018). Equally for NO,
(but not for PM ) different linear versions of GPR have been
tested by De Vito et al. (2018) and Malings et al. (2019).
To the best of our knowledge, we are the first to test ridge
regression both for NO, and PMjo and GPR for PMjy. Fi-
nally, we also investigate well-known issues concerning site
transferability (Masson et al., 2015; Fang and Bate, 2017,
Hagan et al., 2018; Malings et al., 2019), i.e. if a calibra-
tion through co-location at one location gives rise to reliable
measurements at a different location.

A key motivation for our study is the potential of low-
cost sensors (costs of the order of GBP 10 to GBP 100) to
transform the level of availability of air pollution measure-
ments. Installation costs of state-of-the-art measurement sta-
tions typically range between GBP 10 000 and GBP 100 000
per site, and those already high costs are further exacer-
bated through subsequent maintenance and calibration re-
quirements (Mead et al., 2013; Lewis et al., 2016; Castell
et al., 2017). Lower measurement costs would allow for the
deployment of denser air pollution sensor networks and for
portable devices possibly even at the exposure level of indi-
viduals (Mead et al., 2013). A central complication is the sen-
sitivity of sensors to environmental conditions such as tem-
perature and relative humidity (Masson et al., 2015; Spinelle
et al., 2015; Jiao et al., 2016; Lewis et al., 2016; Spinelle
et al., 2017; Castell et al., 2017) or to cross-sensitivities with
other gases (e.g. nitrogen oxide), which can significantly im-
pede their measurement performance (Mead et al., 2013;
Popoola et al., 2016; Rai and Kumar, 2018; Lewis et al.,
2018; Liu et al., 2019). Low-cost sensors thus require, in
the same way as many other measurement devices, sophis-
ticated calibration techniques. Machine learning regressions
have seen increased use in this context due to their ability
to calibrate for many simultaneous, non-linear dependencies.
These dependencies, in turn, can for example be assessed in
relatively expensive laboratory settings. However, even lab-

Atmos. Meas. Tech., 14, 5637-5655, 2021

P. Nowack et al.: Machine learning calibration

oratory calibrations do not always perform well in the field
(Castell et al., 2017; Zimmerman et al., 2018). Here, we in-
stead evaluate the performance of low-cost sensor calibra-
tions based on co-location measurements with established
reference stations (e.g. Masson et al., 2015; Spinelle et al.,
2015; Esposito et al., 2016; Lewis et al., 2016; Cross et al.,
2017; Hagan et al., 2018; Casey and Hannigan, 2018; Casey
et al., 2019; De Vito et al., 2018, 2019; Zimmerman et al.,
2018; Casey et al., 2019; Munir et al., 2019; Malings et al.,
2019, 2020). If sufficiently successful, these methods could
help to substantially reduce the overall costs and simplify the
process of calibrating low-cost sensors.

Another challenge in relation to co-location calibration
procedures is “site transferability”. This term refers to the
measurement performance implications of moving a cali-
brated device from one location (where the calibration was
conducted) to another location. Some significant perfor-
mance losses after site transfers have been reported (e.g.
Fang and Bate, 2017; Casey and Hannigan, 2018; Hagler
et al., 2018; Vikram et al., 2019), with reasons typically not
being straightforward to assign. A key driver might be that
often devices are calibrated in an environment not repre-
sentative of situations found in later measurement locations.
As we discuss in greater detail below, for machine-learning-
based calibrations this behaviour can, to a degree, be fairly
intuitively explained by the fact that they do not tend to per-
form well when extrapolating beyond their training domain.
As we will show, this issue can easily occur in situations
where already calibrated sensors have to measure pollution
levels well beyond the range of values encountered in their
training environment.

We highlight that, in particular concerning the perfor-
mance of low-cost PMj¢ sensors, a huge gap in the scien-
tific literature has been identified regarding issues related to
co-location calibrations (Rai and Kumar, 2018). We there-
fore expect that our study will provide novel insights into
the effects of different calibration techniques on sensor per-
formances, and a data sample that other measurement stud-
ies from academia and industry can compare their results
against. We will mainly use the R? score (coefficient of de-
termination) and root mean squared error (RMSE) as metrics
to evaluate our calibration results, which are widely used and
should thus facilitate intercomparisons. To provide a refer-
ence for calibration results perceived as “good” for PMjo,
we point towards a sensor comparison by Rai and Kumar
(2018), who found that low-cost sensors generally displayed
moderate to excellent linearity (R? > 0.5) across various cal-
ibration settings. The sensors typically perform particularly
well (R? > 0.8) when tested in idealized laboratory condi-
tions. However, their performance is generally lower in field
deployments (see also Lewis et al., 2018). For PM 1, this per-
formance deterioration was, inter alia, attributed to changing
conditions of particle composition, particle sizes and envi-
ronmental factors such as humidity and temperature, which
are thus important factors to account for in our calibrations.
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Figure 1. Sketch of the co-location calibration methodology. We co-locate several low-cost sensors for PM (for various particle sizes)
and NO; with higher-cost reference measurement stations for PM g and NO,. The low-cost sensors also measure relative humidity and
temperature as key environmental variables that can interfere with the sensor signals, and for NO, calibrations, we further include nitrogen
oxide (NO) sensors. We formulate the calibration task as a regression problem in which the low-cost sensor signals and the environmental
variables are the predictors (X ) and the reference station signal the predictand (Y;-), both measured at the same location r. The time resolution
is set to hourly averages to match publicly available reference data. We train separate calibration functions for each NO, and PM ¢ sensor,
and we compare three different machine learning algorithms (ridge, random forest and Gaussian process regressions) with multiple linear
regression in terms of their respective calibration performances. The performance is evaluated on out-of-sample test data, i.e. on data not
used during training. Once trained and cross-validated, we use these calibration functions to predict PM g and NO, concentrations given
new low-cost measurements X, either measured at the same location r or at a new location r’. The latter location is to test the feasibility and

impacts of changing measurement sites post-calibration. The time series (right) are for illustration purposes only.

The structure of our paper is as follows. In Sect. 2, we
introduce the low-cost sensor hardware used, the reference
measurement sources, the three measurement site character-
istics and measurement periods, the four calibration regres-
sion methods, and the calibration settings (e.g. measured sig-
nals used) for NO; and PMjg. In Sect. 3, we first introduce
multi-sensor calibration results for NO» at a single site, de-
pending on the sensor signals included in the calibrations and
the number of training samples used to train the regressions.
This is followed by a discussion of single-site PM calibra-
tion results before we test the feasibility and challenges of
site transfers. We discuss our results and draw conclusions in
Sect. 4.

2 Methods and data
2.1 Sensor hardware

Depending on the measurement location, we deployed one
set or several sets of air pollution sensors, and we refer to
each set (provided by London-based AirPublic Ltd) as a
multi-sensor “node”. Each of these nodes consists of multiple
electrochemical and metal oxide sensors for PM and NO,, as
well as sensors for environmental quantities and other chemi-
cal species known for potential interference with their sensor
signals (required for calibration). Each node thus allows for
simultaneous measurement of multiple air pollutants, but we
will focus on individual calibrations for NO;, and PM | here,
because these species were of particular interest to our own
measurement campaigns. We note that other species such as
PMj; 5 are also included in the measured set of variables. We
will make our low-cost sensor data available (see “Data avail-
ability” section), which will allow other users to test simi-
lar calibration procedures for other variables of interest (e.g.
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PM; 5, ozone). A caveat is that appropriate co-location data
from higher-cost reference measurements might not always
be available.

For NO,, we incorporated three different types of sensors
in our set-up for which purchasing prices differed by an or-
der of magnitude. One aspect of our study will therefore be
to evaluate the performance gained by using the more expen-
sive (but still relatively low-cost) sensor types. Of course, our
results will only be validated in the context of our specific
calibration method so that more general conclusions have to
be drawn with care.

Each multi-sensor node contained the following (i.e. all
nodes consist of the same types of individual sensors):

— Two MiCS-2714 NO; sensors produced by SGX Sen-
sortech. These are the cheapest measurement devices
deployed in our set with market costs of approximately
GBP 5 per sensor.

— Two Plantower PMS5003T series PM sensors (PMSs),
which measure particles of various size categories in-
cluding PMj( based on laser scattering using Mie the-
ory. We note that particle composition does play a role
in any PM calibration process as, for example, organic
materials tend to absorb a higher proportion of inci-
dent light as compared to inorganic materials (Rai and
Kumar, 2018). Below we therefore effectively make
the assumption that we measure and calibrate within
composition-wise similar environments. By taking into
account various particle size measures in the calibra-
tion, we likely do indirectly account for some aspects of
composition though, because to a degree, particle sizes
might be correlated with particle composition. Each
PMS device also contains a temperature and relative hu-
midity sensor, and these variables were also included in
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our calibrations. The minimum distinguishable particle
diameter for the PMS devices is 0.3 um. The market cost
is GBP 20 for one sensor.

— An NO2-A43F four-electrode NO; sensor produced by
AlphaSense (market cost GBP 45).

— An NO2-B43F four-electrode NO; sensor produced by
AlphaSense (market cost GBP 45).

— An NO-A4 four-electrode nitric oxide sensor produced
by AlphaSense to calibrate against the sometimes sig-
nificant interference of NO; signals with NO (market
cost GBP 45).

— An OX-A431 four-electrode oxidizing gas sensor mea-
suring a combined signal from ozone and NO; produced
by AlphaSense. We used this signal to calibrate against
possible interference of electrochemical NO, measure-
ments by ozone (market cost GBP 45).

— A separate temperature sensor built into the AlphaSense
set. It is needed to monitor the warm-up phase of the
Sensors.

In normal operation mode, each node provided measure-
ments around every 30s. These signals were time-averaged
to hourly values for calibration against hourly public refer-
ence measurements.

2.2 Measurement sites and reference monitors

We conducted measurements at three sites in the Greater
London area during distinct multi-week periods (Table 1).
Two of the sites are located in the London Borough of Croy-
don, which we label CR7 and CRY according to their UK
postcodes. The third site is located in the car park of the
company AlphaSense in Essex, hereafter referred to as site
“CarPark” (Fig. 2a). At CR7, the sensor nodes were located
kerbside on a medium busy street with two lanes in either
direction. At CR9, the nodes were located on a traffic island
in the middle of a very busy road with three lanes in either
direction (Fig. 2b). For the two Croydon sites, reference mea-
surements were obtained from co-located, publicly available
measurements of London’s Air Quality Network (LAQN;
https://www.londonair.org.uk, last access: 30 April 2020). In
the two locations in question, the LAQN used chemilumi-
nescence detectors for NO, and Thermo Scientific tapered
element oscillating microbalance (TEOM) continuous ambi-
ent particulate monitors, with the Volatile Correction Model
(Green et al., 2009) for PMy measurements at CR9. For
the CarPark site, PM o measurements were conducted with
a Palas Fidas optical particle counter AFL-WO07A. These
CarPark reference measurements were provided at 15 min in-
tervals. For consistency, these measurements were averaged
to hourly values to match the measurement frequency of pub-
licly available data at the other two sites.
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2.3 Co-location set-up and calibration variables

In total, we co-located up to 30 nodes, labelled by identi-
fiers (IDs) 1 to 30. For our NO, measurements, we consid-
ered the following 15 sensor signals per node to be important
for the calibration process: the NO sensor (plus its baseline
signal to remove noise), the NO, + O3 sensor (plus base-
line), the two intermediate cost NO, sensors (NO2-A43F,
NO2-B43F) plus their respective baselines, the two cheaper
MiCS sensors, three different temperature sensors, and two
relative humidity sensors. All 15 signals can be used for cali-
bration against the reference measurements obtained with the
co-located higher-cost measurement devices. We discuss the
relative importance of the different signals, e.g. the relative
importance of the different NO, sensors or the influence of
temperature and humidity in Sect. 3. For the PMjq calibra-
tions, we used two devices of the same type of low-cost PM
sensor, resulting in 2x 10 different particle measures used in
the PM calibrations. In addition, we included the respective
sensor signals for temperature and relative humidity, provid-
ing us with in total 24 calibration signals for PMyj.

2.4 Calibration algorithms

We evaluate four regression calibration strategies for low-
cost NOy and PMjg devices, by means of co-location of
the devices with the aforementioned air quality measurement
reference stations. The four different regression methods —
which are multiple linear regression (MLR), ridge regres-
sion, random forest regression (RFR) and Gaussian process
regression (GPR) — are introduced in detail in the following
subsections. As we will show in Sect. 3, the relative skill of
the calibration methods depends on the chemical species to
be measured, sample size available for calibration, and cer-
tain user preferences. We will additionally consider the issue
of site transferability for sensor node 19, including its depen-
dence on the calibration algorithm used. We note that we do
not include the manufacturer calibration of the low-cost sen-
sors in our comparison here mainly because we found that
this method, which is a simple linear regression based on cer-
tain laboratory measurement relationships, provided us with
negative R? scores when compared with reference sensors in
the field. This result is in line with other studies that reported
differences between sensor performances in the field and un-
der laboratory calibrations (see e.g. Mead et al., 2013; Lewis
et al., 2018; Rai and Kumar, 2018).

2.4.1 Ridge and multiple linear regression

Ridge regression is a linear least squares regression aug-
mented by L, regularization to address the bias-variance
trade-off (Hoerl and Kennard, 1970; James et al., 2013;
Nowack et al., 2018, 2019). Using statistical cross-validation,
the regression fit is optimized by minimizing the cost func-
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Table 1. Overview of the measurement sites and the corresponding maximum co-location periods, which vary for each specific sensor
node and co-location site due to practical aspects such as sensor availability and random occurrences of sensor failures. Note that reference
measurements for NO, and PMjq are only available for two of the three sites each. Sensors that were co-located for at least 820 active
measurement hours are identified by their sensor IDs in the last column. Further note that the only sensor used to measure at multiple sites is
sensor 19, which is therefore used to test the feasibility of site transfers.

Site Max co-location period Reference sensors Low-cost sensor IDs
CR7 22 October—5 December 2018 NO; (London Air Quality Network) 3-7,11, 13-24,27,28
CR9 24 September 2019-19 January 2020 NO; and PM( (London Air Quality Network) 19

CarPark 29 January-26 April 2019 PM | (Palas Fidas optical particle counter AFL-W07A) 19, 25, 26

‘_'Jl__‘lu__jﬁb
: ‘J;LM&;

Figure 2. Examples of the co-location set-up of the AirPublic low-cost sensor nodes with reference measurement stations at sites (a) CarPark
and (b) CRO.

tion signals from the low-cost sensors, representing signals for
) the pollutant itself as well as signals recorded for environ-

P 2 mental variables (temperature, humidity) and other chemical

TRidge = ; <y s Z Cjxit ) o Z € @ species that might cause interference with the signal in ques-

tion. The cost function (Eq. 1) determines the optimization
goal. Its first term is the ordinary least squares regression er-

over n hourly reference measurements of pollutant y (i.e. )
ror, and the second term puts a penalty on too large regression

NO;, PMy); x;  represents p non-calibrated measurement
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coefficients and thus avoids overfitting in high-dimensional
settings. Smaller (larger) values of the regularization coeffi-
cient o put weaker (stronger) constraints on the size of the co-
efficients, thereby favouring overfitting (high bias). We find
the value for o through fivefold cross-validation; i.e. each
data set is split into five ordered time slices and « optimized
by fitting regressions for large ranges of « values on four of
the slices at a time, and then the best « is found by evaluating
the out-of-sample prediction error on each corresponding re-
maining slice using the R? score. Each slice is used once for
the evaluation step. Before the training procedure, all signals
are scaled to unit variance and zero mean so as to ensure that
all signals are weighted equally in the regression optimiza-
tion, which we explain in more detail at the end of this sec-
tion. Through the constraint on the regression slopes, ridge
regression can handle settings with many predictors, here
calibration variables, even in the context of strong collinear-
ity in those predictors (Dormann et al., 2013; Nowack et al.,
2018, 2019). The resulting linear regression function fRidge,

P
() = fridge =co+ Y_ cjx;(t), )

=1

provides estimates for pollutant mixing ratios y at any time
t, i.e. a calibrated low-cost sensor signal, based on new sen-
sor readings x;(f). fridge represents a calibration function
because it is not just based on a regression of the pollutant
signal itself against the reference but also on multiple simul-
taneous predictors, including those representing known inter-
fering factors.

Multiple linear regression (MLR) is the simple non-
regularized case of ridge regression, i.e. where « is set to nil.
MLR is therefore a good benchmark to evaluate the impor-
tance of regularization and, when compared to RFR and GPR
below, of non-linearity in the relationships. As MLR does
not regularize its coefficients, it is expected to increasingly
lose performance in settings with many (non-linear) calibra-
tion relationships. This loss of MLR performance in high-
dimensional regression spaces is related to the “curse of di-
mensionality” in machine learning, which expresses the ob-
servation that one requires an exponentially increasing num-
ber of samples to constrain the regression coefficients as the
number of predictors is increased linearly (Bishop, 2006).
We will illustrate this phenomenon for the case of our NO»
sensor calibrations below.

Finally, we note that for ridge regression, as also for GPR
described below, the predictors x; must be normalized to
a common range. For ridge, this is straightforward to un-
derstand as the regression coefficients, once the predictors
are normalized, provide direct measures of the importance
of each predictor for the overall pollutant signal. If not nor-
malized, the coefficients will additionally weight the relative
magnitude of predictor signals, which can differ by orders
of magnitude (e.g. temperature at around 273 K but a mea-
surement signal for a trace gas of the order of 0.5 amplifier

Atmos. Meas. Tech., 14, 5637-5655, 2021

P. Nowack et al.: Machine learning calibration

units). As a result, the predictors would be penalized differ-
ently through the same « in Eq. (1), which could mean that
certain predictors are effectively not considered in the regres-
sions. Here, we normalize all predictors in all regressions to
zero mean and unit standard deviation according to the sam-
ples included in each training data set.

2.4.2 Random forest regression

Random forest regression (RFR) is one of the most widely
used non-linear machine learning algorithms (Breiman and
Friedman, 1997; Breiman, 2001), and it has already found
applications in air pollution sensor calibration as well as in
other aspects of atmospheric chemistry (Keller and Evans,
2019; Nowack et al., 2018, 2019; Sherwen et al., 2019; Zim-
merman et al., 2018; Malings et al., 2019). It follows the idea
of ensemble learning where multiple machine learning mod-
els together make more reliable predictions than the individ-
ual models. Each RFR object consists of a collection (i.e. en-
semble) of graphical tree models, which split training data by
learning decision rules (Fig. 3). Each of these decision trees
consists of a sequence of nodes, which branch into multi-
ple tree levels until the end of the tree (the “leaf” level) is
reached. Each leaf node contains at least one or several sam-
ples from the training data. The average of these samples is
the prediction of each tree for any measurement of predic-
tors x defining a new traversion of the tree to the given leaf
node. In contrast to ridge regression, there is more than one
tunable hyperparameter to address overfitting. One of these
hyperparameters is the maximum tree depth, i.e. the maximal
number of levels within each tree, as deeper trees allow for
a more detailed grouping of samples. Similarly, one can set
the minimum number of samples in any leaf node. Once this
minimum number is reached, the node is not further split into
children nodes. Both smaller tree depth and a greater number
of minimum samples in leaf nodes mitigate overfitting to the
training data. Other important settings are the optimization
function used to define the decision rules and, for example,
the number of estimators included in an ensemble, i.e. the
number of trees in the forest.

The RFR training process tunes the parameter thresholds
for each binary decision tree node. By introducing random-
ness, e.g. by selecting a subset of samples from the train-
ing data set (bootstrapping), each tree provides a somewhat
different data representation. This random element is used
to obtain a better, averaged prediction over all trees in the
ensemble, which is less prone to overfitting than individual
regression trees. We here cross-validated the scikit-learn im-
plementation of RFR (Pedregosa et al., 2011) over problem-
specific ranges for the minimum number of samples required
to define a split and the minimum number of samples to de-
fine a leaf node. The implementation uses an optimized ver-
sion of the Classification And Regression Tree (CART) algo-
rithm, which constructs binary decision trees using the pre-
dictor and threshold that yields the largest information gain
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Predictors x;at time t

Tree 1

Tree predictions

Yia
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Yix

Y, Random Forest prediction

Figure 3. Sketch of a random forest regressor. Each random forest consists of an ensemble of K trees. For visualization purposes, the trees
shown here have only four levels of equal depth, but more complex structures can be learnt. The lowest level contains the leaf nodes. Note that
in real examples, branches can have different depths; i.e. the leaf nodes can occur at different levels of the tree hierarchy; see, for example,
Fig. 2 in Zimmerman et al. (2018). Once the decision rules for each node and tree are learnt from training data, each tree can be presented
with new sensor readings x at a time ¢ to predict pollutant concentration y;. The decision rules depend, inter alia, on the tree structure and
random sampling through bootstrapping, which we optimize through fivefold cross-validation. Based on the values x;, each set of predictors
follows routes through the trees. The training samples collected in the corresponding leaf node define the tree-specific prediction for y. By
averaging K tree-wise predictions, we combat tree-specific overfitting and finally obtain a more regularized random forest prediction y;.

for a split at each node. The mean squared error of samples
relative to their node prediction (mean) serves as optimiza-
tion criterion so as to measure the quality of a split for a given
possible threshold during training. Here we consider all fea-
tures when defining any new best split of the data at nodes.
By increasing the number of trees in the ensemble, the RFR
generalization error converges towards a lower limit. We here
set the number of trees in all regression tasks to 200 as a
compromise between model convergence and computational
complexity (Breiman, 2001).

2.4.3 Gaussian process regression

Gaussian process regression (GPR) is a widely used
Bayesian machine learning method to estimate non-linear
dependencies (Rasmussen and Williams, 2006; Pedregosa
et al., 2011; Lewis et al., 2016; De Vito et al., 2018; Runge
et al., 2019; Malings et al., 2019; Nowack et al., 2020; Mans-
field et al., 2020). In GPR, the aim is to find a distribution
over possible functions that fit the data. We first define a prior
distribution of possible functions that is updated according
to the data using Bayes’ theorem, which provides us with a
posterior distribution over possible functions. The prior dis-
tribution is a Gaussian process (GP),
Y~GP(,u,k(x,~,xj)), 3)
with mean pu and a covariance function or kernel k£, which
describes the covariance between any two points x; and x;.
We here “standard-scale” (i.e. centre) our data so that u =0,
meaning our GP is entirely defined by the covariance func-
tion. Being a kernel method, the performance of GPR de-
pends strongly on the kernel (covariance function) design as
it determines the shape of the prior and posterior distributions
of the Gaussian process and in particular the characteristics
of the function we are able to learn from the data. Owing
to the time-varying, continuous but also oscillating nature of
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air pollution sensor signals, we here use a sum kernel of a
radial basis function (RBF) kernel, a white noise kernel, a
Matérn kernel and a “Dot-Product” kernel. The RBF kernel,
also known as squared exponential kernel, is defined as

—d(x;,x;)?
—(;,zx’) ) )

k(xi,x;) =exp (
It is parameterized by a length scale [ > 0, and d is the Eu-
clidean distance. The length scale determines the scale of
variation in the data, and it is learnt during the Bayesian
update; i.e. for a shorter length scale the function is more
flexible. However, it also determines the extrapolation scale
of the function, meaning that any extrapolation beyond the
length scale is probably unreliable. RBF kernels are partic-
ularly helpful to model smooth variations in the data. The
Matérn kernel is defined by

k(xi,x;) = ﬁ(@

(v)2 l

(@‘Kﬂﬂﬁ)) ;

v
d(xi,xj)> K,

®)

where K, is a modified Bessel function and I" the gamma
function (Pedregosa et al., 2011). We here choose v = 1.5
as the default setting for the kernel, which determines the
smoothness of the function. Overall, the Matérn kernel is
useful to model less-smooth variations in the data than the
RBF kernel. The Dot-Product kernel is parameterized by a

hyperparameter o2,

(6)

2
k(xi,xj) = o0y +x; - xj,

and we found that adding this kernel to the sum of kernels
improved our results empirically. The white noise kernel sim-
ply allows for a noise level on the data as independently
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and identically normally distributed, specified through a vari-
ance parameter. This parameter is similar to (and will interact
with) the o noise level described below, which is, however,
tested systematically through cross-validation.

The Python scikit-learn implementation of the algorithm
used here is based on Algorithm 2.1 of Rasmussen and
Williams (2006). We optimized the kernel parameters in the
same way as for the other regression methods through five-
fold cross-validation, and we subject them to the noise « pa-
rameter of the scikit-learn GPR regression packages (Pe-
dregosa et al., 2011). This parameter is not to be confused
with the o regularization parameter for ridge regression and
takes the role of smoothing the kernel function so as to ad-
dress overfitting. It represents a value added to the diagonal
of the kernel matrix during the fitting process with larger o
values corresponding to greater noise level in the measure-
ments of the outputs. However, we note that there is some
equivalency with the o parameter in ridge as the method
is effectively a form of Tikhonov regularization that is also
used in ridge regression (Pedregosa et al., 2011). Both inputs
and outputs to the GPR function were standard-scaled to zero
mean and unit variance based on the training data. For each
GPR optimization, we chose 25 optimizer restarts with dif-
ferent initializations of the kernel parameters, which is nec-
essary to approximate the best possible solution to maximize
the log-marginal likelihood of the fit. More background on
GPR can be found in Rasmussen and Williams (2006).

2.5 Cross-validation

For all regression models, we performed fivefold cross-
validation where the data are first split into training and test
sets, keeping samples ordered by time. The training data are
afterwards divided into five consecutive subsets (folds) of
equal length. If the training data are not divisible by five, with
a residual number of samples n, then the first n folds will
contain one surplus sample compared to the remaining folds.
Each fold is used once as a validation set, while the remain-
ing four folds are used for training. The best set of model hy-
perparameters or kernel functions is found according to the
average generalization error on these validation sets. After
the best cross-validated hyperparameters are found, we refit
the regression models on the entire training data using these
hyperparameter settings (e.g. the « value for which we found
the best out-of-sample performance for ridge regression).

3 Results

3.1 NO; sensor calibration

The skill of a sensor calibration function is expected to in-
crease with sample size, i.e. the number of measurements
used in the calibration process, but will also depend on as-
pects of the sampling environment. For co-location measure-
ments, there will be time-dependent fluctuations in the value
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ranges encountered for the predictors (e.g. low-cost sensor
signals, humidity, temperature) and predictands (reference
NO,, PMjg). The calibration range in turn affects the per-
formance of the calibration function: if faced with values out-
side its training range, the function effectively has to perform
an extrapolation rather than interpolation, i.e. the function is
not well constrained outside its training domain. This lim-
itation is particularly critical for non-linear machine learn-
ing functions (Hagan et al., 2018; Nowack et al., 2018; Zim-
merman et al., 2018). Calibration performance will further
vary for each device, even for sensors of the same make, due
to unavoidable randomness in the sensor production process
(Mead et al., 2013; Castell et al., 2017). To characterize these
various influences, we here test the dependence of three ma-
chine learning calibration methods, as well as of MLR, on
sample size and co-location period for a number of NO; sen-
SOrS.

The NO» co-location data at CR7 is ideally suited for this
purpose. Twenty-one sensor nodes of the same make were
co-located with a LAQN reference during the period Octo-
ber to December 2018 (Table 1). We actually co-located 30
sensor sets at the site, but we excluded any sensors with less
than 820h (samples) after outlier removal from our evalua-
tion. The remaining sensors measure sometimes overlapping
but still distinct time periods, because each sensor measure-
ment varied in its precise co-location start and end time and
was also subject to sensor-specific periods of malfunction. To
detect these malfunctions, and to exclude the corresponding
samples, we removed outliers (evidenced by unrealistically
large measurement signals) at the original time resolution of
our measurements, i.e. < I min and prior to hourly averag-
ing. To detect outliers for removal, we used the median ab-
solute deviation (MAD) method, also known as “robust Z-
Score method”, which identifies outliers for each variable
based on their univariate deviation from their training data
median. Since the median is a robust statistic to outliers it-
self, it is a typically a better measure to identify outliers than,
for example, a deviation from the mean. Accordingly, we ex-
cluded any samples ¢ from the training and test data where
the quantity

|xj,r — Xj]

Mj, =0.6745 7

median{|x.,~,t —)Ej|}

takes on values > 7 for any of the predictors, where x; is
the training data median value of each predictor. To train and
cross-validate our calibration models, we took the first 820 h
measured by each sensor set and split it into 600 h for train-
ing and cross-validation, leaving 220 h to measure the final
skill on an out-of-sample test set. We highlight again that the
test set will cover different time intervals for different sen-
sors, meaning that further randomness is introduced in how
we measure calibration skill. However, the relationships for
each of the four calibration methods are learnt from exactly
the same data and their predictions are also evaluated on the
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same data, meaning that their robustness and performance
can still be directly compared. To measure calibration skill,
we used two standard metrics in the form of the R? score
(coefficient of determination), defined by

Z:'l:]()’i - }A’i)2
Y i =9

and the RMSE between the reference measurements y and
our calibrated signals ¥ on the test sets. For particularly poor
calibration functions, the R? score can take on infinitely neg-
ative values, whereas a value of 1 implies a perfect predic-
tion. An R? score of 0 is equivalent to a function that pre-
dicts the correct long-term time average of the data but no
fluctuations therein.

As discussed in Sect. 2.1, each of AirPublic’s co-location
nodes measures 15 signals (the predictors or inputs) that we
consider relevant for the NO; sensor calibration against the
LAQN reference signal for NO; (the predictand or output).
Each of the 15 inputs will potentially be systematically lin-
early or non-linearly correlated with the output, which al-
lows us to learn a calibration function from the measure-
ment data. Once we know this function, we should be able
to make accurate predictions given new inputs to reproduce
the LAQN reference. As we fit two linear and two non-linear
algorithms, certain transformations of the inputs can be use-
ful to facilitate the learning process. For example, a relation-
ship between an input and the output might be an exponen-
tial dependence in the original time series so that applying
a logarithmic transformation could lead to an approximately
linear relationship that might be easier to learn for a linear re-
gression function. We therefore compared three set-ups with
different sets of predictors:

Ry, =1- (8)

1. using the 15 input time series as provided (label I15);

2. adding logarithmic transformations of the predictors
(130); and

3. adding both logarithmic and exponential transforma-
tions of the predictors (/45).

These are labelled according to their total number of predic-
tors after adding the input transformations, i.e. 15, 30 and
45. The logarithmic and exponential transformations of each
input signal A; (¢) are defined as

Ajog(t) =1og (A; (1) + 1), (92)
A _ Ai(t) 9b
z,exp(t) =exp m s (9b)

where Apax is the maximum value of the predictor time se-
ries, and € = 10™°. The latter prevents possible divisions by
zero, whereas the former prevents overflow values in the
function.
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3.1.1 Comparison of regression models for all
predictors

For a first comparison of the calibration performance of the
four methods, we show R? scores and RMSEs in Table 2,
rows (a) to (c), averaged across all 21 sensor nodes. GPR
emerges as the best-performing method for all three sets of
predictor choices, reaching R? scores better than 0.8 for I3
and I45. This highlights that GPR should from now on be
considered an option in similar sensor calibration exercises.
RFR consistently performs worse than GPR but slightly bet-
ter than ridge regression, which in turn outperforms MLR
in all cases, but the differences are fairly small for /15 and
I39. A notable exception occurs for I45, where the R? score
for MLR suddenly drops abruptly to around 0.2. This sudden
performance loss can be understood from the aforementioned
curse of dimensionality: MLR increasingly overfits the train-
ing data as the number of predictors increases; the existing
sample size becomes too small to constrain the 45 regres-
sion coefficients (Bishop, 2006; Runge et al., 2012). The ma-
chine learning methods can deal with this increase in dimen-
sionality highly effectively and thus perform well through-
out all three cases. Indeed, GPR and ridge regression benefit
slightly from the additional predictor transformations. This
robustness to regression dimensionality is a first central ad-
vantage of machine learning methods in sensor calibrations.
Machine learning methods will be more reliable and will al-
low users to work in a higher-dimensional calibration space
compared to MLR. Having said that, for 15 input features
the performance of all methods appears very similar on first
sight, making MLR seemingly a viable alternative to the ma-
chine learning methods. We note, however, that there is no
apparent disadvantage in using machine learning methods to
prevent potential dangers of overfitting depending on sample
size.

3.1.2 Calibration performance depending on sample
size

We next consider the performance dependence on sample
size of the training data (Fig. 4). The advantages of machine
learning methods become even more evident for smaller
numbers of training samples, even if we consider case (b)
with 30 predictors, i.e. I3, for which we found that MLR
performs fairly well if trained on 600h of data. The mean
R? score and RMSE (ugm~—3) quickly deteriorate for smaller
sample sizes for MLR, in particular below a threshold of less
than 400 h of training data. Ridge regression — its statistical
learning equivalent — always outperforms MLR. Both GPR
and RFR can already perform well at small samples sizes of
less than 300 h. While all methods converge towards similar
performance approaching 600 h of training data (Table 2),
MLR is generally performing worse than ridge regression
and significantly worse that RFR and GPR.
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Table 2. Average NO, sensor skill depending on the selection of predictors. Shown are average R? scores and root mean squared errors (in
brackets; units ug m~3). Results are averaged over the 21 low-cost sensor nodes with 600 hourly training samples each, and the evaluation is
carried out for 220 test samples each. RH stands for relative humidity, and 7' stands for temperature.

Input features MLR Ridge RFR GPR
(@ Ii5 0.74 (6.2) 0.75(6.1)  0.76 (5.9) 0.79 (5.7)
(b) I3 0.73 (6.3) 0.75(6.0)  0.76 (5.9) 0.81(5.4)
() Iss 0.23 (10.6) 0.75(6.0)  0.76 (5.9) 0.80 (5.5)
(d) MiCS, T,RH —-29(28.3) —-0.03(12.6) 0.01(12.2) —-0.12(13.1)
(e) A43F, T,RH 0.25(9.7) 0.22(10.1)  0.44 (8.7) 0.47 (8.4)
(f) B43F, T,RH 0.20 (10.6) 03909.7) 0.43(9.5) 0.49 (9.3)
(g) NO/O3/B43F/T/RH 0.68 (6.9) 0.75(6.2)  0.69 (6.8) 0.77 (6.0)
(h) (g)+ A43F 0.72 (6.4) 0.74(6.2)  0.75(6.1) 0.79 (5.7)
(i) I3p+B43F(r=1) 0.78 (5.8) 0.79 (5.6)  0.78 (5.7) 0.84 (5.0)

Further evidence for advantages of machine learning
methods are provided in Fig. 5, showing boxplots of the
R? score distributions across all 21 sensor nodes depending
on sample size (300, 400, 500, 600 h) and regression method.
While median sensor performances of MLR, ridge and GPR
ultimately become comparable, MLR is typically found to
yield a number of poor-performing calibration functions with
some R? scores well below 0.6 even for 600 training hours.
In contrast, the distributions are far narrower for the machine
learning methods: GPR and RFR do not show a single ex-
treme outlier even after being trained on only 400 h of data,
providing strong indications that the two methods are the
most reliable. After 600 h, one can effectively expect that all
sensors will provide R? scores > 0.7 if trained using GPR.
Overall, this highlights again that machine learning methods
will provide better average skill but are also expected to pro-
vide more reliable calibration functions through co-location
measurements independent of sensor device and the peculiar-
ities of the individual training and test data set.

3.1.3 Calibration performance depending on predictor
choices and NO; device

Tests (a) to (c) listed in Table 2 indicate that the machine
learning regressions for NOj, specifically GPR, can bene-
fit slightly from additional logarithmic predictor transforma-
tions but that adding exponential transformations on top of
these predictors does not further increase predictive skill, as
measured through the R? score and RMSE. Incorporating the
logarithmic transformations, we next tested the importance
of various predictors to achieve a certain level of calibration
skill (rows (d) to (i) in Table 2). This provides two important
insights: firstly, we test the predictive skill if we use the in-
dividual MiCS and AlphaSense NO; sensors separately, i.e.
if individual sensors are performing better than others in our
calibration setting and if we need all sensors to obtain the
best level of calibration performance. Secondly, we test if
other environmental influences such as humidity and temper-
ature significantly affect sensor performance.
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Figure 4. Error metrics as a function of the number of training sam-
ples for I3g, as labelled. The figure highlights the convergence of
both metrics for the different regression methods as the sample size
increases. Note that MLR would not converge for /45, owing to the
curse of dimensionality. This tendency can also be seen here for
small sample sizes, where MLR rapidly loses performance. Results
are averaged over the 21 low-cost sensor nodes with 600 hourly
training samples each, and the evaluation is carried out for 220 test
samples each.

We first tested three set-ups in which we used only the
sensor signals of the two cheaper MiCS devices (d) and then
set-ups with the more expensive AlphaSense A43F (e) and
B43F (f) devices. Using just the MiCS devices, the R? score
drops from 0.75-0.81 for the machine learning methods to
around zero, meaning that hardly any of the variation in the
true NO; reference signal is captured. Using our calibration
approach here, the MiCS would therefore not be sufficient
to achieve a meaningful measurement performance. The pic-
ture looks slightly better, albeit still far from perfect, for the
individual A43F and B43F devices for which R? scores of
almost 0.5 are reached using non-linear calibration meth-
ods. We note that the linear MLR and ridge methods do not
achieve the same performance, but ridge outperforms MLR.
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Figure 5. Node-specific I3 R? scores depending on calibration
method and training sample size, evaluated on consistent 220 h
test data sets in each case (see main text). The boxes extend from
the lower to the upper quartile; inset lines mark the median. The
whiskers extending from the box indicate the range excluding out-
liers (fliers). Each circle represents the R? score on the test set for an
individual node (21 in total). For MLR, some sensor nodes remain
poorly calibrated even for larger sample sizes.

The most recently developed AlphaSense sensor used in our
study, B43F, is the best-performing stand-alone sensor. If we
add the NO/ozone sensor as well as the humidity and tem-
perature signals to the predictors — case (g) — its performance
alone almost reaches the same as for the I3¢ configuration.
This implies that the interference with NO/ozone, tempera-
ture and humidity might be significant and has to be taken
into account in the calibration, and if only one sensor could
be chosen for the measurements, the B43F sensor would be
the best choice. By further adding the A43F sensor to the
predictors the predictive skill is only mildly improved (h).
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Finally, we note that, in this stationary sensor setting, further
predictive skill can be gained by considering past measure-
ment values. Here, we included the 1 h lagged signal of the
best B43F sensor (i). This is clearly only possible if there is
a delayed consistency (or autocorrelation) in the data, which
here leads to the best average R? generalization score of 0.84
for GPR and related gains in terms of the RMSE. While be-
ing an interesting feature, we will not consider such set-ups
in the following, because we intend sensors to be transferable
among locations, and they should only rely on live signals for
the hour of measurement in question.

In summary, using all sensor signals in combination is a
robust and skilful set-up for our NO; sensor calibration and
is therefore a prudent choice, at least if one of the machine
learning methods is used to control for the curse of dimen-
sionality. In particular, the B43F sensor is important to con-
sider in the calibration, but further calibration skill is gained
by also considering environmental factors, the presence of in-
terference from ozone and NO, and additional NO, devices.

3.2 PM;y sensor calibration

In the same way as for NO;, we tested several calibration
settings for the PMq sensors. For this purpose, we consider
the measurements for the location CarPark, where we co-
located three sensors (IDs 19, 25 and 26) with a higher-cost
device (Table 1). However, after data cleaning, we have only
509 and 439 samples (hours) for sensors 19 and 25 avail-
able, respectively, which our NO; analysis above indicates
is too short to obtain robust statistics for training and testing
the sensors. Instead we focus our analysis on sensor 26 for
which there are 1314 h of measurements available. We split
these data into 400 samples for training and cross-validation,
leaving 914 samples for testing the sensor calibration. Below
we discuss results for various calibration configurations, us-
ing the 24 predictors for PM( (Sect. 2.3) and the same four
regression methods as for NO;. The baseline case with just
24 predictors is named Ip4, following the same nomencla-
ture as for NO,. I4g and I7; refer to the cases with additional
logarithmic and exponential transformations of the predictors
according to Egs. (9a) and (9b). In addition, we test the ef-
fects of environmental conditions, as expressed through rel-
ative humidity and temperature, by excluding these two vari-
ables from the calibration procedure, while using the 43 set-
up with the additional log-transformed predictors.

The results of these tests are summarized in Table 3. For
the baseline case of 24 non-transformed predictors, RFR
(R? = 0.70) is outperformed by ridge regression (R* = 0.79)
and GPR (R? =0.79). This is mainly the result of the fact
that some of the pollution values measured with sensor 26
during the test period lie outside the range of values encoun-
tered at training stage. RFR cannot predict values beyond its
training range (i.e. it cannot extrapolate to higher values) and
can therefore not predict those values accurately (see also
Zimmerman et al., 2018; Malings et al., 2019). Instead, RFR
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Figure 6. Calibrated PM( values (in pug m~3) versus the reference
measurements for 900 h of test data at location CarPark for the /54
predictor set-up. The ideal 1 : 1 perfect prediction line is drawn in
black. Inset values R are the Pearson correlation coefficients.

constantly predicts the maximum value encountered during
training in those cases.

However, this problem is not entirely exclusive to RFR but
is inherited by all methods, with RFR only being the most
prominent case. We illustrate the more general issue, which
will occur in any co-location calibration setting, in Fig. 6. In
the training data, there are not any pollution values beyond
ca. 40 ugm™3, so the RFR predictions simply level off at that
value. This is a serious constraint in actual field measure-
ments where one would be particularly interested in episodes
of highest pollution. We note that this effect is somewhat al-
leviated by using GPR and even more so by ridge regression.
For the latter, this behaviour is intuitive as the linear relation-
ships learnt by ridge will hold to a good approximation even
under extrapolation to previously unseen values. However,
even for ridge regression the predictions eventually deviate
from the 1 : 1 line for the highest pollution levels. This aspect
will be crucial to consider for any co-location calibration ap-
proach, as is also evident from the poor MLR performance,
despite being another linear method. In addition, MLR some-
times predicts substantially negative values, producing an
overall R? score of below 0.3, whereas the machine learning
methods appear to avoid the problem of negative predictions
almost entirely. In conclusion, we highlight the necessity for
co-location studies to ensure that maximum pollution val-
ues encountered during training and testing/deployment are
as similar as possible. Extrapolations beyond 10-20 ugm™3
appear to be unreliable even if ridge regression is used as cal-
ibration algorithm, which is the best among our four methods
to combat extrapolation issues.

A test with additional log-transformations (/43) of the pre-
dictors led to test score improvements for the two linear
methods (Table 3), in particular for MLR (R?=0.7) but
also for ridge regression (R = 0.8). This implies that the
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log-transformations have helped linearize certain predictor—
predictand relationships. Further exponential transforma-
tions (I72) and thus also further increasing the predictor di-
mensionality did not lead to an improvement in calibration
skill. We therefore ran one final test using the 43 set-up but
without relative humidity and temperature included as pre-
dictors. This test confirmed that the sensor signals indeed ex-
perience a slight interference from humidity and temperature,
at least considering the machine learning regressions. No-
tably, this loss of skill is not observed for MLR for which the
R? score actually improves. A likely explanation for this be-
haviour is the curse of dimensionality that affects MLR more
significantly than the three machine learning methods, so the
reduction in collinear dimensions (given the sample size con-
straint) is more beneficial than the information gained by in-
cluding temperature and humidity in the MLR regression.

In summary, we have found that ridge regression and GPR
are the two most reliable and high-performing calibration
methods for the PM( sensor. We are able to attain very good
R? scores > 0.7 for all four regression methods though. An
important point to highlight is the characteristics of the train-
ing domain, in particular of the pollution levels encountered
during the training data measurements. If the value range is
not sufficient to cover the range of interest for future mea-
surement campaigns, then ridge regression might be the most
robust choice to alleviate the underprediction of the most ex-
treme pollution values. However, the power of extrapolation
of any method is limited, so we underline the need to care-
fully check every training data set to see if it fulfils such cru-
cial criteria; see also similar discussions in other calibration
contexts (Hagan et al., 2018; Zimmerman et al., 2018; Mal-
ings et al., 2019).

3.3 Site transferability

Finally, we aim to address the question of site transferability,
i.e. how reliably a sensor calibrated through co-location can
be used to measure air pollution at a different location. One
of the sensor nodes (ID 19) was used for NO; measurements
at both locations, CR7 and CR9, and was also used to mea-
sure PMjp at CR9 and CarPark, allowing us to address this
question for our methodology. Note that these tests also in-
clude a shift in the time of year (Table 1), which has been hy-
pothesized to be one potentially limiting factor in site trans-
ferability. The results of these transferability tests for PMg
(from CR9 to CarPark and vice versa) and NO, (from CR7 to
CR9 and vice versa) are shown in Figs. 7 and 8, respectively.

For PM|q, we trained the regressions, using the I»4 pre-
dictor set-up, on 400 h of data at either location. This emu-
lates a situation in which, according to our results above, we
limit the co-location period to a minimum number of sam-
ples required to achieve reasonable performances across all
four regression methods. To mitigate issues related to extrap-
olation (Fig. 6), we selected the last 400 h of the time se-
ries for location CarPark (Fig. 7a) and hours 600 to 1000
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Table 3. Sensor skill depending on the selection of predictors for PM( sensor 26 at location CarPark. Shown are the R? scores and RMSEs

(in brackets) evaluated over 914 h of test data, after training and cross-validating the algorithms on 400 h of data. RMSEs are given in uygm™".

3

In (d), relative humidity (RH) and temperature (7)) are removed from the calibration variables to test their importance for the measurement

skill.
Predictors MLR Ridge RFR GPR
(@) Iy 0.28 (13.0) 0.79(6.9) 0.70(8.3) 0.79(7.1)
(b) Isg 0.70(8.4) 0.80(6.8) 0.70(8.3) 0.76 (7.4)
() Ip 047 (11.1) 0.80(6.8) 0.70(8.3) 0.79(7.0)
(d I4g—-RH,T 0.76 (7.6) 0.78(7.2) 0.67(8.8) 0.75(7.6)

of the time series for location CR9 (Fig. 7b). This way we
still emulate a possible minimal scenario of 400 consecu-
tive hours of co-location, while also including near maxi-
mum and minimum pollution values within our training data
(given the available measurement data). We note that alter-
native sampling approaches, such as random sampling with
shuffling of the data, could lead to artificial effects at vali-
dation and testing stages because of autocorrelation effects
that could inflate apparent calibration skill. The maximum
pollution found within the two time slices differ only by
ca. £10pugm—3, for which at least ridge regression should
provide reasonable extrapolation performances. For the re-
sulting predictions at location CarPark, using models trained
on the CRY data, we achieve generally very good R? scores
ranging between 0.67 for RFR and 0.78 for ridge regression.
The site-transferred measurement performance of sensor 19
is therefore almost as good as the one for sensor 26 at the co-
location site itself (Table 3); i.e. we cannot detect any signif-
icant loss in measurement performance due to the site trans-
fer. A surprising element is that MLR performs almost as
good as ridge regression in this case, whereas it performed
poorly for sensor 26, where it only achieved an R? score
of 0.28 (Table 3). This underlines our previous observation
that the performance of MLR is more sensitive to the spe-
cific sensor hardware, with sometimes low performance for
relatively small sample sizes (Fig. 5). However, our results
also show again that linear methods appear to generally per-
form well for our PM ¢ sensors, with ridge regression being
the most reliable and high-performing choice overall. These
results are further supported by calculations concerning the
detection of only the most extreme pollution events in the
time series; see also the definition of such events described
in the caption of Fig. 7. We characterize such events in the
form of their statistical recall in our sensor measurements
(the fraction of extreme pollution events in the reference time
series that are also identified by our calibrated sensors) and
precision (the fraction of extreme events identified by our
sensors that are indeed also extreme events in the reference
time series) and show the results as inset numbers in Figs. 7
and 8. Overall, these site-transfer PM g results from CR9
to CarPark imply that sensors calibrated through co-location
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can achieve high measurement performance distant from the
co-location site.

However, we do find that site transferability is not always
as straightforward as found for this particular case. For exam-
ple, for the inverse transfer using models trained at CarPark
and predicting PMjo pollution levels at CR9, we find lower
R? scores overall. There is consistency in the sense that MLR
and ridge remain the best performing methods for sensor 19
with R? scores of around 0.5, but the sensors now miss sev-
eral significant pollution events in the time series. We note,
however, that many of the most extreme pollution events are
still detected, which is evident from the still relatively high
precision and recall scores for all methods. These results un-
derline that, in general at least, a good performance can be
achieved with co-location calibrations but that there are also
significant challenges posed by site transfers. In particular,
the problem is not necessarily symmetric among sites, i.e.
the skill of the method can depend on the direction of the
transfer, even if the pollution levels at both sites are similar.
We therefore hope that our insights and results will motivate
further work in this direction, with the aim to identify possi-
ble causes of such effects. We discuss some of the possible
reasons for this behaviour in Sect. 4.

Similarly, we find promising results for the NO, sensor
site transfer using the /3o predictor set-up (Fig. 8). The key
challenge for the sensor transfer from CR7 to CRO is that
the maximal pollution levels at the two locations differ sub-
stantially, with peak concentration being around 100 ugm™3
greater at CR9. To allow for the best possible learning op-
portunities for the regression algorithms, we therefore used
all available samples for training, which are 1482 samples
at CR9 and 829 samples at CR7. This leads to overall good
performance of the non-linear RFR and GPR methods at lo-
cation CR7 using models trained at CR9. As no extrapola-
tion is necessary, these methods achieve a good performance
of R? scores > 0.6 and also a good balance of precision and
recall. The results are, however, slightly worse than for the
same site calibrations (Table 2). Ridge regression has a ten-
dency to overpredict NO; pollution levels in this particular
case, likely because it cannot capture some non-linear effects
that would have limited the prediction values. As a result, it
also reproduces almost all extreme pollution events where the

Atmos. Meas. Tech., 14, 5637-5655, 2021



5650

P. Nowack et al.: Machine learning calibration

(a) Calibration of sensor 19 at CR9 (400 samples), prediction at CarPark
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Figure 7. Tests of PM 1 sensor site transfers using calibration models trained on 400 h of data. (a) Predictions for the four regression models
(as labelled) and reference measurements at location CarPark, using models trained at CR9, and (b) at location CR9, using models trained
on data measured at CarPark. The inset values provide the R? scores for each method relative to the reference as well as the corresponding
recall and precision for the detection of the strongest pollution events, which are typically of particular interest in real-life situations (here
defined as events when two values within the last 3 h exceeded a threshold of 35 g m~3). For compactness, we only show data for times at
which both reference and low-cost sensor data were available, and we label these hours as a consecutive timeline.

concentration of NO; exceeds 45 ugm™ (recall = 0.98) but
also predicts many false pollution events (precision = 0.49).

Despite the large sample size, MLR performs poorly for
both site transfers (R>=0.07 and —0.31). In particular,
MLR underpredicts, sometimes providing even impossible
negative pollution estimates at CR7, whereas it provides sev-
eral runaway positive values at CR9 (Fig. 8). However, at
CRO all methods struggle with the impossible challenge of
extrapolation far outside their training domain, which effec-
tively is an extreme demonstration of the effects of an ill-
considered training range (cf. Fig. 6). Among the machine
learning methods, the effect is as expected most prominent
for RFR (R? =0.36), which cannot predict any pollution
values beyond those encountered at training stage. This is
a serious limitation and means that the method scores nil on
precision and recall of any extreme pollution events at CR9
where NO, levels exceeded 90 ugm~3. GPR is slightly bet-
ter at extrapolating beyond its training domain (compare also
Fig. 6) but still not good enough to reproduce any of the ex-
treme pollution events, giving rise to equally low precision
and recall. Ridge regression, as a regularized linear method,
performs best in the sense that it is able to reproduce at least
a few of the extreme events (recall = 0.05) and predicting no
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false extreme events (precision = 1.0), while still achieving
an R? score of 0.53. Nonetheless, it is clear from the time
series in Fig. 8 that none of the regression methods works for
this site transfer, simply because of the too large extrapola-
tion range.

4 Discussion and conclusions

We have compared four different regression methods to cal-
ibrate a number of low-cost NO, and PM( sensors against
reference measurement signals, by means of co-location at
three separate sites in London, UK. A summary of the vari-
ous features of each regression algorithm is given in Table 4.
Comparing the four regression methods, our main conclu-
sions are the following:

1. For the 21 NO; sensor nodes, Gaussian process regres-
sion (GPR) is generally performing best at the same
measurement site, followed by ridge regression, random
forest regression (RFR), and multiple linear regression
(MLR). For a single sensor PM{ calibration, we find
that ridge regression and GPR attain about the same
measurement performance, with a slight edge for ridge

https://doi.org/10.5194/amt-14-5637-2021
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(a) Calibration of sensor 19 at CR9 (1482 samples), prediction at CR7 - alert threshold 45 ug/m3
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Figure 8. Tests of NO; sensor site transfers using calibration models trained on all available samples for locations CR7 and CR9. (a) Pre-
dictions for the four regression models (as labelled) and reference measurements at location CR7, using models trained on data from CR9
and (b) vice versa. The inset values provide the R? scores for each method relative to the reference as well as the corresponding recall and
precision for the detection of the strongest pollution events, which are typically of particular interest in real-life situations. Since the two

locations were subject to very different pollution ranges (note the different value ranges on the y axes), these are defined in (a) as 45 ugm™
, and we indicate these thresholds by grey dashed lines. An extreme pollution event occurs when the threshold is

and in (b) as 90 ug m—3

3

exceeded for 2 of the last 3 h. For compactness, we only show data for times at which both reference and low-cost sensor data were available,

and we label these hours as a consecutive timeline.

regression. We note that in particular the relative per-
formance of GPR differs greatly from a recent study by
Malings et al. (2019), likely due to our different choice
of kernel design.

2. Special care must be taken of the calibration conditions,
in particular if sensors are thereafter used for measure-
ments in areas where higher pollution levels are to be
expected. The linear ridge method can best mitigate
the catastrophic measurement failure in such extrapo-
lation settings, for both NO; and PM |y measurements,
but also fails if measurement signals deviate by more
than around 10-20 ugm™> from the maximum pollu-
tion level in the training data. For our NO; measure-
ment with site transfer, we find that the non-linear meth-
ods, GPR and RFR, can outperform ridge regression,
assuming that the training pollution range encapsulates
the range of values encountered at the new site. For the
PM sensor calibrations and corresponding site trans-
fers, we find that ridge regression is the highest perform-
ing and most reliable calibration algorithm overall.

https://doi.org/10.5194/amt-14-5637-2021

3. All three machine learning methods (ridge, GPR and
RFR) generally outperform or perform as least as good
as MLR. The machine learning methods are also more
reliable if many signals are used for calibration, or if
the number of measurement samples is relatively small.
MLR suffers most significantly from the curse of di-
mensionality in those settings and can produce highly
erroneous results.

4. Under careful consideration of the calibration condi-
tions, given expected measurement conditions, the low-
cost sensors typically achieve high performances with
R? scores often exceeding 0.8 on new unseen test data.

On another note, we highlight that we sometimes found
significant signals in our test data sets that were not repro-
duced by our low-cost sensor nodes (see, for example, the
pollution spike at # &~ 140 in Fig. 7a) even if the measured
pollution value lies well within the training data range. It is
hard to assign reasons to this surprising sensor behaviour,
as our low-cost sensors are apparently able to capture most
of the other pollution spikes well for the same data set. One

Atmos. Meas. Tech., 14, 5637-5655, 2021
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Table 4. Summary and qualitative evaluation of key features of each of the four regression algorithms. The robustness to the curse of
dimensionality refers to how well each algorithm can handle an increase in the number of calibration variables. In addition, we summarize
how well each method performs for our calibrations here if evaluated against test data sampled at the same site as the one used for training
and after site transfers. The variable performance of GPR (and also RFR) for site transfers is mainly the result of its limited skill to extrapolate
so that its performance will always depend strongly on how representative the training data is in terms of value ranges. We also note that
robustness to the curse of dimensionality (third column) is only considered with respect to the maximum of 72 predictors considered here.
In even higher dimensions more significant differences across the machine learning methods are expected to occur eventually.

Method Non-linear Robustness to curse Same site Extrapolation
of dimensionality performance (site transfer skill)
NO, PMig NO, PMio
MLR No Poor Poor to good  Poor to good | Poor Moderate to good
Ridge No Very good Very good Best Moderate Good
GPR Yes Very good Best Very good Poor to good  Moderate to good
RFR Yes Very good Very good Good Poor to good  Poor to good

possible reason is a calibration blind spot; i.e. we encounter a
new type of sensor interference which we did not find in the
training data. For example, this could be substantial changes
in environmental conditions or, for example, PM composi-
tion, which are not captured by the calibration function. In
our interpretation of results, this would represent again an
extrapolation with respect to the predictors and/or the pre-
dictands. However, we think that this is unlikely, given that
the behaviour is not found frequently, at least in this par-
ticular time series. Two other options are (a) imperfect co-
location (e.g. we might have missed an important local pol-
lution plume by chance) or (b) temporary sensor failures that
were removed by the MAD outlier removal, i.e. that our sen-
sors were temporarily inoperable at the time of a pollution
spike that dominated the values for the given measurement
hour. Interesting aspects to explore as part of future work
might be to compare how sensitive site transfer performances
are to the measurement principle of the NO, and PM;( de-
vices used and effects of the seasonal cycle (e.g. winter-
based calibrations to be used during summer). We hope that
future measurement campaigns can provide further insights
into such calibration challenges, and we hope that our study
can motivate further work in this direction.

In conclusion, our results underline the potential of ma-
chine learning algorithms for the calibration of co-located
low-cost NO, and PM| sensors. At the same time, we high-
light several significant challenges that will always have to
be considered in similar calibration processes. This includes
the need for a well-adjusted calibration data set to avoid cal-
ibration failure if the algorithm needs to extrapolate to sig-
nificantly higher pollution values and the role of individ-
ual choices relating to the combination of calibration vari-
ables and calibration algorithms, e.g. concerning the curse
of dimensionality, predictor transformations and linearity in
the predictor—predictand relationships. Recent studies indi-
cate that the issues related to extrapolation can be mitigated
through the application of hybrid models in which non-linear
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machine learning models are used within the training domain
and a simpler linear regression approach otherwise (Hagan
et al., 2018; Malings et al., 2019). We note that in particular
ridge regression could be a good compromise, which does
not require a somewhat arbitrary hybrid-model definition.
Having said that, we also found that even high-dimensional
linear methods have ultimately limited extrapolation skill
(Fig. 6), so the consideration of the training data pollution
range remains of fundamental importance. We hope that such
insights will contribute to ever less expensive and more spa-
tially dense measurements of air pollution in the future and
that our work will motivate additional measurement cam-
paigns, testing of other calibration algorithms and further
low-cost sensor development.
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